ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("manishh16/modernbert-embed-base-legal-matryoshka-2")
sentences = [
'protests pursuant to 28 U.S.C. § 1491(b). See 28 U.S.C. § 1491(b). Section 1491(b)(1) grants the \n17 \n \ncourt jurisdiction over protests filed “by an interested party objecting to a solicitation by a Federal \nagency for bids or proposals for a proposed contract . . . or any alleged violation of statute or',
'Under which U.S. Code section are the protests filed?',
"Which agency's declaration is mentioned?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.592 |
| cosine_accuracy@3 |
0.6352 |
| cosine_accuracy@5 |
0.7032 |
| cosine_accuracy@10 |
0.7666 |
| cosine_precision@1 |
0.592 |
| cosine_precision@3 |
0.5683 |
| cosine_precision@5 |
0.4263 |
| cosine_precision@10 |
0.2408 |
| cosine_recall@1 |
0.2012 |
| cosine_recall@3 |
0.547 |
| cosine_recall@5 |
0.6664 |
| cosine_recall@10 |
0.7508 |
| cosine_ndcg@10 |
0.6774 |
| cosine_mrr@10 |
0.6317 |
| cosine_map@100 |
0.6707 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5858 |
| cosine_accuracy@3 |
0.6167 |
| cosine_accuracy@5 |
0.6909 |
| cosine_accuracy@10 |
0.7666 |
| cosine_precision@1 |
0.5858 |
| cosine_precision@3 |
0.5574 |
| cosine_precision@5 |
0.4176 |
| cosine_precision@10 |
0.2417 |
| cosine_recall@1 |
0.1984 |
| cosine_recall@3 |
0.5353 |
| cosine_recall@5 |
0.6515 |
| cosine_recall@10 |
0.7518 |
| cosine_ndcg@10 |
0.6722 |
| cosine_mrr@10 |
0.6236 |
| cosine_map@100 |
0.662 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5672 |
| cosine_accuracy@3 |
0.5873 |
| cosine_accuracy@5 |
0.6646 |
| cosine_accuracy@10 |
0.7311 |
| cosine_precision@1 |
0.5672 |
| cosine_precision@3 |
0.5384 |
| cosine_precision@5 |
0.4009 |
| cosine_precision@10 |
0.2308 |
| cosine_recall@1 |
0.1906 |
| cosine_recall@3 |
0.5152 |
| cosine_recall@5 |
0.6264 |
| cosine_recall@10 |
0.7205 |
| cosine_ndcg@10 |
0.6454 |
| cosine_mrr@10 |
0.6009 |
| cosine_map@100 |
0.6377 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.4992 |
| cosine_accuracy@3 |
0.5301 |
| cosine_accuracy@5 |
0.6136 |
| cosine_accuracy@10 |
0.6785 |
| cosine_precision@1 |
0.4992 |
| cosine_precision@3 |
0.4745 |
| cosine_precision@5 |
0.3654 |
| cosine_precision@10 |
0.2159 |
| cosine_recall@1 |
0.1695 |
| cosine_recall@3 |
0.4581 |
| cosine_recall@5 |
0.5706 |
| cosine_recall@10 |
0.6683 |
| cosine_ndcg@10 |
0.5892 |
| cosine_mrr@10 |
0.5386 |
| cosine_map@100 |
0.5783 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.3632 |
| cosine_accuracy@3 |
0.4019 |
| cosine_accuracy@5 |
0.473 |
| cosine_accuracy@10 |
0.527 |
| cosine_precision@1 |
0.3632 |
| cosine_precision@3 |
0.3514 |
| cosine_precision@5 |
0.2782 |
| cosine_precision@10 |
0.1651 |
| cosine_recall@1 |
0.1236 |
| cosine_recall@3 |
0.3391 |
| cosine_recall@5 |
0.4364 |
| cosine_recall@10 |
0.5143 |
| cosine_ndcg@10 |
0.4444 |
| cosine_mrr@10 |
0.4003 |
| cosine_map@100 |
0.4462 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 26 tokens
- mean: 96.76 tokens
- max: 156 tokens
|
- min: 8 tokens
- mean: 16.59 tokens
- max: 49 tokens
|
- Samples:
| positive |
anchor |
properly authenticated. See id. at 367, 19 A.3d at 429 (Harrell, J., dissenting). Four years later, in Sublet, 442 Md. at 637-38, 113 A.3d at 697-98, we adopted the reasonable juror test for social media evidence and applied it in the three cases that were consolidated for purposes of the opinion: Sublet v. State, Harris v. State, and Monge- |
How many years after the dissent did the adoption of the reasonable juror test occur? |
to (1) a public-interest fee waiver, (2) the expedited processing of a request, or (3) the release of information that implicates personal privacy, all are personal to a requester and thus cannot be assigned. See, e.g., RTC Commercial Loan Trust 1995-NP1A v. Winthrop Mgmt., 923 F. Supp. 83, 88 (E.D. Va. 1996) (holding that “certain rights are purely personal and cannot be assigned”). |
What type of fee waiver is mentioned as being personal to a requester? |
‘IRO’] staff that reviews Agency records and makes public release determinations with an eye toward evaluating directorate-specific equities.” Id. ¶ 4. Ms. Meeks also explains that “records frequently involve the equities of multiple directorates,” and “[w]hen records implicate the operational interests of multiple directorates, the reviews are conducted by the relevant IROs |
Who conducts the reviews when the records implicate the operational interests of multiple directorates? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: False
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 0.8791 |
10 |
91.6964 |
- |
- |
- |
- |
- |
| 1.0 |
12 |
- |
0.6483 |
0.6445 |
0.6004 |
0.5232 |
0.4001 |
| 1.7033 |
20 |
39.6429 |
- |
- |
- |
- |
- |
| 2.0 |
24 |
- |
0.6764 |
0.6716 |
0.6361 |
0.5736 |
0.4374 |
| 2.5275 |
30 |
30.1905 |
- |
- |
- |
- |
- |
| 3.0 |
36 |
- |
0.6768 |
0.6699 |
0.6441 |
0.5869 |
0.4416 |
| 3.3516 |
40 |
26.8879 |
- |
- |
- |
- |
- |
| 3.7033 |
44 |
- |
0.6774 |
0.6722 |
0.6454 |
0.5892 |
0.4444 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}