image
unknown
problem
stringlengths
14
525
answer
stringlengths
1
112
id
int64
0
11k
choices
null
ground_truth
stringlengths
1
112
"iVBORw0KGgoAAAANSUhEUgAAAIgAAAB+CAYAAAD/cVlWAAAVXUlEQVR4nO2df0wb9RvH3ze+SsyYY7psJcNBGWxFp4JU123AVcWkSza3+Wv6j9J/RKNGTOw2oyaYadRNM01MZPEHJWqEuIhxU5iyUEonRUoAhcAitp3DBBxmc/QPpnTP9w+889re9efd0cG9kiXr9fq5h7v3PZ/n8+v5MERE0EgLiAgMw/CfzWYzOjs7Rc8TsnfvXgDAwYMHJctKxSiNNIZlWfJ6vfxnm81GDMOEnAOAnE6nItdfkrrENJRGr9fz/z948CAqKyt5rwEALMuioqJCkWtrAkljurq6cMcdd0Qcv+OOO/Djjz8CAHw+Hw4cOAAgsuqRA00gacyxY8ewY8eOiOM33XQT/3+9Xs97D1lijjAYUkJ2GrLAMIyoVxALSpXif4pfQSNuSNDy8Pl8sNlsEef4fD4cOnQITqcz7rJSQfMgaUpjYyMA4LHHHgs5bjabAQAOh0MVO7QYJE2prq5GZWUl/9nn84FhGDAMo5o4AM2DpB1dXV0hwhDidDoVa85KoQlEIypaFaMRFU0g80wiDry5uRnHjx9P+HepoAlknomnKdrc3Izi4mI8/fTTvECU6BQTQ+sHSSPC+y6am5tRV1eH7OxsvPPOO8jOzkZ1dbXqRmmkGXa7nfLy8shkMlFbWxt/fGZmhjIzM2l6elo1WzSBpBGcMFiWJYfDIXpOuGiURotBZIDiDBjFzgsGg/joo4+Qn5+PhoYGNDY2wuFwgGVZ0TLKysowMDCQirkJoQlEBuINGIXnBYNBHDlyBHq9HkePHo0qDJrz9ACAiooKVXtStSpGZWZnZ6m+vp5uuOEGslgs5Ha7E/q93+8nnU6nkHWRaB5EJS5duoR3330Xubm5+Oqrr/DFF1+gtbUVmzZtSqicvLw8AMDo6KgSZkagCURhOGHo9Xo4HA60traitbVVdKZYvJhMJvT19clopTSaQBQiEAjg7bffRn5+PhwOB7799lu0tLSgpKQEQGg8Qgn2ippMJnR1dclpriSaQGQmEAjgzTffhF6vR29vL1pbW0OEIUaivaLl5eXweDwpWhonqkU7C5zp6Wl6/fXXaeXKlbRnzx4aGRlR7FqBQEC1DjPNg6TIX3/9hbq6OqxZswYDAwPo6upCU1MTDAaDYgNqS5cuxcaNGzE4OKhI+UI0gSQJJ4y1a9fizJkz+Omnn3hhcCg5oGY0GuFyuRQf1dUEEkasGz41NYWXX34ZeXl5vDAaGhr45qdatlVUVMDtdis+qqsJJAypGz41NYUXXngBhYWFmJiYwODgoGrCELOtrKwMbrdb8WtqAokBJ4yioiKcP38ew8PD+OCDD1QVhhhcVXbmzBlFr6MJRILJyUk899xz0Ov1OH/+PH7++WfU19djzZo1820aT0lJieJeRBNIGJwwNmzYAAAYGxtDfX09cnNzJX+jdKAohdlsFhWInPZoAvmX8fFxPP3007wwTp8+jcOHD2P16tUxf6vG9D+xhy7lQeS0Z1EKRHizx8fH8cQTT2Djxo245pprEhKGmog99K1bt6K/vx+XLl1S7LqLUiAMw4QIY8WKFRgbG8OhQ4ewatWq+TYvBDHPwR3LyspCUVGRoh1mi04gZ86cgdVqRXFxMS+M119/HStXrgSg3mzxeBGzR3hs69atig7cLRqBcMK49dZbkZeXh7Nnz4YIQ8h8BZ3JYDQa0dvbC0BLIJMwRITR0VFYrVbccsstfO8nt5RAinTzItEoLy/HDz/8AEAZuxeEQMTenNHRUTzyyCOoqKhAYWEhfvvtN9TV1WH58uXzYKFyGAwGXLx4EZOTk4qUvyAEwr05nMd45JFHUFlZidLSUvh8Prz44osLThhCNm/erNhE5itSIGIeY2BgAPfddx8qKipQUlICr9eLffv2ISsrax4sVJdNmzYpthQibQUiFEG4IIR17cDAAHbv3o1t27bBbDZjfHx80QiDg/Mg0e5ZPIj+RvEpSQrhdrtp165dpNPp6J133qGZmZn5NmneuHDhAmVlZdHs7KzsZc+7B6EEld7T04Nt27bhgQceQFVVFfx+P5599llcffXVClmY3hARli9fjtzcXHg8npSauiTigVIWSCoGAfE3zYTC2LVrF/x+P5566ilkZmYmVM5Cg/u7y8vLMTAwEPU+mM1mPs+Z8F94WcL/pywQYQtCSKrC4ejs7ITZbMaDDz7IC6OmpgYZGRmylL9QMBqN6OjoiHoOt7TT6/XyyzltNlv0JRiyV1pE5HQ6QxLQJ4PD4SCWZSkvL4/sdrtMli1choaGqLCwMOZ5LMuKHrPZbEREdPny5ZDvFIlBpLL0xYKIcOLECZjNZlRXV8NqtcLv9/O5QukK6gJXG4PBgImJCdEOM+6+xZP7PbyKkl0ge/fuBcuyITsUSCF84CdOnMCWLVtQW1sLq9UKn88XkUR2scYZ8ZCRkSG5oIq7b8ePH5fM/S758qXq2oTY7XZyOp0UXmy427p8+TJ/rLW1lUwmExkMBmpqapLTnEWB8N7u37+f9u/fL3mu1OO22Wx8FRPxm2SNCcfr9ZLdbiev1ytaz4XT0tJCJSUlmjBkpK2tjaqqqkS/83q9onGG1+uNuiGRbB6Eu7jQEDE4YZSUlFBLS4tcl9cgoomJCckOM7vdHhLscyJhWTbqC51SpmX6NytfY2MjrFYrX4/ZbLaIrSrq6+vxyiuvAJjbIUm4Ak1DPj7++GN8/fXXEYvFGYaB1+vlY0Ofz4eCggKwLBt1oC+lIJVhGPh8PgDA5cuXQURwOp0hG95wfPjhhwgGg6ipqYlbHFpQmhifffYZcnJy+BYJMNdy4e5jQUEB3zlWUFAAp9MZcxQ4JQ/i8/lgtVpDLtLY2AiGYfDoo4+GnLtq1SoQEc6dO8cf4zyQELFjGvGRk5ODJ598Ej6fDw0NDUmVEXH/k63vuN0XAfCdYizLEgACEBKHjIyMkE6nI4PBQENDQ8leUiMKXPzh8XjIYDDIVq6iuz3Qv2o8cuQIOjo6kJ2dDb1ej3379il1yUVLc3Mz7HY7jh8/juzsbIyPj8sySUrR0VzOVblcLtx5553YsWOHuikcFxEDAwPYtGkTMjIyZF2SKZtA6N/BHzGH5PF4UFJSApZl0d3drehCn8WKw+HA5s2bAcyN7LpcLlnKldWDhA8fA3NrXcfHx2E0GpGVlYXi4mLNi8jM7Ows+vv7YTKZAMxNQZQrh5niE4YcDgfKy8v54fnt27drApGZvr4+6PV6PubYvHkzTp06JUvZsglEqmna0dHB79QIAFVVVfj+++/luqwG5qrw8vJy/vPq1atx3XXXyZJsV3EPwgWoHEajEadPn1ZsHcdixOVywWg0hhwzmUyyxCGKTjkMBAIYGxvDjTfeyB/LyMhAVVVVxCxsjeTp7u6O2ASgoqJCljhEtimHYpw6dQqlpaURSxAsFgva29u1HlMZmJycxJ9//omioqKQ40ajUZZYT5EqhvMM3HzScFiW5fdei1WGRiTCe9Pd3R3SCOAwGo34/fffEQgEUrqWIgLhPEN4gMphMBiQmZkZNYjSvIs0wnvT09MTMXJLRFiyZAk2btzIt2aSfeEUC1KDwSB+/PFHbN26NeQ4Z6jFYsHJkyeVuvyiobu7O+Il5PqjzGYzvyRTbFCUG1jlzgXmpowCc4OuZrNZOYH09vZi/fr1WLp0aYTxwNwajVjVjEZ0gsEg+vr6UFZWJvp9SUkJOjs7I477fD5kZGRgeHiY7/1uaGgAwzD8VI2GhgZYrdbU56RKTUN844036PHHH5c879y5c7R8+XJFlgsuFnp7e/mRW+E8X46JiQnR3akQNtrOYbPZ+KmH3CwzxVoxDocDd911l+R5K1euRHFxsWr7nlypUJQFaX19fXz/h9gwB5eITxjrNTY2AkDEjD9gbnb7DTfcAABz3gMKxSDBYBAulyukbgz/Q4G5aubEiRNKmLBgCH/ows8ulyukB1WMjRs38rtTERGqq6tht9tFz3300UeRn58PAPySE0UE8vPPP0On04VkDBTzNBaLRRuXSRIigsfjkdzz7ptvvkFpaSmmpqb43K9+vx/A3NRDMcSekSJbs/f09KCsrCxmU7W8vBwjIyOYmprC9ddfrzVtE+CPP/7A+Pg4br755pDjJ06cQF1dHS5evIjXXnsNu3btSuk6iniQjo6OkPEXKTIyMrB582acPHlSE0eCDAwMwGQy8R1kXKdkbW0tamtrMTw8HCEObka71+uNKM/n84nHg/LF1P+h0+ni3pLr8OHDVFNTo4QZCxKupcKtonO73XTPPffEvcjdbrdHLJRyOp2Sa2NkFwg3QTleRkdHKS8vT24zFjxbtmyh2267jXJzc6m+vj6h7gJueSxEJpiHI7tAPv30U9q1a1dCv0nE4yx2hoaGaOfOnQSADhw4ICmMaMtkE0H2GKSrq4uf+iZSnYker6qqEu3x0/iP0dFRPPzwwzCbzSgqKsL69evx0ksvSSbSkSumk1UgRCQ5ggtIG719+3a0tbXJacqC4bfffoPVaoXJZEJpaSn8fj8KCwtRWlqqyvVlFQjX9Aqf3RQLs9mM9vZ2BINBOc25ohB6VyLid6MQphDft28fli5dCo/HE1crUQ5kFYjD4UBFRUXC+cNWr16NtWvXqrebdBrCedfJyUk888wzIduUhKcQd7lckgN0ciOLQDj1ezwe0RRH8XDvvfeitbU1oszFwtTUFL8V2lVXXRWxTQlHIBDA+Pj4lVXFCFfQSQWosQgfl1ksHWfC7Vb/+ecfjI6O4vDhw5LblJw6dQolJSWqZXmUrYoJBALo7++POXgkxZYtWzA0NITp6Wm5TEprLl68iLq6OhQWFuL8+fMYGhrCe++9B51OJ/kbhmH4KYZqIZtApCYox8uyZctQXl6O7777Ti6T0pJAIIA333wTa9euxa+//orBwcGYu2oC/1W5PT09SVfjySDbsodozdt4MZvNC3ZR1d9//423334ber0e/f39cLvd+OSTTyQ3aA6Pwbgqt7u7G1u2bFHcXg7ZJgz19vZKDj3Hy913373gOsyCwSDeffdd5OXlweVy4bvvvkNTU1PULEskkURndHQU2dnZ6u7IKUd37OzsLGVlZdHExETKZel0OhobG5PBqvlldnaW6uvrKTc3lywWC/X29oZ8n0xX+AcffEB79uyRy8S4kCUG8Xg8yM3NlUXZLMte8dVMY2Mj1q1bh88//xxHjx5Fa2trROdhMq00j8eDiooKucyMC1kEwiWJlwNuWWa6QlE27WlubkZRURE+/PBDNDY2wuFwpFztChFbg6s4crghi8UiWzLciYmJK262e0tLCxkMBjKZTNTW1iZ5XiojrNPT03Tttdeqfl9kEUhOTk7ScYPYTTMYDOR2u1M1S3GOHz+uWlLgtrY2MplMil5DjJTnpJ4+fRpEhHXr1iX1e7G6mEvuKqd7ThYSaVFw8z4vXLiAV199Fffff7/idgwMDKTcjZAMKccgXPxBMo2dEBF2796dNqvuhOLg+npqampQW1uLkZER3HfffVF/L9d9cTgcEWtwVSFVF7Rnzx6qr6+POJ5qfZuZmUnT09OpmCYb3LzP3NzcedvcKCcnR5ZuhERJWSBKTReMFfCpQX9/P1ksFtLpdAnP+5STkZERys3NnZdrJ1zFkMBl/vHHHwgEAook5t+5cyeOHTsme7nxMDw8zO/Fa7FYRPfJI4mUn0owODgYkSVBLRISCIUFbB0dHYqNLN55550x00PI/YC4eZ8sy8JkMuGXX37Bs88+y++sKURsLawSEBE6Ojr4HKhqk5BAwm+IVIIYOTAajRgfH4+a7E6uB3TmzBl+3ueGDRvg9/v56X3A/E5eYhgGHo8n6Xk2KZNIfRQeeCrdXyEVAMvF2bNnqaamhrKysuill16iCxcuKHatZOEC9vmKfxL2IPTv2zQ1NYWzZ8/i9ttvV0S4AHDXXXcp0u0+OTmJp556CsXFxVixYgV8Ph8OHDgQNfk9zZMXGRwcRGlp6bztE5xwkMq59b6+Ptx8881YskS5VKuVlZUxNwtOhKmpKdTW1mLDhg24+uqrJed9ijFfUyDjSfGgJEk/XYfDoXjPnsFgwIoVK9DT08MfS+ZNFs77vHTpEoaGhnD48GHJ0edY11DTm7jdbvUH6ASktUAAROyplsibfOHCBbzyyisoLCzExMQEhoaG8P7778ec3hfrGmq1XoA5gSTTxJVNxMkELmr2dDY1NZHFYknoN9PT0/TGG2/Q8uXL6aGHHiK/309E8q1XVQu/30+rV68W/U6tv0VUILEu3t7ertrIYiJinJmZobfeeouuv/562r179xW/ILypqUn1GWThiFYxsVyox+PBrbfeKo8Li0FWVhZKS0ujbm/BzfvMz8+Hw+FAe3s7vvzyyyt+61Wn06naAikpQgRiNpv5HkKGYbBkyZKQrDP0b73mcDhUWxvK2SXW3A0Ggzhy5Ajy8/PR1taGlpYWHDt2bH5GPZOEosQK/f39Scd50cpNtKAQWJbls89wiUa4XS2J5J2gHC8ulytiJ0e73U55eXnEsiw5HI64yknnGERo2+XLl2lmZoYyMzNpZmZmHq0iQvhNE2rG6/USwzAhAnG73bJuuxkPQlE2NTVRYWEhmUwmam9vV9UONXG73aJxHve8uFRSAPj0UdEyBSXL/4TxRldXF2w2G//ZarXi+eef55OfAXMdNxkZGairq5PHhcUBwzDQ6XRYt24dli1bhqqqKqxbtw5dXV0pJeIV9gynG1Iptv1+PwoKCmCz2XjbfT4fGIaRzH+aCiH75jY2NqK6upr/UrjXO8c333yD3t5e1XbI5h7iL7/8gmAweMUHntEIF+z27dtFl0vYbLaITMl79+7Fjh075F8WIXRdLMvy1QnnwoTVi8b8wj0Tqe+UeFb81bxeb0QqRAD8FDulA7x0DiDTBeHzUAu+met0OvkE7sBcvQb8l7Z5seTrSFe45LdSabSVghdIQ0MDKisr+S84Q9Ra6icUIBFF9MkwDBMSkHKBGSfkKx2KESzH+4IKy4lVZlyEJ1UFQAzDkNlsVtWViSHsk+ns7AyJiex2u2R24CuVWNUsJKoYr9cbkjlZTiIinnSKBRDWJxMuEKVuSroSTxptuZ+fIrna5cDpdIZ0/LAsG/J5vtanzDfhHn/v3r38d0q83CH9IOmEWJ9Mfn6+FiyrjOJbsydLQ0MDvF4viAh2ux0FBQX8hjga6pGWAuFaJlwvLrc9ltPpnDebFitpKZBYfTIa6pGWMYjZbEZDQwPvQbi4gzOVVBoH0kgzD9LV1QWGYdDZ2YmCggK+gyw8vYQmDvX4Pz72q9xrPtw+AAAAAElFTkSuQmCC"
<image>如图,▱ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=() Choices: (A) 105° (B) 170° (C) 155° (D) 145°
105°
11,000
null
105°
