Datasets:
dataset_info:
- config_name: codeparrot_github-code-chemistry-python-default
features:
- name: text
dtype: string
- name: repo_name
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: license
dtype: string
- name: size
dtype: int32
- name: keyword
sequence: string
- name: text_hash
dtype: string
splits:
- name: train
num_bytes: 3645895510
num_examples: 186878
- name: test
num_bytes: 208905795
num_examples: 10383
- name: val
num_bytes: 200466630
num_examples: 10382
download_size: 1469927226
dataset_size: 4055267935
- config_name: starcoder-chemistry-default
features:
- name: text
dtype: string
- name: repo_path
dtype: string
- name: keyword
sequence: string
- name: text_hash
dtype: string
splits:
- name: train
num_bytes: 34245426723
num_examples: 1853757
- name: test
num_bytes: 1869671691
num_examples: 102987
- name: val
num_bytes: 1949124399
num_examples: 102987
download_size: 14166968855
dataset_size: 38064222813
configs:
- config_name: codeparrot_github-code-chemistry-python-default
data_files:
- split: train
path: codeparrot_github-code-chemistry-python-default/train-*
- split: test
path: codeparrot_github-code-chemistry-python-default/test-*
- split: val
path: codeparrot_github-code-chemistry-python-default/val-*
- config_name: starcoder-chemistry-default
data_files:
- split: train
path: starcoder-chemistry-default/train-*
- split: test
path: starcoder-chemistry-default/test-*
- split: val
path: starcoder-chemistry-default/val-*
license:
- agpl-3.0
tags:
- chemistry
- scientific-code
- simulation-code
- computational-chemistry
- materials-science
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- bigcode/the-stack
- codeparrot/github-code
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: ChemPile-Code
dataset_version: 1.0.0
dataset_release_date: '2025-05-18'
dataset_citation: |-
@article{mirza2025chempile0,
title = {ChemPile: A 250GB Diverse and Curated Dataset for Chemical Foundation Models},
author = {Adrian Mirza and Nawaf Alampara and Martiño Ríos-García and others},
year = {2025},
journal = {arXiv preprint arXiv:2505.12534}
}
ChemPile-Code
A comprehensive collection of filtered scientific code from chemistry, biology, and materials science
📋 Dataset Summary
ChemPile-Code includes filtered code from popular datasets such as the Stack and GitHub-code. It is designed to provide a rich source of scientific coding from fields such as chemistry, biology, and materials science. The dataset is part of the ChemPile project, and aims to create a comprehensive collection of chemistry code for training language models. The filtering process is keyword-based, focusing on packages and libraries relevant to chemistry, biology, and materials science. Those keywords include simulation packages such as LAMMPS, GROMACS, and OpenMM, as well as libraries like RDKit, ASE, and MDTraj, or plotting programmes like VMD or PyMOL. To avoid duplicates, exact hash matching was used to filter out identical code snippets.
📊 Dataset Statistics
| Subset | Tokens | Documents | Description |
|---|---|---|---|
| CodeParrot GitHub-Code Chemistry Python | 1.8B | 208K | Python code from GitHub repositories |
| StarCoder Chemistry | 16.1B | 2.06M | Python code from the Stack dataset |
| Total | ~17.9B | ~2.27M | Scientific code snippets |
🗂️ Dataset Configurations
The dataset includes different subsets available as Hugging Face configurations:
codeparrot_github-code-chemistry-python-defaultstarcoder-chemistry-default
📜 License
All content is released under the AGPL-3.0 license, which allows for:
- ✅ Free use and distribution
- ✅ Commercial use
- ✅ Modification and derivatives
- ⚠️ Attribution required
However, the dataset combines code under different licenses. The config codeparrot_github-code-chemistry-python-default is designed such that is possible to filter the dataset based on the license. Therefore, this config has code under the next licenses:
- MIT
- GPL-3.0
- BSD-3-Clause
- GPL-2.0
- Apache-2.0
- LGPL-2.1
- AGPL-2.0
- AGPL-3.0
- LGPL-3.0
- MPL-2.0
- BSD-2-Clause
📖 Dataset Details
📚 CodeParrot
Source: CodeParrot is a subset of GitHub code, that we specifically filtered for chemistry-related content
Coverage: Python code from the GitHub Code dataset
Extraction Method: Keyword-based filtering focusing on chemistry, biology, and materials science packages and libraries
Fields:
text: The code snippetrepo_name: The name of the repository where the code snippet was foundpath: The path to the file within the repositorylanguage: The programming language of the code snippetlicense: The license of the repositorysize: The size of the code snippet in byteskeyword: A list of keywords that were used to filter the code snippettext_hash: A hash of the code snippet to avoid duplicates
