File size: 2,175 Bytes
e39280d 03751e1 e39280d 03751e1 e39280d 03751e1 e39280d 0e038f6 03751e1 0e038f6 03751e1 0e038f6 03751e1 0e038f6 03751e1 0e038f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
title: MRI Brain Tumor Detection
emoji: π§
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
pinned: false
---
# π§ MRI Brain Tumor Detection System
Deep Learning application for automated brain tumor classification from MRI scans using a custom ResidualInceptionBlock CNN architecture.
## π― Features
- **4-Class Classification**: Glioma, Meningioma, Pituitary, No Tumor
- **Real-time Inference**: Fast predictions with confidence scores
- **Modern UI**: Clean, responsive React interface
- **RESTful API**: FastAPI backend with automatic documentation
## ποΈ Architecture
- **Frontend**: React 18 + Vite
- **Backend**: FastAPI + PyTorch
- **Model**: Custom ResidualInceptionBlock CNN (50+ layers)
- **Deployment**: Docker + Hugging Face Spaces
## π Quick Start
### Using the Deployed App
Simply visit the app URL and upload an MRI scan image to get instant predictions.
### Local Development
1. **Clone the repository**
```bash
git clone <your-repo-url>
cd mri-diagnosis-app
```
2. **Start with Docker Compose**
```bash
docker-compose up --build
```
3. **Access the application**
- Frontend: http://localhost:3000
- API Docs: http://localhost:8000/docs
### Manual Setup
**Backend:**
```bash
cd backend
pip install -r requirements.txt
uvicorn app.main:app --reload
```
**Frontend:**
```bash
cd frontend
npm install
npm run dev
```
## π API Endpoints
- `POST /api/predict` - Upload MRI image for prediction
- `GET /health` - Health check endpoint
- `GET /docs` - Interactive API documentation
## π¨ Usage
1. Upload an MRI brain scan (PNG, JPG, JPEG)
2. Click "Run Diagnosis"
3. View prediction with confidence score
## π Model Information
- **Classes**: 4 (Glioma, Meningioma, Pituitary, No Tumor)
- **Input Size**: 224x224 RGB images
- **Architecture**: Custom ResidualInceptionBlock with 50+ layers
## π οΈ Technology Stack
- **PyTorch** 2.1.0
- **FastAPI** 0.104.1
- **React** 18.2.0
- **Vite** 5.0.0
- **Docker** & Docker Compose
## π License
MIT License
## π¨βπ» Author
[Your Name]
## π Acknowledgments
- Dataset: [Mention your dataset source]
- Based on ResidualInceptionBlock architecture
|