"iVBORw0KGgoAAAANSUhEUgAAALMAAAByCAYAAAAYoODiAAATTElEQVR4nO2df2xT1d/H33eT7IvPeMA8w5WMBTaaUBgm03Vsdf1FwCDKcAQkKPps1floMgzGUcCIOiJE3PhnYQZI0LWCccgMM6AMQey6VTc2shkHzMBaiDMyWeLIiqyh63n+wHvpj9uuP+7tj/W8kmbr/XHO2e77fs7nfM4vhhBCQEkICCFgGMbv90DXxgqtVou2tjaf42LILkXwFCmC4v7QvcUZSKzxIGQAMJlMUKvVsFqtIISAEAK9Xi9K+aiY45xQH3o8VrQMwyAnJ4f7XltbC41Gg23btgmaDxXzFIEVcbxYZJb29nYUFRX5HF+6dCkuXLggaF5UzAmMVqsFwzBgGAYpKSnc71qtNtZF4zh58iRWr17tczwvL0/wvKiYExiTyQSNRsP5oy6XC2azGUuXLo110Tjq6uqgUql8jl+6dEnwclIxTwFYf/Tzzz+HSqUSxeqFg81m8/GLCSGw2Wyoq6tDaWmpoPkxNDSXWLiH3Nrb22G1WlFeXg6DwYDc3Fyo1eoYl/ABBoMBDMOgvLzc4zjrBplMJmEzJBQOs9lMrFYrcblcsS5KUBgMBsIwDAFAABCr1RrwejH+rkBpepfJarUShmGIRqMRvByE3I/7JRWh/PPjHY1Gw5VXLIGEQ1tbG/eCeX/MZrNo+T4krJ2Pf/yFrrZt2waNRuMRD40niFePns1mA/DAX9bpdIKkKwRqtdon3i1GPt4kfQOQEAKj0YjS0lKPblfvhxFrvIXQ1tbmIWDWLw21IyIYgQnxv4hG/DupxMz3UK5fvw4AmDt3LjQaDXc83jofWMi/XcIGg8GnsafVasOKZEwm1nj9X3iTVG4G30M5cOAAamtrYbVa4yo+6457Fd3R0cGJODc31+faxsZG3nsDVfPBitU9Db70+vr6cPv2bQBAV1cX/vnnH6xatYq3B1AMkjo0ZzQaUVFRwX3X6/Wora2NXYEmIRp+pztDQ0MYHBwEcL8GY/30gYEB3Lx5E8D9zo+RkREAgEQiwcKFCwEA2dnZGB0dRVZWFg4ePBiV8iaVZXbHZrNxVTbwIGYbz3gL+dq1a5BKpUHf73A40NnZCQC4c+cONzbi9u3b6OvrAyEEf/31F65cuQIASE1NRUlJCRiGwfTp01FcXAxCCAoLCyGXywEAGRkZfl2brq4unxgzixgvZlKK2WazQafTeQTthRRyNCzo0NAQVCoVXnjhBTz33HMAgM7OTty9exfAfXfE6XQCgEfDtqCgAOnp6QAAhUKBtLQ0zJw5Ezt37sRDD92Xg3vbIVTc//b8/HzYbDbY7XYuTxYx/j9J52Zs376dcyWsVitycnKg1WphNpu5sbaxdDXcq/arV69iaGgIgP+qPS0tDTNmzIBMJoNMJkNWVhYAYNGiRZBIJADuD+rJyMjwyEfMF8497eLiYuzatQsrV64UJS93kk7MoRLpQ3ev2u12O7q7uwEAIyMj6O/vBwAMDw9jYGAAAJCeno6CggIAwOzZs7F48WIwDIM5c+ZAJpMBuB95WbBgAQDA6XTivffeQ3NzM7788kuu+o817P9t8+bNyM7Oxvbt20XPk4o5DHp6enDnzh0AnlW7xWLBvXv34HQ68dNPP3H+eElJCaZNmwZCCDcuYdq0aVAqlQCA6dOnRxxJ+fbbb1FZWYmamhq8/vrrId8fyUvr715CCL766isYDAacPn06rLRDgYoZvg/DYrHg7NmzXNVOCMHly5e5ql0mkyEzMxMAsGTJEq4KLywsxIwZM+ByuTh/NJj8hOLGjRtYt24dFi1ahAMHDvj4qbFgcHAQSqUSf/75p+h5JZWYvUXEJ6rBwUFotVpUVFRAKpVi/vz5AIAFCxZg7ty5guYvRhoOhwNvv/02zp8/j+bm5rgYDjpnzhycP38eixYt4o6J8kILOdAj3pls1NjY2BjJy8sjBoOB955YjKYLN8/m5mYikUg8/pZowFfe1atXk2PHjgV1bSQkRXc28ZofR/xURi+//DKeeuopj9iou/UQa3JpoOvCtV7r1q1DR0cH6urq8Nprr8HhcISVTqjwlVepVOL8+fPcd+/nIRRJIWZvEXu7GgBQU1MDu92Offv2CZ6vUNeFyoIFC3Dx4kXcu3cPxcXFXMgvEMG+gKEgl8vxyy+/cN9Fi8ELaufjHH/V2okTJ4hUKiW3bt2KconEh/2bDQYDkUgkpLm5OaT7hGBsbIykpaWRsbExwdLkI6nEzEdvby+RSCSkv78/1kURnf7+fiKTyUhVVRVxOp1RzTs/P590dnaKmkdSuBl8EEIwMjKCsrIyHDhwIC5a/WKTl5eH7u5ujIyMoKioiOtdjAZFRUXCz/nzIinETHj8QJfLhfXr16OiogJlZWXRL1QMIIQgPT0dTU1N0Ol0KCwsxJkzZ6KSt0KhQE9Pj7iZiGr345iqqipSVlbGey5RJrRGSnd3N5k/fz7ZsWOHqPm4XC5y5coVIpFIfI4LSVJYZm8OHz4Mk8mEI0eO8J5PlJkVkSKXy9HX14f+/n6oVCoMDw+Lkg/DMJDJZLh7966Ha0NDcxFisViwa9cufPPNN3HR3RtrZs6ciZMnT6KsrAz5+fm8y89GCvnXzVMoFLBYLIKnz5JUYh4aGsLGjRthMBi4UWeU+1RXV+P48eN46aWXsGfPHkHTZi1wUVGRqH5z0ojZ4XCgrKwMW7duxfLly2NdnLikpKQEvb29MJlMWLVqFTewSigUCgU6OjoETdOdpBHzq6++isceewxbtmyJdVHiFoZhkJGRgbNnz6KoqAiPP/44urq6AAjTM1hcXIze3l5MTExEnBYvgjYn45R9+/aR4uJiMj4+HuuiJBTnzp0jEomE7Nu3T7A0ZTKZaJ0nU94ynzlzBvv378eJEyf8ji+m8LN8+XL09fWhpaUFa9eu5ZYRiASlUomenh66p0moDA4OoqKiAs3Nzdx8OEpoZGZmwmQyQSaTQS6XR9yAk8vlaG9vFyf8KYq9jwPGxsaITCYjR48ejXVR4h6+zgu+Y6dOnSISiYQcPHgw7Lz6+/uJVCoN+/5ATMmZJoQQrFmzBjKZDHV1dbEuTkJBJpkBEunUrImJCTzyyCO4evUqN/VMKKakm/H+++/D6XRi7969sS5KwjFZ9T9v3jxYLBbMnDkThYWFuHTpksf5yWxjamoqioqK8PPPP0dcVm8SQsyhVB5ff/01mpqa0NTUhNTUVBFLlbykpaWhoaEBu3fvxooVK2A0GrlzwfjCcrmcC/kJiijOS5Rh/bve3l6SmZlJrly5EuMSJQ/Xrl0jeXl5pLKy0iP06XK5/A4kOnXqlCiLoyeEZZ4MhmG4scmffvopt1gKRXzYqVlOp9NnapY/Ky2Xy3Hx4kXhO08Efz1igNPpJBqNhuzevTvWRZlyBLKw3oQyNUsqlZLe3t4IS+fJlLDMW7ZswezZs/Huu+96HCdTL1ATddiNMoOhvLwc586dw86dO7F58+aAlregoEBwvznhxXzo0CFYLBYYDAafc8kyLllMQjUIixcvxoULF3inZrmntWzZMm4NPsEQ1M5HmY6ODiKRSMj169c9jifLTJF4p6GhgUgkEtLa2upzrrOzk8hkMkHzS1gx//7770QikRCTyRTrolAC0N3dTebNm+czNcvpdJL09HQyOjoadtreRish3QyHw4HS0lLs3LkzooWxKeLDLgDjPTUrNTUVS5Ys8XE1iJdbo9VqPTa5d/94j41OSDGXl5dDLpejqqoq1kWhBIG/qVlardanJ9C7nWMymaBWq7nN7tkPAJ8N5hNOzB9//DH++OMPNDQ0+Jzzfqsp8UV1dTWam5u5qVn5+flBRzTYzTvZ3ka9Xu/7vMN2WGJAa2srmTt3Lrl582asi0IJE5fLRW7dukVWrFhBli1bRh5++GGf8+6YzWZuJVOr1Uq2bt3qN+2EscyDg4PYtGkTTpw4IfhoK0r0cJ+apVarMT4+7rHLgLebYbVaUVFRAYZhkJubiyVLlvhNOyHEPDY2hqeffhr19fVxs2cHJXJqamrwzDPP4PLly377BBobGzl/2WAwBNzbPCHEvGHDBpSVlWHTpk2xLgpFYNhpVHx4b3afm5uL7Oxsv2nFvZjfeecdAKCD7KcoWq2Wd/kBQgjMZrPHZvcqlYrbloMXgf17QTl27BiRSqW86/qGMgCGEr+Mj4/7XbtZo9EQm83mc5x97gnTadLX14eqqiq0trbyTs0JZQAMJX5JS0vzWJ8DADfhta2tDTk5OZy7wcI+d+/nHzdiJm4xw5GREaxZswZHjx6ly2glAU888YSH36xSqTw6SAI1+tzxFPP4xINPlGHfsomJCaxduxZVVVVR2aKWEnvUarUgy3b5zs4enwD+E/25c+TfWcFvvPEGRkdH0dTU5HPO3z2UxEaojS8fEqg8EcGK8tChQ+jq6vIZfOJPsFTIUwPWlRwcHIzIrQwsZnd34z+pvt/dr/G25nzX+jnHMAwsFgtqamrQ3d39YBktf2kEOu5eTvb3GNQ0lNBgV0uKRMyBG4CsCPz9ZIXiLXT340GcGxoawvr169Hc3PxgS1/369zxl7b7T+/yxaANQAkNpVKJ9vb2iNIILZrBZ+UibDDa7XaUlpaipqYGJSUl/BcFY1m9X7Rg76PEBQUFBbh48WJEaQTXAHS3cHzVujeBrvM69/LzL+K//ue/cfDgwcBphJp2gDwp8YfdbkdGRgZGRkbC3p7jgWWOtCoO4/49e/bg5s2b+OSTTwRPm5JYpKenQyqVeiz35W1nJ8M3zsxnwfw1pNjj3ufcj/s519ryLYyHPsOXJ756sIwWX4Mz2LS9fedAv1PiEqVSGdHGlw+iGeFWw/7uC5DewPWr+N//0+H7779HRkYGd5ykpQDuseNQ0uZ70YIoCyV+UCgUOH36NPc91NBrcA3ACH1O9+ri9u3bKC0txf79+5Gfn+9xHR1vkdxEuiVx4PWZA8WKw2BiYgLPPvss8vPz6XKzFF5mzZqF3377LazZRJPHmflivQEI9G7s2LEDDMNQIVN8YHWjUCjCts6Cj5rz5yZ88cUXaGlpwfHjx4XOkjIFcN/4sq+vL6w0ojIEtKenB2+99ZbfsckUCkskljniPU0mG7k2PDyMoqIiHDp0CCtXrqQj3SgBGR0dRXZ2NkZHR0Pe+SBiyxxImA6HA+vXr8ebb77JjU2mQqYEYtasWcjKygprizZR3YzNmzdj/vz5qK6uFjMbyhRDoVCE5TeLJuZPPvkEvb29OHz4sFhZUKYoCoUCP/74Y8j3iSLmtrY27N27Fy0tLR5b/EbonlOShJKSkrBG0Am+qeWNGzegVCrR1NTkf0gnhRKAiYkJzJo1C9euXcOjjz7q087yF0SY1DIHq3VCCOx2O9auXYsPPviACpkSNqmpqSguLkZPTw+vaP0FESYVc7DRB4ZhoNPp8OSTT6KysjKoeygUgN9gFhQUcDO2gzWogvnMe/bswa1bt1BfXy9UkpQkgc9guq9Bx56fTNSCdJp89913qKqqQk9Pj8eQTgolVFh/eHh4GFKpNKTOk4gt8+XLl1FZWYmWlhYqZEpYuNtT1gpnZmZCIpFgYGAg6HQiEjO7xW9DQ4PP2GQKJRgCDW9w95uDIWwxT0xM4MUXX8TGjRuxbt26cJOhJDmBAgwqlSqkbu2wxbx161akpaXhww8/DDcJCiUgcrk8JMsc1vJcRqMRra2t6O7uDud2CiUo5HI5hoaGYLfbgxo6HLJlvnDhArZv345Tp07RsckUUWE3vrRYLD7n+IJwIYl5aGgIGzZsgNFopOsmU6IC38aXAL+vHbSYHQ4Hnn/+eY+xyRSK2PBtfOmvayToThOdTgen04kjR45EXkIKJUiGh4excOFCjI6OTnptUA3A+vp6/Prrr7y+C4UiJpmZmZg+fToGBgYgk8kCXjupmH/44QdUV1dDp9Pho48+4o4zDEPHJ1OiQnp6Orq6uiYV86RuRn19Pf7++2/fG6mYKSLBpy2VSoXly5cH7DH0EDOdOU2JNZFo0COa4Z4Iq3FqfSnRwlvI7tozGo1gGAYpKSnQarUAgG3btnnc7zc052/jQApFLPi0ZrPZwDAMLl26BEIIXC4XGhsbwTAM8vLyPK5NAaj1pcQnDMMgNzcXer0etbW13PGcnBzo9Xrk5uZ6XJ/C3gTc721hl5VlP2azOYrFp1AeYDQaAcBDyCx5eXnIysryPMi3+bbZbCaEEGI2mwkAYrVafTbjplDEgt3gHQAxGAxB3+fjM7e1tXF7F3PbmFEoUYRhGG7zd29XIhAeYm5vb4der+cSfOWVV6DX64PeiJtCCQciUJvNQ8xWqxV1dXWcv/zZZ5/x+isUipDwLfLCGlCr1epzvc1m498A093n0Gg0nH9sMBgIAGKz2QTyhCiU0GA1yLbhCLnfjtNoNLzXp7irHQD3RpSXl4NhGLS1tQn0/lEooVFeXg6z2Qy1Ws15CydPnvS7GDk30MhsNkOn03G9MDabDYSQkBxwCkVICCFcMCIYuLEZWq0WjY2NyMnJASEEKSkpXIKEjtmgxAhWyMHoL6W9vZ1zJ3Jzc7n+b41GE1JCFIoQeFvhUPaGFHxJWwolVkRltykKJRpQMVOmDP8PKqUFP3wcgKwAAAAASUVORK5CYII="
<image>如图,在四边形ABCD中,AB=3,BC=5,∠A=130°,∠D=100°,AD=CD.若点E,F分别是边AD,CD的中点,则EF的长是() Choices: (A) √{2} (B) √{3} (C) 2 (D) √{5}
2
11,001
null
2
"iVBORw0KGgoAAAANSUhEUgAAAKUAAABfCAYAAACJIgelAAAVk0lEQVR4nO2dX0xbV57HvxdmS1fxjqetV/UDqttCEwcj1VlCoVtSTwcncRKmIS1a5oFRGYkpKW61zISV/BCJSuWB2ToZRoWUihk1TdAIjZgYJjQxjbMhEtGQISpIMTEzISPaRFqnyYMTMlmSGH/3AWz8H4Ov770EPhIyPvfcc36+93d+59zfOfd3BJKEhFh3CDhyJjq1HBM8gwIIIAlBEKQUaY0QAJAV9hk/D5EFua9+IukyRsdXRMN2wOEOgCRIwt4gwCBsxxUQgiBpG1lDZEV9xs8TUkgZb4MEShlY/JcAcQV/hRWVhsX2eKDjDKw7zuI/3z8sjUhrDJIROtZ32ApBEOb/djSAmITVeijyJBnNpQQasFgFBeBK/2kIL+UtJCzmeuGlH8H112sL38IUeZ20EQRhXseu9EEQBHT8/UUEFnoptu1AlrAZyHsBSrnukpiloO4JAJxnTsGyY8diwgJ5L+pD3xkSSxkX6XGAuILywn3Y0WDHmfYDi5e+oBL2BjNezNsEIEvWbjuIJEopAPM/lldwukPAzr0FoWPB56xr1/4G88a8xfzSibcm6D/8Cf6H5fh1xy8j0kkiL28j8vIL5u+F3E85AEApmXDQbLWTnItJB0B7n1tScdYKAU5wO8D3Pj4RljoX9akcJDNFJNHnPIONL+QhaAG5YCXf+8U+YPt7OLDXoIju43GCJIQrf8MZAHkvbQw7snAPwu6FUi69dGNKwYOOA0ew07J3QRkDEDz9EAQBnXwP/OrIfGYldB+rlHv37sWkLfp8499qITyftC7rhHxPikqu9B9CYWUTAMBVuHhxBAD2Pve8hQQAArt278LDhw+xbds2KUR7bLh69Sru3r2LkydPxhxjwUaYEcDfp64CMEQevNKHQ1dfwoG9BggQIp9KZUIgFdI8APj9fqjVapBEYWEhzGYznnjiiYT5uT77E4IkvvjiCwwNDeH555+POgj0/dqKt5o+xceOy/jlmwUQBAGe/kMo6Li22Est5JW9t5JrMBtDgBw87eS/bd1Cr9dLs9lMvV7P0dFRuSVTPIFAgCTZ0tLCpqamiLRw3H12zqtdFgFwR4NdUjlTRVFKabPZaLPZQknt7e1UqVRsbm6WT65VhNfrpUaj4ezsbCgtEAjEVVAlI83TN1N4qBaAkydPwmKxLCQEYLVaMTo6iv7+frz66qv45ptvMizo6ubZZ5+FxWLB8ePHQ2nB6cRouDAxQeWM3haRSvujW2v0d6/3O6pUKvr9/phz/X4/Dx48yA0bNrCrqyujcq52Ll68yC1btsSkp2wrFWBUJfNTRrfW6O9O5ym88cYbyM7Ojjk3OzsbH330EQYHB9HS0oIf//jHuH37dkblXa288soryMrKwvDwcER6youvwm+LTEZUMfN4p06dwp49e5Lmee211+B2u/HMM89g8+bNGBwcjDjOha6ISuySJOSDDz5Ae3t75HUQVnBd5HoKl9dQz+P3+6nVaunxeFI+x+FwUKPRsL6+njMzM3HzrLYBvljMzs5Sq9XS6/XKLcqKUISlvHTpEn7wgx9Ar9cnzMOoVl5ZWQm3241vvvkGxcXFuHjxYkz+terDzMnJQW1tLdrb20Np0ddPyShCKV0uF0wmU9I88RTs2WefxenTp/H+++/DbDbjww8/xNzcXML8wOq6Oemwf/9+fPHFFzHXYzX8fkUo5cDAAPbt27fi84Ouo4GBAZSVleHatWsJ864V6/ncc8+hpKQEvb29Eemr4vfLOnggOTMzw5ycnITjwuXg9/vZ3NxMlUrFzs5OEaRbHSQaO7tcLpaWlkosTfrIrpQ9PT00m82iljkyMkKdTseKigreunVL1LJXG4mmapX8ECh7933u3DmYzWZRyywpKYHb7YZWq8XmzZvx5Zdfilq+EmGCsWJjYyM+++yzmHRFd+OZ1vqlWmRubi7HxsYyVn9fX9+SrqPHmZmZGWq12lXVY2TcUiZrkZOTk/D7/TAajRHpFPEJce/evfB4PPj222+xZcuWGNfR445KpcLbb7+N3/3ud3KLkjpStoBoq9nW1saamhrJ6v7ss89Cq47izbE/rkxNTVGn062a3yzpmDJ2vtuJiooKyep+9913MTo6isHBQZSVlWFyclKSuuUmLy8PmzdvxsDAAIBV4KuUqzU8ePCAKpVKlqmwteg6GhgYEN3LkSlkU8rTp0/L7kMbGRlhfn4+LRYLv/vuO1llyTR+v5/5+fnLWl8gF7K5hM6ePYsf/vCHclUPYN51ND4+Dp1Oh4KCAvT19Sm/a1sh2dnZ2L9/f8R8uGKRqzXo9XqOjIzEPSaHY3dgYIAajYZ1dXW8d++e5PVnivBr6fP5qNFo6PP5ZJRoaWSxlDdv3sSNGzewdevWuMflcOzu2bMHHo8HXq8XBoPhsXEdhV9LtVqNyspKdHd3J8xPJfQUcrSEzs5OVlVVyVF1SnR2dqbtOlLqNJ7b7aZer5dbjKTIYikzMbUoJvX19RgfH8fg4CBKSkpW5DpS6jSewWCARqOJWbWvKKRuBX6/n2q1mtPT01JXvWzCXUeffPKJ3OKIRk9PDysqKuQWIyGSK+XIyIgiu49gdxuv2w3KbLFYePPmTalFEx2/30+dThdjGJQy5JC8+3Y6nSgvL5e62iUJdrfh3S4XBv0lJSUYHR2FTqeDwWCAw+GQRUaxyM7Oxs9//vMY95BihhxStoBAIMDS0lI6nU4pqxUVp9NJjUbD2traVbPqKJ4FDEbTePDggQwSJUdSS3n37l18/fXXeO2116SsNikMc4EwBXfIzp074fF4cPv2bRQWFuLChQuZFE8UEr3fZLFYcOzYsYj0VK5BxhFDs0PtcC4QlRBJT08PLRaLGFUqgq6uLqpUKh48eFCxK3CSjRNHRkZoNBollCY1RLGUoXaYJUQlROJyuWSfWhSTuro6uN1uuFwuFBcXK3LVUbJxYklJCbKzs2OiaciNiN13/J0cGNYdDAwMYO/eveJVqQB0Oh3+/Oc/480330RxcTE6OjrkFmlJwu9JMJpG+DHK3YWna2obtmMh5mHU3/b3IvJ5PB5qtdp0q1MsgUCAo6Oj1Ov1NJvNqyY6hRKjaaRtKSO2tQvMtzJ3/8eh7UcWFB/9/f2SLejNBFzCegiCgK1bt2J0dBSbNm1CYWEhTpw4IZF0qcE4sZaC0TQUZeHT1eq5gJvl260k57fGsNtPhD7DsVgs7OnpSbc6yQl/UFiOc9npdFKr1bK2tjbhqhylOKunp6eZm5urmIe1tC2l509ObNo5P4/df7gDyNsEAQU4cGAx4sW9e/cwPDysSKf5UoQ/KCzHubxz505cvnwZd+7cwcsvv4wLFy7EWFulOKt1Oh1KS0tjomlEyysZ6Wq149D+iLGkY2F/pnAb4HQ6mZ+fr/h1fMlIx6odPXqUKpWKNptNMdaIjPxNSoqmsbSlJJBsj8Qzzs7QNsnW7WZsNMy3rnAbcPLkSWRlZeGpp57Crl278Nvf/hY3b95cqrGkdVxs0rFq77zzDtxuN86dO4etW7cqxnUU/pvKy8vh8/lw6dIlGSWaZ2mlFOJlW1DSK304gvdC2yS/aNmFgjhOyrNnz+LYsWO4e/cuampqMDg4CJ1Oh23btqGjowM3btyIrXaJKGFK6fpSRafTYWRkBFVVVSguLsZvfvObiONSN7J4JIqmITnhZvPh/UDoLxUchxqi9vub7xKsVmvo+/Xr1+PGMp+dnWVvby9ramq4YcMGGo1G2u12Tk1NxZSXCkp5aEiFoOvIZDIpyhWjlGgaESbwn/5ZiPhMrs3AGecR7NodGcLv/Z1Z4AuLC3i//PJL7NmzJyKWOUnk5OTg7bffxvHjx3Hv3j00NzdjcnISpaWlMBgM+PDDDzExMZGyRVxNlnPr1q0YHx9HYWEhNm3ahD/+8Y9yiwRAQdE0orU0FSu5uElQ/D+He7GMqqqqZb9b7XK5WF9fz9zcXObn57OpqSkUb2g1WcRUcLlc1Gq1rKmpkeVBMPp6KiGaRlKljO7OH94P8EFU9/7wfoAP/xH8PheR/n8zj/jUv/xrTBeVaJgQfYEe3g/wwvmL/MUH/0WdTsfc3FxarVaeHTwf9/yH9+c3MoqWWQkk83feunWLVVVVfO655zg0NCS1aDFYLBY6HA7Z6l/SUj68H4hw70QrZJDZ+3MMKmUwPbhiO9E58b4nq8ftdvOg7UPq9XpqtVrW1dXxTydOhfJEK6PSFHMpwl1HUq5zjG4kckfTWJZSPvjHXMyxh/f9MVbrwf1502+z2djU1JS2UsZL93g8bG1tZdHLJVSr1aytreUffn8i1O0kq1PJTE9Ps6ysjEajkRMTExmvL95w6NGjR7JG00hpTJnI4iylOMFV5tEKEn4hVqqU4d+np6fZ1tbGf3/ldebk5LC6upq/P/aH0MpwMZQyU2PZROX+6le/okql4qFDhzJS71Ly2O32CC+KlISUMllXl4pSRv/v9XqpVqs5MzMjWvedigxer5ednZ3c8aPdzM7O5r59+/h51/G4bg6lPzSNjY3J4joKBAKyRtOIUMpkFiWZ8sQ79vtjf+DuHW+GjkVbx4f3A3GHA6mUHe9BKbrMh/cD/N/rt3j06FG+9eZ/8MnvqWixWNjZ2ako3+BSzM7OsrGxkWq1OumClkw0sLq6Ora3t2es/ESkPPe93C7wZz/7Ge125ewnPTMzw+7ublZXV/OJJ57gq6++yvb29lXx/jkZ6Tq6c+eOJHXGi6YhhXKmpJSpKGS0sMvd1k5K/H5/aDZJrVbTaDSytbU1ZjaJlLeLj67b5/OxqqqKubm5PHfuXEbqiE7ftm2b5G+fJlXK5U47BhkbG2Nubm5agknJwMAA6+rqqNFoqNfrefDgQbrd7oT55R6Ldnd3U61Ws6mpKWLDeVJ82cKjaUj1uzPy3ndrayvr6+szUXRSxLho58+fp9VqDc0mNTY2xt2HRmqif9v09DRNJhONRmNGd9d49OhR3GgamSQjSmk2m1flKvNoRkdH2djYyPz8fObm5rK+vl4RMy7htLa2UqVSRYzfxbZoH330EZuamjJWfjSiK6WY29opCbfbzebmZur1+lBw1XSm4pLd2OXe9K+//poGg4Emk4nXr19fsUyJCEbTiB4qZArRldLpdCpmBXOmmJqaot1up9FopFqtZk1NDXt7e1O6aZmyMrOzs2xqaqJarWZ3d7fo5f/0pz9lV1eX6OXGQ3SlrK+vZ0tLi9jFKpbp6Wm2t7ezrKyMTz75JKurq9nd3S1bTzE0NEStVsuf/OQnor6wNjIywqKiohWfvxxEV8pkscwfd4KzSRaLhQBYWVnJrq4uyRfN+nw+VldXU6vVijoGLioq4vDwsGjlJUJUpZyamqJGo1HUy1FisBLL4PP5ePToUVZVVTE7O5tms5mffvpp0jGf2BYometoJXR1dbG6uloEyZIjqlJ2dnZKIrTUJAuomiw9yMzMDHt6elhdXU2VSsXS0lK2tbVJ4ma5fv06TSYTDQZD2q4jqaJpiKqUwe5qrbEcCxecTaqtraVarabBYGBra2vGZ7+CrqPW1ta0yrHZbGxubhZHqASIEwowEKDf74/Y1k7uWY/VgtPpZF1dHbVaLfV6PW02G91ut6jXL1jW2NgYjUYjTSbTiq20FNE0RLOUQ0NDLCgoiEhbV8zlMTw8HJpNev7559nY2Cj6Q2O46+j48ePLOjd4PysrKzM6OZK2UgYFtdlstNlsaQu0zjxjY2Nsampifn4+tVot6+vr6XK5Ujo3EAgsaRCGhoaYm5vLqqqqJddMRpflcrm4bdu2lGRZCaJZyqKiolUdy1xukimRx+Nhc3MzDQZDKN76iRMnEuZPlXDXUTyFjydTME2v1/Mvf/lL2jLEQxSl9Hq93LBhAx89eiRGcWueZAo6NTXFtrY2Go1GqlQq1tTUsKenJy2XT09PD9VqNRsbG1Mup729nXV1dSuuMxmiKOXjFst8tXDjxg22t7fTZDIxJyeHVVVV7O7uXvZMTiAQ4M2bN2kymajX61NyHQWjaWTidQlRlLK6ujq0bH4dcVhqTBh93Ov1squrixUVFQTAioqKFc0m2e32lF1HVqs1bRdTPERRSiWvMl+L+Hw+dnd3h2aTTCYTOzo6QrNJSym82+2m0WhkWVlZUteRx+PJSDSNtJXy0qVL1Ol0IoiyTiZcaLOzs+zp6WFNTQ1VKhWLiorY1tYW99WP6PNsNhvVajWPHj2aMJ/FYuHAwEBMejq/JaSUgRUWJNcq83WWj9/vp8PhYG1tLTUaDQsKCtjS0pK0lxsaGqJOp2NVVVXcoUB60TTm4qbGsZTzGVNVT5PJxN7e3tD3dYe58gneI6fTyXfffZdarZb5+fm02WwcHx+Pye/z+VhTU0OtVsuzZ89GHAtuPppMseeW0KZonQEZqYDhGdx99ogIasEqgvlmZu4kXGWeigN3HeUwMjJCq9VKnU5HnU5Hq9Uas0ytt7eXarWaVqs1wnWUajSN8O1tBICCINDeF/uC3qKljNKfACdojgrrF43D4WBZWdmSwqyzuhgfH6fNZgsFEquvrw9NjHi9Xr7++usRriOfz5eye6hhO0KKGAwpGa1jSBSi7pC1geYd25n4RdP5VebRLoF16/h4ELyPk5OTbGlpocFgoFqt5jvvvEOHw8HDhw9TpVKF3jIIj6YRv7x5Q1eOck4ELeCEI75SxivAcaiB/91/guUo5+Uk44H8/Pw1u8p8NZKuwQgGEisqKqJKpeLu3bup0+lYXFzMU6dOxUTTiKx83jKWN3wcSmrYDpqtsVFUBDJ8b2EAnj5YTwMduwCh8SvwqyNRsX8DALIwOTmJ4uJiHDhwIMOxhtcRA0EQlh3sP9k5d+/exdWrV3H58mV8++23IImnn34ab731Frq6ukL5SIZCf/cdtmLfgUV9crgD2GsQYrZuCIt5HgAE4P0jLnQcqATJiK3sojl//jx0Ol3C48u9AOtklpXcj2TnfP/730dRURFqa2vR1NQEk8mEubk5DA8P4/bt26Fz5xVyfjeRr04fgWPCD5JwHGrAvsIs9LnjbIcTbl4dhxoiYpfHM63rrJMIn8/H2tra+DtMTDgiNpENPkg32B0x5SxYygDg6YMLO+a31g0Q7j47Nr6QwFJyYc+nJAQwt358jR1Xq9X4/PPPcfLkSTyjeXrxAIE+5xk07NwRShKu/A0uAC/mv4TozcOygABw5U8QGr9C+y/3ItiNX73298gaw7VQSLjPfMhsZyF7/fgaPA7Mb8kihEaG8/p0xnkE2y3ze70TV7DdsA/AG9i1twAxG9/ZG8yh7rrfHSADkU5Os9WeZHon/jTROusEcfcdjtrSJivufvDhRD59r7OOAkh7a+V11hGbdaVcR3H8P69xbb9rcQNoAAAAAElFTkSuQmCC"
<image>如图,AB∥CD,BE垂直平分AD,DC=BC,若∠A=70°,则∠C=() Choices: (A) 100° (B) 110° (C) 115° (D) 120°
100°
11,002
null
100°
"iVBORw0KGgoAAAANSUhEUgAAAHEAAAB0CAYAAACys91jAAAWk0lEQVR4nO1dbXBU5dm+zm5QK8F1ZGOWsiGQ3ehirE2DYBpCl5RQv6jC0DGOhho0dh3zo0u7wHYG0Lb8QPEjtkwHjZpFcIivMfAWqswIL5u1UBKxYUpCoi6b4EbYJLydhGw1vOw59/sjOcf9OHv2bHI2OYRcMzuQ83yc+znXc9/P/XwzREQYZxARGIYZUx4DAwM4deoU2tvbceHCBTQ2NgphZ8+eRXd3d0T8rKws5OTkAACmTZuGoqIiZGVlITc3FwsWLEB6evq4l0EpMBNBIsdx0Gg0ScXp7u7GkSNHcPjwYbjdbly4cAHFxcUCOYsWLRKImDt3LrKzsyPyO3fuHLq6ugAAwWAQzc3N8Pl88Pv9OHbsGGbPno2SkhKUlpaitLQUmZmZYy6XnHIqgQkhUQrhBe/o6MBbb72F/fv3IxgMwmq1oqSkBFarFRaLRdH3trW1we12Cz+9Xo/Vq1dj7dq1MJlMgmwMwwgaGC7reBEmChoHsCwrO25vby/t3LmTCgoKyGg0ksPhoPb29hRKJ462tjay2+1kMBiouLiYampq6N///nfc+BzHjaN0kRgXEsMRr7CBQIDsdjulp6fT448/TgcPHlTkPeEVKLoyhf8tRUJ9fT098sgjpNPpyOl0Um9v75hkUxrjTmI0/H4/2Ww2uummm8jhcFAgEBDCwj+skjVdLC85+fv9fqqqqiKdTkd2uz1CVqLhSpGM1VEKE0bipUuXyOl0kl6vpy1btlBfX59k/PEgUS4BgUAgQvahoSHFZBsNJoTEhoYGMhgMZLPZBNMkRdJoCEwmjRR5oVAoblhPTw+Vl5dTdnY2ffjhh0nJpyQUJTHRh/P7/VRaWkr5+fl04sQJJV89YWBZltxuN1ksFnrwwQcl28tUOT+K+sRSnd9PP/0UixYtwtKlS9HS0oJ77rlHyVdPGDQaDaxWK06fPo0f/ehHWLhwIdra2kTjpmxwYKy1QE5j7nK5SK/X06FDh8b6OtWjvr6e9Ho91dfXC89S3f1IaZvIsixVVVWR2Wym1tZW4RmPiexbpRLNzc1kNBrJ6XSOy/tSNmIzMDCARx99FMFgEAcOHMDNN9+citeoAhQ1jkpE6O3txQMPPICcnBzU1tZGjM0qPbqTknGitrY23H333cjOzobb7Z7UBAKxbR3DMMjMzMTx48fxve99D4WFhejs7BTCFR+eU1q1Dx06RDqdjnbs2BHRXk5EJ1gt2LZtG+l0OnK73RHPlWpOFCXx9OnTpNPpZDkwk43UROVpaGigjIwM8nq9ir9bMRJ7e3vJbDbTjh07iGjykaQEtm7dSnl5eXTp0iXhmdgYb7JQxLFhWRb33Xcfbr/9duzYsUMJKz9psWbNGgSDQezbt0+xPGW1sBzHSYb/9re/BQC89tprY5dokuPNN99EIBDA888/LxkvKd0ajfqGq77L5SKTyRQx3DRZ+39jQfgYrN/vJ6PRSA0NDXHjJ/MNZZMoNi934sQJysjImJBJ26sZLMtSc3MzZWRkCIMgY6n4o3ZsvvrqKzIajdfEUFqqUF9fT9nZ2WOeZE7KsQkfaVi+fDlKS0uxceNG0ZVfYs+mEIvNmzejo6MD77///ugzGQ3zdXV1VFBQEHeubapNlAeWZenbb78li8UyJouWNInBYJCMRiM1NzeP+qVTiMThw4fJYrGMeoVAwi4GRVnb559/Hg8++CAWLlyYsOsxBXlYtmwZfvjDH+Kll16KeB797eMhqTbR5/OhsLAQX375JXQ6XXKSTkESPT09uPPOO9Ha2opbb70VDMPInu1IisS1a9dizpw5+P3vfz8mgacgjnXr1gEAXn311aTSySaRryler3dKC1OE0X5j2RNbL7zwAiorK6cITAGICBzHITMzE6tXr8Yrr7ySVHpZmtjX14fc3Fx8/vnnwkaTCd17MIlx9uxZYRJZ7k4tWSzs3bsXq1atQmZmpuCRThGYGphMJhQXF+ODDz6QnUYjp5tQW1uLioqK4QRT5KUcv/zlL1FbWys7PsOyLMUjhuM4/Otf/8LKlSuFvX1TSD1YloXBYMDJkydj9lmKQSOlWRqNBrt27cITTzyhpIxTkADHcdBqtVizZg3efvtteYkSDekYjcapqaYJQFNTE1ksFllxNSThnLa3tyMUCim+K3cK4gjnYsGCBeju7kZPT0/CdBqp6aLGxkZYrVbRsKlxU+XBMIxApFarxeLFi+F2uxOOoUq6mo2NjSgpKRFPOOWlpgThhJWUlODo0aMJ52UlmTh69GhcTZyCMojWsnDlWLp0KY4ePZrQ6sUdsTl37hzuvvtu9PX1KSDq+IIA8HWXCAivyOEjTSzLQqvVjrt8yeCGG25AT0+P5HBnXE30er3Iy8tLiWApw0h1ZMQejkA4sgQErUbdBALA/Pnz8cUXX0jGiUtie3s7cnNzFRcqNRgxNyPsSZqfEU41YKLZViXMZrNAYrxyxSXx7NmzV1HXQgMCQDiMjQwDrVYLZtUb8IKL2XJ2NRAXDovFIpAYz5mMS2JHR8dVRCIAePH6w8vxIgBAA+y3IXfDYQhaihRut04hLBYLzpw5IxknLomBQACzZ89WXKjUoQudfx3+H8MTd/o0vEL48LNPPvlEONqLYRhs3LgxJic19YGNRiP6+vok+4pp8QKCwSBmzJiREsFSg7mY9xCAv4a5MnfdBbNQTzXYsMGB7dtfjvggfAf7xRdfFJ6pqQ984403YnBwUNKKxJU2GAwmfXzkROI/QQM+0hQhGyNm8+Gd+PKFZUL4hg0b0Nx8ElxUjfZ4PNi+ffs4SysfM2bMwDfffCMZR1ITp0+frrhQSoI3excvXsT999+PhQsXoiHkgUajiai5n3zyCbZv3w6fzxfXrxHrM5IKVrGnp6cjGAxKR4o3Mi4RNCGIt6q8paWFvv/971N1dXXctFarldavXy8a5nK5VFfWcPT395NOp5OMEyM9v+NJzQXjcfDgQTIYDAlPZGQYhjwej2gYT7DYTl017HYeFYk8ZsyYQcFgUGmZFEN1dTUZjUZqaWmRjOfz+QgA+Xw+IorUaI/HExGmBtKiwe9llELcNpG3xWprF1mWRVVVFT799FOcPHky4THP/PKG7u5uzJs3T/BGGYaB1WqFw+HAvHnzAMR6paSCNlGOgxnXO50+fXriBnWcMTAwgBUrVqCnpweNjY2yzunWaDRwOBzYvHmz8KyrqwsMw8DhcEh6phNNIAAMDg7ixhtvlIwTl8T09HQMDg4qLtRoce7cORQVFeHOO+/Evn37ZHV/aKQ7wRPFd/BNJhN8Pl9E31Ct+OabbxL21+OSaDAY8PXXXysu1GjQ1NSEwsJCrFu3Tnafjj90nQc/Q04jq615E8qD5G9JGVd0d3cjIyNDMo5AIt/n4v+1WCzwer3iqaLSpBLvvfceVq5cibq6OlRWVspOl+yoixpMpxi++OIL3HHHHZJx0vjGmy80/6/ZbMapU6fGdbl+9Lu2bt2KXbt2we124/bbbx8XGdSGM2fO4OGHH5aMkxavBlosFrz//vuSBCpJbjiBly9fxtNPP42uri4cP348oTmZzPB6vQkrcNwliyaTCa2tramQS1yQEQIvXryI0tJSEBE+/vhjSQLV2o4pAb5sZ86cwW233SYZV3TJIhFh7ty5mDZtGtrb2xO+SCl0dHTgxz/+Me69917s3r0b1113Xdy40Y7LZAPDMGhqakJOTk7C7YQR9pC4EEKhEFiWRSgUQkmJNeIiLbEXKYXGxkb89Kc/xdatW7Fp0yYhf76iRFcYNU0XjQV8ucScxPB1vxzHJV6ewXEcGE0a0rQjDo42DVZriSSJSuHNN9/Eo48+in379qGsrCwijK8ok1Xr+HKJVUq32y2s+9VoNPErbsxAHMfSlStXiOWI2tvbKTMzU6lhQFE4HA7Ky8ujrq6u4dfLOAPnWjgnJxQKUXp6Ol24cCEmLHqMN+7YKUDINZsx/aZ0tLW344758wEuBJYDGG0atAwA4hBiR1Rco0WaZkRbwp+DgTZNCwYjY5EghFgOg8FBVFY+hW//8y2OHTsm2H1B48LzYDTQajXDc4HEgY3Jm8CGWBAAjVYLYof/D40WaQyJy6hiEBFOnjwJo9EIg8EQEx6tkRINCwOtVoOfr/g5/quuDgwARqMFo9EKa8tYDtCmpSEtTQsKXQFHGH7OctBo05CWlgathsByNDKYDLAsh96L/4vlpcuRkZGJfX89INJwh+ehhQacZN68rADAsRw0aSPNAscixMuo1QAch6vBn2UYBnv37sUjjzwiL0GMroaZUyKizz47SSbT3JGwEIV4S8aF6MqVKxG/EDfyPMQSF5FfaPhvLkQnP/uM5hiNw5O44WERMoToCitiMiXzjpQ74d8qRigUIr1eLzQxiRCHxPAPy9GCRQvpf9xuYtnwDyjxocPTh+V38OBBypo7+7tJXCkSw8mSkfdkIZHjOGpoaCCr1So7jWBOiQshxPHr4MPbDQZrHnscu9/ZBWI0361RYTSg0BWwgn0iEA0/Z8CbueHn0Gjwp9dewzPPPIt9H/w37r3/gYiw2FaKAYg3oYnzVn8rJx8Mw+Cdd97B2rVr5ScSagD7nVmMrq09PQHSz7qVzkfdFxhpUqM1ZPj50OX/I5vNRgUFBcP3DYaFRWobRyHeJMvM+7v0w2m/i5vob/XC6/WSXq+nwcFB2WlknihFWPeb3+D6667Htm3bZFcQ/paaG264Abt3746YAyQVzJqrEb/61a8wa9as5I5ek8M0x4boq6/8pNfrqb+/X1bt6Orqory8PHI4HLJr1LWOQCBAOp1O9jfmIZAodvuaYGJH7GtFRQU999xzohmxLCt0wk+cOEEGg4FqamqSEuZagNRAhd1up1//+tdJ55nUukSv10sZGRmSNaWuro4MBgMdPXo0aWGuZQQCAdLr9TH3FMuBJImNjY0xS/0cDgfZbDbR+H/4wx/IbDZPHZkigXjLIsvKymjr1q2jylOSRIStyeQxODhIBoMh4vjooaEhKi8vp+LiYtVdX3414OOPPyaz2RxzfLTcy6rT4i2/WL9+PZYuXRqzoCg9PR2vvvoqnnnmGRw4cADV1dV47733cPPNN+Ohhx7Cn//8ZwCTd9ZhLAifWuPBcRx27tyJxx57DENDQ7j++uuFsJKS2Fkkj8eDJUuWROY7wngEkbt27YLJZMKSJUsi5rvC4yxfvhx33XUX9u7di4GBAdxyyy148sknFSvwZMb58+exe/duXL58GSaTCXq9HsePHxdVpqVLl+KPf/wjlixZAo/HA6vVCp/PF6lc0arp8/nI5XKRz+eLGPqJ9qqampoIAP3ud7+jQCBAxcXFtGLFCurv71flcviJQvh3a2hooJUrV9KsWbPI6XTSX/7yl4SXm4RTFL0lQYgTnYjfPeTz+eLuJAoXSq/XC47Mpk2byGg0Tprr15WA3++nLVu2kNFoJKvVSnV1dcRxHDU3N5NerxeuGSKKVRSPxxPBQbzdXREk8tu8+F8iEvk0ZrOZ+vr6iGj4jgeDwUAvvfSSZLrJNrHLWx++XIcOHaKVK1eSXq8nu90ecfml3++n2bNni174FX2ZWjgf0RrIQyCRN6M8PB4P1dbWyiqA3W6n0tJS4caaQCBAixcvFsyrGPjCTiYyA4EAbdu2jbKzs8lqtdKePXtimpahoSEqLCykLVu2JMzParUKxPGEihEJIopp//hEtbW1stq3UChEpaWl9Oyzz0Y8581rU1NTwjzUgNFWqI8++ojKyspIp9ORzWaTvHK2vLycVq1aFfd9/DOfz0c/+clPIsIARCia8Hz9+vUx6mq1WgkAMQwT16RGkxt9HS2PROY1PB+5/SI1oLe3l6qrq8lsNlNhYSG5XC7Ja4I4jhOuo5UzQ+FyuSII450asc2yCB/zHCtaW1tjLobmOC7Ge72a4Xa7qby8nPR6PdlsNtmjU7wTKPdi6HBTSkSCoolh1Hu64xEffkV7NDZt2kRZWVlxvdeJ1EIp09bf30/V1dVkMpkoPz+fampqaGhoSLa88a5oF0NjY2OEM8P/pGb6Y0gML8xoNbS1tZXMZjNVVVXFXM935MgRWd7rRCH8tu0TJ05QRUUFzZw5kyorKxNuLY9uDoaGhqiiooLy8vLo7NmzCd892kosSWIyYdHo7++n++67j6xWa4wJlTKvE90mDgwM0M6dO8lisVB+fj698cYbCdswsSapt7eXCgoK6Be/+EVMerEyJvq2Ut8lZUdksCxLoVCIqqqqyGw2R3RqeahpcKClpYUqKytJp9NRRUVFUvdDio1mGY1GcjqdSospCkVJjC4MX3tcLhcZDAb68MMPY9LIHRwIz08pXLp0iWpqaig/P5/mz59PO3fuHJXjFV7u+vp6MhgMVF9fr6Sokhi3w2qam5vJYDCIzpkFAgEqKipS1HuVMk8tLS301FNPkV6vp4qKCtmWQKoShUIh2rx5M2VnZ9Pp06eTlncsUJxEqY/n9/uptLSU8vPzRT8cb17/8Y9/jPr9MUtMRuQZGhoil8tFhYWFZDabqbq6Whh4Hq0Dx7/L7XaTxWKhFStWTMh8aso0MdzLi0ZDQwMZDAay2WxCofl4vHl9+eWXZb9DCh0dHWSz2Uiv11N5ebksN19u/oFAgMrLyyk7O3tCr6of97O/+A9z6dIl2rhxI+n1enruueeEAXQieWOvUrhy5Qrt2bOH7rnnHjKbzfTKK6/EaEii9lUqPBAIkNPppJkzZ9KWLVtGfaGzUpjwA9z8fj/ZbDbS6XTkcDgiFgpFm1f+w8Y7h83r9ZLdbqeZM2dSWVkZ/e1vf4uIk0izwsPF3uH3+6mqqop0Oh3Z7faEi5rGq7s0LiTKKUwgECC73U7p6em0Zs0awTwl8l4vX75Me/bsIavVStnZ2bRt2zbRPX1jka+hoUEY4HY6ndTb26uq2ZcJ18Ro9PX10euvv04FBQWUlZVFTqeTjh07FjM40NXVRU6nk/R6PZWVlSnWJvGjLq2trbRu3ToyGAxUXFxMNTU1qh33Tep27/FGR0cH3nrrLezfvx/BYBC33HILvv76a/zgBz9AV1cXnnzySTz99NMwGo0J86IE2wba2trgdrvhdrvR2NiImTNnYvXq1Vi7di1MJlNSeY03VE1iOLq7u3HkyBG8++67+Oc//4mBgQEsXrwYWVlZyMnJwaJFi4S9HnPmzIlZpXfu3DnhYL7BwUE0NzfD5/PB7/fj73//O4xGI6xWK372s59h2bJlojt01YqrhsRoDAwM4NSpU/j8889x/vx5uN1uAMNa4vP50N3dHRHfaDQKGjVt2jQUFRUhKysLubm5WLBgwVV13nk0rjoSxdbJKmHe1GYik8FVdRhMvIXOShPI12upAwjVdHfGVaeJY8FotU3tWqp6TXS5XMJhs/zBPBs2bADHcTFL4sXqY7jGRIeL5SEGMS1VE1RLYmdnJxiGwZkzZ4TDZt9++20wDIO8vLyYuy8AcbMabn5jzn8RySMRVKmR49UhTYToERDEWby8fv36uNcjXKtQjSZSmJnatWsXAIie0Z2Xlyerc38tQZWODcMwcLlceOKJJyZalKsCqtFEHp2dnQCAnJwcAOp0JNQG1ZEYTRrDMKrqk6kRqiNx7ty5AACfzyc8473Kzs5OeDyemJsDrnlMqFsVB/wOoHAv1OPxxKyCnug1qmqBKkkk+u4yLv4nZ6/ktQpVeqdTSA6qaxOnkDymSJwE+H/KuG90FArENAAAAABJRU5ErkJggg=="
<image>如图,△ABC内接于⊙O,∠OAB=45°,则∠ACB的度数为() Choices: (A) 135° (B) 130° (C) 120° (D) 140°
135°
11,003
null
135°
"iVBORw0KGgoAAAANSUhEUgAAAI8AAABiCAYAAABpuYDPAAAceUlEQVR4nO2dW1RU5/mHnzkwB2aGkyhHUUGQQ0ARMAMKKEpQQ9SEqIkESWJWV1Zq7UVvunrT1V51NTdtTJs2NbVRYxQP0USiRoMIAiJy0AiOB1TUCag4IjgzzHH/L1yz/yEekigIjD5XLjd77/fb89vv/t73O7wSQRAEnvGMR0A63AY8Y/TyTDzPeGTkw23AYCMIAh0dHXz33XcEBAQwY8YMlErlcJvllXid57HZbBw6dIg//vGP/OUvf+Ho0aPDbZLX4nWep7Ozk+rqai5duoREImH37t3I5XLS09OfeaBBxqs8j9vt5sSJE7S2tjJ37lzWrFmD3W5n/fr1VFZWYrfbh9tEr8KrxNPd3U19fT12u53c3Fxef/11li5dCsDWrVupqKjAarUOs5Xeg1eJp6Ojg6amJsaPH092djYKhYKsrCyKi4uRSqVs2rSJ/fv3PxPQIOFV4jl9+jQdHR1MmjSJmJgYAHx8fJg1axYlJSVotVq2bt3Knj17sFgsw2zt6MdrOsyXLl2ipqYGnU5HRkYGWq1WPOYRkFwuZ/PmzZSVlWG1Wlm8eDH+/v7DaPXoxmvEYzAYaG5uJjk5maysrHuOy2QysrKykMvlbNy4kV27duFyuVi0aBFjxowZBotHP14hHpvNhsFgwGw2M3XqVKKiou77dxKJhBkzZiCXy9m6dSt79+7FbDZTVFREWFjYE7Z69DPixONyuXA4HDidTtxuN4IgIAgCEokEtVqNQqG455wzZ85QXV1NaGgoycnJyOUPbpZEImH69Omo1Wq2bNlCRUUFLpeLpUuXEh4ePpRN8zpGnHiMRiP19fXcvHmTO3fu4HA4cLvdKJVKEhIS0Ov1BAUFIZFIxHPq6+v57rvvKCwsJCkp6SfvIZFISExMpLS0lN27d4vh/auvvsqkSZOGsnlexYgTz4ULF1i3bh1nzpxBEARkMhkATqeT2NhY3nvvPV588UVUKhUAZrMZg8GAWq0mPT2dcePG/ex7xcTEsGzZMuRyOZWVlVitVlasWMHkyZOHpG3exogL1SdOnEhCQgK3bt0iPj6e0tJS3nrrLQIDA2lsbOT8+fM4nU7x748ePUpzczMxMTEkJSUN8Eg/h8jISF599VXy8/NpbW3lv//9L999991gN8srGXHiiYqKIicnh/DwcLKysoiJicFutzN+/HheeeUVMjMzRa8D0NTUhNFoJDk5mfHjxz/SPcPDw1m2bBnz58/nzJkzfPzxxzQ2Ng5Wk7yWEffZkkqlBAcHc+fOHY4cOUJVVRUGg4G5c+fym9/8hqSkJLFDfO3aNVpbWwkICCAtLe2xcjZjxozh5ZdfRi6X8+WXX7J+/XqcTiczZsz4xd7saWFEicftdnP16lUaGhrw9/enpqYGq9VKWFgYOTk5pKSkiH0gQRCoqamhra2NuLg4EhISxGOPSkBAAK+88goajYbt27fzySefYLFYyM7OfmgE97Qyop6IIAhUV1eza9cuCgoKMBgMNDY2UlRUxOLFiweIw2KxcPToUaxWK1OnTiUkJGRQbNBoNBQWFuLj48PWrVv57LPPEASBmTNnPpvS8SN+Ujx2u52LFy/idDqZMGHCgLT/YON2u7l27Ro9PT3MnDmTJUuWUFlZSWBgIEajEZlMRkBAAFKplMuXL9PW1kZ4eDjPP/88fn5+g2aHQqFgwYIF+Pr6snXrVjZu3Eh/fz95eXkD+lvehCAI2Gw2bDbbgPyaUql84G/+UPG43W4OHjzIunXrCAoK4te//jWpqalDYrzL5aK9vZ2zZ8+i0+lQKpWkpKSg0+n4xz/+wbZt23jzzTd5/fXXUalUNDc3c+XKFfR6PdHR0YNuj1wuZ/bs2chkMj799FM2btyI0+kkPz8ftVo96PcbbsxmM4cOHaKpqUkUkcdhzJ8/n8TExHvOeaB4BEHg+PHjfPTRR+zbt4/09HT6+vqGzPj29nY++eQTdu3ahSAI/Oc//2H//v2YTCYOHDiAr68vCoUCHx8fent7aWpqQqlUMn369CEbm5LJZMycOROJREJZWRlbtmzBZrMxf/58dDrdkNxzuDCZTGzbto3du3cjld4NwgVBQKfT0dHRwXvvvceUKVMGnPNA8ZhMJjZt2kRlZSVOp1P84YYCQRAwmUxcvnwZl8uFXC6nqamJY8eOYbPZeO6551i+fLnoCdrb22lqaiIqKornn39+SD8lPj4+zJw5E19fXz777DO2bt2K3W6nsLDQq0bk5XI5breb3t5eYmJieOGFF4iIiMBoNHLq1Cn++c9/UlJSQlpamhh93lc8d+7cobKykjNnzlBQUIDRaEQikQxIzg0mEomEiRMnUlJSQl5eHm63G5vNRn9/PxKJBL1eL4rE6XTS3NyM0WgkIyODiRMnDnkoLZfLycjIQKFQsGHDBnbv3o3NZmPJkiUEBQUN6b2fFFqtlujoaPz9/UlPT+e3v/0t48ePp6uriw8//JA9e/ag0WiIiYkhMDAQeIB4rl27xvbt2zGZTKxYsYKGhgYaGxsxm833vbHL5RJd3aMSGhpKYWHhgP9zu933XNdgMHDgwAGCgoJ4/vnnCQgIeKz7/hKmTp3KqlWr2LRpE+Xl5ZjNZl566SUmTpwo/s1IX4D7oBdNpVKh0+nw8fFBo9EQGhqKr68v0dHR6PV6vvrqK06dOkVPT8+DxeN0OmltbeXo0aN0dnZy4MABrl69ilwuFz9bTqeT77//Xpy5Z7VakUgkj+UBZDIZSqVSDMelUikSiQRBEOjv78flcqHRaGhsbKS2tpYlS5aQnp7O1atXuXr1Kna7HX9/f6KiosTGOZ1Ouru7MRqNWCwWNBoNUVFRBAcH43a7xWNmsxmVSsX48eMZO3YsUqkUt9uNyWTCaDRy+/ZtVCoVERERJCYm8tZbb7Fu3Tr+97//cerUKfLy8pDL5XR3d2Oz2R76Iw0XgiAglUrx9/dn8uTJTJkyRfSagiBgNBq5cOECwcHBxMbGivY7HA4sFgsulwuJRILL5RKveY94rl+/zrfffktfXx8BAQE0NzfT2dk5IIPb09PDp59+SllZGW63G5VKJf7Qg8UPH75ngLSvr48rV64QEBDArFmzCAoKYufOnZSVlXH9+nXS0tJYtWoV6enpwN00w/HjxykrK+PChQtMmjSJVatWkZubi8vl4sSJE2zZsoWzZ88SHh5OaWkp+fn5SKVS7HY7p06dYuvWrTQ3N4tDGEuWLCE2NpaSkhIMBgNlZWV89dVX+Pn5iekCT6g7kvB0OywWC2FhYaxevZpFixaJuauWlhbq6uqIi4tjwYIFYlssFgv19fVcvnwZvV6PRqMRrzlAPGazmcOHD1NVVUViYiLLly9HqVTy8ccfYzKZuH79OoIg0NPTQ01NDZcuXaK4uJiMjAwEQcDtdg9Zw5VKJZWVlRiNRiIiIpgwYQIqlQqlUolOp6O/vx+tVjugUy+TyVCr1eh0Ovz8/AYc98wP0ul06HQ6tFrtgCSgRCJBoVCg0+nw9/fHz88PlUoliiIpKYnf//73aDQaysvLUavVzJ07l4SEBJxO55D1Dx8FT1tMJhObN2+mqqqKtLQ08vLyUCqVCIJAZ2cnvb29TJ48mYSEBACsViunTp2ipaUFrVZLXFzcgMh2gHj279/PBx98gMlkYvXq1bzxxhvU1NSIb+mhQ4eYM2cObreb/v5+wsPDWbJkCXPmzBn0Bv/wzfV8ElNTU3E6nZw9e5bOzk5kMhmzZ89m8uTJ2Gw2AgICiIyMFM/z8fEhNTWVcePGYTab8fX1JTIyEolEglwuJykpicDAQPr6+sTPlmcYwsfHh4SEBAIDA8XPVlhYmCgwT0dep9ORlJREc3MzWq2WnJwcwsLCBt0TPy4SiYQ7d+5w+fJlWltb6evrEyfcXbhwgZMnTzJ27FgSExMRBIErV66wa9cu9uzZQ09PD++88w6vvvrqgMl4A8Rz9epV+vr6mDNnDvPmzUOpVHLt2jUAAgMDsdvtOBwOpFIpPj4+qFSqe97YoSQ5OZnCwkLef/99GhoayM3NJSQk5IFDE1KplKCgoAdGRIGBgWL/6H7nPuw43P1BnnvuOUJDQ9mzZw8VFRVs3ryZFStWDOhEjxQ0Gg1arXZAzuzKlSv87W9/o6ysDKVSyVdffUVLSwtdXV1UV1djtVopLS1lzZo1A15M+JF4srKyCAgIID4+XvzDuLg43n33XRwOB4mJiajVarHT5HK56O/vf0JNv8vUqVOZNGkSdXV1NDQ0kJ+f/0Tvfz+Cg4NZsGABFouFiooKent7KS4uJjk5ebhNG4DVasVut4t9SJlMhtlspqurCz8/PzQaDWfPnqW1tRWn00lwcDCzZ8/mnXfeue+88AHiSU1NJSUlZYBrSklJISEhAYlEgo+Pj5hM8ox9PGnXPH78ePLz81m7di0VFRWkp6c/1Ds8KUJCQli6dCkqlYr9+/ezfv16iouLSUtLG27TBuD57dxuN06nk/DwcN58800WLlyIIAhYLBZsNhtyuZyoqCjS09MfuKBggHg8avwhPj4+Q5ZZfhR8fX2ZNWsWX3zxBY2NjbS2tpKVlfXYeabBYOzYsRQVFaFUKikvL2fTpk04HA4yMjIee7rIYOGJYgVBwOVyMWbMGBYuXIjD4RjgDARBQK1WPzTlMPxP/BGIjIwkKyuL7u5uampqHpi8HA78/f1ZvHgxy5YtE1MaVVVVI3qTBalUilKpRKVSoVarUavV+Pr6/mSualSKR6vVkpeXR0BAAI2NjVy6dGlERTZarZb58+dTVFSE2Wxm48aNXrnJwqgUj0QiISkpieTkZC5evEhtbe2IW3uuUqmYN28eb7zxBlKplA0bNlBeXs6dO3eG27RBY1SKB+5+HnJzc5HL5dTV1dHV1TXcJt2DSqVizpw5FBcXo1Ao2Lx5M/v27fMaDzRqxQOQnZ1NXFwcra2tnDhxYkRldT14Nll4++23CQkJYceOHezatYve3t7hNu2xGdXiGTt2LDk5OTidTg4fPjwivQ/cX0A7d+4c9QIa1eIByM/PJz4+nvr6etra2obbnAcilUrJyMjgzTffJDo6mr1797Jt2zZu3Lgx3KY9MqNePFFRUcycOZPe3l5qamro6ekZbpMeyrRp01i1ahXx8fGUl5ezZcsWcQhotDHqxQOQk5PDlClTOHLkCM3NzcNtzk8yZcoUSkpKSElJoaamhi+//JKrV6+OyD7bw/AK8aSkpJCdnc3Vq1epq6sTJ2SNZCZPnsyqVavQ6/Xs27ePsrKyEdtnexBeIR6AjIwMIiMjaWhoGDUbFYwfPx69Xk9nZydHjx7l5s2bw23SL8JrxJOWlsbcuXNpb2+nurp6RGWcH0Rvby+NjY3odDqmTZtGcHDwcJv0i/Aa8fj6+qLX69FqtdTX13Pu3LnhNumhWK1Wdu7cyd69e8nKymLp0qWDtmT6SeE14oG7U0P1ej0Gg4GDBw8O2bTYx8VqtVJeXs6OHTuIiIgQ50WPts0UvEo8ISEh5OXlIZVKOXz4MEajcbhNugeHw8H+/fvZuHEjgYGBrFy5csRNGvu5eJV44O5U1ZSUFM6dO0d1dfWApSLDjdvtpra2ls2bNyOVSikpKUGv14+IuUiPwui0+iGEhISQk5ODy+Xi22+/HTEZXEEQOHnyJJ9//jlOp5PS0lJyc3NHzCSxR8HrxKNSqdDr9SQmJtLW1kZLS8uI6PucP3+eTZs2YTQaKSoqYuHChffdFng04XXiAZg0aRJ6vV5cc28ymYbVnq6uLrZt28aJEyfIy8vzCuGAl4pHrVaj1+uJiYmhvr6es2fPDpstd+7cYdeuXRw6dIi0tDReeeWVETFhfzDwSvHA/4ftnk3Bh2MGn91uZ8+ePezevZuJEyfy2muvMWHChCdux1DhteLRarXMmDGDiIgIjhw5woULF57o/Z1OJ9988w2ff/45QUFB4kCoN+G14oG7YfucOXMwGAwcP378iQ2YulwuKisr2bBhAyqVitLS0hGzPGgw8a7W/IixY8eSlZWFr68vtbW1XL58ecjvKQgCTU1NbNiwAYfDQXFxMbNnzx512eOfg1eLB+7OncnNzeXkyZM0NzcPedh+9uxZPvvsM27dusXSpUuZN2+eV0RW98PrxRMREcELL7xAf38/dXV1dHZ2Dtm9jEYj27Zt4+zZsxQWFrJw4UJ8fX2H7H7DjdeLRyqVEh8fT2pqqrhJ5lAMWdy+fZvdu3dTXV1NZmYmixcvfqJb3g0HXi8egLCwMJYsWUJPTw+VlZWDPmRhsVj4+uuvKS8vZ8qUKRQVFREaGjqo9xiJPBXi8fHxISMjg5iYGFpaWmhqaho079Pf3y9OIx03bhzFxcXEx8cPyrVHOk+FeADGjRtHQUEBt2/f5tChQ9y+ffuxr2m326mqqqKsrAyVSsXKlStJT0/3upD8QTwdreRuPYmcnBwiIyNpaWnBYDA81lRVz0LDDRs2IAgCK1euZNasWaN6lPyX8tSIB2DChAnMnDmT27dvc/jw4cdasdnS0sLf//536urqyMnJIT8//4H7GI3E3VEHg6dKPGq1muzsbPz9/amrq+PSpUuPdB2j0cjOnTupq6vD4XA8sJCJxWKhubmZ+vr6YR/ZHwqeKvFIJBJSUlKYNm0anZ2dNDQ0/OIdK0wmE7t37+bcuXPMnTuX2NhYsc7pjxOQNTU1/OlPf2Lt2rWcP39+MJsyIniqxAOg0+nIzMwU93X+JUMW/f39fP311+zdu5dp06bx5z//meLiYgwGA1u2bLknBdDQ0MC+fftobW0dlA76SOOpE49EIiEzM5Pk5ORftDWLw+HgwIED4oqHRYsWER8fz9y5cwkNDRVLVv7Q+8TGxhIREYHD4RgVq1h/KU+deOBu0jAzMxNBEDhy5MhPbjTgcDioqKjg008/RaPRUFxcLBYvCw0NZdasWdjtdioqKrh+/bp4XmpqKomJiUgkkhG9J+Gj8lSKB2DGjBlMnTqV48ePc/LkyQf+ncvloqamhvXr14uj5Hq9XgzJFQoFSUlJ+Pn5ceTIES5evCie69nsXCqVPou2vInY2Fjy8vLo7e2lrq7uvtGQZ8XDpk2bxI25Z8+ePSAkl0gkBAYGotPpuHHjBrdu3RKPuVwuMZM90qrgDAb3iMezubPnO22xWLBarSNiBcJgIpPJmDZtGnFxcRw7duy+myO0t7ezbds2rl+/ztKlS3nxxRfvG5ZrtVoCAwNRKBQDPIxn03OpVOqVycMBM5QEQeD8+fOcOXMGi8VCf38/NptN3H00LS3Nq8pDT548mYKCAtauXUtVVRWpqaliqaDOzk62b9/OqVOneOGFF8R66/dDrVYTGBiIUqkUi4FIpVKsVisWiwWn04nL5UIQhBHvgTybe8Pdz+7DhloGiMftdnPo0CHWrl2LyWQiICAAf39/rFYrcXFxlJaWsmDBArGQ2k9dfKSj0WjIysqirKyMxsZG2tvbSU1NxWw2s2fPHo4cOUJGRgYvv/zyQ+uJKhQKfH1978kwnzx5kra2NsxmM0ajEavVOqzzezy/2YMK6/X09IhVo91uNyEhIYSFhQEQFBREeHj4gBmRA8QjlUpRq9V8//339PX1sXLlSgoKCmhvb2fdunW8//77REREEBAQgEwmEx/aaCYhIYFly5bx+eefU1tbS0xMDCdOnKC+vp7p06dTUlJCRETEQ6+hUCjE2hx+fn7iC3X9+nVxV3XP5384n5evry8qlUqsZPjDT2x3dzc7duxg27ZtdHd3i22RSCRYLBaKior41a9+NaCq8wDxSCQSoqOjiYuLo7u7m8zMTObMmYOfnx9qtRqr1SrWJ3A6nfT393Pr1i1xH8DR1i+SSCSoVCrS09PFtVX9/f10dHSg1WqZN28eoaGh3L59+75TOCQSCTKZjCtXrtDV1UVfXx83btzAZDKJ9bzWrFmDVCpl0qRJWCyWYflseeqL9fb20tPTg8ViGZA6MJlMbNy4kV27dhEWFsbChQsJDg6mpaWFtWvX4nQ6KSgouKfLcs+sbK1Wy7hx4zh37hwffvghBw8epK+vj9jYWPLz84mNjeXatWsoFAouXLjABx98wIEDB5DL5aNuTz1PBUGz2cz58+e5efMmVVVVwN2VFwqFgv379z9wd3mPt7l8+TK1tbXcvHmTjz76iNraWpRKpViXVRAELl++zDfffIPb7X7iAvLY2dvbS0VFBRaLBa1WK86t9qyh1+l0rFmzhqysLODuQPKOHTuIjo4mPz//nrnYA8TjKTxrNpux2+0cOXKEiooKQkJCWL16NQsXLkSj0dDf3092djbnzp2jqqqKY8eOieUGR1M+w/Pt99Tf9FQwlEqltLa2cv78eTHyvN8P7ulDeAroKhQKjh8/Tltbm1hByPPAPYXuhuP5eNrosSErK4vs7Gw0Gg3d3d3s378fl8tFUVGRWJ8V7jqSwsJCZsyYcd/STwPE43nzOjs7KSgoIDExEZvNRm1tLQaDgY6ODhITEwkKCmL58uWEh4djMBhwOp3IZLIRH0n8EI+tngfr4+MjlnaUSqW4XC5sNtvPipBkMpmYDLTb7SPSA3uiKI1GQ2ZmJllZWSgUCo4dO8bhw4dJTk6moKBggHeJjY3lvffeIzg4+L5R9gDxdHV10dzcjEQiobS0lJdeegmLxcLq1aupr6+nvb2dxMREpFIp0dHRTJw4UQxDRxtSqVTMwcC9STy3243D4fhZ/ThPn8Jz3kh+Hj8scQ53O/U3b95kwoQJ9wQGfn5+JCUlPfhann9YLBZOnz5Nd3f3gBDt9OnT3Lp1i0mTJjF27NgBJ0ulUq9Zk/RjkXhqUHk7giCIL8kPX6AbN27Q1dVFRETEA2u0iuKprKxk7dq1tLW1kZGRwbFjx2hoaODw4cMEBARQXFzsVWut+/r6uHjxIleuXKG7uxur1So+PKlUSmRkJCkpKYSFhY3qXNZPMWbMGIKCgujo6OD8+fPEx8dz7do1tmzZQltbG8XFxeTm5t73GcjhrvpOnDhBW1sbNpuNixcv8u9//xuXy0VSUhIlJSWjfherH3Pjxg22b9/O119/TW9vL3K5HLlcLpaQ1mq1LFu2jLffflv0wt6IXq/n3XffZc+ePfz1r38lNjaWK1eucO7cOTIzM8VS4vdD9DyzZs1Co9Fgt9txuVxYLBYUCgW5ubleuUjfk8wzGAykpqaSn5+PyWQSX6TDhw8zduxYlixZ4tXiGTduHK+99hpyuZx//etffPHFF0RFRbF8+XJKSkoeWuJbDnc7fNnZ2WRnZ4sHRsM4zOMQHBzM1KlTiYiIoKCggHfeeYedO3cCMH36dGJjY5kwYYI41uXNaLVali9fjlwup7q6mmnTplFUVMS4ceMeep5EGE2JmUGmvLycNWvWEBcXR0ZGBmVlZUyZMoU//OEPRERE4OPjQ1BQ0Iiq7jzUOByOn91e79v342fS3d1NR0eHWGby4MGDSKVSCgsLiY6OvieyfFr4JS+Kd3Vkfiae6adlZWXEx8ezYsUKQkNDyczMZNGiRaOuBsRw8VR6Hs9Y0+nTpykuLqa4uBiZTEZQUBCxsbFe3dcbTJ5K8VgsFm7evIlWqyU8PJz4+Hh+97vfIQjCM6/zC3jqxGOz2diyZQs7d+5EoVAQGRmJSqV6aEj6jPvz1PV57HY7p06dwmAwoNVqCQ0N9boc1pPiqfM8Pj4+LFiwALVaTWhoKBMnTnzWx3lEnso8zw8neY+2qSQjiadSPM8YHP4PgFfPASXWEocAAAAASUVORK5CYII="
<image>如图,把矩形ABCD沿EF折叠,若∠1=40°,则∠AEF=() Choices: (A) 110° (B) 115° (C) 120° (D) 130°
110°
11,004
null
110°
"iVBORw0KGgoAAAANSUhEUgAAAHcAAABeCAYAAAAZmot0AAAV5UlEQVR4nO2df1BTV9rHvzc4i3bSjTOGkrZZ9S2gkQRLByxMxcW+gOAuNKHSaqfxR2d0EGhfqcDYjijsrO6406C0g9auzogj3WU7TBMqbUVoS6tOUamUGoJV7Cv+GLHSd3FpC+6QPO8f4V7vTW5+QRJozWeGIfeen/c+5zn3Oeeeex6GiIgAMACKljHY1wIBBpMZJVo1QvzykAAAAxsAoKbZhsIMBlVGM4gI3cY3UKrTwGSx8pLYJqOeIcaBRPCP6cG3Lf+NZbpYAEDsvGj7aYQBAIgfF0BI0FMbvqRgaWxGWOFyaIgBABQV5yKt8A1o7bIGE/TqhZgIjI2IWKE1VhVBV7qPCzR1EyfYEL88JCDiDlqO74Opm2AjgrGqEDo1A1M3gY1BAN555x188sknk1LZEL4hYZgxvbWYsJcKoI21d7/azUVIB9ByrJHrjhkAN2/eQnp6Ol599VXcvXt3cmodwiu4Z67pWAsKM5eBNZKY7otoBfBYdIwgAcMQNmzYgM7OLiQnJ8NisQSzviF8QEJj3fLxj/dh2XIdAAkIFmRocgGkYbnDQ5fIikceeQRtbZ8iLy8PSUlJ2Lt3Ly+c4A5P4SH8h8TywW4wDIO3WwGdmgHDMJAwarRmFICoFQucZHHPwN66dSs+++wzVFdXIycnBwMDA2C7eSIKCXKSkai1JSCbXRBWGoXNZgMRwdZs10bumeyCxMREdHZ2QqFQIC4ujjO2GIYRTespvxD+w66GDHsQBoZhQER2IbhQPMbhvFQqxYEDB1BdXY0VK1agrKzMo7EV0urAM9bHCmeaOO1i7M9YPjYQyIXyrVy5EmazGe3t7UhOTsaFCxdcFhzS4MAjnH4UgWHC7h0QIAHjUrgAoFQqceLECeTl5SE5ORnvvPOOn6oawldcS1UMVqG96FG3bt2K5uZmGAwG5ObmYmBgYBzVCzERJPeeq+N4CeBByElJSejs7IRUKkVcXBw+//xze7LQ8zYoSO69DXCvxEQisvTisSmVSnHkyBFUV1dDq9Xi9ddfh80WepsUDBwkar/pYprFMM6y9EUDV65cia6uLpw8eRJJSUluja0Q/kEidsgwjJOWOovR5rPFO3v2bJw4cQLZ2dlITk7GwYMHfUofwjdE+uKxuWXH4ZFDLHJnMruAbQyVlZVobm7Gjh07kJubizt37oSewwFAcu+W2oVZtCwMDMP+Mff+lhUK4k10nJqUlISuri5IpVJoNBp88cUXE8ovhDMSu4hsACQAAXuPEwozbDCabWPzw1aYTQakx7Bvh3wbPblDJpPhyJEj2LVrF7RaLbZt2xYytvyIYBKDQCBY8C2KoFMzIFhQVdWIWO1yZD02d1wFeNPdvvjii+jq6kJrayuefPJJXL58eVxlhRAiUEMGDCyNH2NeVjoAoHH3XiA6GgxiUVKSOzYVaddoT2NcLk8X3bej0OfMmYMvv/wSOTk5iI+Px+HDh32/mhACeMK1AQxw6fJ3eLskFwzDILdkH6KiNVwM+1TkNLvAJjg17EroFRUVaG1tRUVFBVatWoU7d+54nWfIKBMy7d5Pu5xbju2DsXsUutgwvLwsA/Oc1qN7fiayb5Xu3LmDpqYmXLp0CVarFSdOnAAAWCwW3L59G3K5HGq1vYAlS5YgLCwMMTEx0Gq16OrqQn5+PjQaDerr67F48WKP5YZeRgiZJjjq/gD7UIC9sfaXBY9lLUesqIqOTXbAWYGvX7+ODz/8EA0NDfjss8/wzDPPYOHChQgLC8Of/vQnAIBGo8GsWbNw69YtXLhwAaOjozhx4gQYhkFDQwP0ej2ys7Oh1WqxZMkSZGVlobi4GJWVlQgLC0MILyEexqpCKjQYuWPb2P+ioiKy2exHFRUVVFFRIQgnIqqrq6P4+HiSSqW0evVqqq+vp5GRERoPQ0NDVFdXRytXrqTp06dTXFwcxcTEUHJyMl25ckUQl61XCGcEwi3MABnNwptVtAxUUGXkjrdXVtD2yoqxIyudPHmSEhISSK1WU0NDg98rODo6SvX19RQVFUWzZ8+mGTNmUF1dnd/L+TUCGxF1N1YRAJKAIdhnHgV/RrON09KKigqqrKykzq6v6bnnniOFQkGHDh3yqjC+lnmjcWwc9n9NTQ3NnDmTHnjgAcrJyaHBwUFfrvW+A+TyHltFz1ZUbKOnnkohALRlyxYaGhoKWOXEGBwcpFdeeYXCwsJILpdTe3s7EYW6ZzEk5DBgvTeaEP/gq7m5BRcuWKDTPYvBwUFIpdJA2AEuhzW//e1v8dZbb6GjowNWqxWpqamorKwMWcpieNMCbDYbDQ0NkU6no9mzZ1NZWRkNDQ2RUqmk1tZWQbxAwy/j6tWrFBcXR7NmzaJFixY5GVuu0t0vWu7VRPH333+PpUuXQiqVYs2aNXjggQcglUpRW1uLdevWcRMNwdAefhm/+93vcOrUKaSkpKC/vx+PP/44/vnPf3LhxNN+frr7Rcs9Cvfu3bvIysrC8uXLceTIEcE4My0tDVqtFi+//HJAK+kOqVQKk8mEFStWYPbs2di8eTPWrFmDH3/88b4Rois8Cnft2rWYP38+/vznP4uGV1VVob29HSaTiTtHQZoGJHZ9NYA9e/bg0UcfRVZWFoaHh6HRaHD69Omg1GOq4la4b775Ji5evCiYxHcU3G9+8xvU1taioKAg6CscHTXzvffewxdffIHs7GyUl5cjMzMTlZWVTumC1fgmGwm5sExPnTqFXbt2wWg0Ijw8nDsv1tUtXrwYer0eBQUFLuMEgwcffBBHjx5FaWkpEhIS8NVXX6GpqQlLlizB9evXuXj3S3dt3/DE4WLv3LmDvLw81NXVYc6cOW4zYNPu2LEDPT09ePfddwNUVe9QqVQ4cOAAtFotlEolTp8+jZSUFGg0Grz33nuTWregI2ZCv/baa1RcXCxqXvPnlh05e/YsKRQKunbt2sTt+DHGO2x56aWXaNeuXdxxW1sbKRQKWrduHf373//2V/WmNE7CvXnzJslkMurv7xdN4E64bHhWVpbL8GCNMXt7e0kulwumKAcHB0mn01F0dDSdPXt2wmVM9fGyk0FVWVmJgoICREZGjqsn2LZtGwYGBnDw4EHBs5z9HaznXVRUFFasWIFdu3Zx52QyGYxGI7Zs2YL09HTs3Llz3PkTz1KfsvAlLdbaHXGnuWxLNpvNFBER4XbGKBj09/fTzJkzuV6Ir2kWi4Xi4+MpNTXVr4+RqYTAWt65cycKCwshk8nG1VDYlqxWq7FlyxasWbPGb43QG8jB6o+MjMS6detEx+gLFixAR0cHFi1aBI1Gg4aGhmBVM3iwUh4dHSWZTEa3b9922xo8PXP5+S1ZsoSqq6sn1vwmyJUrV0ihULh9PrLG1vr164P+liuQcM/c1tZWxMXFQS6X+6XRhIWF4dChQ9i+fbvLpaoUhMmEOXPmYNasWThz5ozLOKmpqfjmm28wMDCAJ598Eh0dHQGvVzDghHvs2DFkZ2f7NfOoqCj85S9/gV6vh9VqdQr3t0HiqrHk5OTg448/dps2IiICRqMRmzZtwtNPP42//vWvfq3bZCAQrlar9XsBRUVFkEqlAqsVCO4UoE6nw7Fjx7yKm5+fj7Nnz6K+vh5Lly7FrVu3Aly7wCEBwH1OqVKpuAB/3vxDhw6huroaX3/9NXcuEMMIV3kmJSWhr6/Pa0GpVCq0t7dzxhb/pQifYDbQ8SABgJMnTyIrK0sQ4M+br1QqYTAY8NJLL4l2z2KQn/exysrKQltbm9fxw8PD8cYbb6C+vh4FBQXYuHEjfvrpJ0GcqT7OlQDA5cuXoVQqMTI8zP35m7Vr10KpVIq+pXGFvxvYlStXfE6XlpaG8+fP48aNG0hMTBT0PlMdCQD09/dDqVRi+owZAIDw6dMD0uUcPHgQBw8eREdHh8f8/a0VSqUS/f3940orl8vxwQcfoLi4GEuXLkVVVZVf6xYoOOEqFArupKvd3yZKZGQkqqursXr1avznP//xe/6eyr5586bgnC8NmGEY5Ofn49SpU6irq0NGRsaUN7YkAHDt2jU89NBDggAicuqmR4aHYR0dhXV0lIvnqht31cWvXLkSC+PiUFZa6rH7d5WHu/OOdWL/P/zww7hx4wZ3bcD4ege1Wo329nZoNBqo1Wp8+OGHPucRNIhIMJ88/PPPglkOx+PyrVu5GSp+mKvfYmHvv/8+hYWFUUxMDH36ySeisyu+5j3888/cH/+Y/d3X10fR0dGiZbnD3cxWa2sryeVyys/PH/enM4FEAgADAwNezSePDA8jbNo0p3O+GGBEhK1bt8JqteLSpUvYsmWLIMwxLgDOFnAHG4cfl/9bJpPh9u3bTvk7lumIO+1OS0uDxWLBjRs3kJCQMOWMLQlgNxj438HyL3j6jBluhTd9xgzuzxvYjUNZ+vr6XIb587k/ODiIiIgIp7pMtIyIiAgcPXoUGzZswNKlS/Hmm29OKD9/IgHsxkYfb5jgeJO9wRftrampgUqlwsKFCwGA28bXleb6Y2jGGo2+Xpe3bNq0CadOncKBAweQkZHhdrFgoOrgiASwL+7+/vvvMTI8zGkgv0Wz2uuonex5xzD+ebGwxU89hc5z53C6vR1//8c/uIXtd0dGuHKnz5iBuyMjXuftaEA5/r7a14dHH300oBMParUaX331FTQaDRYsWIDm5mbReMGa/JAAgEKhwMAPP3jdtfJx1SW76675YfyF7WKNx9u8Hc85/v6/f/0LDz/8sM/X5yvh4eHYs2cP6urqoNfrJ9XRBydcdpgghpjW+oq7rkhsYbu/uX79umAsH2gyMzPR09OD7u5uJCYmoru7O2hls0gA+6s5dl0vXwj+nIp01xWFh4cHdGE7EeH69euYO3eu3/N2h1wux/Hjx7F+/XosXrw4+MYWEVFPTw+pVCqvxk7ersTwBscxZFlZGeXl5YmGTRSFQuFyRWcwOHfuHGk0GsrOzva42sVfSIB7r/oCuZMqie4EK9Rm/sJ2fxodZ86cwdy5c8e9otMfPPHEE+jo6MCcOXOwYMGCoHhV417WZ2VlobGxMWAFeSMs9ruj0tJSwecfE8VoNCIzM9Nv+Y2X8PBw1NTUoLa2FqtWrQq4sSUQblNTU8AKcgdfqxMTE5Gfn48NGza4jOMrR48exfLly8ed3t/88Y9/xPnz52E2mz06+pgInHDT0tK4RWLBxlGry8vLcfv2ba/2Y/Yk9L6+Pvzwww9ISkqaUB39jUKhQEtLC/R6PZKTk/G3v/3NYxpfGzgn3GnTpuHZZ58VuG6bLKZNm4bDhw/j9ddf516wu+rWPXX3rK+jqUpJSQna2tqwZ88ezquaK3y2Q/jW1US/OPA3BoOBUlNTnc57a0k7fnEwlRkeHqb8/HxSKBTU1tbmlzwF3wqx39dMlWWdxcXFsFqtTuNDb1twRUUFNm7cOKlWsrdMnz4d+/fvx9tvv428vDyUlZV5vd7MJY7S7u/vn9BXfv6mt7eXZDIZ9fb2+pzOUy80Vbl16xalpqZSfHw89fT0jDsfp6/8IiMjUVBQ4LTOOJCQG0MhKioKO3fudFrY7i4NYB8zl5aWjvu7p8nkoYceQltbG/R6PZKSksbvVU1M4oODgy77/mBrLkt6ejrt2LHDq7hNTU2kVCqn5OoIX+ns7CSVSkU6nc7nXkjCEzIncJlMhoaGBqxatcppMoEfj4L0XhIQX9jOh63L5cuXsW7dOhw9elSwl8cvlfj4eJw9exaRkZFQqVScVzU+LuXgTvLV1dUUHx8v0ABWcyfjq/La2lqKj48nq1V8X8qhoSGKjo6m2traINcsOBiNRpLJZPTaa6/R6Oiox/gSd5LftGkT5s+fj/Xr13PnWEt1MlbbswvbKyoqRMNfeOEFpKenY+3atUGuWXDQ6XS4ePEivvzySyQlJXl09CG6mw2fw4cPw2w2o7y8HMDkfx/DX9jO59VXX8Xg4CBqamomqWaBh4g4Y+u5555DYmKi6CweJyNvutf+/n5KSEggvV5P5eXltH379on2MBOivr6eVCoVjYyMcBuOpqSk/CKHPRPhzJkzpFKpKC8vT/TambH/HrvZH3/8EatXr8a5c+egVCqRkZERiMbpNQ0NDQgPD8fNmzcRERGBZ555BhKJZMp/nOVvfvrpJ+zfvx8zZ87Eu+++i9///vdcGEPkfT9LRHj++efx6aef4oUXXsCsWbMm5WYSEa5evYra2losWrQIf/jDH4Jeh6mKYCcivhpbXW+bTkRWIpt9Xnf//v0klUqpvLx8UnZKLy0tJalUSvv377efHKv2VN8XKnCIjx6ch0I2IpOh8J6Pg4wCslEPFRYa+FGot7eX8vKeJYVCEdChB19gNTU1JJfLSa/Xc9sLOYnT5pD2PpC3YKNwnqCFwu02EgBKLzI4nSs0GEXvE+udJDY2NqDeSaKjoyklJcXtzm9eyfE+EDaR/TJBZJe8jbopw1GwYxgK08lgMrvNjO9XSK/XU319Pd29e3dcFWP9Cj3//PMUHh5OCQkJbhuOT/L6lQlX7FF0vtFARrONOIPKtLsIuSXfoptanLyAmXYXAZk10KoZjy78rl27ho8++ojzCJaTk4OFCxeCYRg8/fTTAOwr8+VyuZNHMADo6uqCyWTiPILl5OR4fGVXtIzBvhaRAAYwGM0o0Tr5rPv14OCWjWBBJqPGy2ab3VomWLCMUWOewYi9JTpRP240jr0OXfny6+7uxsDAgFtfft57PbH7/i1axiBjjw06NQMQQIwFGcz/4C2Rxjqea/mlsPvlV3Ds4reoPt5s9+XHWC6iFUBW9JgDZJHrZm+G2I1xdbNkMhlefPFF/9beCQkIF3AJRdirZgDYsHtPNTZv3gxVkYon2DEH0Jj6G5WMCwJMe4pAGemw7e0BcM8rsteI3ZiJ3ixyMdRmz7sKZ8O6TU2IHvP5C8sH+Oh/7fGFU5FjL8B4WU3tjYZ8pMeEFspASQyDTzLmIRaM/YpJPQ/pAL7rveScyGJCVeN50fz8dXM8LX5z6ikg3Pqg97vLnM9fRp2L+XOj3BQm+nOKM+b1VKSRs2eK3m61P1IBpM8bu37WwjJW2ce2BpOZMyjNJgMho8DBFuMNmF1YnjYXg2p/hQvj2h1Mvn/ensZYVUgGY3dAy5/scF5EIiIyVm0U+F5kRzzcy3rd5r0wmwwo1WkgGfvivLgFoOP7BC2EeA5NyEXTZzx4tJloON/9HGMxYR8KkKu2p4mJegxRMQsCWv5khROrucRFBCwmHEcmtwXE+UYD5v2XXXMFG1zEaktAVOKiQOF/x9/B5d7Fm461oDBzGVcZtbYEagAEmxeN5JcBO3jhHk/sjbeYwBQf5xQQAHp7vwMwZhg767pDl8Cbt3U31RdoXBXF+vwVDuatv7rJCsfrMRSmc+5wWZ/HhRm8rrlwN3l8K0REYBgCSGJvMWK+zAVxGWFz81M4vycCgO7GKmh0pWNHEhjNo/YxriBDhzwCWL9Ah7u57eAP8/gJ/h/VwgYbH3K65QAAAABJRU5ErkJggg=="
<image>如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是() Choices: (A) \frac{12}{5} (B) \frac{36}{5} (C) \frac{15}{2} (D) 8
\frac{36}{5}
11,005
null
\frac{36}{5}
"iVBORw0KGgoAAAANSUhEUgAAAEcAAABwCAYAAABMz20KAAANTUlEQVR4nOVde0xUVx7+7jjIo2BZlVSNWtsEN5UqcUVXKTiKNDEmJlaQxmq6lVhaH6ki+Oi2S4JpNA2RMV2T+hhlBolKG2dXrG0TU1HHIqN1p8ZnVzHdBLMsOoAwMoDM/e0fw73eufO6d7h3GMYvAe7jPH7nO7/znXPPOfcCekHBCo4bq4sJgPtnYTGx9IQ2bzlEGkQ5yO8NAjkawDAM/no9DSzLgojA1uVDw7wMzfQ0METkN350ows5zCigtArnKj7wuHN460IwBaegHRrDhhZEBOvRMtRjAZ6IiAGA6Wnp6J+W9GJ6DqETi5iXMbOqAXs+mOc3XPRrjq+6d9xEPYC0tDTfcQZ+RT05DMMAYAfOWPT2OvHvSzYAQEfb//hwQhKZgV9RT467yFwxNYiNjcfUxauwEMB/Wh7xgdwkAuRowOGrdhC5gLAPMFQGy7LBAxHRz8YSAkD7f37MX+u0HiIsLOYHQcOCHKkF9g2XV3yXy0VERC0NB54P/gDSlR7xCBexvRUR8a4uF83Nzfj999/x8OFDWK1WTJ06FV1dXSAitLW14fbt28jKysK2bdvg1iPf6hKx5EhFc3MzLBYLWlpa0NTUhEuXLmHSpEnIzc2FRqNBQkIC5s2bB5Zl8corryAlZQxSU/+I2hPH8KdZsyEmR1gpw3IQ+Ouvv+KHH36A1WrFo0ePMH78eKxYsQIffvghEhMT/XodATAYDMjJyRkgBiBoIAwpjDdsPOfBgwc4fvw46uvrkZiYiLfffhs6nQ5vvvmmz/BCggjgCUhLS8OxY8eQnp7uOyNh4EEoXVhw5swZWrx4MU2aNInKysqos7NTXgIsEZFbgEtLS2nDuvWSo0YkOXa7nYxGI61evZoWLVpEFotFdhrCHoplWXr8+DGlp6cHjyc4jijNcTqdqKqqgtlsxuuvv46ioiJkZ2eHlJaHdjAMduzYgfXr1wePJziOGHLMZjOqq6sxceJEVFdXY8KECYql3djYiJaWFhQVFcmKNyTkkEAsT58+jdOnTwMAysvLPYSSJI51uHD+whsMBrz77rt+bfCHISGHM6q4uBitra0oKiqCTqfzG05qer7C19bWIi4uDqtXrwbwnBRJactWOgWwb98+mjFjBu3fv1/xtMWPCjNnzqRbt24FDecLYfecjRs3gohQV1eHV199VfH0hR5hNBqRlpaGadOmBQznF0rVWDA0NTWRTqcjk8kUlvyePn1Kubm51NHREXIaYSHn3LlzlJ6eTmazmXdnlmX5p2M1UFZWRps2bRpUGqqTc/HiRdLpdGSz2bzuDW4qwj9sNhstW7aMWltbB5WOauT09PTQ999/TytXrlQrC79Ys2YNnThxYtDpqEbOsWPHaNasWWol7xc2m43mzp2rSFqq9FZffPEF7ty5g19++UWN5AOivLwcmzdvViQtxSbYaWDmo7q6Gq2trThw4IBSSUvG8ePHkZyc7DUaDhmK+N8AzGYzFRcXq9oLBUJBQYHPAV+oUKxZWSwW1NTU4OTJk3IqJuR5YjF27tzpNeAbdPpKMHzjxg1KT0+nR48eqdY9B4NOp6O2tjZF0/Qih2VZiQV83nTmz59PZ8+eVdKuoBDauGHDBqqsrFQ8D/inQaAbokDC07KyMlUeIMXwV2EtLS2UnZ1NfX19iufp4TlSPMZFLM/OmTNnSKfTSY6rBgoLC+nIkSPBA4YASZojLDbLusl51u+klJQUstvt3uHDRFRDQwNfOWogKDn+Cpqfn08mU5XS9sjCRx99RBcuXFAtfY9B4JZFDD9LptFooGEYGK85RP0bC+vVK+jt7cX7778fejc5SFy5cgXt7e2YP3++epkQeTabklzQ4avtRETUZjUQALra9Vyce3q6KS/vHXrw4IFqNeYLYg/Oy8ujixcvqpqnBhAs8KETV3/KRn5GMgAgedobAAAWGn5XZmXlXoyfMBmvvfZagK2aykM4mDMYDGBZNuRlG8kQMtXRYKAFpQb+vDgH7nOu0liihboFgiF6+B8T+vr6aNmyZap7DREvyO5CXjZt9tiv0tjpLcZZWVnU0dE2ZF33gQMHqLy8PCx5DQiy+883xr2wtLFgiWA5sh5zR2lg7SKP5uN0OvHw4X8VeyaSi1OnTqGwsND3RkiFwfdWbFcD9JpSZP2BAQPgrTW7sQjANycbhaKE7u5uaLXhX+4iIuj1emRkZGDixIlhqRyenCv/+Bab/5I3YAkAx038BHhu8WAAaAgul0t1w8To6OiAzWbDpk2bwpanhtuGWmvci5XL5wAAiOnEoqS3ACzA8lmJfGACEBMTOyTklJSUICcnB6NHj3bbEo5tRZ3Wwx4izP8IdlVyYIkoMzOTbDZbWAX5woULlJmZGbb8OPC9Fcv2S4qwZMkSunHjRljJyczMJKvVGrb8OAwoqwZS9W3MmDHQarVh660MBgNSUlIwZ86csOQnhOxuZ/To0YiNjVXDFi84HA7U1NTg4MGDYclPDNmrDwkJCYiJiQGgviiaTCaMGzcOU6dOVTUff5C0m5QEE9Vmsxljx45V92kYQHt7OzIyMtDU1BTUJrUgyXOERnR3dyMuLk41gzhs3boVGzdulGSTWpCtOb29vUhKSlLDFh43b97Eb7/9BoPBoGo+wSBbc3p6enjNUQu7du3Cp59+qmoeUiCbHJZlwbJs8IAhwmg0wuVyYcmSJV731O4AxJDdrJKSklQhh4jQ09MDo9GIffv2+QwT7pkAWZ5DREhOTkZ/f7/ihjAMg7q6OmRmZvp9nyHckOU53MR7V1eX7IyCdb3t7e0wm80wmUyy01YLHuT09zif34iL9x1Bq0VLS4vsjMTEiMlat24dli9fHpZhglR4NCuOECExYhF0Op3o6OgYdMZCYu7duwe73c7vqwm38PpDUM0R17jT6YTdblfUiM8//xyffPKJ3zyHCgE1R9zM+nuc0ILQ1/3UK4y4GfpqolxT6u9xwuVyYcSIEbBe+xecTieWLl0aNH8p1zk7PWz2IxHBEJAcbVw8njm7EROfwJ8nJCSg18V6GBPoWHjOEaONi+cz/ru+Env27PHKW5yer+vCcy6M8Fx4HApBspoVl0lvb6/HNaHxviDWEO5cr9cjNjYWqampAeNLKZgvvQzVY/j4UjL1qMX+fl5ziIj3qkAQawjDMHA4HDCZTDhyMPwbK6WC95xAtS+s+e7ubr63EnuVHFRUVCA/Px8zZswIGlZu2krBa5zjyxVj4hM8dEOjcXMqFj8+UcF1X/fu3bmNM6f+icbGRp/6EUraYs0JdCwVPDlyI3I9j9/BYoD0KvR7UbJ9h1eYYOeBrgeKG6r2SHq28sV6qGORy5cv4+7du1i5cmVI8cMJyeMcpbB27Vqv5yfOC8Mx9SkHQcc5YgxmaF9TU4PU1FRkZGR4XA/0juZQQvZ8zmAKsHv3blgslpDjhxshvRgidbJL6GUVFRX4+OOP+bXu4YCQ9pKMGDFCUjjOy5qbm1FfX4/vvvsOQORqjBiSPEfoAfHx8rvFtWvX4r333uPHR5GqMWLIXrfSarV+Vx98ifX58+cxefJk/qX34QTJmsMVfOTIkX7J8eUJX375JQoKCkI0b2ghuVlxBY+NjQ267Y0jsra2FikpKcjNzfW6NxwgSZCFHhETE4ORI0cC8D9pzl37+uuvvQZ8ka4zQsjuyjUaDe85woKKPeKzzz7DnDlzVPkkQ7gQUlceyFsA9zLL+fPn8eOPP4ZuWQRAtudI+bzKtm3bsGXLFtU3HKgN2eQ8efLEY5pUjPv37+Px48fIy8sblGGRANnkxMTEBNxqu2PHDhQWFg7KqEiB7LXy+Ph4n+TQwDdx+vr6sHTp0mHVZfuD7LXy2Fjfm7RZlsVXX32FQ4cO8WGHO2Q3q5deesnnLouqqipMmTLF/R5WlEB2Vx4XF+flOW1tbaitrcXRo0cVMywSENJWW7HnGAwGzJ49G+PGjVPMsEiAbM8R91bNzc2ora3FtWvXFDUsEiDbc549e4bk5GT+fNWqVdDr9UraFDEIaZxz//59AEBdXR0cDgemT5+uuGGRANnNqqmpCaNGjQLLsigrK8OuXbs8PCmaIJscrVaLxMREVFZWYsqUKT63xEYLZL/7AABjx45FfHw8rl+/PqxWE+RCguawbmIEFNrtdqxYsSKqiQEg/ctL3Jt5nZ2dtH379hDeext+kP+BeuEH3KMc8lc8Gbj/DwuG12R5KJCkOWIQcYty0U3OsPm/D0OBoJ5DogP71cO42vVi8Bl8qy3HA+P+vk7Bn9e6G9oLwE9wzRH0TMZtO9GfnYU3khj39SgnSAN4ltGzvM/FuLG6GGx+HmARsBXlXbrHZ6nEx5xj0dNL+JYtQOE0wkXdLIwKm3lDC//NSuBCJX8z8//ScUFGGnx179EIDdeT+5OPxupi6PV69+bspLfAujjfYl8AzeF2WfGXBryCYYGnl/GNawXI/bUUdFoPI2PGNIA0ADRRrzke8zlEBIYZ0BlHIzTLvgV7ttJ9DuDW3RsA3oh6Unj4+pydoXSB4Itv7mubFzz/8FBOicErTjTi//AT8YoCh6XeAAAAAElFTkSuQmCC"
