# CTM Experiments - Continuous Thought Machine Models Experimental checkpoints trained on the [Continuous Thought Machine](https://github.com/SakanaAI/continuous-thought-machines) architecture by Sakana AI. **These are community experiments on the original work - not official SakanaAI models.** ## Paper Reference > **Continuous Thought Machines** > > Sakana AI > > [arXiv:2505.05522](https://arxiv.org/abs/2505.05522) > > [Interactive Demo](https://pub.sakana.ai/ctm/) | [Blog Post](https://sakana.ai/ctm/) ```bibtex @article{sakana2025ctm, title={Continuous Thought Machines}, author={Sakana AI}, journal={arXiv preprint arXiv:2505.05522}, year={2025} } ``` ## Core Insight CTM's key innovation: **accuracy improves with more internal iterations**. The model "thinks longer" to reach better answers. This enables CTM to learn algorithmic reasoning that feedforward networks struggle with. ## Models | Model | File | Size | Task | Accuracy | Description | |-------|------|------|------|----------|-------------| | MNIST | `ctm-mnist.pt` | 1.3M | Digit classification | 97.9% | 10-class MNIST | | Parity-16 | `ctm-parity-16.pt` | 2.5M | Cumulative parity | 99.0% | 16-bit sequences | | Parity-64 | `ctm-parity-64.pt` | 66M | Cumulative parity | 58.6% | 64-bit sequences (custom config) | | Parity-64 Official | `ctm-parity-64-official.pt` | 21M | Cumulative parity | 57.7% | 64-bit sequences (official config) | | QAMNIST | `ctm-qamnist.pt` | 39M | Multi-step arithmetic | 100% | 3-5 digits, 3-5 ops | | Brackets | `ctm-brackets.pt` | 6.1M | Bracket matching | 94.7% | Valid/invalid `(()[])` | | Tracking-Quadrant | `ctm-tracking-quadrant.pt` | 6.7M | Motion quadrant | 100% | 4-class prediction | | Tracking-Position | `ctm-tracking-position.pt` | 6.7M | Exact position | 93.8% | 256-class (16x16 grid) | | Transfer | `ctm-transfer-parity-brackets.pt` | 2.5M | Transfer learning | 94.5% | Parity core to brackets | | Jigsaw MNIST | `ctm-jigsaw-mnist.pt` | 19M | Jigsaw puzzle solving | 92.3% | Reassemble 2x2 shuffled MNIST | | Rotation MNIST | `ctm-rotation-mnist.pt` | 4.2M | Rotation prediction | 89.1% | Predict rotation angle (4 classes) | | Brackets Transfer | `ctm-brackets-transfer-depth4.pt` | 6.1M | Transfer learning | 95.1% | Parity→Brackets (depth 4 synapse) | | Dual-Task | `ctm-dual-task-brackets-parity.pt` | 2.8M | Multi-task | 86.1% | Brackets (94%) + Parity (78%) jointly | | Parity-64 | `ctm-parity-64-8x8.pt` | 4.1M | Long parity | 58.6% | 64-bit (8x8) cumulative parity | | Parity-144 | `ctm-parity-144-12x12.pt` | 4.1M | Long parity | 51.7% | 144-bit (12x12) cumulative parity | ## Model Configurations ### MNIST CTM ```python config = { "iterations": 15, "memory_length": 10, "d_model": 128, "d_input": 128, "heads": 2, "n_synch_out": 16, "n_synch_action": 16, "memory_hidden_dims": 8, "out_dims": 10, "synapse_depth": 1, } ``` ### Parity-16 CTM ```python config = { "iterations": 50, "memory_length": 25, "d_model": 256, "d_input": 32, "heads": 8, "synapse_depth": 8, "out_dims": 16, # cumulative parity } ``` ### Parity-64 Official CTM ```python config = { "iterations": 75, "memory_length": 25, "d_model": 1024, "d_input": 64, "heads": 8, "n_synch_out": 32, "n_synch_action": 32, "synapse_depth": 1, # linear synapse (official) "out_dims": 64, # cumulative parity } ``` ### QAMNIST CTM ```python config = { "iterations": 10, "memory_length": 30, "d_model": 1024, "d_input": 64, "synapse_depth": 1, "heads": 4, "n_synch_out": 32, "n_synch_action": 32, } ``` ### Brackets CTM ```python config = { "iterations": 30, "memory_length": 15, "d_model": 