GeoChat_bench_split / README.md
yobro4619's picture
Upload README.md with huggingface_hub
4f62977 verified
metadata
task_categories:
  - visual-question-answering
  - object-detection
language:
  - en
tags:
  - remote-sensing
  - geospatial
  - satellite-imagery
size_categories:
  - 1K<n<10K

GeoChat_bench_split Dataset

Dataset Description

This dataset is a curated subset of the GeoChat_Bench benchmark from the EarthDial-Dataset, specifically containing samples with multiple ground truth bounding boxes.

Dataset Summary

  • Total Samples: 1,840
  • Source: akshaydudhane/EarthDial-Dataset (GeoChat_Bench subset)
  • Task: Visual grounding / object localization in satellite imagery
  • Modality: Image (RGB) + Text

Dataset Structure

The dataset contains 4 columns:

  1. question_id (string): Unique identifier for each sample
  2. jpg (Image): RGB satellite/aerial image
  3. question (string): Question asking for object locations (format: "Give me the location of object description")
  4. groundtruth (string): Multiple bounding box coordinates in the format [[x1,y1,x2,y2,confidence]][[x1,y1,x2,y2,confidence]]...

Data Fields

  • question_id: Unique sample identifier
  • jpg: PIL Image object in RGB format
  • question: Natural language question with reference tags
  • groundtruth: Serialized list of bounding boxes

Example

{
    'question_id': 'sota_2403',
    'jpg': <PIL.Image>,
    'question': 'Give me the location of <ref>10 large small-vehicles',
    'groundtruth': '[[20, 43, 27, 53, 90]][[5, 38, 11, 47, 90]]...'
}

Dataset Creation

Curation Process

  1. Loaded GeoChat_Bench from EarthDial-Dataset
  2. Filtered samples containing multiple bounding boxes in ground truth (>1 list)
  3. Sorted by number of bounding boxes in descending order
  4. Selected top 1,840 samples (all available samples with multiple boxes)
  5. Cleaned question text to remove formatting prefixes and tags

Source Data

Original dataset: EarthDial-Dataset

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("yobro4619/GeoChat_bench_split")

# Access samples
sample = dataset['train'][0]
print(sample['question'])
print(sample['groundtruth'])

License

Please refer to the original EarthDial-Dataset for licensing information.

Citation

If you use this dataset, please cite the original EarthDial-Dataset paper.