<image>某工件形状如图所示,⁀{BC}的度数为60°,AB=6cm,点B到点C的距离等于AB,∠BAC=30°,则工件的面积等于() Choices: (A) 4π (B) 6π (C) 8π (D) 10π
11,006
null
"iVBORw0KGgoAAAANSUhEUgAAALoAAABlCAYAAAD6ZvkLAAAeaklEQVR4nO1de1AUV7r/9Rgrcl03ayKueLcKoxidGRQZFQGrfGBiNrIxeGUQE41GzUbR1JZmKxuRlYcY2XXUrIARFbLGBBmgHGRFaxMUzZaJml3wMTPcBERJSnyMEbMVdbyrc+4fQzc9Pd0zPTPdMz2JvyoK6D7PPr/++jvf951zKEIIQbiCAKCcvwiqUJAfi7zc2N57cN5/hJ8aHABULldU/AnDBAyJzciPnY8a7r1HJP/JgKBXtrnT2hE+RCeEsHviAnP+PBRYAK1W65onCO16BGWgV645WAPvcP4iqvAhOkVRLhKa6Ys5FwUkF+u1PS8DO0/QWvcIoQYBPf4q1sD30JsKF9WFxV+azBQAB6qRkUkhN4+g1aKBVuNO9kf4kYMA1RkUVBQFlUoFSkWBonp+MoxMsvAgOlc093C5NqMa6eY8aC1WWKCBRuvsoBOOYLbwEUIFCsioJjDqAUqbiwsOBxwOBx4SI9JrMkHF5sIMgsdC3U5fQRP5Qr4W82qsAEVhHgBgLgghTkMMRSFc3uFHCBwEZlisgFqfjlg4VVwKGag2W6CJLcC8fH0YsYGlkTisuciH0UlsQuCoTge0WsRSKpZEf4SfDCw1qLVooE/XuF7X6pGhBawWSxhJ9B7+EksuxswDjOZeC4vZagUoLSjasA702tgJESS/p3s/NoRzX13azhpi+l9zbS2s2nSkaynBfoaFRGdPL1WxBbBaalBrISAwIzeWwtg8K2DOh5bSo5pO3dNXT4MbrgPvK3wheSgm83SdfHW7td2tG2bU1Fqh0euhBeWSlsAKqwXQaLWgwtMz6u75cgHnrQ8mwlly0lBWHxwgxElgt3YRgFhzERtbC735HPK0j7FvATV6qDIsyDWbw0V1cRKb5i+BisVjNul7/g7hGCmHIN4hRGheUoUIBCpQvF9nBwilAqzWHrWlDydfNTIzagF9FfK0qnAhupPIdDedZKf/V7mlS09Ph8ViCVrruEhISMCwYcNCVr8voEmtVBAKoDjNS0lJwdQpUwHKjLz8Wmj0F5zWlh5cKFBjbO7/QpN3AaQn9ilsVBeuhGGIzlFTpk2bhm8uf4tLnR3Q6/WC+eXC7du38emnn2L9+vWy1yUFrFYrTCZTqJshChRFoX///ujbty9sNpvweGrX47w5D2NYxAgLoju57EUvB3Dz5k2o1aNgs32H7Ox38NVXbSgsLAz6J1itVitaSgLOF//mzZvQ6XTIzs4OaVs8fVXsdjvKy8thsVgwc+ZMXLt2Ddu3b8fUqVN7E3GMbeARaoonuqAkZpkPQVGgAEyclIDS4hIkJCQAADZt2oRDhw5hz549vGVILeXpAUtJSUFjYyM0Go33TEEEu782mw06nQ7V1dUYOHBgiFvmju7ubuzcuRMffvghFi5ciA8//BCA/6qW4s2LgkRkTVAoACdOnED/iP9iSA4Aa9euxZtvvomlS5e6lUn/yIEJEybg0KFDspTNhbdBZ5vu5Ca5WAJ6eu5dXV1Yu3YtkpOTMWjQIDgcDobkq1atQklJiU91MXUqXaKLRWRkJFpbWzFo0CC3e1VVVSguLkZ5ebls9bOJdODAATQ0NODkyZOy1ecP2OqK0iR5R0cHNmzYgFOnTqGoqAh/+MMf3NIEMnEOE6tLL/jUjRMnTkCr1fKSHAAyMzMBAEuXLpWN7Ow2TZo0CevWrZOlnkBAURQmTpyIsrIy2UkuVi1saWmBwWBAc3MzqqurXQwIbKxatQrFxcV+t+dHIdEjIyNhtVoRGRnpMV1VVRUKCwvx0UcfoV+/fgBYYb8SqzFKnJAOGzYMO3bswPDhwyUtl0/SeiN6U1MTDAYDvvvuO1RWVmLWrFke8wVqBlW8ju4Nhw8fRkJCgqA0ZyMzMxPbt2/HggULYLfbAUBQV/f1oXLTazQanDhxwqcy5ADdLrlILgQhkptMJuh0OmzduhX79+9Hd3c3Q3KhfKWlpVi5cmVg7Ql3ie7Pm37mzBksWbLERbJLjS1btqBPnz7YuXOnLOWLAS0dg01yLux2OyorK7F582YkJyfDZDJh8ODBovNL4dRSvETn+yTS8PdNT0hIQEVFhYtkDwTcrwIhBDqdDkePHg247EBAURQGDBggSHK5/Qvd3d147733EB8fj7a2NjgcDpw8edInkkshzYEwl+jsN90fmzgt2Xfv3i355MxutyM+Pj5k0YAURWHEiBHYsGEDdDqd7HWyx6Krqwu7du2C0WjEG2+8gZ07d7p7tkWMFyEEgwcPFjX/8gbFS3Q+EELc3nR/pBMt2TMyMtDd3S2Yzp+y+/Xrh4iICNhsNp/z8sFTKCsXNMkLCwt9IrlQ2WL6TwhBR0cHsrKyMGPGDIwcORKEEEZ1c/NU9vzvqT+fffYZtFotL8l/9HZ0WhJIGYxks9kwfvx4GI1GRrLT9XiTPJ7ur1y5EgsXLsTixYslaadYsEkejOFtaWnB9u3bcfr0aVRUVPjUX0/PT6w1TQzCTqJTFOXiIZMCkZGR+Ne//oWMjAzcvn2bqYf921N7hDB+/HgcPHiQ+d8f0onNQ6eLiopCYWFhUNSmpqYmzJ07FytWrMCaNWvgcDh8fqmFJDvtG2GT3NN8zWs94SbRAflCS8W4xr3VzZZQLS0tWLFiBfPyyI3ExETMmzcPL7zwgug8fP3x1scDBw5gy5YtePLJJ7Fnzx5MmTJF8onttGnTkJ+f7xq8FQDCTqJLLc3ZiIyMRHNzM2bPno2Ojg7eNN5eMPaAx8fH4/vvvxdMK+ZlFVpexoU/JPdWPlfaVlRUQK1Wo6GhAc3NzWhra8PUqVMlJ7nNZoPFYpGM5EAYhgCUlpbK+kmOjIzEN998A7VaLYntOSoqCq2trVCr1W73xBCEm4bPepGUlORCcqm+eIQQ2O12lJWVYefOnUhLS8Pdu3cRERHhMU+gxNfr9aitrQ2oDC7CSqLLKc3ZiIiIwOXLl5GVlSUo2QFxRGVHMkpBPm6dXJJLVU93dzfy8vIQHx8Ph8MBQghMJpNHkvO1z1fwSXMp+hM2RLfZbDAajZI4D8TCE9npPWW8DUJSUhLq6uoAiDOp+YLnn38ezz//vM/qiid0dHRg9erVSE5ORkxMDAghKCsrc0sn1IdA+5afn4+8vDyXa+zn5m/5YTMZlXpy4guGDRuGTZs2IT4+3ue8V65cwbPPPit6AivmOgDMnj0bWq0WixYt4r3PVV+8qRStra3485//jFOnTqG4uBirVq0STCsn5DI0hAXRbTYbNBqNZM4Xf0Dbpv0hO18ko1g7PR+8kZwLT6RvampCSUkJ2traUFlZifT0dJ/aIiVWrVoFtVoty1c7LCajckxOfEV7eztiYmL8Ijsdycj+GvlKcjotl+RiynA4HC5pKIqCyWRCcXExfvazn2H37t0h+VJyIaehQfE6uhymJn9AURQuXryInJwctLS0+JR3/PjxvEvrfJHkFEXh9ddfx9ChQ10kuUrlfQjZQWcVFRXQ6XQ4dOgQGhsb8fXXXzPPNpQfd25Ih9RtUSTR2Z2cOHEi/vnPf4awNa5ob2/nJbsn0rInpP6AEILs7GzcvXsXq1evdrvHBbctdrsd27Ztg1qtRnt7Ozo7O3Hy5Em3xdtcs2UwwbWoSW2bVyTR6U6eOHECw4YNQ3R0dIhb5AStJly8eBFr1qzBkSNHXO4JYdy4cWhvb3crSyyZ1q1bh87OTvzxj3/0OHHl/s02EdLXDxw4ICp2JJhbhJSWliIrK0vWOhSto6enp8Nqtbpdl8Ip4Q/YdV69ehWJiYkA4NW8N3DgQCaSkSaZ2PZnZ2e7kZxvYskur6urCwaDAUeOHEFOTo7ilvRxsWrVKtnbqEiJDvAH9dAINsmFpO+pU6dgNBpdJLsQ4uLicPz4cd6yhcAmOcDfb/a1jo4OvPbaa5gxYwZmzZoFQgg2bNjgtW2hBHeSLhcUa16UMkRTbvDFmXC/Ojt27MDt27eZPUq8Yf/+/SgpKcGePXsAwM1qwh62L774AgaDAVarFUajEXq9PiRfPH/AHWd2v6TsgyJVl7/+9a/4zW9+ExYkB5ySPTExEbdv38b8+fMB8LvqV6xYIaq8qqoqlJSUCG7NQZPhyJEj2Lx5MwDnixFqy5Sv4Ptqy/WCKlKiy+UdkxszZ87E+PHjBR05YrbAELPZUmVlJQwGA5555hlUVlYqbus7sXj66adx/PjxoBgbFKGjS7HgWQn45JNPYLFYsHfvXt77UVFRvJNrGkIkp6MIS0tLodFocPr0aXR2duLs2bO8JA8HIWGz2fDDDz8EzaKmCKKzP1fBilCUEmxi1dfXC5I9Li4OTU1NvGWcOXMGOTk5biTv7u5GUVERE9vucDjw97//3aNaJ3XwmBzQ6/WoqanxnlAiKILoNEpLS0MWTBQIuHqlENmnTJmC/fv3u+WndyNghzlwN9skhDATWbEEVuKElBDCeLunTZsW1IoVg0GDBoW6CZLixRdfJC+//DJpbW0lra2tpKGhgXAf+enTp0lsbCxpaWlh0iQmJhIApKioKEQtlxezZs0iDQ0NvPccDocsdSqC6A6Hg6xcuZKUlJS4XPsxYO3atS5kZxOdJnlzczOprKwkOp2OACDV1dWEEM/PIJyfTyjkqyKIToj/nQ90wAPJLzYvm+wajYYcP36cWCwWMmLECLJ161YSFRVFnnjiCUEppwRw+yq273fv3iVWq5VYLBZisVjIc889R3JycuRookeE3LxICMGbb77pNQ6Z+On29zWfv/V4A+3l7NOnD+7fv4/q6moAQExMDA4ePChoPfHWFk9WHDYaGhrwww8/gKIoJmyXz4x78OBB3Llzx2t53NgdT4iKigLgDBe+fv06nnvuOXzyySei80sBRRBdpVL5tQLHn7rYFgkpXxz6+r1793Dp0iUATnLduXMH165dw9GjR3nJERMTA8DddyCWSDSJvGHChAmiNlRNSkpCv379vD6fcePG+byNHyEEGo0GN27cCLozMOSe0SVLluCDDz7wmEYqCct1o9OgB5U7uGzS2mw2HDt2jElTWVnJpGtvb3d5gWjyPXjwgLEsxMfH4/HHH2eOhVy2bBl0Op2gcywlJUXR5kF/UFdXB51OFxKPd1AlOpdI3pbISalGdHZ2Mp/kM2fO4PLlyyCE4Pr16y673nIlKU3agQMHQqvVMtenT5/O/D1q1CgMHTpUsG6TyYTs7Gz07dsXxcXFWL58ObZu3SrpouZggD0e/niv1Wp1SKQ5wJHoD+73Nvyxx6XXU7mkpZfICRFaiORWq5V50LTuSQjB6dOnmRX7NpvNZfOggQMHMp/u0aNHMwcH/OIXv8CaNWuYdPSn2xO47RUa8IqKCmzevBlDhgzB6NGjmfM8J06cCIPBgBs3bohe9ykFfCUnNz37q+cryekDAMQc2CAH3CT6g/tEFpJzYbPZEB0dzaweunHjhovXkD0pEpKygKvuOXr0aBcJPG7cOFna7m2gaYKnpaVhzpw5KCgocFlKt2PHDty8eRN37tzBU089hbffftutDLkmxXxlByO2KJTSHAiijs59uNOnT8e9e/fw7LPPAnBXDRYtWsQQWEg18GeAfCGQp4knF3a7HRUVFSguLkZaWhrjAdRoNPj0009d2kpHMt6+fRurV6/GypUrUVpa6tY3ucC3+xf3vphrYmEymaDRaEIajepRonNVGT7Vhr7G/Qp4UoMufn0ZGo0G+fn5SJv7omDjHP/pzafqS0RdV/UlzH36b3aaQEATnz3odrsdO3fuRFlZGRYuXIi9e/cyROrfvz8aGxvdrBOEEGi1WjgcDgBAeXk5duzYgfLyckRERPzoJqGhluaAl1gXmqBCv+mXgvsSsK/z3YsZ9TSG/Hck0ua+6EJaNmiCcknKvs4mNfs3nYdL/EDBtqywjy2hr7FJPmDAANTU1PCa4FQqFYYMGcLYwJcuXYqCggKkp6fj1q1bkrRVKVCCNAd8DOri098f3CcuRPaGf/zjHwCAoqIi0XnESGQ6DTutL5JcSFXgXqcXHCcnJwNwEpx7qkNUVBR27doluEEpIQRjx451mZOkpqaivr4eGRkZ6OrqEt1upUDo+WVnZ/MuIQw2vBKdK5H57tM/YvDrX/8aM2fO9GvHq1CAViPYBOceW8JOFxcXh7fffttr/6ZOnepii6edKc3NzcjMzERraytvPiVGJAL88xaTyYTo6OiQS3OARXRfpDIfxOSvr68HAN7jrz1BKtXDE7gDRf/f1dXFbLpJE5xvwTG9i9asWbNc7ONCxIyLi8Pnn3/uli4yMhI3btzAihUreDdKUrr+zu5vdnY2vvzyyxC2phcuEl3ItEhLde49+jr3Hvs6+95LL72EV197BUMi/xuO/1BuE0XuJJMvDfs6Vx/nliH0txhcvXoVb731FmbMmIHU1FRegrNJl52djQEDBni0i7PTe9t3/dq1a257x4QD6D4qSZoDLPOiv7ZzoXzc6++88w4A5wFWQroz97rYdN7y+qKrd3R0wGAwoKmpCcXFxWhoaBBMS0uvqqoqnDhxgnedJ9fhwgbfnoxsXL16FXFxcUF3LPkDrik2OzsbN27cCGGLXCFqMiqFE+lPf/oT3n33XdlOag4U9J4oqampePXVV0EIEbXa6csvv0RhYaGbHVwMhPZkZOPcuXOwWCzMan+lgU+Vqqurw6BBgxQjzQEvRPfVoiKERYsWITIyEnPmzAm4LH/ANxi09GltbWUIvmbNGhBCRJ+sZrPZ8MILL/h91LrYPRnr6+vx85//XJGLxtmxLzTWrl3r80asciMoQV10tJ+SLC0tLS0oLCxEW1sbPv74Y+j1ep/LGDx4MKqqqjwGdHlCd3c3kpOTmZ3AvFlUysvLsW3bNuzbt8/rESuhQl1dHbZs2RLSvez5IDvRU1JSADjjO0IJ2ptJE/zKlSs4ePCg101/hAg4YMAAGI3GgA/z0ul06OzsdDtPUyhu/tixY/jtb3+Lffv28XpcQ21+VKvV+Pbbb/GrX/0qpO3gQtZdAO7fv4+mpia3vQODuUER+2SHlJQUrFixgtkeTszOVnzEiYmJwfbt2xmSe+qLtyNb+PZk9BRwlZKSwjiWuGcr8akRwcRHH32EJ554QnEkB2SW6EOHDsWsWbPw+9//Xq4qXIjA9wI1NTVhw4YN6N+/v+CSNV8QFxeHxYsXe4wl9+VFFtqT0Zt0ttlsmDhxIrPveahx//59jBs3Drdu3fJ55VEwIBvR29vbMXLkSLS0tLhM1OSS5txyTSYTNm/ejKeeekoSghNCsGDBAgwePBhvvPEG732+qEBvS/fOnj2L5cuX+3S6NLusIUOGYNOmTUhKSvKhN9LDYDDg8OHDig1fkC1Md+zYsXj33XeZaDx/A/bFgu2o2LBhA+Lj49HS0uLTlmeepOi6desAgJfkgOdYGU/lejtd2ltd165dQ0xMDFauXBmyFUt2ux3l5eX49ttvQ1K/GMhC9GPHjsHhcGDOnDlBmyBVVFSgpKQE8fHxbpM7sRBqpyeHkLfyvL3YhBAMHDgQnZ2dfu9D2N7ejrFjx4bMsVRaWoqIiAhF6uY0ZJmMzpgxw2XBs5wTz/LycqjVanz99dfM2Tx8e237izNnzvjtEBKLiRMnBny69Pnz52GxWFzCFIIx4bfb7dizZw+++OIL2esKBJITPTs7Gzqdzi+buVjJT6/m0Wg0aGtrAyEEdXV1blI80C+JzWbD3LlzsXv3bjeHkJRfqUmTJjEBb4GUW19fj+joaCxdulSwLKm/riUlJYiIiEBcXJyk5UoNySejFEXh6NGjPjlRxOru7NU8aWlpzGJjuRCoQ0gMCCG4dOkSEzgmBaqqqrBx40bs27dP0pALrhpqt9sRHx+Po0ePMv4SpUJSiT579mwsXrzYZ2J4CnwCnKYr7moeOUlOCMEvf/lLlJWVeeyLFMSkKIrX6RRI2ZmZmfjLX/6C1NRUdHd3C9brK7h5aHVO6SQHJCb63/72N/zud7+TrDx6sQO9mp8Qgvfff1+QBP6Qgy/PyJEjUVRUhNGjR3vMK6UaoNFo8NlnnzFt8mUBNx9SUlLw+eefM44loXh7X8DOQ+vm9NZ6gZYtNyQj+ogRIySJTqTXY9KreWJiYtyWq4ld9iYG3DyTJ0/GsmXLkJSUFFQPY2xsLBobG3nb5Ame0kZHR6O5uRlZWVk4e/asX+0S2t2MDungixEKdRgCHyQhutVqxZUrVwKOTmRvfk+v5iksLGTuyy0pXnnlFSQkJCAtLU3WevjAnpBKicjISFy+fBk5OTmMZcTXTVe5sNvt2L17t4slSolSnA1JiK7Var3unygEiqLQ1dWFNWvWYMaMGUhMTPS4XE0ubNq0CXa7