File size: 5,768 Bytes
24dd8d7 8043fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: mit
tags:
- UAV
- Digital_elevation_map
- DEM
- Terrain_navigation
---
# UAV Trajectory Simulation Dataset for Terrain-Based Localization
## Dataset Overview
This dataset contains simulated UAV flight data generated using ROS2, Gazebo, and PX4 autopilot system. The dataset features a quadcopter performing autonomous flight trajectories over realistic terrain imported from satellite imagery and Digital Elevation Model (DEM) maps of the Taif region in Saudi Arabia.
## Dataset Files
The dataset contains:
- **7 trajectory CSV files**: `traj_1_taif_map_data.csv` through `traj_7_taif_map_data.csv`
- **1 Digital Elevation Model**: `taif_DEM.tif` (GeoTIFF format)
### File Structure
```
traj_1_taif_map_data.csv
traj_2_taif_map_data.csv
traj_3_taif_map_data.csv
traj_4_taif_map_data.csv
traj_5_taif_map_data.csv
traj_6_taif_map_data.csv
traj_7_taif_map_data.csv
taif_DEM.tif
```
## Data Characteristics
### Flight Telemetry Data (CSV Files)
Each CSV file contains synchronized flight measurements with the following columns:
| Column | Description | Unit |
|--------|-------------|------|
| `timestamp` | Unix timestamp with nanosecond precision | ns |
| `tx`, `ty`, `tz` | 3D position coordinates in local frame | m |
| `vel_x`, `vel_y`, `vel_z` | Linear velocities | m/s |
| `orientation_x`, `orientation_y`, `orientation_z`, `orientation_w` | Quaternion orientation | - |
| `angular_vel_x`, `angular_vel_y`, `angular_vel_z` | Angular velocities | rad/s |
| `linear_acc_x`, `linear_acc_y`, `linear_acc_z` | Linear accelerations | m/s² |
| `latitude`, `longitude` | GPS coordinates | degrees |
| `altitude` | GPS altitude | m |
| `lidar_range` | LiDAR distance measurement | m |
| `AMSL` | Altitude above mean sea level | m |
### Digital Elevation Model (taif_DEM.tif)
- **Format**: GeoTIFF Digital Elevation Model
- **Coverage**: Taif region terrain corresponding to all flight trajectories
- **Source**: Generated from real satellite imagery and DEM data
- **Application**: Provides terrain elevation reference for localization algorithms
### Data Sample
```
timestamp,tx,ty,tz,vel_x,vel_y,vel_z,orientation_x,orientation_y,orientation_z,orientation_w,angular_vel_x,angular_vel_y,angular_vel_z,linear_acc_x,linear_acc_y,linear_acc_z,latitude,longitude,altitude,lidar_range,AMSL
993.128,-251.516708374023,-45.2020683288574,213.485137939453,5.11164286075962,0.045598402309674,0.220133052308578,0.023194692263158,0.003760659242595,-0.99578133623088,0.088699054215541,0.003482932690531,0.020824493840337,0.000891029543709,-0.57949709892273,0.020221803337337,9.83791255950928,21.2853756,40.2180381,1111.32048684451,213.142578125,1105.18774414063
```
## Simulation Environment
- **Flight Controller**: PX4 autopilot with realistic flight dynamics
- **Simulator**: Gazebo physics simulation
- **Framework**: ROS2 for data collection and sensor integration
- **Terrain Source**: Real-world satellite imagery and elevation data from Taif region
- **Vehicle**: Simulated quadcopter with onboard sensors
## Applications
This dataset is designed for research in:
- **Inertial Navigation Systems (INS)** development and testing
- **Terrain-based UAV localization** algorithms using elevation data
- **GPS-aided navigation** system validation
- **Multi-modal sensor fusion** techniques (IMU, GPS, LiDAR)
- **Flight trajectory analysis** and planning
- **Autonomous navigation** algorithm development
## Technical Specifications
### Flight Characteristics
- **7 distinct trajectories** with varying flight patterns
- **Precise time synchronization** across all sensor modalities
- **6DOF pose ground truth** available for algorithm benchmarking
- **Multi-sensor data fusion** including IMU, GPS, and LiDAR
### Terrain Characteristics
- **Desert-like terrain** with challenging navigation conditions
- **Realistic elevation profiles** from actual geographic data
- **Elevation-based localization** opportunities using DEM data
## Limitations
- **Sensor Coverage**: Current version includes IMU, GPS, and LiDAR data only
- **Terrain Type**: Limited to desert environment characteristics
- **Single Region**: Data collected over Taif region only
## Future Dataset Versions
### Planned Additions
- **Camera Images**: Complete image sequences from onboard cameras will be uploaded in the next version
## Usage Notes
1. **Data Alignment**: All measurements in each CSV file are time-synchronized
2. **Coordinate Systems**: Position data (tx, ty, tz) is in local simulation frame
3. **Terrain Context**: Use `taif_DEM.tif` for elevation reference and terrain-based localization
4. **Multiple Trajectories**: Each CSV represents a complete autonomous flight mission
5. **Future Updates**: Camera images will be added in a future version of this dataset
## Data Quality
- **Ground Truth Accuracy**: Complete 6DOF pose information for validation
- **Realistic Physics**: PX4 autopilot provides authentic flight dynamics
- **Synchronized Sensors**: All data streams precisely time-aligned
- **Validated Terrain**: Elevation model derived from verified satellite sources
## Citation
If you use this dataset in your research, please cite:
```
@article{JARRAYA2025106613,
title = {OS-RFODG: Open-source ROS2 framework for outdoor UAV dataset generation},
journal = {Results in Engineering},
volume = {27},
pages = {106613},
year = {2025},
issn = {2590-1230},
doi = {https://doi.org/10.1016/j.rineng.2025.106613},
url = {https://www.sciencedirect.com/science/article/pii/S2590123025026829},
author = {Imen Jarraya and Mohamed Abdelkader and Khaled Gabr and Muhammad Bilal Kadri and Fatimah Alahmed and Wadii Boulila and Anis Koubaa},
keywords = {UAV localization, Dataset generation, ROS2 framework, Geospatial mapping, Sensor data synchronization},
``` |