|
|
--- |
|
|
language: ami |
|
|
language_name: Amis |
|
|
language_family: austronesian_formosan |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-austronesian_formosan |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 3.607 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.8437 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Amis - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Amis** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.160x | 3.16 | 0.4656% | 701,501 | |
|
|
| **16k** | 3.337x | 3.34 | 0.4917% | 664,267 | |
|
|
| **32k** | 3.486x | 3.49 | 0.5136% | 635,874 | |
|
|
| **64k** | 3.607x ๐ | 3.61 | 0.5314% | 614,596 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `ising๏ผKuwaping a sowal๏ผ้ซ็๏ผ O maan ko ising? O ising kako. 'Amis` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โising ( kuwaping โa โsowal : ้ซ็ ) โo โmaan ... (+9 more)` | 19 | |
|
|
| 16k | `โising ( kuwaping โa โsowal : ้ซ็ ) โo โmaan ... (+9 more)` | 19 | |
|
|
| 32k | `โising ( kuwaping โa โsowal : ้ซ็ ) โo โmaan ... (+9 more)` | 19 | |
|
|
| 64k | `โising ( kuwaping โa โsowal : ้ซ็ ) โo โmaan ... (+9 more)` | 19 | |
|
|
|
|
|
**Sample 2:** `O Sir James Paul McCartney๏ผkuwaping a sowal๏ผไฟ็พ
ยท้บฅๅกๅฐผ๏ผ` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โo โsir โj am es โpaul โmc car tn ey ... (+11 more)` | 21 | |
|
|
| 16k | `โo โsir โjames โpaul โmccartney ( kuwaping โa โsowal : ... (+6 more)` | 16 | |
|
|
| 32k | `โo โsir โjames โpaul โmccartney ( kuwaping โa โsowal : ... (+4 more)` | 14 | |
|
|
| 64k | `โo โsir โjames โpaul โmccartney ( kuwaping โa โsowal : ... (+4 more)` | 14 | |
|
|
|
|
|
**Sample 3:** `hana (่ฑ) O mialaan nai Dipong kona sowal. O falo han no roma a niyaro', no roma ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โhana โ( ่ฑ ) โo โmi alaan โnai โdipong โkona ... (+15 more)` | 25 | |
|
|
| 16k | `โhana โ( ่ฑ ) โo โmialaan โnai โdipong โkona โsowal ... (+14 more)` | 24 | |
|
|
| 32k | `โhana โ( ่ฑ ) โo โmialaan โnai โdipong โkona โsowal ... (+14 more)` | 24 | |
|
|
| 64k | `โhana โ( ่ฑ ) โo โmialaan โnai โdipong โkona โsowal ... (+14 more)` | 24 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 64k achieves 3.607x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.4656% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 6,664 | 12.70 | 22,555 | 20.4% | 47.4% | |
|
|
| **2-gram** | Subword | 206 ๐ | 7.68 | 6,765 | 78.7% | 98.2% | |
|
|
| **3-gram** | Word | 12,814 | 13.65 | 36,103 | 17.1% | 36.4% | |
|
|
| **3-gram** | Subword | 1,357 | 10.41 | 25,329 | 37.0% | 81.9% | |
|
|
| **4-gram** | Word | 30,923 | 14.92 | 77,456 | 15.4% | 26.9% | |
|
|
| **4-gram** | Subword | 6,313 | 12.62 | 95,308 | 18.3% | 53.9% | |
|
|
| **5-gram** | Word | 25,903 | 14.66 | 63,935 | 16.8% | 28.0% | |
|
|
| **5-gram** | Subword | 18,568 | 14.18 | 183,225 | 11.1% | 36.2% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ira ko` | 5,084 | |
|
|
| 2 | `romi ad` | 4,077 | |
|
|
| 3 | `i miheca` | 2,844 | |
|
|
| 4 | `a tamdaw` | 2,817 | |
|
|
| 5 | `a sowal` | 2,775 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ka aloman no` | 2,123 | |
|
|
| 2 | `a romi ad` | 1,679 | |
|
|
| 3 | `ko tamdaw o` | 1,567 | |
|
|
