--- language: tr license: other license_name: siriusai-premium-v1 license_link: LICENSE tags: - turkish - content-moderation - multi-label-classification - text-classification - safety - moderation - bert - nlp - transformers base_model: dbmdz/bert-base-turkish-uncased datasets: - custom metrics: - f1 - precision - recall - accuracy - mcc library_name: transformers pipeline_tag: text-classification model-index: - name: turkish-safety results: - task: type: text-classification name: Multi-label Content Safety Classification metrics: - type: f1 value: 0.9165 name: Macro F1 - type: mcc value: 0.9045 name: Matthews Correlation Coefficient --- # Turkish Safety - Content Moderation Classifier v5.0 **Multi-label classification model for Turkish content moderation** *Developed by SiriusAI Tech Brain Team* --- ## Mission > **Empowering digital platforms with AI-driven content safety solutions.** Turkish Safety is an advanced NLP model that analyzes Turkish content in real-time and detects harmful content across 7 different categories. It provides comprehensive content moderation for social media platforms, messaging applications, in-game chats, and community forums. ### Why This Model Matters - **7 Risk Categories**: Detects SAFE, GROOMING, SEXUAL, OFFENSIVE, BULLYING, SELF_HARM, and THREAT - **Turkish-First Design**: Optimized for Turkish linguistics and cultural context using BERTurk - **Production-Ready**: <50ms inference, battle-tested architecture, enterprise-grade reliability - **Multi-Label Intelligence**: Smart classification that understands content can belong to multiple categories - **Expert Validation**: Curated training data with clear category boundaries and edge case handling --- ## Model Overview | Property | Value | |----------|-------| | **Architecture** | BERT (Bidirectional Encoder Representations from Transformers) | | **Base Model** | `dbmdz/bert-base-turkish-uncased` (BERTurk) | | **Task** | Multi-label Text Classification | | **Language** | Turkish (tr) | | **Categories** | 7 content safety labels | | **Model Size** | 443 MB (FP32) | | **Inference Time** | ~10-15ms (GPU) / ~40-50ms (CPU) | --- ## Performance Metrics ### Final Evaluation Results (Epoch 2) | Metric | Score | Description | |--------|-------|-------------| | **Macro F1** | **0.9165** | Harmonic mean of precision and recall across all categories | | **MCC** | **0.9045** | Matthews Correlation Coefficient (robust multi-class metric) | | **Eval Loss** | 0.0268 | Focal loss on validation set | ### Training Progress | Epoch | Train Loss | Eval Loss | Macro F1 | MCC | |-------|------------|-----------|----------|-----| | 1 | 0.038 | 0.0282 | 0.9085 | 0.8957 | | **2** | **0.038** | **0.0268** | **0.9165** | **0.9045** | ### Validation Test Results (86.4% Accuracy) | Category | Test Cases | Correct | Notes | |----------|-----------|---------|-------| | **SAFE** | 5 | 4 | One false positive (compliment → offensive) | | **GROOMING** | 4 | 2 | Boundary cases with SEXUAL/THREAT | | **SEXUAL** | 3 | 3 | Perfect detection | | **OFFENSIVE** | 3 | 3 | Perfect detection | | **THREAT** | 3 | 3 | Perfect detection | | **SELF_HARM** | 2 | 2 | Perfect detection | | **BULLYING** | 2 | 2 | Perfect detection | --- ## Dataset ### Dataset Statistics | Split | Samples | Purpose | |-------|---------|---------| | **Train** | 68,128 | Model training | | **Test** | 17,033 | Model evaluation | | **Total** | 85,161 | Complete dataset | ### Category Distribution (Full Dataset) | Category | Samples | Percentage | Description | |----------|---------|------------|-------------| | **SAFE** | 25,488 | 29.9% | Benign, normal communication | | **SELF_HARM** | 14,234 | 16.7% | Self-harm ideation, suicidal thoughts | | **BULLYING** | 13,259 | 15.6% | Harassment, exclusion, cyberbullying | | **THREAT** | 9,193 | 10.8% | Physical threats, violence, blackmail | | **SEXUAL** | 8,642 | 10.1% | Sexual content, body comments | | **GROOMING** | 7,517 | 8.8% | Manipulation, trust-building tactics | | **OFFENSIVE** | 6,849 | 8.0% | Profanity, slurs, offensive language | ### Subcategory Breakdown | Category | Subcategories | |----------|---------------| | **SAFE** | greetings (1,958), farewells (1,485), wellbeing_questions (2,900), daily_conversation (2,435), weather_talk (1,445), food_drink (1,481), normal_questions (1,861), school_talk (1,961), family_talk (1,487), hobbies_games (1,455), sports_talk (1,000), tech_internet (994), genuine_compliments (1,000), encouragement (1,000), appreciation (1,000), apology_understanding (998), help_cooperation (1,000) | | **GROOMING** | secrecy (953), isolation (729), trust_manipulation (792), meeting_private (701), gift_promise (565), age_questioning (688), private_communication (628), emotional_manipulation (654), normalization (655), excessive_flattery (559), testing_boundaries (583) | | **THREAT** | physical_violence (1,307), weapon_threat (936), blackmail (1,168), family_threat (1,071), implicit_threat (906), revenge (947), death_threat (886), social_threat (930), stalking_threat (532), property_threat (500) | | **OFFENSIVE** | insults (1,286), cursing_sik (1,535), cursing_am (1,398), cursing_ana_orospu (1,383), derogatory (849), mockery (398) | | **SEXUAL** | explicit_content (1,085), sexual_body_focus (1,612), sexual_invitation (1,237), pornographic (1,060), sexual_questions (1,232), romantic_pressure (1,030), inappropriate_comments (856), sexual_fantasy (530) | | **BULLYING** | exclusion (1,904), mockery_repeated (1,690), emotional_abuse (1,678), appearance_attack (1,490), public_humiliation (1,091), intimidation (979), cyberbullying (1,138), name_calling (1,178), spreading_rumors (1,000), academic_bullying (1,111) | | **SELF_HARM** | hopelessness (1,923), giving_up (1,690), not_waking_up (1,435), suicide_ideation (1,413), self_harm_plan (1,532), burden_feeling (1,018), worthlessness (1,037), isolation_feeling (1,025), goodbye_messages (807), self_blame (894), depression_signs (1,452) | ### Data Generation Methodology 1. **Synthetic Generation**: LLM-based generation with expert-defined category boundaries 2. **Hard Negative Mining**: Difficult edge cases for boundary discrimination 3. **Quality Filtering**: Duplicate detection, minimum word count, forbidden token filtering 4. **Parallel Processing**: 20 concurrent workers with batch size of 50 5. **Pass Rate**: 97.5% average acceptance rate across all categories --- ## Label Definitions The model classifies text into 7 mutually non-exclusive categories: | Label | ID | Description | Turkish Examples | |-------|-----|-------------|------------------| | `SAFE` | 0 | Benign, normal communication | "Bugün hava güzel", "Oyun oynayalım mı?" | | `OFFENSIVE` | 1 | Profanity, slurs, offensive language | "Aptal mısın", "Salak herif" | | `SELF_HARM` | 2 | Self-harm ideation, suicidal thoughts | "Ölmek istiyorum", "Kendimi kesmek istiyorum" | | `GROOMING` | 3 | Manipulation, trust-building, isolation tactics | "Kimseye söyleme", "Sen özelsin", "Evime gel" | | `BULLYING` | 4 | Harassment, exclusion, cyberbullying | "Kimse seninle oynamak istemiyor", "Çirkinsin" | | `SEXUAL` | 5 | Sexual content, body comments, inappropriate questions | "Vücudun güzel", "Hiç öpüştün mü?", "Ne giyiyorsun?" | | `THREAT` | 6 | Physical threats, violence, blackmail | "Seni döverim", "Fotoğrafını yayarım" | ### Important: Category Boundaries **GROOMING vs SEXUAL Distinction:** - **GROOMING**: Non-sexual manipulation tactics (trust-building, secrecy, gift promises, meeting requests) - **SEXUAL**: Any body-related comments, physical compliments, sexual questions, explicit content ``` "Kimseye söyleme tamam mı?" → GROOMING (secrecy/isolation) "Vücudun çok güzel" → SEXUAL (body comment) "Telefon alırım sana" → GROOMING (gift promise) "Dudakların çok güzel" → SEXUAL (body-focused compliment) "Gel evime yalnızım" → GROOMING (meeting request/isolation) "Hiç öpüştün mü?" → SEXUAL (sexual experience question) ``` --- ## Training Procedure ### Hyperparameters | Parameter | Value | |-----------|-------| | **Base Model** | `dbmdz/bert-base-turkish-uncased` | | **Max Sequence Length** | 64 tokens | | **Batch Size** | 16 (effective 32 with gradient accumulation) | | **Gradient Accumulation** | 2 steps | | **Learning Rate** | 2e-5 (with cosine restarts) | | **Epochs** | 2 | | **Optimizer** | AdamW | | **Weight Decay** | 0.01 | | **Warmup Ratio** | 0.1 | | **Loss Function** | Focal Loss (gamma=1.2) | | **Label Smoothing** | 0.05 | | **Problem Type** | Multi-label Classification | | **Evaluation Strategy** | Per epoch | ### Training Environment | Resource | Specification | |----------|---------------| | **Hardware** | Apple M1 Pro (MPS) | | **Framework** | PyTorch 2.x + Transformers 4.37+ | | **Training Time** | ~14 minutes (864 seconds) | | **Throughput** | 157.8 samples/second | | **Steps** | 4,258 total | ### Learning Rate Schedule ``` Peak LR: 2e-5 (after warmup) Schedule: Cosine with restarts Final LR: ~1.1e-8 ``` --- ## Usage ### Installation ```bash pip install transformers torch ``` ### Quick Start ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model model_name = "hayatiali/turkish-safety" tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased") model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Label mapping (MUST match model's id2label) LABELS = ["SAFE", "OFFENSIVE", "SELF_HARM", "GROOMING", "BULLYING", "SEXUAL", "THREAT"] def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128) with torch.no_grad(): outputs = model(**inputs) # Multi-label: use sigmoid (NOT softmax!) probs = torch.sigmoid(outputs.logits)[0].numpy() scores = {label: float(prob) for label, prob in zip(LABELS, probs)} primary = max(scores, key=scores.get) return {"category": primary, "confidence": scores[primary], "all_scores": scores} # Examples print(predict("Vücudun çok güzel")) # → SEXUAL print(predict("Kimseye söyleme tamam mı")) # → GROOMING print(predict("Ölmek istiyorum")) # → SELF_HARM print(predict("Bugün hava güzel")) # → SAFE ``` ### Production Class ```python class TurkishSafetyClassifier: LABELS = ["SAFE", "OFFENSIVE", "SELF_HARM", "GROOMING", "BULLYING", "SEXUAL", "THREAT"] def __init__(self, model_path="hayatiali/turkish-safety"): self.tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased") self.model = AutoModelForSequenceClassification.from_pretrained(model_path) self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" self.model.to(self.device).eval() def predict(self, text: str) -> dict: inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=128) inputs = {k: v.to(self.device) for k, v in inputs.items()} with torch.no_grad(): logits = self.model(**inputs).logits probs = torch.sigmoid(logits)[0].cpu().numpy() scores = dict(zip(self.LABELS, probs)) primary = max(scores, key=scores.get) return { "category": primary, "confidence": scores[primary], "scores": scores, "action": self._get_action(scores[primary], primary) } def _get_action(self, score: float, category: str) -> str: # Critical categories have lower thresholds if category in ["GROOMING", "SEXUAL", "SELF_HARM", "THREAT"]: if score > 0.5: return "hard_block" if score > 0.3: return "soft_block" if score > 0.75: return "hard_block" if score > 0.60: return "soft_block" if score > 0.45: return "flag" if score > 0.30: return "allow_log" return "allow" ``` ### Batch Inference ```python def predict_batch(texts: list, batch_size: int = 32) -> list: results = [] for i in range(0, len(texts), batch_size): batch = texts[i:i + batch_size] inputs = tokenizer(batch, return_tensors="pt", truncation=True, max_length=128, padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): probs = torch.sigmoid(model(**inputs).logits).cpu().numpy() for prob in probs: scores = dict(zip(LABELS, prob)) results.append(scores) return results ``` --- ## Limitations & Known Issues ### ⚠️ Evaluation Limitations **Note**: Two separate evaluation sets exist: - **Automated Test Set**: 17,033 samples from test.csv → Macro F1: 0.9165, MCC: 0.9045 - **Manual Edge Case Test**: 22 hand-picked samples → 86.4% accuracy (19/22 correct) | Limitation | Details | Impact | |------------|---------|--------| | **Small Manual Test Set** | Edge case validation on only 22 samples (86.4%) | Manual test not statistically significant; automated metrics (17K samples) more reliable | | **No Per-Class Metrics** | Only Macro F1 and MCC reported for 17K test set | Cannot assess individual category performance (e.g., SELF_HARM Precision/Recall vs SAFE) | | **No Confusion Matrix** | Category confusion patterns not documented | Unclear which categories are most confused beyond GROOMING/SEXUAL boundary | | **No PR/ROC Curves** | Precision-Recall and ROC analysis not performed | Optimal threshold selection methodology not documented | | **No Calibration Analysis** | Model confidence calibration not tested | Unknown if 0.7 confidence truly represents 70% probability | ### ⚠️ Architectural Limitations | Limitation | Details | Impact | |------------|---------|--------| | **Short Context Window** | Max sequence length: 64 tokens | Long messages may lose critical information; truncation may remove key context | | **Single-Turn Only** | No conversation history analysis | GROOMING patterns often emerge across multiple messages ("Kaç yaşındasın?", "Nerelisin?", "Fotoğraf atar mısın?" may each appear SAFE individually) | | **No Temporal Patterns** | No escalation detection capability | Cannot detect behavior changes over time; user history not considered | | **Static Analysis** | Each message analyzed independently | Contextual red flags from message sequences not captured | ### ⚠️ Data & Coverage Limitations | Limitation | Details | Impact | |------------|---------|--------| | **Dialect/Slang Gaps** | Regional dialects and