Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
English
Size:
1M - 10M
ArXiv:
License:
File size: 11,154 Bytes
a4fc840 46250da a4fc840 46250da a4fc840 396eb23 50f1009 b0cb9d0 396eb23 50f1009 396eb23 c763282 396eb23 50f1009 396eb23 50f1009 396eb23 c763282 396eb23 50f1009 396eb23 50f1009 396eb23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
---
dataset_info:
- config_name: codeparrot_github-code-chemistry-python-default
features:
- name: text
dtype: string
- name: repo_name
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: license
dtype: string
- name: size
dtype: int32
- name: keyword
sequence: string
- name: text_hash
dtype: string
splits:
- name: train
num_bytes: 3645895510
num_examples: 186878
- name: test
num_bytes: 208905795
num_examples: 10383
- name: val
num_bytes: 200466630
num_examples: 10382
download_size: 1469927226
dataset_size: 4055267935
- config_name: starcoder-chemistry-default
features:
- name: text
dtype: string
- name: repo_path
dtype: string
- name: keyword
sequence: string
- name: text_hash
dtype: string
splits:
- name: train
num_bytes: 34245426723
num_examples: 1853757
- name: test
num_bytes: 1869671691
num_examples: 102987
- name: val
num_bytes: 1949124399
num_examples: 102987
download_size: 14166968855
dataset_size: 38064222813
configs:
- config_name: codeparrot_github-code-chemistry-python-default
data_files:
- split: train
path: codeparrot_github-code-chemistry-python-default/train-*
- split: test
path: codeparrot_github-code-chemistry-python-default/test-*
- split: val
path: codeparrot_github-code-chemistry-python-default/val-*
- config_name: starcoder-chemistry-default
data_files:
- split: train
path: starcoder-chemistry-default/train-*
- split: test
path: starcoder-chemistry-default/test-*
- split: val
path: starcoder-chemistry-default/val-*
license:
- agpl-3.0
tags:
- chemistry
- scientific-code
- simulation-code
- computational-chemistry
- materials-science
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- bigcode/the-stack
- codeparrot/github-code
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: ChemPile-Code
dataset_version: 1.0.0
dataset_release_date: '2025-05-18'
dataset_citation: "@article{mirza2025chempile0,\n title = {ChemPile: A 250GB Diverse
and Curated Dataset for Chemical Foundation Models},\n author = {Adrian Mirza
and Nawaf Alampara and Martiño Ríos-García and others},\n year = {2025},\n \
\ journal = {arXiv preprint arXiv:2505.12534}\n}"
---
# ChemPile-Code
<div align="center">

[](https://huggingface.co/datasets/jablonkagroup/chempile-code)
[](https://opensource.org/licenses/Apache-2.0)
[](https://arxiv.org/abs/2505.12534)
[](https://chempile.lamalab.org/)
*A comprehensive collection of filtered scientific code from chemistry, biology, and materials science*
</div>
## 📋 Dataset Summary
ChemPile-Code includes filtered code from popular datasets such as the Stack and GitHub-code. It is designed to provide a rich source of scientific coding from fields such as chemistry, biology, and materials science. The dataset is part of the ChemPile project, and aims to create a comprehensive collection of chemistry code for training language models. The filtering process is keyword-based, focusing on packages and libraries relevant to chemistry, biology, and materials science. Those keywords include simulation packages such as LAMMPS, GROMACS, and OpenMM, as well as libraries like RDKit, ASE, and MDTraj, or plotting programmes like VMD or PyMOL. To avoid duplicates, exact hash matching was used to filter out identical code snippets.
### 📊 Dataset Statistics
| Subset | Tokens | Documents | Description |
|--------|--------|-----------|-------------|
| CodeParrot GitHub-Code Chemistry Python | 1.8B | 208K | Python code from GitHub repositories |
| StarCoder Chemistry | 16.1B | 2.06M | Python code from the Stack dataset |
| **Total** | **~17.9B** | **~2.27M** | Scientific code snippets |
## 🗂️ Dataset Configurations
The dataset includes different subsets available as Hugging Face configurations:
- `codeparrot_github-code-chemistry-python-default`
- `starcoder-chemistry-default`
## 📜 License
All content is released under the **AGPL-3.0** license, which allows for:
- ✅ Free use and distribution
- ✅ Commercial use
- ✅ Modification and derivatives
- ⚠️ Attribution required
However, the dataset combines code under different licenses. The config `codeparrot_github-code-chemistry-python-default` is designed such that is possible to filter the dataset based on the license. Therefore, this config has code under the next licenses:
- MIT
- GPL-3.0
- BSD-3-Clause
- GPL-2.0
- Apache-2.0
- LGPL-2.1
- AGPL-2.0
- AGPL-3.0
- LGPL-3.0
- MPL-2.0
- BSD-2-Clause
## 📖 Dataset Details
### 📚 CodeParrot
**Source**: CodeParrot is a subset of GitHub code, that we specifically filtered for chemistry-related content
**Coverage**: Python code from the GitHub Code dataset
**Extraction Method**: Keyword-based filtering focusing on chemistry, biology, and materials science packages and libraries
**Fields**:
- `text`: The code snippet
- `repo_name`: The name of the repository where the code snippet was found
- `path`: The path to the file within the repository
