|
|
--- |
|
|
language: tr |
|
|
license: other |
|
|
license_name: siriusai-premium-v1 |
|
|
license_link: LICENSE |
|
|
tags: |
|
|
- turkish |
|
|
- content-moderation |
|
|
- multi-label-classification |
|
|
- text-classification |
|
|
- safety |
|
|
- moderation |
|
|
- bert |
|
|
- nlp |
|
|
- transformers |
|
|
base_model: dbmdz/bert-base-turkish-uncased |
|
|
datasets: |
|
|
- custom |
|
|
metrics: |
|
|
- f1 |
|
|
- precision |
|
|
- recall |
|
|
- accuracy |
|
|
- mcc |
|
|
library_name: transformers |
|
|
pipeline_tag: text-classification |
|
|
model-index: |
|
|
- name: turkish-safety |
|
|
results: |
|
|
- task: |
|
|
type: text-classification |
|
|
name: Multi-label Content Safety Classification |
|
|
metrics: |
|
|
- type: f1 |
|
|
value: 0.9165 |
|
|
name: Macro F1 |
|
|
- type: mcc |
|
|
value: 0.9045 |
|
|
name: Matthews Correlation Coefficient |
|
|
--- |
|
|
|
|
|
# Turkish Safety - Content Moderation Classifier v5.0 |
|
|
|
|
|
**Multi-label classification model for Turkish content moderation** |
|
|
|
|
|
*Developed by SiriusAI Tech Brain Team* |
|
|
|
|
|
--- |
|
|
|
|
|
## Mission |
|
|
|
|
|
> **Empowering digital platforms with AI-driven content safety solutions.** |
|
|
|
|
|
Turkish Safety is an advanced NLP model that analyzes Turkish content in real-time and detects harmful content across 7 different categories. It provides comprehensive content moderation for social media platforms, messaging applications, in-game chats, and community forums. |
|
|
|
|
|
### Why This Model Matters |
|
|
|
|
|
- **7 Risk Categories**: Detects SAFE, GROOMING, SEXUAL, OFFENSIVE, BULLYING, SELF_HARM, and THREAT |
|
|
- **Turkish-First Design**: Optimized for Turkish linguistics and cultural context using BERTurk |
|
|
- **Production-Ready**: <50ms inference, battle-tested architecture, enterprise-grade reliability |
|
|
- **Multi-Label Intelligence**: Smart classification that understands content can belong to multiple categories |
|
|
- **Expert Validation**: Curated training data with clear category boundaries and edge case handling |
|
|
|
|
|
--- |
|
|
|
|
|
## Model Overview |
|
|
|
|
|
| Property | Value | |
|
|
|----------|-------| |
|
|
| **Architecture** | BERT (Bidirectional Encoder Representations from Transformers) | |
|
|
| **Base Model** | `dbmdz/bert-base-turkish-uncased` (BERTurk) | |
|
|
| **Task** | Multi-label Text Classification | |
|
|
| **Language** | Turkish (tr) | |
|
|
| **Categories** | 7 content safety labels | |
|
|
| **Model Size** | 443 MB (FP32) | |
|
|
| **Inference Time** | ~10-15ms (GPU) / ~40-50ms (CPU) | |
|
|
|
|
|
--- |
|
|
|
|
|
## Performance Metrics |
|
|
|
|
|
### Final Evaluation Results (Epoch 2) |
|
|
|
|
|
| Metric | Score | Description | |
|
|
|--------|-------|-------------| |
|
|
| **Macro F1** | **0.9165** | Harmonic mean of precision and recall across all categories | |
|
|
| **MCC** | **0.9045** | Matthews Correlation Coefficient (robust multi-class metric) | |
|
|
| **Eval Loss** | 0.0268 | Focal loss on validation set | |
|
|
|
|
|
### Training Progress |
|
|
|
|
|
| Epoch | Train Loss | Eval Loss | Macro F1 | MCC | |
|
|
|-------|------------|-----------|----------|-----| |
|
|
| 1 | 0.038 | 0.0282 | 0.9085 | 0.8957 | |
|
|
| **2** | **0.038** | **0.0268** | **0.9165** | **0.9045** | |
|
|
|
|
|
### Validation Test Results (86.4% Accuracy) |
|
|
|
|
|
| Category | Test Cases | Correct | Notes | |
|
|
|----------|-----------|---------|-------| |
|
|
| **SAFE** | 5 | 4 | One false positive (compliment → offensive) | |
