File size: 7,598 Bytes
63d759d
7f14743
63d759d
7f14743
63d759d
7f14743
63d759d
7f14743
63d759d
 
 
 
 
 
 
7f14743
63d759d
 
 
 
 
 
 
 
7f14743
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f14743
63d759d
 
 
 
 
 
 
 
 
 
 
 
7f14743
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8244b6b
63d759d
8244b6b
63d759d
 
 
8244b6b
63d759d
 
 
 
 
8244b6b
63d759d
 
8244b6b
63d759d
 
8244b6b
63d759d
 
 
8244b6b
63d759d
 
 
 
8244b6b
63d759d
8244b6b
63d759d
 
 
 
8244b6b
63d759d
7f14743
63d759d
 
 
 
7f14743
63d759d
7f14743
63d759d
7f14743
63d759d
 
 
 
 
 
 
8244b6b
63d759d
7f14743
63d759d
8244b6b
63d759d
8244b6b
63d759d
 
 
 
8244b6b
63d759d
 
 
7f14743
63d759d
7f14743
63d759d
7f14743
63d759d
7f14743
63d759d
 
7f14743
63d759d
7f14743
63d759d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# CTM Experiments - Continuous Thought Machine Models

Experimental checkpoints trained on the [Continuous Thought Machine](https://github.com/SakanaAI/continuous-thought-machines) architecture by Sakana AI.

**These are community experiments on the original work - not official SakanaAI models.**

## Paper Reference

> **Continuous Thought Machines**
>
> Sakana AI
>
> [arXiv:2505.05522](https://arxiv.org/abs/2505.05522)
>
> [Interactive Demo](https://pub.sakana.ai/ctm/) | [Blog Post](https://sakana.ai/ctm/)

```bibtex
@article{sakana2025ctm,
  title={Continuous Thought Machines},
  author={Sakana AI},
  journal={arXiv preprint arXiv:2505.05522},
  year={2025}
}
```

## Core Insight

CTM's key innovation: **accuracy improves with more internal iterations**. The model "thinks longer" to reach better answers. This enables CTM to learn algorithmic reasoning that feedforward networks struggle with.

## Models

| Model | File | Size | Task | Accuracy | Description |
|-------|------|------|------|----------|-------------|
| MNIST | `ctm-mnist.pt` | 1.3M | Digit classification | 97.9% | 10-class MNIST |
| Parity-16 | `ctm-parity-16.pt` | 2.5M | Cumulative parity | 99.0% | 16-bit sequences |
| Parity-64 | `ctm-parity-64.pt` | 66M | Cumulative parity | 58.6% | 64-bit sequences (custom config) |
| Parity-64 Official | `ctm-parity-64-official.pt` | 21M | Cumulative parity | 57.7% | 64-bit sequences (official config) |
| QAMNIST | `ctm-qamnist.pt` | 39M | Multi-step arithmetic | 100% | 3-5 digits, 3-5 ops |
| Brackets | `ctm-brackets.pt` | 6.1M | Bracket matching | 94.7% | Valid/invalid `(()[])` |
| Tracking-Quadrant | `ctm-tracking-quadrant.pt` | 6.7M | Motion quadrant | 100% | 4-class prediction |
| Tracking-Position | `ctm-tracking-position.pt` | 6.7M | Exact position | 93.8% | 256-class (16x16 grid) |
| Transfer | `ctm-transfer-parity-brackets.pt` | 2.5M | Transfer learning | 94.5% | Parity core to brackets |
| Jigsaw MNIST | `ctm-jigsaw-mnist.pt` | 19M | Jigsaw puzzle solving | 92.3% | Reassemble 2x2 shuffled MNIST |
| Rotation MNIST | `ctm-rotation-mnist.pt` | 4.2M | Rotation prediction | 89.1% | Predict rotation angle (4 classes) |
| Brackets Transfer | `ctm-brackets-transfer-depth4.pt` | 6.1M | Transfer learning | 95.1% | Parity→Brackets (depth 4 synapse) |
| Dual-Task | `ctm-dual-task-brackets-parity.pt` | 2.8M | Multi-task | 86.1% | Brackets (94%) + Parity (78%) jointly |
| Parity-64 | `ctm-parity-64-8x8.pt` | 4.1M | Long parity | 58.6% | 64-bit (8x8) cumulative parity |
| Parity-144 | `ctm-parity-144-12x12.pt` | 4.1M | Long parity | 51.7% | 144-bit (12x12) cumulative parity |

## Model Configurations

### MNIST CTM
```python
config = {
    "iterations": 15,
    "memory_length": 10,
    "d_model": 128,
    "d_input": 128,
    "heads": 2,
    "n_synch_out": 16,
    "n_synch_action": 16,
    "memory_hidden_dims": 8,
    "out_dims": 10,
    "synapse_depth": 1,
}
```

### Parity-16 CTM
```python
config = {
    "iterations": 50,
    "memory_length": 25,
    "d_model": 256,
    "d_input": 32,
    "heads": 8,
    "synapse_depth": 8,
    "out_dims": 16,  # cumulative parity
}
```

