metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: >-
publicly announced on August 27, 2018 that it was writing down the
carrying
value of its investment in DR to “nil,” after acknowledging that DR’s
failure to
achieve FDA approval for its technology and missing “milestone and
projected
revenue targets.”72 Although Senetas understood that such an action
could
negatively affect DR’s future funding,73 it states that, as a publicly
traded company
sentences:
- What is the plaintiff required to do with the Complaint?
- >-
What potential effect on DR did Senetas understand could result from
writing down the investment?
- >-
What is the Federal Circuit case citation number for Shea v. United
States?
- source_sentence: >-
has any subpoena or contempt authority, the sort of powers incident to
Congress’s “broad power
of inquiry.” Soucie, 448 F.2d at 1075 & n.27; see McGrain, 273 U.S. at
168–69, 180.
Given these considerations, the Commission does not exercise “substantial
independent
authority.” Accord Flaherty v. Ross, 373 F. Supp. 3d 97, 106–10 (D.D.C.
2019).5 The upshot is
sentences:
- Who had personal knowledge of the first and third events?
- What is said about the Commission's exercise of authority?
- What are the page references for the decision in Cole?
- source_sentence: >-
pending. The Court will begin by explaining why it denies the plaintiff’s
motion for leave to file
a second amended complaint in No. 11-445. The Court will then discuss the
plaintiff’s Motion
for Sanctions, filed in No. 11-443. Third, the Court will address the
plaintiff’s two remaining
policy-or-practice claims, which challenge the CIA’s Assignment of Rights
Policy and
sentences:
- What type of motion did the court deny the plaintiff?
- What policies are being challenged by the plaintiff’s remaining claims?
- >-
What is cited in the location where the argument about crafting task
orders is made?
- source_sentence: >-
(11th ed. 2003). While Defendant correctly identifies that labor costs
are often contemplated in
pricing firm fixed-price contracts, the same is true for a wide variety of
other costs. See, e.g.,
Lakeshore Eng’g Servs., 748 F.3d at 1343 (“[T]he mechanism of pricing such
jobs involves
identification of costs for those jobs, including labor, equipment, and
materials . . . .”).
60
sentences:
- >-
What other costs, besides labor, are involved in the pricing mechanism
of jobs according to Lakeshore Eng’g Servs.?
- What did the letters seek from the recipients regarding dmed.ai?
- >-
To which community do the sensitive operations related to the withheld
information belong?
- source_sentence: >-
protests pursuant to 28 U.S.C. § 1491(b). See 28 U.S.C. § 1491(b).
Section 1491(b)(1) grants the
17
court jurisdiction over protests filed “by an interested party objecting
to a solicitation by a Federal
agency for bids or proposals for a proposed contract . . . or any alleged
violation of statute or
sentences:
- Which agency's declaration is mentioned?
- Under which U.S. Code section are the protests filed?
- What does the camera do when it begins and ends recording?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5919629057187017
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6352395672333848
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7032457496136012
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7666151468315301
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5919629057187017
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5682637815558991
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.42627511591962897
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24080370942812984
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.20118495620814011
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5470118495620814
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6664090674909839
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.750772797527048
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6774170353263864
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6316503520522063
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6706536977021021
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5857805255023184
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.616692426584235
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6908809891808346
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7666151468315301
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5857805255023184
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5574446161772283
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4176197836166924
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24173106646058728
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19835136527563108
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5352910870685214
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.651468315301391
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7518031942297784
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6721586770579754
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6236285910551748
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.662035963048261
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5672333848531684
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5873261205564142
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6646058732612056
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7310664605873262
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5672333848531684
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.538382277176713
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.40092735703245747
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.23075734157650693
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19062339000515197
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5151983513652756
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6263523956723338
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.720504894384338
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6453735180059756
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6008856504992514
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6377344841740619
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.4992272024729521
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5301391035548686
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6136012364760433
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.678516228748068
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4992272024729521
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.47449768160741884
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3653786707882534
