Medical Image Captioning Model
This model is fine-tuned for medical image captioning using the ROCOv2 radiology dataset.
Model Description
- Base Model: microsoft/git-base
- Training Data: ROCOv2 radiology images
- Task: Generate descriptive captions for medical/radiology images
- Language: English
Usage
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
# Load model and processor
processor = AutoProcessor.from_pretrained("WafaaFraih/medical-image-captioning-roco")
model = AutoModelForCausalLM.from_pretrained("WafaaFraih/medical-image-captioning-roco")
# Load and process image
image = Image.open("path_to_medical_image.jpg")
inputs = processor(images=image, return_tensors="pt")
# Generate caption
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=100)
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(caption)
Training Details
- Training Samples: 1800
- Validation Samples: 200
- Epochs: 10
- Batch Size: 8
- Learning Rate: 5e-05
Evaluation
Evaluated using Word Error Rate (WER) metric on medical image descriptions.
Limitations
- Trained on a subset of ROCOv2 dataset
- Performance may vary on different imaging modalities
- Should not be used for clinical diagnosis without expert validation
Citation
If you use this model, please cite:
@misc{medical-image-captioning,
author = {WafaaFraih},
title = {Medical Image Captioning Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/WafaaFraih/medical-image-captioning-roco}
}
Acknowledgments
- Base model: Microsoft GIT
- Dataset: ROCOv2 Radiology Dataset
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for WafaaFraih/medical-image-captioning-roco
Base model
microsoft/git-base