ctm-experiments / README.md
vincentoh's picture
Updated
efba074 verified
# CTM Experiments - Continuous Thought Machine Models
Experimental checkpoints trained on the [Continuous Thought Machine](https://github.com/SakanaAI/continuous-thought-machines) architecture by Sakana AI.
**These are community experiments on the original work - not official SakanaAI models.**
## Paper Reference
> **Continuous Thought Machines**
>
> Sakana AI
>
> [arXiv:2505.05522](https://arxiv.org/abs/2505.05522)
>
> [Interactive Demo](https://pub.sakana.ai/ctm/) | [Blog Post](https://sakana.ai/ctm/)
```bibtex
@article{sakana2025ctm,
title={Continuous Thought Machines},
author={Sakana AI},
journal={arXiv preprint arXiv:2505.05522},
year={2025}
}
```
## Core Insight
CTM's key innovation: **accuracy improves with more internal iterations**. The model "thinks longer" to reach better answers. This enables CTM to learn algorithmic reasoning that feedforward networks struggle with.
## Models
| Model | File | Size | Task | Accuracy | Description |
|-------|------|------|------|----------|-------------|
| MNIST | `ctm-mnist.pt` | 1.3M | Digit classification | 97.9% | 10-class MNIST |
| Parity-16 | `ctm-parity-16.pt` | 2.5M | Cumulative parity | 99.0% | 16-bit sequences |
| Parity-64 | `ctm-parity-64.pt` | 66M | Cumulative parity | 58.6% | 64-bit sequences (custom config) |
| Parity-64 Official | `ctm-parity-64-official.pt` | 21M | Cumulative parity | 57.7% | 64-bit sequences (official config) |
| QAMNIST | `ctm-qamnist.pt` | 39M | Multi-step arithmetic | 100% | 3-5 digits, 3-5 ops |
| Brackets | `ctm-brackets.pt` | 6.1M | Bracket matching | 94.7% | Valid/invalid `(()[])` |
| Tracking-Quadrant | `ctm-tracking-quadrant.pt` | 6.7M | Motion quadrant | 100% | 4-class prediction |
| Tracking-Position | `ctm-tracking-position.pt` | 6.7M | Exact position | 93.8% | 256-class (16x16 grid) |
| Transfer | `ctm-transfer-parity-brackets.pt` | 2.5M | Transfer learning | 94.5% | Parity core to brackets |
| Jigsaw MNIST | `ctm-jigsaw-mnist.pt` | 19M | Jigsaw puzzle solving | 92.3% | Reassemble 2x2 shuffled MNIST |
| Rotation MNIST | `ctm-rotation-mnist.pt` | 4.2M | Rotation prediction | 89.1% | Predict rotation angle (4 classes) |
| Brackets Transfer | `ctm-brackets-transfer-depth4.pt` | 6.1M | Transfer learning | 95.1% | Parity→Brackets (depth 4 synapse) |
| Dual-Task | `ctm-dual-task-brackets-parity.pt` | 2.8M | Multi-task | 86.1% | Brackets (94%) + Parity (78%) jointly |
| Parity-64 | `ctm-parity-64-8x8.pt` | 4.1M | Long parity | 58.6% | 64-bit (8x8) cumulative parity |
| Parity-144 | `ctm-parity-144-12x12.pt` | 4.1M | Long parity | 51.7% | 144-bit (12x12) cumulative parity |
## Model Configurations
### MNIST CTM
```python
config = {
"iterations": 15,
"memory_length": 10,
"d_model": 128,
"d_input": 128,
"heads": 2,
"n_synch_out": 16,
"n_synch_action": 16,
"memory_hidden_dims": 8,
"out_dims": 10,
"synapse_depth": 1,
}
```
### Parity-16 CTM
```python
config = {
"iterations": 50,
"memory_length": 25,
"d_model": 256,
"d_input": 32,
"heads": 8,
"synapse_depth": 8,
"out_dims": 16, # cumulative parity
}
```
### Parity-64 Official CTM
```python
config = {
"iterations": 75,
"memory_length": 25,
"d_model": 1024,
"d_input": 64,
"heads": 8,
"n_synch_out": 32,
"n_synch_action": 32,
"synapse_depth": 1, # linear synapse (official)
"out_dims": 64, # cumulative parity
}
```
### QAMNIST CTM
```python
config = {
"iterations": 10,
"memory_length": 30,
"d_model": 1024,
"d_input": 64,
"synapse_depth": 1,
"heads": 4,
"n_synch_out": 32,
"n_synch_action": 32,
}
```
### Brackets CTM
```python
config = {
"iterations": 30,