| 4 | `sa osi no` | 1,535 | |
|
|
| 5 | `ko ka aloman` | 1,534 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `ko sa osi no` | 1,482 | |
|
|
| 2 | `ko ka aloman no` | 1,395 | |
|
|
| 3 | `nina angan tilid i` | 853 | |
|
|
| 4 | `nano nina angan tilid` | 845 | |
|
|
| 5 | `o roma sato i` | 767 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `nano nina angan tilid i` | 820 | |
|
|
| 2 | `aloman no roma a finacadan` | 737 | |
|
|
| 3 | `tamdaw o roma sato i` | 737 | |
|
|
| 4 | `ko sa osi no parod` | 736 | |
|
|
| 5 | `sa osi no parod no` | 736 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `o _` | 201,957 | |
|
|
| 2 | `a _` | 143,658 | |
|
|
| 3 | `a n` | 139,880 | |
|
|
| 4 | `_ k` | 106,844 | |
|
|
| 5 | `a y` | 96,918 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `a y _` | 60,683 | |
|
|
| 2 | `_ a _` | 59,010 | |
|
|
| 3 | `n o _` | 54,715 | |
|
|
| 4 | `a n _` | 54,705 | |
|
|
| 5 | `t o _` | 54,068 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ n o _` | 47,866 | |
|
|
| 2 | `_ k o _` | 44,431 | |
|
|
| 3 | `_ t o _` | 37,474 | |
|
|
| 4 | `o _ k a` | 18,696 | |
|
|
| 5 | `a y _ a` | 15,406 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `n _ n o _` | 13,318 | |
|
|
| 2 | `a y _ a _` | 13,310 | |
|
|
| 3 | `a n _ n o` | 11,599 | |
|
|
| 4 | `a m d a w` | 11,462 | |
|
|
| 5 | `t a m d a` | 11,449 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 206 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~36% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.6135 | 1.530 | 4.53 | 72,743 | 38.7% | |
|
|
| **1** | Subword | 1.5301 | 2.888 | 10.10 | 4,131 | 0.0% | |
|
|
| **2** | Word | 0.3027 | 1.233 | 1.87 | 329,306 | 69.7% | |
|
|
| **2** | Subword | 0.4066 | 1.326 | 2.35 | 41,693 | 59.3% | |
|
|
| **3** | Word | 0.1215 | 1.088 | 1.23 | 614,944 | 87.9% | |
|
|
| **3** | Subword | 0.3759 | 1.298 | 2.21 | 98,063 | 62.4% | |
|
|
| **4** | Word | 0.0417 ๐ | 1.029 | 1.07 | 757,884 | 95.8% | |
|
|
| **4** | Subword | 0.3880 | 1.309 | 2.00 | 216,477 | 61.2% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `a sowal ่ฆ hananay ato misalidong i cowacowa a ingiden a misanga an a malasawad ko` |
|
|
2. `no riyaran ko pico ay koya nitahidangan caay sa osi no pinalengaw a sowal ้็ด็ฑๅ
ง็ง i` |
|
|
3. `ko wawa i mihecaan malamirotocay to amilika misafa eloh a atapangan rikec saka 8 saka 8` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `ira ko sakowan no po o kakeridan no tadamaanay lisin mapatiko tayra i anpin 9 miheca 7` |
|
|
2. `romi ad tahira i miheca oni pacomodan a dafong ็ถๆฟ ็ธฎๅ niyaro gitega flickr dave proffer ato` |
|
|
3. `i miheca ๅธ่ๆๅ้ๆ็พ่ญ ๅฏฆไบๆฑๆฏ็ฑๅฅขๅ
ฅๅ miheca lacemcem ko kohecalay tamdaw no ikiris a sowal formula ona kala ed...` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `ka aloman no yincomin polong han i 821 ko tamdaw o roma sato saheto i manikaway a kaliomahan` |
|
|
2. `a romi ad o mihayiay 49 77 o minaayay ira ko 50 ko madengaay to nia aids 23` |
|
|
3. `ko tamdaw o poay li i miheca a new hebrides palapa lira ko 45 000 a month reuters` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `ko sa osi no tamdaw 97 ko ka aloman no roma a finacadan polong ๅ
จ้จ han i 11 ko` |
|
|
