File size: 31,624 Bytes
0c85e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: "publicly announced on August 27, 2018 that it was writing down\
    \ the carrying \nvalue of its investment in DR to “nil,” after acknowledging that\
    \ DR’s failure to \nachieve FDA approval for its technology and missing “milestone\
    \ and projected \nrevenue targets.”72  Although Senetas understood that such an\
    \ action could \nnegatively affect DR’s future funding,73 it states that, as a\
    \ publicly traded company"
  sentences:
  - What is the plaintiff required to do with the Complaint?
  - What potential effect on DR did Senetas understand could result from writing down
    the investment?
  - What is the Federal Circuit case citation number for Shea v. United States?
- source_sentence: "has any subpoena or contempt authority, the sort of powers incident\
    \ to Congress’s “broad power \nof inquiry.”  Soucie, 448 F.2d at 1075 & n.27;\
    \ see McGrain, 273 U.S. at 168–69, 180. \nGiven these considerations, the Commission\
    \ does not exercise “substantial independent \nauthority.”  Accord Flaherty v.\
    \ Ross, 373 F. Supp. 3d 97, 106–10 (D.D.C. 2019).5  The upshot is"
  sentences:
  - Who had personal knowledge of the first and third events?
  - What is said about the Commission's exercise of authority?
  - What are the page references for the decision in Cole?
- source_sentence: "pending.  The Court will begin by explaining why it denies the\
    \ plaintiff’s motion for leave to file \na second amended complaint in No. 11-445.\
    \  The Court will then discuss the plaintiff’s Motion \nfor Sanctions, filed in\
    \ No. 11-443.  Third, the Court will address the plaintiff’s two remaining \n\
    policy-or-practice claims, which challenge the CIA’s Assignment of Rights Policy\
    \ and"
  sentences:
  - What type of motion did the court deny the plaintiff?
  - What policies are being challenged by the plaintiff’s remaining claims?
  - What is cited in the location where the argument about crafting task orders is
    made?
- source_sentence: "(11th ed. 2003).  While Defendant correctly identifies that labor\
    \ costs are often contemplated in \npricing firm fixed-price contracts, the same\
    \ is true for a wide variety of other costs.  See, e.g., \nLakeshore Eng’g Servs.,\
    \ 748 F.3d at 1343 (“[T]he mechanism of pricing such jobs involves \nidentification\
    \ of costs for those jobs, including labor, equipment, and materials . . . .”).\
    \  \n60"
  sentences:
  - What other costs, besides labor, are involved in the pricing mechanism of jobs
    according to Lakeshore Eng’g Servs.?
  - What did the letters seek from the recipients regarding dmed.ai?
  - To which community do the sensitive operations related to the withheld information
    belong?
- source_sentence: "protests pursuant to 28 U.S.C. § 1491(b).  See 28 U.S.C. § 1491(b).\
    \  Section 1491(b)(1) grants the \n17 \n \ncourt jurisdiction over protests filed\
    \ “by an interested party objecting to a solicitation by a Federal \nagency for\
    \ bids or proposals for a proposed contract . . . or any alleged violation of\
    \ statute or"
  sentences:
  - Which agency's declaration is mentioned?
  - Under which U.S. Code section are the protests filed?
  - What does the camera do when it begins and ends recording?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5919629057187017
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6352395672333848
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7032457496136012
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7666151468315301
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5919629057187017
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5682637815558991
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.42627511591962897
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.24080370942812984
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.20118495620814011
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5470118495620814
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6664090674909839
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.750772797527048
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6774170353263864
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6316503520522063
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6706536977021021
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5857805255023184
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.616692426584235
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6908809891808346
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7666151468315301
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5857805255023184
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5574446161772283
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.4176197836166924
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.24173106646058728
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19835136527563108
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5352910870685214
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.651468315301391
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7518031942297784
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6721586770579754
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6236285910551748
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.662035963048261
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.5672333848531684
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5873261205564142
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6646058732612056
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7310664605873262
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5672333848531684
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.538382277176713
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.40092735703245747
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.23075734157650693
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19062339000515197
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5151983513652756
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6263523956723338
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.720504894384338
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6453735180059756
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6008856504992514
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6377344841740619
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4992272024729521
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5301391035548686
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6136012364760433
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.678516228748068
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4992272024729521
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.47449768160741884
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.3653786707882534
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.215919629057187
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16950025759917567
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.45814013395157127
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5705821741370428
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6683410613086037
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5891910709474154
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5385613699369493
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5782906402819172
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.36321483771251933
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.401854714064915
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.47295208655332305
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.527047913446677
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.36321483771251933
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.35136527563111797
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2782071097372488
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.16506955177743432
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12364760432766615
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.33912931478619274
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.43637300360638853
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5142967542503863
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.44443933760269555
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4003011457030003
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.44619919912465567
      name: Cosine Map@100
---

# ModernBERT Embed base Legal Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("manishh16/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
    'protests pursuant to 28 U.S.C. § 1491(b).  See 28 U.S.C. § 1491(b).  Section 1491(b)(1) grants the \n17 \n \ncourt jurisdiction over protests filed “by an interested party objecting to a solicitation by a Federal \nagency for bids or proposals for a proposed contract . . . or any alleged violation of statute or',
    'Under which U.S. Code section are the protests filed?',
    "Which agency's declaration is mentioned?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.592      |
| cosine_accuracy@3   | 0.6352     |
| cosine_accuracy@5   | 0.7032     |
| cosine_accuracy@10  | 0.7666     |
| cosine_precision@1  | 0.592      |
| cosine_precision@3  | 0.5683     |
| cosine_precision@5  | 0.4263     |
| cosine_precision@10 | 0.2408     |
| cosine_recall@1     | 0.2012     |
| cosine_recall@3     | 0.547      |
| cosine_recall@5     | 0.6664     |
| cosine_recall@10    | 0.7508     |
| **cosine_ndcg@10**  | **0.6774** |
| cosine_mrr@10       | 0.6317     |
| cosine_map@100      | 0.6707     |

