WafaaFraih's picture
Add detailed model card
f736975 verified
---
tags:
- image-captioning
- medical-imaging
- vision-language
- radiology
datasets:
- eltorio/ROCOv2-radiology
language:
- en
metrics:
- wer
base_model: microsoft/git-base
---
# Medical Image Captioning Model
This model is fine-tuned for medical image captioning using the ROCOv2 radiology dataset.
## Model Description
- **Base Model**: microsoft/git-base
- **Training Data**: ROCOv2 radiology images
- **Task**: Generate descriptive captions for medical/radiology images
- **Language**: English
## Usage
```python
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
# Load model and processor
processor = AutoProcessor.from_pretrained("WafaaFraih/medical-image-captioning-roco")
model = AutoModelForCausalLM.from_pretrained("WafaaFraih/medical-image-captioning-roco")
# Load and process image
image = Image.open("path_to_medical_image.jpg")
inputs = processor(images=image, return_tensors="pt")
# Generate caption
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=100)
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(caption)
```
## Training Details
- **Training Samples**: 1800
- **Validation Samples**: 200
- **Epochs**: 10
- **Batch Size**: 8
- **Learning Rate**: 5e-05
## Evaluation
Evaluated using Word Error Rate (WER) metric on medical image descriptions.
## Limitations
- Trained on a subset of ROCOv2 dataset
- Performance may vary on different imaging modalities
- Should not be used for clinical diagnosis without expert validation
## Citation
If you use this model, please cite:
```bibtex
@misc{medical-image-captioning,
author = {WafaaFraih},
title = {Medical Image Captioning Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/WafaaFraih/medical-image-captioning-roco}
}
```
## Acknowledgments
- Base model: Microsoft GIT
- Dataset: ROCOv2 Radiology Dataset