riotu-lab's picture
Update README.md
8043fc0 verified
metadata
license: mit
tags:
  - UAV
  - Digital_elevation_map
  - DEM
  - Terrain_navigation

UAV Trajectory Simulation Dataset for Terrain-Based Localization

Dataset Overview

This dataset contains simulated UAV flight data generated using ROS2, Gazebo, and PX4 autopilot system. The dataset features a quadcopter performing autonomous flight trajectories over realistic terrain imported from satellite imagery and Digital Elevation Model (DEM) maps of the Taif region in Saudi Arabia.

Dataset Files

The dataset contains:

  • 7 trajectory CSV files: traj_1_taif_map_data.csv through traj_7_taif_map_data.csv
  • 1 Digital Elevation Model: taif_DEM.tif (GeoTIFF format)

File Structure

traj_1_taif_map_data.csv
traj_2_taif_map_data.csv
traj_3_taif_map_data.csv
traj_4_taif_map_data.csv
traj_5_taif_map_data.csv
traj_6_taif_map_data.csv
traj_7_taif_map_data.csv
taif_DEM.tif

Data Characteristics

Flight Telemetry Data (CSV Files)

Each CSV file contains synchronized flight measurements with the following columns:

Column Description Unit
timestamp Unix timestamp with nanosecond precision ns
tx, ty, tz 3D position coordinates in local frame m
vel_x, vel_y, vel_z Linear velocities m/s
orientation_x, orientation_y, orientation_z, orientation_w Quaternion orientation -
angular_vel_x, angular_vel_y, angular_vel_z Angular velocities rad/s
linear_acc_x, linear_acc_y, linear_acc_z Linear accelerations m/s²
latitude, longitude GPS coordinates degrees
altitude GPS altitude m
lidar_range LiDAR distance measurement m
AMSL Altitude above mean sea level m

Digital Elevation Model (taif_DEM.tif)

  • Format: GeoTIFF Digital Elevation Model
  • Coverage: Taif region terrain corresponding to all flight trajectories
  • Source: Generated from real satellite imagery and DEM data
  • Application: Provides terrain elevation reference for localization algorithms

Data Sample

timestamp,tx,ty,tz,vel_x,vel_y,vel_z,orientation_x,orientation_y,orientation_z,orientation_w,angular_vel_x,angular_vel_y,angular_vel_z,linear_acc_x,linear_acc_y,linear_acc_z,latitude,longitude,altitude,lidar_range,AMSL
993.128,-251.516708374023,-45.2020683288574,213.485137939453,5.11164286075962,0.045598402309674,0.220133052308578,0.023194692263158,0.003760659242595,-0.99578133623088,0.088699054215541,0.003482932690531,0.020824493840337,0.000891029543709,-0.57949709892273,0.020221803337337,9.83791255950928,21.2853756,40.2180381,1111.32048684451,213.142578125,1105.18774414063

Simulation Environment

  • Flight Controller: PX4 autopilot with realistic flight dynamics
  • Simulator: Gazebo physics simulation
  • Framework: ROS2 for data collection and sensor integration
  • Terrain Source: Real-world satellite imagery and elevation data from Taif region
  • Vehicle: Simulated quadcopter with onboard sensors

Applications

This dataset is designed for research in:

  • Inertial Navigation Systems (INS) development and testing
  • Terrain-based UAV localization algorithms using elevation data
  • GPS-aided navigation system validation
  • Multi-modal sensor fusion techniques (IMU, GPS, LiDAR)
  • Flight trajectory analysis and planning
  • Autonomous navigation algorithm development

Technical Specifications

Flight Characteristics

  • 7 distinct trajectories with varying flight patterns
  • Precise time synchronization across all sensor modalities
  • 6DOF pose ground truth available for algorithm benchmarking
  • Multi-sensor data fusion including IMU, GPS, and LiDAR

Terrain Characteristics

  • Desert-like terrain with challenging navigation conditions
  • Realistic elevation profiles from actual geographic data
  • Elevation-based localization opportunities using DEM data

Limitations

  • Sensor Coverage: Current version includes IMU, GPS, and LiDAR data only
  • Terrain Type: Limited to desert environment characteristics
  • Single Region: Data collected over Taif region only

Future Dataset Versions

Planned Additions

  • Camera Images: Complete image sequences from onboard cameras will be uploaded in the next version

Usage Notes

  1. Data Alignment: All measurements in each CSV file are time-synchronized
  2. Coordinate Systems: Position data (tx, ty, tz) is in local simulation frame
  3. Terrain Context: Use taif_DEM.tif for elevation reference and terrain-based localization
  4. Multiple Trajectories: Each CSV represents a complete autonomous flight mission
  5. Future Updates: Camera images will be added in a future version of this dataset

Data Quality

  • Ground Truth Accuracy: Complete 6DOF pose information for validation
  • Realistic Physics: PX4 autopilot provides authentic flight dynamics
  • Synchronized Sensors: All data streams precisely time-aligned
  • Validated Terrain: Elevation model derived from verified satellite sources

Citation

If you use this dataset in your research, please cite:

@article{JARRAYA2025106613,
title = {OS-RFODG: Open-source ROS2 framework for outdoor UAV dataset generation},
journal = {Results in Engineering},
volume = {27},
pages = {106613},
year = {2025},
issn = {2590-1230},
doi = {https://doi.org/10.1016/j.rineng.2025.106613},
url = {https://www.sciencedirect.com/science/article/pii/S2590123025026829},
author = {Imen Jarraya and Mohamed Abdelkader and Khaled Gabr and Muhammad Bilal Kadri and Fatimah Alahmed and Wadii Boulila and Anis Koubaa},
keywords = {UAV localization, Dataset generation, ROS2 framework, Geospatial mapping, Sensor data synchronization},