2. `ko ka aloman no roma a finacadan polong han i 53 ko tamdaw o roma sato i 7 ko` |
|
|
3. `nina angan tilid i 522 south africa tona ci mandela ato kalalaed no finacadan mala likisiay to new y...` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `afidawapafoco_ip` |
|
|
2. `_ๅทดๅฅ็ถญ่จยท็ฉ็ฝ้ป่ฅฟไบ็ฃๅบ่ฟฝๆ็` |
|
|
3. `oโena_mu_no_safi` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `o_samday_a_i_lont` |
|
|
2. `a_cifetatating_a_` |
|
|
3. `an._ci_jinceca,_s` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `ay_lals_mata._ikir` |
|
|
2. `_a_mital,_tangos_n` |
|
|
3. `no_kasapipankos_of` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_no_ninaโangra_to,_` |
|
|
2. `_ko_tamdaw;_o_romiโ` |
|
|
3. `_to_i,_caay_ko_i_ta` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 95.8% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (216,477 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 29,904 | |
|
|
| Total Tokens | 912,858 | |
|
|
| Mean Frequency | 30.53 | |
|
|
| Median Frequency | 3 | |
|
|
| Frequency Std Dev | 654.44 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | a | 59,833 | |
|
|
| 2 | no | 48,143 | |
|
|
| 3 | ko | 44,598 | |
|
|
| 4 | to | 39,959 | |
|
|
| 5 | i | 38,034 | |
|
|
| 6 | o | 30,294 | |
|
|
| 7 | ato | 10,833 | |
|
|
| 8 | tamdaw | 10,726 | |
|
|
| 9 | miheca | 6,785 | |
|
|
| 10 | sa | 6,742 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | hiay | 2 | |
|
|
| 2 | ็กไธน็คพไบไปถ | 2 | |
|
|
| 3 | pasitenokay | 2 | |
|
|
| 4 | satsuma | 2 | |
|
|
| 5 | pisamawmaw | 2 | |
|
|
| 6 | saigo | 2 | |
|
|
| 7 | tsumoru | 2 | |
|
|
| 8 | vetoma | 2 | |
|
|
| 9 | mitingting | 2 | |
|
|
| 10 | kalosaasik | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 1.1692 | |
|
|
| Rยฒ (Goodness of Fit) | 0.995283 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 53.0% | |
|
|
| Top 1,000 | 76.7% | |
|
|
| Top 5,000 | 89.9% | |
|
|
| Top 10,000 | 94.1% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9953 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 53.0% of corpus |
|
|
- **Long Tail:** 19,904 words needed for remaining 5.9% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.8437 | 0.3356 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.8007 | 0.2526 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.4818 | 0.2214 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.8437 ๐ | 0.3313 | 0.0340 | 0.2100 | |
|
|
| **aligned_64d** | 64 | 0.8007 | 0.2560 | 0.0540 | 0.2540 | |
|
|
| **aligned_128d** | 128 | 0.4818 | 0.2213 | 0.1040 | 0.3400 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** aligned_32d with 0.8437 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.2697. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 10.4% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **-0.226** | Low formulaic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
| `-ma` | mamakari, mapasifana, mamisarocod | |
|
|
| `-mi` | mipaliwalay, micowatan, mipadangay | |
|
|
| `-ka` | kasasolsol, kasasiked, katulagan | |
|
|
| `-sa` | sacipaysoay, sakararamod, sapifelih | |
|
|
| `-pa` | pataminaan, pawalian, paliwalan | |
|
|
| `-pi` | pidafo, pirnato, pisaepahan | |
|
|
| `-ta` | tatangangay, taypa, taipingjing | |
|
|
