--- license: mit tags: - UAV - Digital_elevation_map - DEM - Terrain_navigation --- # UAV Trajectory Simulation Dataset for Terrain-Based Localization ## Dataset Overview This dataset contains simulated UAV flight data generated using ROS2, Gazebo, and PX4 autopilot system. The dataset features a quadcopter performing autonomous flight trajectories over realistic terrain imported from satellite imagery and Digital Elevation Model (DEM) maps of the Taif region in Saudi Arabia. ## Dataset Files The dataset contains: - **7 trajectory CSV files**: `traj_1_taif_map_data.csv` through `traj_7_taif_map_data.csv` - **1 Digital Elevation Model**: `taif_DEM.tif` (GeoTIFF format) ### File Structure ``` traj_1_taif_map_data.csv traj_2_taif_map_data.csv traj_3_taif_map_data.csv traj_4_taif_map_data.csv traj_5_taif_map_data.csv traj_6_taif_map_data.csv traj_7_taif_map_data.csv taif_DEM.tif ``` ## Data Characteristics ### Flight Telemetry Data (CSV Files) Each CSV file contains synchronized flight measurements with the following columns: | Column | Description | Unit | |--------|-------------|------| | `timestamp` | Unix timestamp with nanosecond precision | ns | | `tx`, `ty`, `tz` | 3D position coordinates in local frame | m | | `vel_x`, `vel_y`, `vel_z` | Linear velocities | m/s | | `orientation_x`, `orientation_y`, `orientation_z`, `orientation_w` | Quaternion orientation | - | | `angular_vel_x`, `angular_vel_y`, `angular_vel_z` | Angular velocities | rad/s | | `linear_acc_x`, `linear_acc_y`, `linear_acc_z` | Linear accelerations | m/s² | | `latitude`, `longitude` | GPS coordinates | degrees | | `altitude` | GPS altitude | m | | `lidar_range` | LiDAR distance measurement | m | | `AMSL` | Altitude above mean sea level | m | ### Digital Elevation Model (taif_DEM.tif) - **Format**: GeoTIFF Digital Elevation Model - **Coverage**: Taif region terrain corresponding to all flight trajectories - **Source**: Generated from real satellite imagery and DEM data - **Application**: Provides terrain elevation reference for localization algorithms ### Data Sample ``` timestamp,tx,ty,tz,vel_x,vel_y,vel_z,orientation_x,orientation_y,orientation_z,orientation_w,angular_vel_x,angular_vel_y,angular_vel_z,linear_acc_x,linear_acc_y,linear_acc_z,latitude,longitude,altitude,lidar_range,AMSL 993.128,-251.516708374023,-45.2020683288574,213.485137939453,5.11164286075962,0.045598402309674,0.220133052308578,0.023194692263158,0.003760659242595,-0.99578133623088,0.088699054215541,0.003482932690531,0.020824493840337,0.000891029543709,-0.57949709892273,0.020221803337337,9.83791255950928,21.2853756,40.2180381,1111.32048684451,213.142578125,1105.18774414063 ``` ## Simulation Environment - **Flight Controller**: PX4 autopilot with realistic flight dynamics - **Simulator**: Gazebo physics simulation - **Framework**: ROS2 for data collection and sensor integration - **Terrain Source**: Real-world satellite imagery and elevation data from Taif region - **Vehicle**: Simulated quadcopter with onboard sensors ## Applications This dataset is designed for research in: - **Inertial Navigation Systems (INS)** development and testing - **Terrain-based UAV localization** algorithms using elevation data - **GPS-aided navigation** system validation - **Multi-modal sensor fusion** techniques (IMU, GPS, LiDAR) - **Flight trajectory analysis** and planning - **Autonomous navigation** algorithm development ## Technical Specifications ### Flight Characteristics - **7 distinct trajectories** with varying flight patterns - **Precise time synchronization** across all sensor modalities - **6DOF pose ground truth** available for algorithm benchmarking - **Multi-sensor data fusion** including IMU, GPS, and LiDAR ### Terrain Characteristics - **Desert-like terrain** with challenging navigation conditions - **Realistic elevation profiles** from actual geographic data - **Elevation-based localization** opportunities using DEM data ## Limitations - **Sensor Coverage**: Current version includes IMU, GPS, and LiDAR data only - **Terrain Type**: Limited to desert environment characteristics - **Single Region**: Data collected over Taif region only ## Future Dataset Versions ### Planned Additions - **Camera Images**: Complete image sequences from onboard cameras will be uploaded in the next version ## Usage Notes 1. **Data Alignment**: All measurements in each CSV file are time-synchronized 2. **Coordinate Systems**: Position data (tx, ty, tz) is in local simulation frame 3. **Terrain Context**: Use `taif_DEM.tif` for elevation reference and terrain-based localization 4. **Multiple Trajectories**: Each CSV represents a complete autonomous flight mission 5. **Future Updates**: Camera images will be added in a future version of this dataset ## Data Quality - **Ground Truth Accuracy**: Complete 6DOF pose information for validation - **Realistic Physics**: PX4 autopilot provides authentic flight dynamics - **Synchronized Sensors**: All data streams precisely time-aligned - **Validated Terrain**: Elevation model derived from verified satellite sources ## Citation If you use this dataset in your research, please cite: ``` @article{JARRAYA2025106613, title = {OS-RFODG: Open-source ROS2 framework for outdoor UAV dataset generation}, journal = {Results in Engineering}, volume = {27}, pages = {106613}, year = {2025}, issn = {2590-1230}, doi = {https://doi.org/10.1016/j.rineng.2025.106613}, url = {https://www.sciencedirect.com/science/article/pii/S2590123025026829}, author = {Imen Jarraya and Mohamed Abdelkader and Khaled Gabr and Muhammad Bilal Kadri and Fatimah Alahmed and Wadii Boulila and Anis Koubaa}, keywords = {UAV localization, Dataset generation, ROS2 framework, Geospatial mapping, Sensor data synchronization}, ```