|
|
| **GROOMING** | 4 | 2 | Boundary cases with SEXUAL/THREAT | |
|
|
| **SEXUAL** | 3 | 3 | Perfect detection | |
|
|
| **OFFENSIVE** | 3 | 3 | Perfect detection | |
|
|
| **THREAT** | 3 | 3 | Perfect detection | |
|
|
| **SELF_HARM** | 2 | 2 | Perfect detection | |
|
|
| **BULLYING** | 2 | 2 | Perfect detection | |
|
|
|
|
|
--- |
|
|
|
|
|
## Dataset |
|
|
|
|
|
### Dataset Statistics |
|
|
|
|
|
| Split | Samples | Purpose | |
|
|
|-------|---------|---------| |
|
|
| **Train** | 68,128 | Model training | |
|
|
| **Test** | 17,033 | Model evaluation | |
|
|
| **Total** | 85,161 | Complete dataset | |
|
|
|
|
|
### Category Distribution (Full Dataset) |
|
|
|
|
|
| Category | Samples | Percentage | Description | |
|
|
|----------|---------|------------|-------------| |
|
|
| **SAFE** | 25,488 | 29.9% | Benign, normal communication | |
|
|
| **SELF_HARM** | 14,234 | 16.7% | Self-harm ideation, suicidal thoughts | |
|
|
| **BULLYING** | 13,259 | 15.6% | Harassment, exclusion, cyberbullying | |
|
|
| **THREAT** | 9,193 | 10.8% | Physical threats, violence, blackmail | |
|
|
| **SEXUAL** | 8,642 | 10.1% | Sexual content, body comments | |
|
|
| **GROOMING** | 7,517 | 8.8% | Manipulation, trust-building tactics | |
|
|
| **OFFENSIVE** | 6,849 | 8.0% | Profanity, slurs, offensive language | |
|
|
|
|
|
### Subcategory Breakdown |
|
|
|
|
|
| Category | Subcategories | |
|
|
|----------|---------------| |
|
|
| **SAFE** | greetings (1,958), farewells (1,485), wellbeing_questions (2,900), daily_conversation (2,435), weather_talk (1,445), food_drink (1,481), normal_questions (1,861), school_talk (1,961), family_talk (1,487), hobbies_games (1,455), sports_talk (1,000), tech_internet (994), genuine_compliments (1,000), encouragement (1,000), appreciation (1,000), apology_understanding (998), help_cooperation (1,000) | |
|
|
| **GROOMING** | secrecy (953), isolation (729), trust_manipulation (792), meeting_private (701), gift_promise (565), age_questioning (688), private_communication (628), emotional_manipulation (654), normalization (655), excessive_flattery (559), testing_boundaries (583) | |
|
|
| **THREAT** | physical_violence (1,307), weapon_threat (936), blackmail (1,168), family_threat (1,071), implicit_threat (906), revenge (947), death_threat (886), social_threat (930), stalking_threat (532), property_threat (500) | |
|
|
| **OFFENSIVE** | insults (1,286), cursing_sik (1,535), cursing_am (1,398), cursing_ana_orospu (1,383), derogatory (849), mockery (398) | |
|
|
| **SEXUAL** | explicit_content (1,085), sexual_body_focus (1,612), sexual_invitation (1,237), pornographic (1,060), sexual_questions (1,232), romantic_pressure (1,030), inappropriate_comments (856), sexual_fantasy (530) | |
|
|
| **BULLYING** | exclusion (1,904), mockery_repeated (1,690), emotional_abuse (1,678), appearance_attack (1,490), public_humiliation (1,091), intimidation (979), cyberbullying (1,138), name_calling (1,178), spreading_rumors (1,000), academic_bullying (1,111) | |
|
|
| **SELF_HARM** | hopelessness (1,923), giving_up (1,690), not_waking_up (1,435), suicide_ideation (1,413), self_harm_plan (1,532), burden_feeling (1,018), worthlessness (1,037), isolation_feeling (1,025), goodbye_messages (807), self_blame (894), depression_signs (1,452) | |
|
|
|
|
|
### Data Generation Methodology |
|
|
|
|
|
1. **Synthetic Generation**: LLM-based generation with expert-defined category boundaries |
|
|
2. **Hard Negative Mining**: Difficult edge cases for boundary discrimination |
|
|
