arghadip2002's picture
add
03751e1
|
raw
history blame
2.18 kB
metadata
title: MRI Brain Tumor Detection
emoji: 🧠
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false

🧠 MRI Brain Tumor Detection System

Deep Learning application for automated brain tumor classification from MRI scans using a custom ResidualInceptionBlock CNN architecture.

🎯 Features

  • 4-Class Classification: Glioma, Meningioma, Pituitary, No Tumor
  • Real-time Inference: Fast predictions with confidence scores
  • Modern UI: Clean, responsive React interface
  • RESTful API: FastAPI backend with automatic documentation

πŸ—οΈ Architecture

  • Frontend: React 18 + Vite
  • Backend: FastAPI + PyTorch
  • Model: Custom ResidualInceptionBlock CNN (50+ layers)
  • Deployment: Docker + Hugging Face Spaces

πŸš€ Quick Start

Using the Deployed App

Simply visit the app URL and upload an MRI scan image to get instant predictions.

Local Development

  1. Clone the repository
git clone <your-repo-url>
cd mri-diagnosis-app
  1. Start with Docker Compose
docker-compose up --build
  1. Access the application

Manual Setup

Backend:

cd backend
pip install -r requirements.txt
uvicorn app.main:app --reload

Frontend:

cd frontend
npm install
npm run dev

πŸ“‹ API Endpoints

  • POST /api/predict - Upload MRI image for prediction
  • GET /health - Health check endpoint
  • GET /docs - Interactive API documentation

🎨 Usage

  1. Upload an MRI brain scan (PNG, JPG, JPEG)
  2. Click "Run Diagnosis"
  3. View prediction with confidence score

πŸ“Š Model Information

  • Classes: 4 (Glioma, Meningioma, Pituitary, No Tumor)
  • Input Size: 224x224 RGB images
  • Architecture: Custom ResidualInceptionBlock with 50+ layers

πŸ› οΈ Technology Stack

  • PyTorch 2.1.0
  • FastAPI 0.104.1
  • React 18.2.0
  • Vite 5.0.0
  • Docker & Docker Compose

πŸ“ License

MIT License

πŸ‘¨β€πŸ’» Author

[Your Name]

πŸ™ Acknowledgments

  • Dataset: [Mention your dataset source]
  • Based on ResidualInceptionBlock architecture