"memory_length": 15,
"d_model": 256,
"d_input": 64,
"heads": 4,
"n_synch_out": 32,
"n_synch_action": 32,
"out_dims": 2, # valid/invalid
}
```
### Tracking CTM
```python
config = {
"iterations": 20,
"memory_length": 15,
"d_model": 256,
"d_input": 64,
"heads": 4,
"n_synch_out": 32,
"n_synch_action": 32,
}
```
### Jigsaw MNIST CTM
```python
config = {
"iterations": 30,
"memory_length": 20,
"d_model": 512,
"d_input": 128,
"heads": 8,
"n_synch_out": 32,
"n_synch_action": 32,
"synapse_depth": 1,
"out_dims": 24, # 4 tiles x 6 permutation options
"backbone_type": "jigsaw",
}
```
### Rotation MNIST CTM
```python
config = {
"iterations": 20,
"memory_length": 15,
"d_model": 256,
"d_input": 64,
"heads": 4,
"n_synch_out": 32,
"n_synch_action": 32,
"synapse_depth": 1,
"out_dims": 4, # 0°, 90°, 180°, 270°
"backbone_type": "rotation",
}
```
## Usage
```python
import torch
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="vincentoh/ctm-experiments",
filename="ctm-mnist.pt"
)
# Load checkpoint
checkpoint = torch.load(model_path, map_location="cpu")
# Initialize CTM with matching config
from models.ctm import ContinuousThoughtMachine
model = ContinuousThoughtMachine(**config)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Inference
with torch.no_grad():
output = model(input_tensor)
```
## Training Details
- **Hardware**: NVIDIA RTX 4070 Ti SUPER
- **Framework**: PyTorch
- **Optimizer**: AdamW
- **Training time**: 5 minutes (MNIST) to 17 hours (QAMNIST)
## Key Findings
1. **Architecture > Scale**: Small sync dimensions (32) with linear synapses work better than large/deep variants
2. **"Thinking Longer" = Higher Accuracy**: CTM accuracy improves with more internal iterations
3. **Transfer Learning Works**: Parity-trained core transfers to brackets with 94.5% accuracy
4. **Architectural Limits**: CTM has a ~58% ceiling on 64-bit parity regardless of hyperparameters
## Parity Scaling Experiments
We tested CTM on increasingly long parity sequences to find where it breaks down:
| Sequence | Grid | Accuracy | vs Random | Status |
|----------|------|----------|-----------|--------|
| 16 | 4x4 | **99.0%** | +49.0% | ✅ Solved |
| 36 | 6x6 | **66.3%** | +16.3% | ⚠️ Degraded |
| 64 | 8x8 | **58.6%** | +8.6% | ❌ Struggling |
| 64 (official) | 8x8 | **57.7%** | +7.7% | ❌ Same ceiling |
| 144 | 12x12 | **51.7%** | +1.7% | ❌ Random |
**Key insight**: The ~58% ceiling for parity-64 is an **architectural limit**, not a hyperparameter issue. Both custom config (d_model=512, synapse_depth=4) and official config (d_model=1024, synapse_depth=1) achieve essentially the same accuracy.
### Why CTM Fails on Long Parity
Parity requires **strict sequential computation**: process bit 1 before bit 2 before bit 3... CTM's attention-based "thinking" is fundamentally parallel - all positions attend simultaneously. The model can learn approximate sequential patterns for short sequences (~64 steps), but this breaks down for longer sequences.
**CTM excels at:**
- Moderate sequence lengths (< 64 elements)
- Local dependencies (brackets: track depth, not full history)
- Parallelizable structure (MNIST: patches contribute independently)
**CTM struggles with:**
- Long strict sequential dependencies (parity-144)
- Tasks requiring O(n) sequential steps where n > ~64
## License
MIT License (same as original CTM repository)
## Acknowledgments
- [Sakana AI](https://sakana.ai/) for the Continuous Thought Machine architecture
- Original [CTM Repository](https://github.com/SakanaAI/continuous-thought-machines)
## Links
- [Original Paper](https://arxiv.org/abs/2505.05522)
- [Interactive Demo](https://pub.sakana.ai/ctm/)