3. **Quality Filtering**: Duplicate detection, minimum word count, forbidden token filtering |
|
|
4. **Parallel Processing**: 20 concurrent workers with batch size of 50 |
|
|
5. **Pass Rate**: 97.5% average acceptance rate across all categories |
|
|
|
|
|
--- |
|
|
|
|
|
## Label Definitions |
|
|
|
|
|
The model classifies text into 7 mutually non-exclusive categories: |
|
|
|
|
|
| Label | ID | Description | Turkish Examples | |
|
|
|-------|-----|-------------|------------------| |
|
|
| `SAFE` | 0 | Benign, normal communication | "Bugün hava güzel", "Oyun oynayalım mı?" | |
|
|
| `OFFENSIVE` | 1 | Profanity, slurs, offensive language | "Aptal mısın", "Salak herif" | |
|
|
| `SELF_HARM` | 2 | Self-harm ideation, suicidal thoughts | "Ölmek istiyorum", "Kendimi kesmek istiyorum" | |
|
|
| `GROOMING` | 3 | Manipulation, trust-building, isolation tactics | "Kimseye söyleme", "Sen özelsin", "Evime gel" | |
|
|
| `BULLYING` | 4 | Harassment, exclusion, cyberbullying | "Kimse seninle oynamak istemiyor", "Çirkinsin" | |
|
|
| `SEXUAL` | 5 | Sexual content, body comments, inappropriate questions | "Vücudun güzel", "Hiç öpüştün mü?", "Ne giyiyorsun?" | |
|
|
| `THREAT` | 6 | Physical threats, violence, blackmail | "Seni döverim", "Fotoğrafını yayarım" | |
|
|
|
|
|
### Important: Category Boundaries |
|
|
|
|
|
**GROOMING vs SEXUAL Distinction:** |
|
|
- **GROOMING**: Non-sexual manipulation tactics (trust-building, secrecy, gift promises, meeting requests) |
|
|
- **SEXUAL**: Any body-related comments, physical compliments, sexual questions, explicit content |
|
|
|
|
|
``` |
|
|
"Kimseye söyleme tamam mı?" → GROOMING (secrecy/isolation) |
|
|
"Vücudun çok güzel" → SEXUAL (body comment) |
|
|
"Telefon alırım sana" → GROOMING (gift promise) |
|
|
"Dudakların çok güzel" → SEXUAL (body-focused compliment) |
|
|
"Gel evime yalnızım" → GROOMING (meeting request/isolation) |
|
|
"Hiç öpüştün mü?" → SEXUAL (sexual experience question) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Training Procedure |
|
|
|
|
|
### Hyperparameters |
|
|
|
|
|
| Parameter | Value | |
|
|
|-----------|-------| |
|
|
| **Base Model** | `dbmdz/bert-base-turkish-uncased` | |
|
|
| **Max Sequence Length** | 64 tokens | |
|
|
| **Batch Size** | 16 (effective 32 with gradient accumulation) | |
|
|
| **Gradient Accumulation** | 2 steps | |
|
|
| **Learning Rate** | 2e-5 (with cosine restarts) | |
|
|
| **Epochs** | 2 | |
|
|
| **Optimizer** | AdamW | |
|
|
| **Weight Decay** | 0.01 | |
|
|
| **Warmup Ratio** | 0.1 | |
|
|
| **Loss Function** | Focal Loss (gamma=1.2) | |
|
|
| **Label Smoothing** | 0.05 | |
|
|
| **Problem Type** | Multi-label Classification | |
|
|
| **Evaluation Strategy** | Per epoch | |
|
|
|
|
|
### Training Environment |
|
|
|
|
|
| Resource | Specification | |
|
|
|----------|---------------| |
|
|
| **Hardware** | Apple M1 Pro (MPS) | |
|
|
| **Framework** | PyTorch 2.x + Transformers 4.37+ | |
|
|
| **Training Time** | ~14 minutes (864 seconds) | |
|
|
| **Throughput** | 157.8 samples/second | |
|
|
| **Steps** | 4,258 total | |
|
|
|
|
|
### Learning Rate Schedule |
|
|
|
|
|
``` |
|
|
Peak LR: 2e-5 (after warmup) |
|
|
Schedule: Cosine with restarts |
|
|
Final LR: ~1.1e-8 |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
pip install transformers torch |
|
|
``` |
|
|
|
|
|
### Quick Start |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
import torch |
|
|
|
|
|
# Load model |
|
|
model_name = "hayatiali/turkish-safety" |
|
|
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased") |