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.215919629057187
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16950025759917567
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.45814013395157127
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5705821741370428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6683410613086037
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5891910709474154
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5385613699369493
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5782906402819172
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.36321483771251933
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.401854714064915
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.47295208655332305
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.527047913446677
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36321483771251933
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.35136527563111797
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2782071097372488
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.16506955177743432
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12364760432766615
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.33912931478619274
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.43637300360638853
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5142967542503863
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44443933760269555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4003011457030003
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.44619919912465567
name: Cosine Map@100
ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("manishh16/modernbert-embed-base-legal-matryoshka-2")
sentences = [
'protests pursuant to 28 U.S.C. § 1491(b). See 28 U.S.C. § 1491(b). Section 1491(b)(1) grants the \n17 \n \ncourt jurisdiction over protests filed “by an interested party objecting to a solicitation by a Federal \nagency for bids or proposals for a proposed contract . . . or any alleged violation of statute or',
'Under which U.S. Code section are the protests filed?',
"Which agency's declaration is mentioned?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.592 |
| cosine_accuracy@3 |
0.6352 |
| cosine_accuracy@5 |
0.7032 |
| cosine_accuracy@10 |
0.7666 |
| cosine_precision@1 |
0.592 |
| cosine_precision@3 |
0.5683 |
| cosine_precision@5 |
0.4263 |
| cosine_precision@10 |
0.2408 |
| cosine_recall@1 |
0.2012 |
| cosine_recall@3 |
0.547 |
| cosine_recall@5 |
0.6664 |
| cosine_recall@10 |
0.7508 |
| cosine_ndcg@10 |
0.6774 |
| cosine_mrr@10 |
0.6317 |
| cosine_map@100 |
0.6707 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5858 |
| cosine_accuracy@3 |
0.6167 |
| cosine_accuracy@5 |
0.6909 |
| cosine_accuracy@10 |
0.7666 |
| cosine_precision@1 |
0.5858 |
| cosine_precision@3 |
0.5574 |
| cosine_precision@5 |
0.4176 |
| cosine_precision@10 |
0.2417 |
| cosine_recall@1 |
0.1984 |
| cosine_recall@3 |
0.5353 |
| cosine_recall@5 |
0.6515 |
| cosine_recall@10 |
0.7518 |
| cosine_ndcg@10 |
0.6722 |
| cosine_mrr@10 |
0.6236 |
| cosine_map@100 |
0.662 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5672 |
| cosine_accuracy@3 |
0.5873 |
| cosine_accuracy@5 |
0.6646 |
| cosine_accuracy@10 |
0.7311 |
| cosine_precision@1 |
0.5672 |
| cosine_precision@3 |
0.5384 |
| cosine_precision@5 |
0.4009 |
| cosine_precision@10 |
0.2308 |
| cosine_recall@1 |
0.1906 |
| cosine_recall@3 |
0.5152 |
| cosine_recall@5 |
0.6264 |
| cosine_recall@10 |
0.7205 |
| cosine_ndcg@10 |
0.6454 |
| cosine_mrr@10 |
0.6009 |
| cosine_map@100 |
0.6377 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.4992 |
| cosine_accuracy@3 |
0.5301 |
| cosine_accuracy@5 |
0.6136 |
| cosine_accuracy@10 |
0.6785 |
| cosine_precision@1 |
0.4992 |
| cosine_precision@3 |
0.4745 |
| cosine_precision@5 |
0.3654 |
| cosine_precision@10 |
0.2159 |
| cosine_recall@1 |
0.1695 |
| cosine_recall@3 |
0.4581 |
| cosine_recall@5 |
0.5706 |
| cosine_recall@10 |
0.6683 |
| cosine_ndcg@10 |
0.5892 |
| cosine_mrr@10 |
0.5386 |
| cosine_map@100 |
0.5783 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.3632 |
| cosine_accuracy@3 |
0.4019 |
| cosine_accuracy@5 |
0.473 |
| cosine_accuracy@10 |
0.527 |
| cosine_precision@1 |
0.3632 |
| cosine_precision@3 |
0.3514 |
| cosine_precision@5 |
0.2782 |
| cosine_precision@10 |
0.1651 |
| cosine_recall@1 |
0.1236 |
| cosine_recall@3 |
0.3391 |
| cosine_recall@5 |
0.4364 |
| cosine_recall@10 |
0.5143 |
| cosine_ndcg@10 |
0.4444 |
| cosine_mrr@10 |
0.4003 |
| cosine_map@100 |
0.4462 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 26 tokens
- mean: 96.76 tokens
- max: 156 tokens
|
- min: 8 tokens
- mean: 16.59 tokens
- max: 49 tokens
|
- Samples:
| positive |
anchor |
properly authenticated. See id. at 367, 19 A.3d at 429 (Harrell, J., dissenting). Four years later, in Sublet, 442 Md. at 637-38, 113 A.3d at 697-98, we adopted the reasonable juror test for social media evidence and applied it in the three cases that were consolidated for purposes of the opinion: Sublet v. State, Harris v. State, and Monge- |
How many years after the dissent did the adoption of the reasonable juror test occur? |
to (1) a public-interest fee waiver, (2) the expedited processing of a request, or (3) the release of information that implicates personal privacy, all are personal to a requester and thus cannot be assigned. See, e.g., RTC Commercial Loan Trust 1995-NP1A v. Winthrop Mgmt., 923 F. Supp. 83, 88 (E.D. Va. 1996) (holding that “certain rights are purely personal and cannot be assigned”). |
What type of fee waiver is mentioned as being personal to a requester? |
‘IRO’] staff that reviews Agency records and makes public release determinations with an eye toward evaluating directorate-specific equities.” Id. ¶ 4. Ms. Meeks also explains that “records frequently involve the equities of multiple directorates,” and “[w]hen records implicate the operational interests of multiple directorates, the reviews are conducted by the relevant IROs |
Who conducts the reviews when the records implicate the operational interests of multiple directorates? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: False
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 0.8791 |
10 |
91.6964 |
- |
- |
- |
- |
- |
| 1.0 |
12 |
- |
0.6483 |
0.6445 |
0.6004 |
0.5232 |
0.4001 |
| 1.7033 |
20 |
39.6429 |
- |
- |
- |
- |
- |
| 2.0 |
24 |
- |
0.6764 |
0.6716 |
0.6361 |
0.5736 |
0.4374 |
| 2.5275 |
30 |
30.1905 |
- |
- |
- |
- |
- |
| 3.0 |
36 |
- |
0.6768 |
0.6699 |
0.6441 |
0.5869 |
0.4416 |
| 3.3516 |
40 |
26.8879 |
- |
- |
- |
- |
- |
| 3.7033 |
44 |
- |
0.6774 |
0.6722 |
0.6454 |
0.5892 |
0.4444 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}