File size: 2,175 Bytes
e39280d
03751e1
 
e39280d
03751e1
e39280d
03751e1
e39280d
 
 
0e038f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03751e1
 
 
 
0e038f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03751e1
0e038f6
 
 
03751e1
0e038f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03751e1
0e038f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
title: MRI Brain Tumor Detection
emoji: 🧠
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false
---

# 🧠 MRI Brain Tumor Detection System

Deep Learning application for automated brain tumor classification from MRI scans using a custom ResidualInceptionBlock CNN architecture.

## 🎯 Features

- **4-Class Classification**: Glioma, Meningioma, Pituitary, No Tumor
- **Real-time Inference**: Fast predictions with confidence scores
- **Modern UI**: Clean, responsive React interface
- **RESTful API**: FastAPI backend with automatic documentation

## πŸ—οΈ Architecture

- **Frontend**: React 18 + Vite
- **Backend**: FastAPI + PyTorch
- **Model**: Custom ResidualInceptionBlock CNN (50+ layers)
- **Deployment**: Docker + Hugging Face Spaces

## πŸš€ Quick Start

### Using the Deployed App

Simply visit the app URL and upload an MRI scan image to get instant predictions.

### Local Development

1. **Clone the repository**
```bash
git clone <your-repo-url>
cd mri-diagnosis-app
```

2. **Start with Docker Compose**
```bash
docker-compose up --build
```

3. **Access the application**
- Frontend: http://localhost:3000
- API Docs: http://localhost:8000/docs

### Manual Setup

**Backend:**
```bash
cd backend
pip install -r requirements.txt
uvicorn app.main:app --reload
```

**Frontend:**
```bash
cd frontend
npm install
npm run dev
```

## πŸ“‹ API Endpoints

- `POST /api/predict` - Upload MRI image for prediction
- `GET /health` - Health check endpoint
- `GET /docs` - Interactive API documentation

## 🎨 Usage

1. Upload an MRI brain scan (PNG, JPG, JPEG)
2. Click "Run Diagnosis"
3. View prediction with confidence score

## πŸ“Š Model Information

- **Classes**: 4 (Glioma, Meningioma, Pituitary, No Tumor)
- **Input Size**: 224x224 RGB images
- **Architecture**: Custom ResidualInceptionBlock with 50+ layers

## πŸ› οΈ Technology Stack

- **PyTorch** 2.1.0
- **FastAPI** 0.104.1
- **React** 18.2.0
- **Vite** 5.0.0
- **Docker** & Docker Compose

## πŸ“ License

MIT License

## πŸ‘¨β€πŸ’» Author

[Your Name]

## πŸ™ Acknowledgments

- Dataset: [Mention your dataset source]
- Based on ResidualInceptionBlock architecture