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
model.eval() |
|
|
|
|
|
# Label mapping (MUST match model's id2label) |
|
|
LABELS = ["SAFE", "OFFENSIVE", "SELF_HARM", "GROOMING", "BULLYING", "SEXUAL", "THREAT"] |
|
|
|
|
|
def predict(text): |
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128) |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
# Multi-label: use sigmoid (NOT softmax!) |
|
|
probs = torch.sigmoid(outputs.logits)[0].numpy() |
|
|
|
|
|
scores = {label: float(prob) for label, prob in zip(LABELS, probs)} |
|
|
primary = max(scores, key=scores.get) |
|
|
|
|
|
return {"category": primary, "confidence": scores[primary], "all_scores": scores} |
|
|
|
|
|
# Examples |
|
|
print(predict("Vücudun çok güzel")) # → SEXUAL |
|
|
print(predict("Kimseye söyleme tamam mı")) # → GROOMING |
|
|
print(predict("Ölmek istiyorum")) # → SELF_HARM |
|
|
print(predict("Bugün hava güzel")) # → SAFE |
|
|
``` |
|
|
|
|
|
### Production Class |
|
|
|
|
|
```python |
|
|
class TurkishSafetyClassifier: |
|
|
LABELS = ["SAFE", "OFFENSIVE", "SELF_HARM", "GROOMING", "BULLYING", "SEXUAL", "THREAT"] |
|
|
|
|
|
def __init__(self, model_path="hayatiali/turkish-safety"): |
|
|
self.tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased") |
|
|
self.model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
|
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
self.model.to(self.device).eval() |
|
|
|
|
|
def predict(self, text: str) -> dict: |
|
|
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=128) |
|
|
inputs = {k: v.to(self.device) for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
|
logits = self.model(**inputs).logits |
|
|
probs = torch.sigmoid(logits)[0].cpu().numpy() |
|
|
|
|
|
scores = dict(zip(self.LABELS, probs)) |
|
|
primary = max(scores, key=scores.get) |
|
|
|
|
|
return { |
|
|
"category": primary, |
|
|
"confidence": scores[primary], |
|
|
"scores": scores, |
|
|
"action": self._get_action(scores[primary], primary) |
|
|
} |
|
|
|
|
|
def _get_action(self, score: float, category: str) -> str: |
|
|
# Critical categories have lower thresholds |
|
|
if category in ["GROOMING", "SEXUAL", "SELF_HARM", "THREAT"]: |
|
|
if score > 0.5: return "hard_block" |
|
|
if score > 0.3: return "soft_block" |
|
|
|
|
|
if score > 0.75: return "hard_block" |
|
|
if score > 0.60: return "soft_block" |
|
|
if score > 0.45: return "flag" |
|
|
if score > 0.30: return "allow_log" |
|
|
return "allow" |
|
|
``` |
|
|
|
|
|
### Batch Inference |
|
|
|
|
|
```python |
|
|
def predict_batch(texts: list, batch_size: int = 32) -> list: |
|
|
results = [] |
|
|
for i in range(0, len(texts), batch_size): |
|
|
batch = texts[i:i + batch_size] |
|
|
inputs = tokenizer(batch, return_tensors="pt", truncation=True, max_length=128, padding=True) |
|
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
|
probs = torch.sigmoid(model(**inputs).logits).cpu().numpy() |
|
|
|
|
|
for prob in probs: |
|
|
scores = dict(zip(LABELS, prob)) |
|
|
results.append(scores) |
|
|
|
|
|
return results |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Limitations & Known Issues |
|
|
|
|
|
### ⚠️ Evaluation Limitations |
|
|
|
|
|
**Note**: Two separate evaluation sets exist: |
|
|
- **Automated Test Set**: 17,033 samples from test.csv → Macro F1: 0.9165, MCC: 0.9045 |
|
|
- **Manual Edge Case Test**: 22 hand-picked samples → 86.4% accuracy (19/22 correct) |
|
|
|
|
|
| Limitation | Details | Impact | |
|
|
|------------|---------|--------| |
|
|
