metadata
title: MRI Brain Tumor Detection
emoji: π§
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false
π§ MRI Brain Tumor Detection System
Deep Learning application for automated brain tumor classification from MRI scans using a custom ResidualInceptionBlock CNN architecture.
π― Features
- 4-Class Classification: Glioma, Meningioma, Pituitary, No Tumor
- Real-time Inference: Fast predictions with confidence scores
- Modern UI: Clean, responsive React interface
- RESTful API: FastAPI backend with automatic documentation
ποΈ Architecture
- Frontend: React 18 + Vite
- Backend: FastAPI + PyTorch
- Model: Custom ResidualInceptionBlock CNN (50+ layers)
- Deployment: Docker + Hugging Face Spaces
π Quick Start
Using the Deployed App
Simply visit the app URL and upload an MRI scan image to get instant predictions.
Local Development
- Clone the repository
git clone <your-repo-url>
cd mri-diagnosis-app
- Start with Docker Compose
docker-compose up --build
- Access the application
- Frontend: http://localhost:3000
- API Docs: http://localhost:8000/docs
Manual Setup
Backend:
cd backend
pip install -r requirements.txt
uvicorn app.main:app --reload
Frontend:
cd frontend
npm install
npm run dev
π API Endpoints
POST /api/predict- Upload MRI image for predictionGET /health- Health check endpointGET /docs- Interactive API documentation
π¨ Usage
- Upload an MRI brain scan (PNG, JPG, JPEG)
- Click "Run Diagnosis"
- View prediction with confidence score
π Model Information
- Classes: 4 (Glioma, Meningioma, Pituitary, No Tumor)
- Input Size: 224x224 RGB images
- Architecture: Custom ResidualInceptionBlock with 50+ layers
π οΈ Technology Stack
- PyTorch 2.1.0
- FastAPI 0.104.1
- React 18.2.0
- Vite 5.0.0
- Docker & Docker Compose
π License
MIT License
π¨βπ» Author
[Your Name]
π Acknowledgments
- Dataset: [Mention your dataset source]
- Based on ResidualInceptionBlock architecture