--- language: ami language_name: Amis language_family: austronesian_formosan tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-austronesian_formosan license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.607 - name: best_isotropy type: isotropy value: 0.8437 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Amis - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Amis** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.160x | 3.16 | 0.4656% | 701,501 | | **16k** | 3.337x | 3.34 | 0.4917% | 664,267 | | **32k** | 3.486x | 3.49 | 0.5136% | 635,874 | | **64k** | 3.607x 🏆 | 3.61 | 0.5314% | 614,596 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `ising(Kuwaping a sowal:醫生) O maan ko ising? O ising kako. 'Amis` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁ising ( kuwaping ▁a ▁sowal : 醫生 ) ▁o ▁maan ... (+9 more)` | 19 | | 16k | `▁ising ( kuwaping ▁a ▁sowal : 醫生 ) ▁o ▁maan ... (+9 more)` | 19 | | 32k | `▁ising ( kuwaping ▁a ▁sowal : 醫生 ) ▁o ▁maan ... (+9 more)` | 19 | | 64k | `▁ising ( kuwaping ▁a ▁sowal : 醫生 ) ▁o ▁maan ... (+9 more)` | 19 | **Sample 2:** `O Sir James Paul McCartney(kuwaping a sowal:保羅·麥卡尼)` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁o ▁sir ▁j am es ▁paul ▁mc car tn ey ... (+11 more)` | 21 | | 16k | `▁o ▁sir ▁james ▁paul ▁mccartney ( kuwaping ▁a ▁sowal : ... (+6 more)` | 16 | | 32k | `▁o ▁sir ▁james ▁paul ▁mccartney ( kuwaping ▁a ▁sowal : ... (+4 more)` | 14 | | 64k | `▁o ▁sir ▁james ▁paul ▁mccartney ( kuwaping ▁a ▁sowal : ... (+4 more)` | 14 | **Sample 3:** `hana (花) O mialaan nai Dipong kona sowal. O falo han no roma a niyaro', no roma ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁hana ▁( 花 ) ▁o ▁mi alaan ▁nai ▁dipong ▁kona ... (+15 more)` | 25 | | 16k | `▁hana ▁( 花 ) ▁o ▁mialaan ▁nai ▁dipong ▁kona ▁sowal ... (+14 more)` | 24 | | 32k | `▁hana ▁( 花 ) ▁o ▁mialaan ▁nai ▁dipong ▁kona ▁sowal ... (+14 more)` | 24 | | 64k | `▁hana ▁( 花 ) ▁o ▁mialaan ▁nai ▁dipong ▁kona ▁sowal ... (+14 more)` | 24 | ### Key Findings - **Best Compression:** 64k achieves 3.607x compression - **Lowest UNK Rate:** 8k with 0.4656% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 6,664 | 12.70 | 22,555 | 20.4% | 47.4% | | **2-gram** | Subword | 206 🏆 | 7.68 | 6,765 | 78.7% | 98.2% | | **3-gram** | Word | 12,814 | 13.65 | 36,103 | 17.1% | 36.4% | | **3-gram** | Subword | 1,357 | 10.41 | 25,329 | 37.0% | 81.9% | | **4-gram** | Word | 30,923 | 14.92 | 77,456 | 15.4% | 26.9% | | **4-gram** | Subword | 6,313 | 12.62 | 95,308 | 18.3% | 53.9% | | **5-gram** | Word | 25,903 | 14.66 | 63,935 | 16.8% | 28.0% | | **5-gram** | Subword | 18,568 | 14.18 | 183,225 | 11.1% | 36.2% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ira ko` | 5,084 | | 2 | `romi ad` | 4,077 | | 3 | `i miheca` | 2,844 | | 4 | `a tamdaw` | 2,817 | | 5 | `a sowal` | 2,775 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ka aloman no` | 2,123 | | 2 | `a romi ad` | 1,679 | | 3 | `ko tamdaw o` | 1,567 | | 4 | `sa osi no` | 1,535 | | 5 | `ko ka aloman` | 1,534 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ko sa osi no` | 1,482 | | 2 | `ko ka aloman no` | 1,395 | | 3 | `nina angan tilid i` | 853 | | 4 | `nano nina angan tilid` | 845 | | 5 | `o roma sato i` | 767 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `nano nina angan tilid i` | 820 | | 2 | `aloman no roma a finacadan` | 737 | | 3 | `tamdaw o roma sato i` | 737 | | 4 | `ko sa osi no parod` | 736 | | 5 | `sa osi no parod no` | 736 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `o _` | 201,957 | | 2 | `a _` | 143,658 | | 3 | `a n` | 139,880 | | 4 | `_ k` | 106,844 | | 5 | `a y` | 96,918 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a y _` | 60,683 | | 2 | `_ a _` | 59,010 | | 3 | `n o _` | 54,715 | | 4 | `a n _` | 54,705 | | 5 | `t o _` | 54,068 