metadata
language:
- ar
license: apache-2.0
task_categories:
- multiple-choice
- question-answering
pretty_name: Arabic Accounting MCQ Training Dataset
tags:
- accounting
- mcq
- arabic
- training
- education
Arabic Accounting MCQ Training Dataset
Training dataset for Arabic accounting multiple choice questions with English letter choices.
Dataset Structure
- Format: Multiple choice questions (4 options)
- Language: Arabic questions with English letter choices
- Domain: Accounting and finance
- Size: ~80% of total dataset
Fields
id: Unique identifierquery: Full MCQ prompt with instructionsanswer: Correct answer letter (a, b, c, d)text: Question text without instructionschoices: List of options ['a', 'b', 'c', 'd']gold: Zero-based index of correct answer (0-3)
Example
{
"id": "accounting_mcq_00001",
"query": "اقرأ السؤال التالي بعناية واختر الإجابة الصحيحة...",
"answer": "d",
"text": "السؤال: [accounting question]...",
"choices": ["a", "b", "c", "d"],
"gold": 3
}
Usage
from datasets import load_dataset
dataset = load_dataset("SahmBenchmark/arabic-accounting-mcq_train")
train_data = dataset['train']
for example in train_data:
print(f"Question: {example['text']}")
print(f"Choices: {example['choices']}")
print(f"Answer: {example['answer']}")
For evaluation data, see: SahmBenchmark/arabic-accounting-mcq_eval