- `language`: The programming language of the code snippet
- `license`: The license of the repository
- `size`: The size of the code snippet in bytes
- `keyword`: A list of keywords that were used to filter the code snippet
- `text_hash`: A hash of the code snippet to avoid duplicates
**Statistics**: 208K code snippets with a total of over 1.8B tokens
### ⚗️ StarCoder
**Source**: StarCoder is a subset of the Stack dataset, that we specifically filtered for chemistry-related content
**Coverage**: Python code from the Stack dataset
**Extraction Method**: Keyword-based filtering with exact hash matching to avoid duplicates
**Fields**:
- `text`: The code snippet
- `repo_name`: The name of the repository where the code snippet was found
- `keyword`: A list of keywords that were used to filter the code snippet
- `text_hash`: A hash of the code snippet to avoid duplicates
**Statistics**: 2.06M code snippets with a total of over 16.1B tokens
## 🚀 Quick Start
```python
from datasets import load_dataset, get_dataset_config_names
# Print available configs for the dataset
configs = get_dataset_config_names("jablonkagroup/chempile-code")
print(f"Available configs: {configs}")
# Available configs: ['codeparrot_github-code-chemistry-python-default', 'starcoder-chemistry-default']
dataset = load_dataset("jablonkagroup/chempile-code", name=configs[0])
# Loading config: codeparrot_github-code-chemistry-python-default
print(dataset)
# DatasetDict({
# train: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 186878
# })
# test: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 10383
# })
# val: Dataset({
# features: ['text', 'repo_name', 'path', 'language', 'license', 'size', 'keyword', 'text_hash'],
# num_rows: 10382
# })
# })
split_name = list(dataset.keys())[0]
sample = dataset[split_name][0]
print(sample)
# {
# 'text': 'import moogli
except Exception as e:...
# 'repo_name': 'BhallaLab/moose',
# 'path': 'moose-examples/paper-2015/Fig2_elecModels/Fig2C.py',
# 'language': 'Python',
# 'license': 'gpl-3.0',
# 'size': 14223,
# 'keyword': ['MOOSE', 'NEURON'],
# 'text_hash': '5eb6a5a439a675762a02c12cdff996e6a0d98f6ee874773cba2951727562aac5'
# }
```
## 🎯 Use Cases
- **🤖 Code Generation**: Training models for scientific code generation and completion
- **🔬 Scientific Computing**: Building systems for computational chemistry and materials science
- **🔍 Code Search**: Advanced scientific code repository search and analysis
- **📝 Documentation**: Automated code documentation and analysis for scientific software
- **🧠 Domain Adaptation**: Adapting models to scientific computing paradigms and libraries
## ⚠️ Limitations & Considerations
- **Language**: Primarily Python code (monolingual dataset)
- **Scope**: Focused on scientific computing; may include domain-specific jargon and advanced concepts
- **Quality**: Variable quality across sources; some code may be incomplete or contain errors
- **Bias**: Reflects biases present in open-source scientific software development
- **License**: Mixed licenses from source repositories - check individual `license` field
- **Duplicates**: Hash-based deduplication applied but some semantic duplicates may remain
## 🛠️ Data Processing Pipeline
1. **Collection**: Automated extraction from GitHub-code and Stack datasets
2. **Filtering**: Keyword-based filtering for chemistry, biology, and materials science relevance
3. **Deduplication**: Exact hash matching to remove identical code snippets
4. **Quality Control**: Automated filtering and validation
5. **Standardization**: Consistent formatting and metadata extraction
6. **Validation**: Train/validation/test splits and quality checks
## 🏗️ ChemPile Collection
This dataset is part of the **ChemPile** collection, a comprehensive open dataset containing over 75 billion tokens of curated chemical data for training and evaluating general-purpose models in the chemical sciences.
### Collection Overview
- **📊 Scale**: 75+ billion tokens across multiple modalities
- **🧬 Modalities**: Structured representations (SMILES, SELFIES, IUPAC, InChI), scientific text, executable code, and molecular images
- **🎯 Design**: Integrates foundational educational knowledge with specialized scientific literature
- **🔬 Curation**: Extensive expert curation and validation
- **📈 Benchmarking**: Standardized train/validation/test splits for robust evaluation
- **🌐 Availability**: Openly released via Hugging Face
## 📄 Citation
If you use this dataset in your research, please cite:
```bibtex
@article{mirza2025chempile0,
title = {ChemPile: A 250GB Diverse and Curated Dataset for Chemical Foundation Models},
author = {Adrian Mirza and Nawaf Alampara and Martiño Ríos-García and others},
year = {2025},
journal = {arXiv preprint arXiv:2505.12534}
}
```
## 👥 Contact & Support
- **Paper**: [arXiv:2505.12534](https://arxiv.org/abs/2505.12534)
- **Website**: [ChemPile Project](https://chempile.lamalab.org/)
- **Dataset**: [Hugging Face](https://huggingface.co/datasets/jablonkagroup/chempile-code)
- **Issues**: Please report data issues or questions via the Hugging Face dataset page
---
<div align="center">

<i>Advancing the evaluation of AI systems in chemistry and materials science</i>
</div>
|