### Parity-64 Official CTM
```python
config = {
    "iterations": 75,
    "memory_length": 25,
    "d_model": 1024,
    "d_input": 64,
    "heads": 8,
    "n_synch_out": 32,
    "n_synch_action": 32,
    "synapse_depth": 1,  # linear synapse (official)
    "out_dims": 64,  # cumulative parity
}
```

### QAMNIST CTM
```python
config = {
    "iterations": 10,
    "memory_length": 30,
    "d_model": 1024,
    "d_input": 64,
    "synapse_depth": 1,
    "heads": 4,
    "n_synch_out": 32,
    "n_synch_action": 32,
}
```

### Brackets CTM
```python
config = {
    "iterations": 30,
    "memory_length": 15,
    "d_model": 256,
    "d_input": 64,
    "heads": 4,
    "n_synch_out": 32,
    "n_synch_action": 32,
    "out_dims": 2,  # valid/invalid
}
```

### Tracking CTM
```python
config = {
    "iterations": 20,
    "memory_length": 15,
    "d_model": 256,
    "d_input": 64,
    "heads": 4,
    "n_synch_out": 32,
    "n_synch_action": 32,
}
```

### Jigsaw MNIST CTM
```python
config = {
    "iterations": 30,
    "memory_length": 20,
    "d_model": 512,
    "d_input": 128,
    "heads": 8,
    "n_synch_out": 32,
    "n_synch_action": 32,
    "synapse_depth": 1,
    "out_dims": 24,  # 4 tiles x 6 permutation options
    "backbone_type": "jigsaw",
}
```

### Rotation MNIST CTM
```python
config = {
    "iterations": 20,
    "memory_length": 15,
    "d_model": 256,
    "d_input": 64,
    "heads": 4,
    "n_synch_out": 32,
    "n_synch_action": 32,
    "synapse_depth": 1,
    "out_dims": 4,  # 0°, 90°, 180°, 270°
    "backbone_type": "rotation",
}
```

## Usage

```python
import torch
from huggingface_hub import hf_hub_download

# Download model
model_path = hf_hub_download(
    repo_id="vincentoh/ctm-experiments",
    filename="ctm-mnist.pt"
)

# Load checkpoint
checkpoint = torch.load(model_path, map_location="cpu")

# Initialize CTM with matching config
from models.ctm import ContinuousThoughtMachine

model = ContinuousThoughtMachine(**config)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()

# Inference
with torch.no_grad():
    output = model(input_tensor)
```

## Training Details

- **Hardware**: NVIDIA RTX 4070 Ti SUPER
- **Framework**: PyTorch
- **Optimizer**: AdamW
- **Training time**: 5 minutes (MNIST) to 17 hours (QAMNIST)

## Key Findings

1. **Architecture > Scale**: Small sync dimensions (32) with linear synapses work better than large/deep variants
2. **"Thinking Longer" = Higher Accuracy**: CTM accuracy improves with more internal iterations
3. **Transfer Learning Works**: Parity-trained core transfers to brackets with 94.5% accuracy
4. **Architectural Limits**: CTM has a ~58% ceiling on 64-bit parity regardless of hyperparameters

## Parity Scaling Experiments

We tested CTM on increasingly long parity sequences to find where it breaks down:

| Sequence | Grid | Accuracy | vs Random | Status |
|----------|------|----------|-----------|--------|
| 16 | 4x4 | **99.0%** | +49.0% | ✅ Solved |
| 36 | 6x6 | **66.3%** | +16.3% | ⚠️ Degraded |
| 64 | 8x8 | **58.6%** | +8.6% | ❌ Struggling |
| 64 (official) | 8x8 | **57.7%** | +7.7% | ❌ Same ceiling |
| 144 | 12x12 | **51.7%** | +1.7% | ❌ Random |

**Key insight**: The ~58% ceiling for parity-64 is an **architectural limit**, not a hyperparameter issue. Both custom config (d_model=512, synapse_depth=4) and official config (d_model=1024, synapse_depth=1) achieve essentially the same accuracy.

### Why CTM Fails on Long Parity

Parity requires **strict sequential computation**: process bit 1 before bit 2 before bit 3... CTM's attention-based "thinking" is fundamentally parallel - all positions attend simultaneously. The model can learn approximate sequential patterns for short sequences (~64 steps), but this breaks down for longer sequences.

**CTM excels at:**
- Moderate sequence lengths (< 64 elements)
- Local dependencies (brackets: track depth, not full history)
- Parallelizable structure (MNIST: patches contribute independently)

**CTM struggles with:**
- Long strict sequential dependencies (parity-144)
- Tasks requiring O(n) sequential steps where n > ~64

## License

MIT License (same as original CTM repository)

## Acknowledgments

- [Sakana AI](https://sakana.ai/) for the Continuous Thought Machine architecture
- Original [CTM Repository](https://github.com/SakanaAI/continuous-thought-machines)

## Links

- [Original Paper](https://arxiv.org/abs/2505.05522)
- [Interactive Demo](https://pub.sakana.ai/ctm/)