| `-mal` | maliyangay, malawidangay, malikiday | |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-n` | cayin, napirmaan, komian | |
|
|
| `-y` | mipaliwalay, ccayay, nanomay | |
|
|
| `-ay` | mipaliwalay, ccayay, nanomay | |
|
|
| `-an` | napirmaan, komian, pataminaan | |
|
|
| `-ng` | popatireng, intuyang, awsiyong | |
|
|
| `-en` | cecayen, iloen, pakilacen | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `emak` | 2.37x | 36 contexts | demak, hemak, ademak | |
|
|
| `alom` | 2.07x | 51 contexts | aloma, alomi, naloma | |
|
|
| `ilid` | 2.25x | 32 contexts | tilid, atilid, mililid | |
|
|
| `dema` | 2.16x | 33 contexts | demak, ademak, odemak | |
|
|
| `olon` | 1.93x | 46 contexts | tolon, olong, polon | |
|
|
| `iren` | 2.24x | 25 contexts | ireng, yiren, sairen | |
|
|
| `ihec` | 2.13x | 28 contexts | niheca, miheca, ciheci | |
|
|
| `onga` | 1.54x | 55 contexts | ongay, conga, songa | |
|
|
| `taki` | 2.19x | 15 contexts | takid, takimi, kitaki | |
|
|
| `ngra` | 1.98x | 19 contexts | ingra, cngra, angra | |
|
|
| `mihe` | 2.08x | 14 contexts | mihea, miheca, miheaan | |
|
|
| `ngan` | 1.37x | 52 contexts | ngani, ingan, angan | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
| Prefix | Suffix | Frequency | Examples | |
|
|
|--------|--------|-----------|----------| |
|
|
| `-ma` | `-y` | 212 words | mafalicay, mapatodongay | |
|
|
| `-ma` | `-ay` | 210 words | mafalicay, mapatodongay | |
|
|
| `-mi` | `-y` | 196 words | mitekeday, mihinomay | |
|
|
| `-mi` | `-ay` | 190 words | mitekeday, mihinomay | |
|
|
| `-ka` | `-n` | 187 words | kasakapingan, kamaomahan | |
|
|
| `-ka` | `-an` | 168 words | kasakapingan, kamaomahan | |
|
|
| `-pa` | `-n` | 119 words | pasitaywan, palinkaan | |
|
|
| `-pi` | `-n` | 113 words | pisiyakayan, pidemakan | |
|
|
| `-pi` | `-an` | 105 words | pisiyakayan, pidemakan | |
|
|
| `-pa` | `-y` | 91 words | pacarcaray, pahay | |
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| pipalafangan | **`pi-pa-lafa-ng-an`** | 9.0 | `lafa` | |
|
|
| masataporoay | **`ma-sa-ta-poro-ay`** | 9.0 | `poro` | |
|
|
| kasatatelekan | **`ka-sa-ta-telek-an`** | 9.0 | `telek` | |
|
|
| masapinangay | **`ma-sa-pi-nang-ay`** | 9.0 | `nang` | |
|
|
| pipanganganan | **`pi-pa-ngang-an-an`** | 9.0 | `ngang` | |
|
|
| tatefingen | **`ta-tefi-ng-en`** | 7.5 | `tefi` | |
|
|
| masawawaay | **`ma-sa-wawa-ay`** | 7.5 | `wawa` | |
|
|
| mikowananay | **`mi-kowan-an-ay`** | 7.5 | `kowan` | |
|
|
| papinanamen | **`pa-pi-nanam-en`** | 7.5 | `nanam` | |
|
|
| kakakilimen | **`ka-ka-kilim-en`** | 7.5 | `kilim` | |
|
|
| mipatenakay | **`mi-pa-tenak-ay`** | 7.5 | `tenak` | |
|
|
| masamaciay | **`ma-sa-ma-ciay`** | 7.5 | `ciay` | |
|
|
| pakalayapay | **`pa-ka-layap-ay`** | 7.5 | `layap` | |
|
|
| pisadingkian | **`pi-sa-dingki-an`** | 7.5 | `dingki` | |
|
|
| sakapilowid | **`sa-ka-pi-lowid`** | 7.5 | `lowid` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Amis shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **64k BPE** | Best compression (3.61x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (206) | |
|
|
| Markov | **Context-4** | Highest predictability (95.8%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 18:29:47* |
|
|
|