--- language: - ar license: apache-2.0 task_categories: - multiple-choice - question-answering pretty_name: Arabic Accounting MCQ Training Dataset tags: - accounting - mcq - arabic - training - education --- # Arabic Accounting MCQ Training Dataset Training dataset for Arabic accounting multiple choice questions with English letter choices. ## Dataset Structure - **Format**: Multiple choice questions (4 options) - **Language**: Arabic questions with English letter choices - **Domain**: Accounting and finance - **Size**: ~80% of total dataset ## Fields - `id`: Unique identifier - `query`: Full MCQ prompt with instructions - `answer`: Correct answer letter (a, b, c, d) - `text`: Question text without instructions - `choices`: List of options ['a', 'b', 'c', 'd'] - `gold`: Zero-based index of correct answer (0-3) ## Example ```json { "id": "accounting_mcq_00001", "query": "اقرأ السؤال التالي بعناية واختر الإجابة الصحيحة...", "answer": "d", "text": "السؤال: [accounting question]...", "choices": ["a", "b", "c", "d"], "gold": 3 } ``` ## Usage ```python from datasets import load_dataset dataset = load_dataset("SahmBenchmark/arabic-accounting-mcq_train") train_data = dataset['train'] for example in train_data: print(f"Question: {example['text']}") print(f"Choices: {example['choices']}") print(f"Answer: {example['answer']}") ``` For evaluation data, see: `SahmBenchmark/arabic-accounting-mcq_eval`