#### Information Retrieval

* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 512
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5858     |
| cosine_accuracy@3   | 0.6167     |
| cosine_accuracy@5   | 0.6909     |
| cosine_accuracy@10  | 0.7666     |
| cosine_precision@1  | 0.5858     |
| cosine_precision@3  | 0.5574     |
| cosine_precision@5  | 0.4176     |
| cosine_precision@10 | 0.2417     |
| cosine_recall@1     | 0.1984     |
| cosine_recall@3     | 0.5353     |
| cosine_recall@5     | 0.6515     |
| cosine_recall@10    | 0.7518     |
| **cosine_ndcg@10**  | **0.6722** |
| cosine_mrr@10       | 0.6236     |
| cosine_map@100      | 0.662      |

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5672     |
| cosine_accuracy@3   | 0.5873     |
| cosine_accuracy@5   | 0.6646     |
| cosine_accuracy@10  | 0.7311     |
| cosine_precision@1  | 0.5672     |
| cosine_precision@3  | 0.5384     |
| cosine_precision@5  | 0.4009     |
| cosine_precision@10 | 0.2308     |
| cosine_recall@1     | 0.1906     |
| cosine_recall@3     | 0.5152     |
| cosine_recall@5     | 0.6264     |
| cosine_recall@10    | 0.7205     |
| **cosine_ndcg@10**  | **0.6454** |
| cosine_mrr@10       | 0.6009     |
| cosine_map@100      | 0.6377     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4992     |
| cosine_accuracy@3   | 0.5301     |
| cosine_accuracy@5   | 0.6136     |
| cosine_accuracy@10  | 0.6785     |
| cosine_precision@1  | 0.4992     |
| cosine_precision@3  | 0.4745     |
| cosine_precision@5  | 0.3654     |
| cosine_precision@10 | 0.2159     |
| cosine_recall@1     | 0.1695     |
| cosine_recall@3     | 0.4581     |
| cosine_recall@5     | 0.5706     |
| cosine_recall@10    | 0.6683     |
| **cosine_ndcg@10**  | **0.5892** |
| cosine_mrr@10       | 0.5386     |
| cosine_map@100      | 0.5783     |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3632     |
| cosine_accuracy@3   | 0.4019     |
| cosine_accuracy@5   | 0.473      |
| cosine_accuracy@10  | 0.527      |
| cosine_precision@1  | 0.3632     |
| cosine_precision@3  | 0.3514     |
| cosine_precision@5  | 0.2782     |
| cosine_precision@10 | 0.1651     |
| cosine_recall@1     | 0.1236     |
| cosine_recall@3     | 0.3391     |
| cosine_recall@5     | 0.4364     |
| cosine_recall@10    | 0.5143     |
| **cosine_ndcg@10**  | **0.4444** |
| cosine_mrr@10       | 0.4003     |
| cosine_map@100      | 0.4462     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 5,822 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 26 tokens</li><li>mean: 96.76 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.59 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                     | anchor                                                                                                               |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
  | <code>properly authenticated.  See id. at 367, 19 A.3d at 429 (Harrell, J., dissenting). <br>Four years later, in Sublet, 442 Md. at 637-38, 113 A.3d at 697-98, we adopted the <br>reasonable juror test for social media evidence and applied it in the three cases that were <br>consolidated for purposes of the opinion: Sublet v. State, Harris v. State, and Monge-</code>                                            | <code>How many years after the dissent did the adoption of the reasonable juror test occur?</code>                   |
  | <code>to (1) a public-interest fee waiver, (2) the expedited processing of a request, or (3) the release of <br>information that implicates personal privacy, all are personal to a requester and thus cannot be <br>assigned.  See, e.g., RTC Commercial Loan Trust 1995-NP1A v. Winthrop Mgmt., 923 F. Supp. <br>83, 88 (E.D. Va. 1996) (holding that “certain rights are purely personal and cannot be assigned”).</code> | <code>What type of fee waiver is mentioned as being personal to a requester?</code>                                  |
  | <code>‘IRO’] staff that reviews Agency records and makes public release determinations with an eye <br>toward evaluating directorate-specific equities.”  Id. ¶ 4.  Ms. Meeks also explains that “records <br>frequently involve the equities of multiple directorates,” and “[w]hen records implicate the <br>operational interests of multiple directorates, the reviews are conducted by the relevant IROs</code>         | <code>Who conducts the reviews when the records implicate the operational interests of multiple directorates?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8791     | 10     | 91.6964       | -                      | -                      | -                      | -                      | -                     |
| 1.0        | 12     | -             | 0.6483                 | 0.6445                 | 0.6004                 | 0.5232                 | 0.4001                |
| 1.7033     | 20     | 39.6429       | -                      | -                      | -                      | -                      | -                     |
| 2.0        | 24     | -             | 0.6764                 | 0.6716                 | 0.6361                 | 0.5736                 | 0.4374                |
| 2.5275     | 30     | 30.1905       | -                      | -                      | -                      | -                      | -                     |
| 3.0        | 36     | -             | 0.6768                 | 0.6699                 | 0.6441                 | 0.5869                 | 0.4416                |
| 3.3516     | 40     | 26.8879       | -                      | -                      | -                      | -                      | -                     |
| **3.7033** | **44** | **-**         | **0.6774**             | **0.6722**             | **0.6454**             | **0.5892**             | **0.4444**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->