| **Small Manual Test Set** | Edge case validation on only 22 samples (86.4%) | Manual test not statistically significant; automated metrics (17K samples) more reliable | |
|
|
| **No Per-Class Metrics** | Only Macro F1 and MCC reported for 17K test set | Cannot assess individual category performance (e.g., SELF_HARM Precision/Recall vs SAFE) | |
|
|
| **No Confusion Matrix** | Category confusion patterns not documented | Unclear which categories are most confused beyond GROOMING/SEXUAL boundary | |
|
|
| **No PR/ROC Curves** | Precision-Recall and ROC analysis not performed | Optimal threshold selection methodology not documented | |
|
|
| **No Calibration Analysis** | Model confidence calibration not tested | Unknown if 0.7 confidence truly represents 70% probability | |
|
|
|
|
|
### ⚠️ Architectural Limitations |
|
|
|
|
|
| Limitation | Details | Impact | |
|
|
|------------|---------|--------| |
|
|
| **Short Context Window** | Max sequence length: 64 tokens | Long messages may lose critical information; truncation may remove key context | |
|
|
| **Single-Turn Only** | No conversation history analysis | GROOMING patterns often emerge across multiple messages ("Kaç yaşındasın?", "Nerelisin?", "Fotoğraf atar mısın?" may each appear SAFE individually) | |
|
|
| **No Temporal Patterns** | No escalation detection capability | Cannot detect behavior changes over time; user history not considered | |
|
|
| **Static Analysis** | Each message analyzed independently | Contextual red flags from message sequences not captured | |
|
|
|
|
|
### ⚠️ Data & Coverage Limitations |
|
|
|
|
|
| Limitation | Details | Impact | |
|
|
|------------|---------|--------| |
|
|
| **Dialect/Slang Gaps** | Regional dialects and internet slang underrepresented | Performance may degrade on: "napıon", "nbr", "slm", "mrb", regional variations | |
|
|
| **No Adversarial Testing** | Evasion techniques not systematically tested | Unknown robustness against: "S 3 x" instead of "sex", character substitution, unicode tricks | |
|
|
| **Synthetic Data Bias** | 97.5% of training data is LLM-generated | May not capture real-world linguistic patterns; potential distribution shift | |
|
|
| **Spelling Error Tolerance** | Not explicitly tested | Common typos and intentional misspellings may bypass detection | |
|
|
|
|
|
### ⚠️ Production Deployment Considerations |
|
|
|
|
|
| Consideration | Details | Recommendation | |
|
|
|---------------|---------|----------------| |
|
|
| **Threshold Selection** | Current thresholds (0.3, 0.5, 0.75) are heuristic | Perform PR curve analysis for your specific use case; adjust based on FP/FN tolerance | |
|
|
| **Confidence Calibration** | Model may be over/under-confident | Consider temperature scaling or Platt calibration before production | |
|
|
| **Category Boundaries** | GROOMING ↔ SEXUAL boundary is known issue | Review flagged content in these categories; implement human review for edge cases | |
|
|
| **Real-Time Context** | No session-level analysis | Consider implementing sliding window or conversation aggregation layer | |
|
|
|
|
|
### Not Suitable For |
|
|
|
|
|
- Languages other than Turkish |
|
|
- Adult content moderation (requires different domain expertise) |
|
|
- Sole decision-making without human review for high-stakes situations |
|
|
- Legal evidence or court proceedings |
|
|
- Detection of sophisticated, multi-turn grooming attempts without additional context layer |
|
|
- Highly informal/slang-heavy communications without additional preprocessing |
|
|
|
|
|
--- |
|
|
|
|
|
