|
|
--- |
|
|
task_categories: |
|
|
- visual-question-answering |
|
|
- object-detection |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- remote-sensing |
|
|
- geospatial |
|
|
- satellite-imagery |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
--- |
|
|
|
|
|
# GeoChat_bench_split Dataset |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset is a curated subset of the GeoChat_Bench benchmark from the EarthDial-Dataset, specifically containing samples with multiple ground truth bounding boxes. |
|
|
|
|
|
### Dataset Summary |
|
|
|
|
|
- **Total Samples:** 1,840 |
|
|
- **Source:** akshaydudhane/EarthDial-Dataset (GeoChat_Bench subset) |
|
|
- **Task:** Visual grounding / object localization in satellite imagery |
|
|
- **Modality:** Image (RGB) + Text |
|
|
|
|
|
### Dataset Structure |
|
|
|
|
|
The dataset contains 4 columns: |
|
|
|
|
|
1. **question_id** (string): Unique identifier for each sample |
|
|
2. **jpg** (Image): RGB satellite/aerial image |
|
|
3. **question** (string): Question asking for object locations (format: "Give me the location of <ref>object description") |
|
|
4. **groundtruth** (string): Multiple bounding box coordinates in the format `[[x1,y1,x2,y2,confidence]][[x1,y1,x2,y2,confidence]]...` |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
- `question_id`: Unique sample identifier |
|
|
- `jpg`: PIL Image object in RGB format |
|
|
- `question`: Natural language question with reference tags |
|
|
- `groundtruth`: Serialized list of bounding boxes |
|
|
|
|
|
### Example |
|
|
|
|
|
```python |
|
|
{ |
|
|
'question_id': 'sota_2403', |
|
|
'jpg': <PIL.Image>, |
|
|
'question': 'Give me the location of <ref>10 large small-vehicles', |
|
|
'groundtruth': '[[20, 43, 27, 53, 90]][[5, 38, 11, 47, 90]]...' |
|
|
} |
|
|
``` |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
### Curation Process |
|
|
|
|
|
1. Loaded GeoChat_Bench from EarthDial-Dataset |
|
|
2. Filtered samples containing multiple bounding boxes in ground truth (>1 list) |
|
|
3. Sorted by number of bounding boxes in descending order |
|
|
4. Selected top 1,840 samples (all available samples with multiple boxes) |
|
|
5. Cleaned question text to remove formatting prefixes and tags |
|
|
|
|
|
### Source Data |
|
|
|
|
|
Original dataset: [EarthDial-Dataset](https://huggingface.co/datasets/akshaydudhane/EarthDial-Dataset) |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("yobro4619/GeoChat_bench_split") |
|
|
|
|
|
# Access samples |
|
|
sample = dataset['train'][0] |
|
|
print(sample['question']) |
|
|
print(sample['groundtruth']) |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
Please refer to the original [EarthDial-Dataset](https://huggingface.co/datasets/akshaydudhane/EarthDial-Dataset) for licensing information. |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite the original EarthDial-Dataset paper. |
|
|
|