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ n o _` | 47,866 | | 2 | `_ k o _` | 44,431 | | 3 | `_ t o _` | 37,474 | | 4 | `o _ k a` | 18,696 | | 5 | `a y _ a` | 15,406 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n _ n o _` | 13,318 | | 2 | `a y _ a _` | 13,310 | | 3 | `a n _ n o` | 11,599 | | 4 | `a m d a w` | 11,462 | | 5 | `t a m d a` | 11,449 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 206 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~36% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.6135 | 1.530 | 4.53 | 72,743 | 38.7% | | **1** | Subword | 1.5301 | 2.888 | 10.10 | 4,131 | 0.0% | | **2** | Word | 0.3027 | 1.233 | 1.87 | 329,306 | 69.7% | | **2** | Subword | 0.4066 | 1.326 | 2.35 | 41,693 | 59.3% | | **3** | Word | 0.1215 | 1.088 | 1.23 | 614,944 | 87.9% | | **3** | Subword | 0.3759 | 1.298 | 2.21 | 98,063 | 62.4% | | **4** | Word | 0.0417 🏆 | 1.029 | 1.07 | 757,884 | 95.8% | | **4** | Subword | 0.3880 | 1.309 | 2.00 | 216,477 | 61.2% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `a sowal 蝦 hananay ato misalidong i cowacowa a ingiden a misanga an a malasawad ko` 2. `no riyaran ko pico ay koya nitahidangan caay sa osi no pinalengaw a sowal 里約熱內盧 i` 3. `ko wawa i mihecaan malamirotocay to amilika misafa eloh a atapangan rikec saka 8 saka 8` **Context Size 2:** 1. `ira ko sakowan no po o kakeridan no tadamaanay lisin mapatiko tayra i anpin 9 miheca 7` 2. `romi ad tahira i miheca oni pacomodan a dafong 經濟 縮圖 niyaro gitega flickr dave proffer ato` 3. `i miheca 希臘應借鑑愛爾蘭 實事求是由奢入儉 miheca lacemcem ko kohecalay tamdaw no ikiris a sowal formula ona kala ed...` **Context Size 3:** 1. `ka aloman no yincomin polong han i 821 ko tamdaw o roma sato saheto i manikaway a kaliomahan` 2. `a romi ad o mihayiay 49 77 o minaayay ira ko 50 ko madengaay to nia aids 23` 3. `ko tamdaw o poay li i miheca a new hebrides palapa lira ko 45 000 a month reuters` **Context Size 4:** 1. `ko sa osi no tamdaw 97 ko ka aloman no roma a finacadan polong 全部 han i 11 ko` 2. `ko ka aloman no roma a finacadan polong han i 53 ko tamdaw o roma sato i 7 ko` 3. `nina angan tilid i 522 south africa tona ci mandela ato kalalaed no finacadan mala likisiay to new y...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `afidawapafoco_ip` 2. `_巴哥維茨·穆罕默西亞灣基追思的` 3. `o’ena_mu_no_safi` **Context Size 2:** 1. `o_samday_a_i_lont` 2. `a_cifetatating_a_` 3. `an._ci_jinceca,_s` **Context Size 3:** 1. `ay_lals_mata._ikir` 2. `_a_mital,_tangos_n` 3. `no_kasapipankos_of` **Context Size 4:** 1. `_no_nina’angra_to,_` 2. `_ko_tamdaw;_o_romi’` 3. `_to_i,_caay_ko_i_ta` ### Key Findings - **Best Predictability:** Context-4 (word) with 95.8% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (216,477 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 29,904 | | Total Tokens | 912,858 | | Mean Frequency | 30.53 | | Median Frequency | 3 | | Frequency Std Dev | 654.44 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | a | 59,833 | | 2 | no | 48,143 | | 3 | ko | 44,598 | | 4 | to | 39,959 | | 5 | i | 38,034 | | 6 | o | 30,294 | | 7 | ato | 10,833 | | 8 | tamdaw | 10,726 | | 9 | miheca | 6,785 | | 10 | sa | 6,742 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | hiay | 2 | | 2 | 牡丹社事件 | 2 | | 3 | pasitenokay | 2 | | 4 | satsuma | 2 | | 5 | pisamawmaw | 2 | | 6 | saigo | 2 | | 7 | tsumoru | 2 | | 8 | vetoma | 2 | | 9 | mitingting | 2 | | 10 | kalosaasik | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1692 | | R² (Goodness of Fit) | 0.995283 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 53.0% | | Top 1,000 | 76.7% | | Top 5,000 | 89.9% | | Top 10,000 | 94.1% | ### Key Findings - **Zipf Compliance:** R²=0.9953 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 53.0% of corpus - **Long Tail:** 19,904 words needed for remaining 5.9% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8437 | 0.3356 | N/A | N/A | | **mono_64d** | 64 | 0.8007 | 0.2526 | N/A | N/A | | **mono_128d** | 128 | 0.4818 | 0.2214 | N/A | N/A | | **aligned_32d** | 32 | 0.8437 🏆 | 0.3313 | 0.0340 | 0.2100 | | **aligned_64d** | 64 | 0.8007 | 0.2560 | 0.0540 | 0.2540 | | **aligned_128d** | 128 | 0.4818 | 0.2213 | 0.1040 | 0.3400 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8437 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2697. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 10.4% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.226** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ma` | mamakari, mapasifana, mamisarocod | | `-mi` | mipaliwalay, micowatan, mipadangay | | `-ka` | kasasolsol, kasasiked, katulagan | | `-sa` | sacipaysoay, sakararamod, sapifelih | | `-pa` | pataminaan, pawalian, paliwalan | | `-pi` | pidafo, pirnato, pisaepahan | | `-ta` | tatangangay, taypa, taipingjing | | `-mal` | maliyangay, malawidangay, malikiday | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-n` | cayin, napirmaan, komian | | `-y` | mipaliwalay, ccayay, nanomay | | `-ay` | mipaliwalay, ccayay, nanomay | | `-an` | napirmaan, komian, pataminaan | | `-ng` | popatireng, intuyang, awsiyong | | `-en` | cecayen, iloen, pakilacen | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `emak` | 2.37x | 36 contexts | demak, hemak, ademak | | `alom` | 2.07x | 51 contexts | aloma, alomi, naloma | | `ilid` | 2.25x | 32 contexts | tilid, atilid, mililid | | `dema` | 2.16x | 33 contexts | demak, ademak, odemak | | `olon` | 1.93x | 46 contexts | tolon, olong, polon | | `iren` | 2.24x | 25 contexts | ireng, yiren, sairen | | `ihec` | 2.13x | 28 contexts | niheca, miheca, ciheci | | `onga` | 1.54x | 55 contexts | ongay, conga, songa | | `taki` | 2.19x | 15 contexts | takid, takimi, kitaki | | `ngra` | 1.98x | 19 contexts | ingra, cngra, angra | | `mihe` | 2.08x | 14 contexts | mihea, miheca, miheaan | | `ngan` | 1.37x | 52 contexts | ngani, ingan, angan | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ma` | `-y` | 212 words | mafalicay, mapatodongay | | `-ma` | `-ay` | 210 words | mafalicay, mapatodongay | | `-mi` | `-y` | 196 words | mitekeday, mihinomay | | `-mi` | `-ay` | 190 words | mitekeday, mihinomay | | `-ka` | `-n` | 187 words | kasakapingan, kamaomahan | | `-ka` | `-an` | 168 words | kasakapingan, kamaomahan | | `-pa` | `-n` | 119 words | pasitaywan, palinkaan | | `-pi` | `-n` | 113 words | pisiyakayan, pidemakan | | `-pi` | `-an` | 105 words | pisiyakayan, pidemakan | | `-pa` | `-y` | 91 words | pacarcaray, pahay | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | pipalafangan | **`pi-pa-lafa-ng-an`** | 9.0 | `lafa` | | masataporoay | **`ma-sa-ta-poro-ay`** | 9.0 | `poro` | | kasatatelekan | **`ka-sa-ta-telek-an`** | 9.0 | `telek` | | masapinangay | **`ma-sa-pi-nang-ay`** | 9.0 | `nang` | | pipanganganan | **`pi-pa-ngang-an-an`** | 9.0 | `ngang` | | tatefingen | **`ta-tefi-ng-en`** | 7.5 | `tefi` | | masawawaay | **`ma-sa-wawa-ay`** | 7.5 | `wawa` | | mikowananay | **`mi-kowan-an-ay`** | 7.5 | `kowan` | | papinanamen | **`pa-pi-nanam-en`** | 7.5 | `nanam` | | kakakilimen | **`ka-ka-kilim-en`** | 7.5 | `kilim` | | mipatenakay | **`mi-pa-tenak-ay`** | 7.5 | `tenak` | | masamaciay | **`ma-sa-ma-ciay`** | 7.5 | `ciay` | | pakalayapay | **`pa-ka-layap-ay`** | 7.5 | `layap` | | pisadingkian | **`pi-sa-dingki-an`** | 7.5 | `dingki` | | sakapilowid | **`sa-ka-pi-lowid`** | 7.5 | `lowid` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Amis shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (3.61x) | | N-gram | **2-gram** | Lowest perplexity (206) | | Markov | **Context-4** | Highest predictability (95.8%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 18:29:47*