256, "d_input": 64, "heads": 4, "n_synch_out": 32, "n_synch_action": 32, "out_dims": 2, # valid/invalid } ``` ### Tracking CTM ```python config = { "iterations": 20, "memory_length": 15, "d_model": 256, "d_input": 64, "heads": 4, "n_synch_out": 32, "n_synch_action": 32, } ``` ### Jigsaw MNIST CTM ```python config = { "iterations": 30, "memory_length": 20, "d_model": 512, "d_input": 128, "heads": 8, "n_synch_out": 32, "n_synch_action": 32, "synapse_depth": 1, "out_dims": 24, # 4 tiles x 6 permutation options "backbone_type": "jigsaw", } ``` ### Rotation MNIST CTM ```python config = { "iterations": 20, "memory_length": 15, "d_model": 256, "d_input": 64, "heads": 4, "n_synch_out": 32, "n_synch_action": 32, "synapse_depth": 1, "out_dims": 4, # 0°, 90°, 180°, 270° "backbone_type": "rotation", } ``` ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="vincentoh/ctm-experiments", filename="ctm-mnist.pt" ) # Load checkpoint checkpoint = torch.load(model_path, map_location="cpu") # Initialize CTM with matching config from models.ctm import ContinuousThoughtMachine model = ContinuousThoughtMachine(**config) model.load_state_dict(checkpoint['model_state_dict']) model.eval() # Inference with torch.no_grad(): output = model(input_tensor) ``` ## Training Details - **Hardware**: NVIDIA RTX 4070 Ti SUPER - **Framework**: PyTorch - **Optimizer**: AdamW - **Training time**: 5 minutes (MNIST) to 17 hours (QAMNIST) ## Key Findings 1. **Architecture > Scale**: Small sync dimensions (32) with linear synapses work better than large/deep variants 2. **"Thinking Longer" = Higher Accuracy**: CTM accuracy improves with more internal iterations 3. **Transfer Learning Works**: Parity-trained core transfers to brackets with 94.5% accuracy 4. **Architectural Limits**: CTM has a ~58% ceiling on 64-bit parity regardless of hyperparameters ## Parity Scaling Experiments We tested CTM on increasingly long parity sequences to find where it breaks down: | Sequence | Grid | Accuracy | vs Random | Status | |----------|------|----------|-----------|--------| | 16 | 4x4 | **99.0%** | +49.0% | ✅ Solved | | 36 | 6x6 | **66.3%** | +16.3% | ⚠️ Degraded | | 64 | 8x8 | **58.6%** | +8.6% | ❌ Struggling | | 64 (official) | 8x8 | **57.7%** | +7.7% | ❌ Same ceiling | | 144 | 12x12 | **51.7%** | +1.7% | ❌ Random | **Key insight**: The ~58% ceiling for parity-64 is an **architectural limit**, not a hyperparameter issue. Both custom config (d_model=512, synapse_depth=4) and official config (d_model=1024, synapse_depth=1) achieve essentially the same accuracy. ### Why CTM Fails on Long Parity Parity requires **strict sequential computation**: process bit 1 before bit 2 before bit 3... CTM's attention-based "thinking" is fundamentally parallel - all positions attend simultaneously. The model can learn approximate sequential patterns for short sequences (~64 steps), but this breaks down for longer sequences. **CTM excels at:** - Moderate sequence lengths (< 64 elements) - Local dependencies (brackets: track depth, not full history) - Parallelizable structure (MNIST: patches contribute independently) **CTM struggles with:** - Long strict sequential dependencies (parity-144) - Tasks requiring O(n) sequential steps where n > ~64 ## License MIT License (same as original CTM repository) ## Acknowledgments - [Sakana AI](https://sakana.ai/) for the Continuous Thought Machine architecture - Original [CTM Repository](https://github.com/SakanaAI/continuous-thought-machines) ## Links - [Original Paper](https://arxiv.org/abs/2505.05522) - [Interactive Demo](https://pub.sakana.ai/ctm/)