## Ethical Considerations |
|
|
|
|
|
### Intended Use |
|
|
|
|
|
- Social media content moderation |
|
|
- Messaging platform safety filters |
|
|
- Gaming chat moderation |
|
|
- Community forum monitoring |
|
|
- Parental control applications |
|
|
- Research and educational purposes |
|
|
|
|
|
### Risks |
|
|
|
|
|
- **False Negatives**: May miss sophisticated grooming attempts |
|
|
- **False Positives**: May flag benign content incorrectly |
|
|
- **Automation Bias**: Over-reliance on model predictions |
|
|
|
|
|
### Recommendations |
|
|
|
|
|
1. **Human Oversight**: Always combine with human review for critical decisions |
|
|
2. **Threshold Calibration**: Adjust thresholds based on your risk tolerance |
|
|
3. **Monitoring**: Track performance metrics in production |
|
|
4. **Regular Updates**: Retrain with new data periodically |
|
|
5. **Transparency**: Inform users about automated moderation |
|
|
|
|
|
--- |
|
|
|
|
|
## Technical Specifications |
|
|
|
|
|
### Model Architecture |
|
|
|
|
|
``` |
|
|
BertForSequenceClassification( |
|
|
(bert): BertModel( |
|
|
(embeddings): BertEmbeddings |
|
|
(encoder): BertEncoder (12 layers) |
|
|
(pooler): BertPooler |
|
|
) |
|
|
(dropout): Dropout(p=0.1) |
|
|
(classifier): Linear(in_features=768, out_features=7) |
|
|
) |
|
|
|
|
|
Total Parameters: ~110M |
|
|
Trainable Parameters: ~110M |
|
|
``` |
|
|
|
|
|
### Input/Output |
|
|
|
|
|
- **Input**: Turkish text (max 128 tokens) |
|
|
- **Output**: 7-dimensional probability vector (sigmoid activated) |
|
|
- **Tokenizer**: BERTurk WordPiece (32k vocab) |
|
|
|
|
|
--- |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{turkish-safety-2025, |
|
|
title={Turkish Safety - Content Moderation Classifier}, |
|
|
author={SiriusAI Tech Brain Team}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/hayatiali/turkish-safety}}, |
|
|
note={Fine-tuned from dbmdz/bert-base-turkish-uncased, Macro F1: 0.9076} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Model Card Authors |
|
|
|
|
|
**SiriusAI Tech Brain Team** |
|
|
|
|
|
## Contact |
|
|
|
|
|
- **Issues**: [GitHub Issues](https://github.com/sirius-tedarik/Omni-Moderation-API/issues) |
|
|
- **Repository**: [Omni-Moderation-API](https://github.com/sirius-tedarik/Omni-Moderation-API) |
|
|
|
|
|
--- |
|
|
|
|
|
## Changelog |
|
|
|
|
|
### v5.0 (Current) |
|
|
- Major dataset expansion: 85,161 samples (68,128 train / 17,033 test) |
|
|
- Improved metrics: **Macro F1: 0.9165**, **MCC: 0.9045** |
|
|
- Optimized hyperparameters for large dataset (Focal Loss, cosine restarts) |
|
|
- 67 subcategories across 7 main categories |
|
|
- 86.4% validation accuracy on edge cases |
|
|
|
|
|
### v4.0 |
|
|
- Initial production release |
|
|
- 7-category multi-label content safety classification |
|
|
- Macro F1: 0.9076, MCC: 0.8931 |
|
|
- Training on 30,596 samples |
|
|
- Clear category boundary definitions (GROOMING vs SEXUAL) |
|
|
- Optimized for real-time inference (<50ms) |
|
|
|
|
|
--- |
|
|
|
|
|
**License**: SiriusAI Tech Premium License v1.0 |
|
|
|
|
|
**Commercial Use**: Requires Premium License. Contact: [email protected] |
|
|
|
|
|
**Free Use Allowed For**: |
|
|
- Academic research and education |
|
|
- Non-profit organizations (with approval) |
|
|
- Evaluation (30 days) |
|
|
|
|
|
**Disclaimer**: This model is designed for content moderation and safety applications. Always implement with appropriate safeguards and human oversight. Model predictions should inform decisions, not replace human judgment. |
|
|
|