Statistics: 208K code snippets with a total of over 1.8B tokens
⚗️ StarCoder
Source: StarCoder is a subset of the Stack dataset, that we specifically filtered for chemistry-related content
Coverage: Python code from the Stack dataset
Extraction Method: Keyword-based filtering with exact hash matching to avoid duplicates
Fields:
text: The code snippetrepo_name: The name of the repository where the code snippet was foundkeyword: A list of keywords that were used to filter the code snippettext_hash: A hash of the code snippet to avoid duplicates
Statistics: 2.06M code snippets with a total of over 16.1B tokens
🚀 Quick Start
from datasets import load_dataset, get_dataset_config_names
# Print available configs for the dataset
configs = get_dataset_config_names("jablonkagroup/chempile-code")
print(f"Available configs: {configs}")
# Available configs: ['codeparrot_github-code-chemistry-python-default', 'starcoder-chemistry-default']
dataset = load_dataset("jablonkagroup/chempile-code", name=configs[0])
# Loading config: codeparrot_github-code-chemistry-python-default
print(dataset)
# DatasetDict({
# train: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 186878
# })
# test: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 10383
# })
# val: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 10382
# })
# })
split_name = list(dataset.keys())[0]
sample = dataset[split_name][0]
print(sample)
# {
# 'text': 'import moogli
except Exception as e:...
# 'repo_name': 'BhallaLab/moose',
# 'path': 'moose-examples/paper-2015/Fig2_elecModels/Fig2C.py',
# 'language': 'Python',
# 'license': 'gpl-3.0',
# 'size': 14223,
# 'keyword': ['MOOSE', 'NEURON'],
# 'text_hash': '5eb6a5a439a675762a02c12cdff996e6a0d98f6ee874773cba2951727562aac5'
# }
🎯 Use Cases
- 🤖 Code Generation: Training models for scientific code generation and completion
- 🔬 Scientific Computing: Building systems for computational chemistry and materials science
- 🔍 Code Search: Advanced scientific code repository search and analysis
- 📝 Documentation: Automated code documentation and analysis for scientific software
- 🧠 Domain Adaptation: Adapting models to scientific computing paradigms and libraries
⚠️ Limitations & Considerations
- Language: Primarily Python code (monolingual dataset)
- Scope: Focused on scientific computing; may include domain-specific jargon and advanced concepts
- Quality: Variable quality across sources; some code may be incomplete or contain errors
- Bias: Reflects biases present in open-source scientific software development
- License: Mixed licenses from source repositories - check individual
licensefield - Duplicates: Hash-based deduplication applied but some semantic duplicates may remain
🛠️ Data Processing Pipeline
- Collection: Automated extraction from GitHub-code and Stack datasets
- Filtering: Keyword-based filtering for chemistry, biology, and materials science relevance
- Deduplication: Exact hash matching to remove identical code snippets
- Quality Control: Automated filtering and validation
- Standardization: Consistent formatting and metadata extraction
- Validation: Train/validation/test splits and quality checks
🏗️ ChemPile Collection
This dataset is part of the ChemPile collection, a comprehensive open dataset containing over 75 billion tokens of curated chemical data for training and evaluating general-purpose models in the chemical sciences.
Collection Overview
- 📊 Scale: 75+ billion tokens across multiple modalities
- 🧬 Modalities: Structured representations (SMILES, SELFIES, IUPAC, InChI), scientific text, executable code, and molecular images
- 🎯 Design: Integrates foundational educational knowledge with specialized scientific literature
- 🔬 Curation: Extensive expert curation and validation
- 📈 Benchmarking: Standardized train/validation/test splits for robust evaluation
- 🌐 Availability: Openly released via Hugging Face
📄 Citation
If you use this dataset in your research, please cite:
@article{mirza2025chempile0,
title = {ChemPile: A 250GB Diverse and Curated Dataset for Chemical Foundation Models},
author = {Adrian Mirza and Nawaf Alampara and Martiño Ríos-García and others},
year = {2025},
journal = {arXiv preprint arXiv:2505.12534}
}
👥 Contact & Support
- Paper: arXiv:2505.12534
- Website: ChemPile Project
- Dataset: Hugging Face
- Issues: Please report data issues or questions via the Hugging Face dataset page