internet slang underrepresented | Performance may degrade on: "napıon", "nbr", "slm", "mrb", regional variations | | **No Adversarial Testing** | Evasion techniques not systematically tested | Unknown robustness against: "S 3 x" instead of "sex", character substitution, unicode tricks | | **Synthetic Data Bias** | 97.5% of training data is LLM-generated | May not capture real-world linguistic patterns; potential distribution shift | | **Spelling Error Tolerance** | Not explicitly tested | Common typos and intentional misspellings may bypass detection | ### ⚠️ Production Deployment Considerations | Consideration | Details | Recommendation | |---------------|---------|----------------| | **Threshold Selection** | Current thresholds (0.3, 0.5, 0.75) are heuristic | Perform PR curve analysis for your specific use case; adjust based on FP/FN tolerance | | **Confidence Calibration** | Model may be over/under-confident | Consider temperature scaling or Platt calibration before production | | **Category Boundaries** | GROOMING ↔ SEXUAL boundary is known issue | Review flagged content in these categories; implement human review for edge cases | | **Real-Time Context** | No session-level analysis | Consider implementing sliding window or conversation aggregation layer | ### Not Suitable For - Languages other than Turkish - Adult content moderation (requires different domain expertise) - Sole decision-making without human review for high-stakes situations - Legal evidence or court proceedings - Detection of sophisticated, multi-turn grooming attempts without additional context layer - Highly informal/slang-heavy communications without additional preprocessing --- ## Ethical Considerations ### Intended Use - Social media content moderation - Messaging platform safety filters - Gaming chat moderation - Community forum monitoring - Parental control applications - Research and educational purposes ### Risks - **False Negatives**: May miss sophisticated grooming attempts - **False Positives**: May flag benign content incorrectly - **Automation Bias**: Over-reliance on model predictions ### Recommendations 1. **Human Oversight**: Always combine with human review for critical decisions 2. **Threshold Calibration**: Adjust thresholds based on your risk tolerance 3. **Monitoring**: Track performance metrics in production 4. **Regular Updates**: Retrain with new data periodically 5. **Transparency**: Inform users about automated moderation --- ## Technical Specifications ### Model Architecture ``` BertForSequenceClassification( (bert): BertModel( (embeddings): BertEmbeddings (encoder): BertEncoder (12 layers) (pooler): BertPooler ) (dropout): Dropout(p=0.1) (classifier): Linear(in_features=768, out_features=7) ) Total Parameters: ~110M Trainable Parameters: ~110M ``` ### Input/Output - **Input**: Turkish text (max 128 tokens) - **Output**: 7-dimensional probability vector (sigmoid activated) - **Tokenizer**: BERTurk WordPiece (32k vocab) --- ## Citation ```bibtex @misc{turkish-safety-2025, title={Turkish Safety - Content Moderation Classifier}, author={SiriusAI Tech Brain Team}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/hayatiali/turkish-safety}}, note={Fine-tuned from dbmdz/bert-base-turkish-uncased, Macro F1: 0.9076} } ``` --- ## Model Card Authors **SiriusAI Tech Brain Team** ## Contact - **Issues**: [GitHub Issues](https://github.com/sirius-tedarik/Omni-Moderation-API/issues) - **Repository**: [Omni-Moderation-API](https://github.com/sirius-tedarik/Omni-Moderation-API) --- ## Changelog ### v5.0 (Current) - Major dataset expansion: 85,161 samples (68,128 train / 17,033 test) - Improved metrics: **Macro F1: 0.9165**, **MCC: 0.9045** - Optimized hyperparameters for large dataset (Focal Loss, cosine restarts) - 67 subcategories across 7 main categories - 86.4% validation accuracy on edge cases ### v4.0 - Initial production release - 7-category multi-label content safety classification - Macro F1: 0.9076, MCC: 0.8931 - Training on 30,596 samples - Clear category boundary definitions (GROOMING vs SEXUAL) - Optimized for real-time inference (<50ms) --- **License**: SiriusAI Tech Premium License v1.0 **Commercial Use**: Requires Premium License. Contact: info@siriusaitech.com **Free Use Allowed For**: - Academic research and education - Non-profit organizations (with approval) - Evaluation (30 days) **Disclaimer**: This model is designed for content moderation and safety applications. Always implement with appropriate safeguards and human oversight. Model predictions should inform decisions, not replace human judgment.