XdAhBPQOphy+gaSkJJw7dy7gcoRUlIsXL2Ljxo0wmUwBk5ImOPu0ZyVKcTYCdhh98MEHPpsTKcq5dfGlS5dQUlKCI0eOoLi4GIcPHw60OaLAJWpVVRUOHTrEOITo9nEHT66gNIqimPiQe/fuMSG4/rxQQm0GnI6lyZMn49///jcWL17s1VvNVz+tmyv9oF4u/Jbo9MNZsmSJz6tfLl68iCVLliA1NZU54Zi9mkfuzyB78PgcQsEOd6X7m5iY6LLiSKo2sJ/nyZMnYbFYUFBQ4HaPm4evfvo55eTkSNK2YEE00fm2KFu2bBlee+01NxOc0MNjL1ejV/PwLVcLFsmC5RASi9jYWJedfaV64bl9oR1Ly5YtE5WeBi3NpbSsBQsBOYwoinKLTuQDvdjBarWiurqamal7iu4LhlQdNmwYduzYEfDiCanQ0tKCrKwsQdu31KiqqkJOTg5qa2sFN/9nB6Vt27YNZWVlip948sEnHZ39IBITE72aE9mreerr6zFlyhSX+0KmK/p/Ock+ZMgQvP/++4ohOUVRUKvVPoXrBorMzEwMHz4cqampqK2t5Y0jp+cq9+7dw65du7BgwYKgtU9K+CXROzs7MWrUKBfbLHtS09TUBIPBgO+++07UcjU2giHJ4+LisHz5ckWeKpGcnOxzeHGg6OzsxIQJE7B3717BF/+9994LW2kO+DkZjY2N5TUn0svVtm7disrKStHL1YBefVRukk+ePBnz58/H9OnTPXoL6Rj6YIBdT0JCQsCRjL4iOjoa33zzDbKysnhX73d1daGsrAwvvii887HS4fNk1Gg0YsSIES7mRJPJhOnTp2Pr1q1obGxEW1sbJk2aJCoWm0Yw1pG+/vrrGDNmjKBDiKtKBWtCyq4nISFBkkhGXxEREcE4lrjHuBsMBgDwOR5fSXDT0YVUB/ra/MxMNB49CkIIDprqUFDoXM3T2NjotlzN20B5svlKjU2bNuHWrVvYuHGjIlbLCyExMTGkNuqLFy8iLi4O33//PV566SVcvXoVR44cQXJyssfFLL3P1NHzPwUKFKCQx8wQvTqDwrwazl3telww5yEWTmn71ltvYd7L83H8+HEYDAa31TxKJVBDQwNqa2vx8ccfA5B/ousP6DYNHz486O3iPotz585h8uTJuH79Or766isAwEFTnccyevOrev6Xo6X+w2UyeiFfi7GW9SDV8+BANeZR81CrrwKpnudM3NP6lJQUVFVVITLyKci8Y0bAOHPmDCZNmoQnn3wSjz/+eKibIwpXr17F8ePHfZrEy4FXXnkFlZWVeOaZZxjCiwGBYgR5L0gPHOQCWa8F+Z+ah/QlYtSDQF9FCCGkqKiIaDQaQjn78ejnJ/RjsViIC4zpLvfTqx+Sh8a5JL36IVEqeoj+kDjM64kG6cRInGe8n8/TEGA0yTUrt/GBQOxZ9o/AHv8LZH0sCDCX4QkhPQIRo0iu+T9EqU+Vkejn8zSEoigCqAgAMjr/Qijb9ZOEkl8+x//lkPVaEGjXkwsMnZ0vwQNiJOnQ95Jfgd1QAQCBGbU1Vsw1PgAhD+EwrweVOwbagvOgZ9FcODV7/ntKAgkjB0cwt+rjA2/dBCDkNMzvHkCBRY1cYy5i4Trx7AMNNHnpyKCvK05BB0AchBBLLktteUgcDkfP58j1E+WGhwp8dUVAyZJTiXAQi1Nl0VcRV1XGUx5lPWcVKOBCTQ2s6XN73kgVCHUBllYAWjXcN3JjSXGVEl9d71CSWTEcQGCG1QyoNRoAKucUlLnn/BL0XnLyg4KynrOKVlvSMzIAOAAC1GbEocAM6HPzWZ8pJgvzV/goBY8QCCiLBRYAFNUHAECb3oBeQveyRKVIdfGxPtQYZ6Mz+rAaq0au+TzytJ5t5Mp5Xx9BThCtFloKqLVYAGjcxr06Pxea3FzE9kh7JUlyGpSDEAIfvYREYV7FR5ARBAAFkBo9VBm10OabYV6v7bllRl7sGFhzH6JGr0zHIc1V3jBdhsgEAOWA0r2fjyAvergOYsmFNrYAzqN+VQBGIddsdn75mUTO3zStlCIQ/x8yOlBPVrxaKwAAAABJRU5ErkJggg=="
<image>如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为() Choices: (A) 3 (B) 6 (C) 12 (D) 24
24
11,007
null
24
"iVBORw0KGgoAAAANSUhEUgAAAIQAAAASCAYAAACae3b5AAADzUlEQVR4nO2YT0/jRhjGn6G7UiVU7WXV3WtgCdrQS6+9EIlMgGorwdeI00XAByAfYO2mUlype9xjL/a2BwLhkK+wFTYSUqOqp733UAmHeXogntjOvwaCnbb8JCvzzozHj1+/M+9MBEliDLVaLfabNVnpIQkhxNzo+aeM0j2KhWkHT5ssnjmMcU4lOTc6k0wKhlqtFgvmqQJimkibFVk8c1qEEDGd8xockyAJMSllFIvF2G/WtNttANnpSS7BWeu5K+12G8ViEUdHRxBC4NGkG6IvOm0+ug+ydHz47qEfkqtC1r65Devr67GUMXGFeOD/xVR7iAf++zwExJSUy2WdLqLXvwWSQ9/BdV3dYSSO49DzvHFdUsU0TQKgEIJSSpJkpVLR7UqpWP+kPSuklDG/VCoVTnDl3CGlpOM4JG++MwB6nseFZPRE2d3dTSVqJ3FxcQEhBDqdDkhCKYV6vQ4hBJaXl3W/5Eyd5cxN+qZQKOiybduQUqJarc7sefdNq9XCzs4OAGB1dVXX64BgYpdcrVYhpYy9eFYUCgUYhoFGozFQt7S0lIqG0Deu68YcGJLP53F5eZmKlrviui4Mw9D23t4eDMNAoVDoB0Q0GCzLQqlUQqvVSlfpECzLAgA0Go2BWZrL5ZDP57WdbL8Pzs7OsLGxMVCfVmDOgk6nA9u29f6hXq/3J1sssaiAvv+B39ff0Pc/8OtyaWj+ua/cPAwANE0zcx0hSZeFGIZBwzBSVnM7pJQ8Pz8n2d+XhXui+ClDPIL9w1t8+3oPVJ8gtzK4NAL3/3cyezPd930Ao2df2rt73/djSy1wo9X3fdi2jVKplKqeaQm1CiGwtrYGADg4OAAANJtNAIljp2VZsH98i+fPP8NXX36Rstw+83qMazabyOVy2mZv37W/vw8ppd6kzStCCBwfH2Nzc1PXJSfdQrKBV3/h48c/8e4nBy9WciADkNc3ndjt2T1T20Eif19H6rsJWePa4v1evlzBs88X8cfvvw3cf3HxK3752enVMTIeE5quR2icnsPDQ2xvb2s7PP2QxOnp6Z3GTouTkxNsbW1pO1wpdDCTpOd5+lxPdqlUwO8sk6b1hkoFkeyjqNR1pNyNlIMhZZLqKpLrx7VF6fczTZNPni7yvevo+veOc6M3dn+XSl1Fxg/tbsQOeBvCc7oQggBil+u6txozbRzHGaq/XC7H+sEwDN3oeR6VCvjqmzKfPL6pq742+k5XAfvfNug5PHqF9d3IIyIfYlxbFBXEAiX8IFj8lM+ePma1t3lTKkgEQHSsSfYD5ODG/G96FfSr8TQsVgAAAABJRU5ErkJggg=="
<image>如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为() Choices: (A) 5cm (B) 6cm (C) 7cm (D) 8cm
7cm
11,008
null
7cm
"iVBORw0KGgoAAAANSUhEUgAAAIkAAACFCAYAAABv5tuyAAAbcklEQVR4nO1df1BTV77/3KCLtbGxu2yJU9q0EloguqWLbumKRR8B0wdWqKzaKTvGt3SohG7ZNt3VkQo+29HdjRV3wEdHZ4tTZsSuvmDFZ5QwwkpHu+poR4goyMLanUFlp7BgCzXk+/4IN+Tmd+DmJmI+M8rNOfee873nfO73e873/GKIiCAECADj++1HjhzB3LlzkZ6eHjCRwvANIiEy0WQyYEQMinR6AADBBCXDoL7dNT9HR0fxq1/9Cq+99hrGxsaEEDEMDxCEJFWnCPpdRbje2w0AYJCI4l1Fbu+vqKjAvHnzMHv2bOzfv18IEcPwAEFIAgBxsfPRdO2G7Xc3YpGjsNofe4t369Yt6HQ6ZGZmQqVSoby8HIODg0KJGYYLCEYSRVys7Zra9aDYFbbfDDPRWNFqtSgoKMCjjz4KqVSKnJwcbNmyxSk9oZpSYQhCEsvEpbETV4nw1v804d1VCqc7L168CKPRyCHF9u3bcejQIXR0dHDutSdWGIGFACQRAbAADAMQ4f92vwVl0R6XdxYXF2P79u0Qi8W2sKioKGzatAm/+c1vAi9qGC4hkLkRgRLioEQTukmJnMSI8fAJLdPS0oJ79+6hoKDA6emSkhL09PTg8uXLwogbBgcz+E3OAi7vuL+LjrYh9xV7MzMRl5aWhi+++IKTGtvuEIlEuHz5MiIjI/kVNwyfwLMmcUzOBGVmMWCqh4j5NeJeSeTEOjY9HUnAtjsYhkFkZGS4sRokTFmT2DtSCQCIJhqVpi40NVaBKbGAyOj0rLumJ0sGx8ap42+yzyuMgGHKJGEcr9lKIwCJOT5//fbEYCueiGxEcEWIMEGEQeAargzXl0G2/9zcbkcOx3D7v2EIjymTxFrvFnhUGMRqGTbA4v7eMEIOUyYJM56Myw+dDbSzQP5ky2qicIM1uAion8SRNwzsiOJDvYdNTWhAsLEbFozTRRihDsFJEmoImzLveOBJEjZl3sGzW/7BhL02mo6ke+A1CTB1k+POxzNdECYJ+Pv6pytRwiQJwyse+DYJEcFkMqG/vx+nT5/G4OAgLl26BAAYHh7GxYsXbfcyDIOf/vSntklRixcvxty5c5GamoqoqCgoFM6z7aYDph1JfBkZ7ujoQEtLC4xGI5qbm/HQQw9h/vz5WLp0KRQKBVatWgWGYfDiiy/iBz/4AefZ0dFRnDt3DgDQ2dmJ3t5elJWVobu7G/fu3UNaWhqUSiWWL1+O2NhYV9nfd2AEW5zlJ8rLyzl/p4qvv/4ahw4dwv79+/Hdd99h+fLlWLZsGZYtWwaZTMZLHjdu3MDp06fR0tKCM2fOQCwWY+PGjfjFL36Bxx57jJc8ggIKUZSVlVFZWdmU02ltbSWVSkUSiYQKCgqotbV16sJ5gMVisV0bjUZSq9UkFospOzubzp8/7/beUMa0JUlXVxfl5ORQTEwM1dTU0MjIiC0uUJXjLt2hoSGqrq4mqVRKa9asoZs3b7q8N1RJM+16N7dv30ZxcTGSk5OxdOlSdHZ2Yv369ZypkYHqqrpLVywWo7CwEJ2dnfjJT36CBQsW4Le//S36+/t9ej7YmDYkGR4eRnl5ORQKBebMmYPe3l688847mDVrls9pkJfmmX28P/eyEIvF2LJlC7q6umA2m5GQkIDf//73GB0d9VnGYGBakOTkyZOIi4tDb28vLl26hB07duCRRx7x25PKTpP0FO/qGnAmhSetEBUVhd27d+PChQu4cOEC4uLi0NLS4pesgiKIps4jfG2T6HQ6iomJob/97W+BFypAaG1tJalUStXV1cEWxSVC2E8iAjHupzmOjo7izTffxJUrV3DhwgVER0cLKBu/+PnPf46zZ88iOzsbV65cwZ/+9CeIRKGj5AWSxFrZ5EaVuw61gLGLsH+2v78fSqUSZrMZX3zxxX1NEMBqmp566imcO3cO//znP5Gdne20k4K7shMCgi3zBMBZKgFMkMOXNj37bHt7OxYtWoTs7Gx8+umnnF5LMAuSD4jFYuj1ejz33HNISUnBjRsTW3UEs+cjsE6zapSju4vBMAwiRCIwmUUgmKDR7PL4JBHh5MmTUCqVqKiowO9+9ztbOItQ7UL6CvZdduzYgdLSUqSmpoZEgzbgJOF826bPwTAMqrrng2gMFosZVJEJEaMA5nPHORhYQHZ1bjKZoFarceLECeTk5Ezc56Cd7mfYk/z111/H4cOHkZ+fj+7u7iBKJQBJJpaAmpChyIVSo0Nj5bvjWYuAxFegK1JivpxLEoIIzLivr7+/H1lZWdi/fz+SkpJc53OfaxFXWLJkCXbu3ImsrCwMDw8HTQ7BzM3Rj6pgRDr2VL7DCSdiMH9+HGLlC+xCJ3o1o6OjyM3NxcaNG5GVleWU7nTQIJ7w+uuvIycnB2vWrAnaJoOCjAITTMhkFHhGp0fVOzkTi7XshvWJ3aZiPIwd/e3t7YXZbMann37qPZ9pvIB85cqVkMvl2L17t+DvKYgmoavXYQQwXx7H6cpwPJgQgbELu3v3Ls6ePYuOjg6fd2CcjgRhv+GDBw+isbER+/fvF/w9BXGmicZ1ldPL2e1bYf91tLe3o6qqCiKRCF1dXQ/05jVsmYjFYhw/fhwpKSmIi4tDWlqaYDIIo0kSn4ESQHfndW4EA8BUj11H2yfWDQN44vEYa/Q0n4XuL2QyGQ4fPoz169cLOygolP//f3cVEQDS1bcRjU+baKvXETI2cm+0WMdtkpKSSKVSUWJiIg0NDQkl5n2BnJwc2r17t2D5CTp90fT5R1Csetf2e6I7PIFbt27h2WefRUFBAcTiRzA6+h3Onj0Lg8Hg17D/dMaNGzfw4osvorOzExKJJOD5BW2Oq/N5BNbezRtvFEIqfQwREdYdGsvLy/HLX/4Sw8PD0Ov1wgsaoiguLsZDDz2EP/7xj5xwCkDPJ/BtEjcUdH4NEdrb29HQ8Dm0Wi3nRWtqamA2m/Hmm28GSsr7Du+//z5qamrQ09PDCQ9EGy7wJLGTeYIvrqcAlJaWYtOmTZBIJNYvgqxfhkgkwsGDB/HVV1/hww8/DLTE9wWio6Oh0Wiwbdu2gOcl6HySCb44c7OlpQVtbW2oq6uzhRHD7QIeO3YMS5cuRXR0tMtNgacjPJkPrVaLuLg4XL582e1wBR8ImZktH3zwAUpLSz36RKKiomAwGLBt2zYcP36cExekppUb8LcnnCfzIRaLUVpaig8//DCg7x8SJOnt7cX58+exbt06ry8rk8lgMBigVqvx5Zdf2sJDy58iXLHm5+fDYDDgX//6l1McX8QJCZIcPHgQ69atQ2RkpMvKdnxZhUKBv/zlL8jJyXE6vSJkQPxqN3dpSSQSZGVl4ciRI05xfH04IUGSAwcOYMOGDZww8jKZaNmyZaisrIRKpcLXX38dcBndw9G0jP9mhNNuGzZsQE1NTcDSDzpJOjo6YDab8cILL3DCfSng1atXY/PmzcjIyMDAwECAJPQMcihCggjtR3dZzxfkuZlA4ztkO0KpVKKnpwe3bt3iN8NxBJ0kLS0tSE9Pd/nyvhClsLAQeXl5WLlyZVAWOXG2HQUAmFCSowUAEI8sYcexXJVJREQE0tLS0NzczFt+9gg6SRoaGrB8+XKPbRFvtn379u2Ij4/HunXrgjIxx54ou4urwGRk4BlF4M2NfbksX74cDQ0NAcknqCQZGxtDc3Mzli1b5jKeLQRfCru6uhpmsxkajYZPEb2DnQYBoP4jDSzKdFgahdkW3b5cXnrpJRiNzieB8IGgkuTKlSuQSqVu1834Qg6WSBERETh8+DC++uorlJWV8SqnR7AimurRSBnQPiNCU8YzSBR4N+OEhASYzWb09vbynnZQSdLd3e12Cylfu4/2RIqMjITBYMBnn32Gjz/+2Gua/nVRx7UDcf7Y8NbeU6h6NwcWBlA+E5wdjhQKBbq6unhPN2gkISJ0dnZi4cKFLuMna88lEgkMBgN27NiB+vp6t2n6P1o6XlTcMxUAAEd3aVBV9T9gRAwiEnMnJTcfWLBgwfQiCcMw6OjoQHx8vMv4qTiiZDIZjh8/jqKiIreLm/whiEdJTPVoZDJhIQJZCG31Ojw7X259TuChgvj4eI5z8b72uLLC//3vf+eYG28ONH/AemVfe+01tLe3TzodAibWJJNDRPvnYEpOofKdVbbgzhvdfjW4+cTChQvR2dlp+31fe1xZ4fv7+/Hoo486hQP8fAVLlixBVVUVsrKyJt2g4xzmZFfmu4ozwCxYBcZYbXWcwQJNJoPcd/dirzYXGcWel60GAhKJhLPQnC9NEtStJwYHB/Hwww+7jOPrK8jNzcXt27ehUqlw7tw53qb7vVvViHerrNfsmqGqU4QqXlKfHObMmYNvvvnG9vu+1iQshoaGMGfOnIDnU1hYiLVr10KlUvntlW1qakJCQgKef/55p3OLWTDB90kCsE4dGB4e5r0tFNS3GxwcFGxNTXl5OZ577jnk5eVxvLLevLrFxcW4du0aLl++DK1WK4isk8WsWbMwMDBwH85xxeRsYyB6BlVVVZgxYwZnrqwvR7iF1oQm9wiUnIKQxF0FSCQSt+o/ED2DiIgI1NXVoaOjA++//75Pz1RWViI+Ph5JSUnQ6XS8y8QnRkdHMXfuXN7TFbzhau/EmjNnDkZGRgQxOWy+kZGRaGhowJIlSyCVSr2O9aSnp+Pq1asBl48PjIyMuO0ITAUcktyjb23XM5nZvGcGcDXE3LlzMTAw4LbHwac2sU+L9cqmpqZCKpXi1Vdf9c+5FqK7F3zzzTf44Q9/yHu6HHPDEiNQBHHEj370I06XbWpjK/4hJiYGBoMBxcXFOHPmjGD5BgKsvIODgwExN0Ht3Tz99NMcbyjfzjRviI+PR319PVavXm2TwxctEWpahJWnra0Ncrmc9/Q9kuQefWv75+q3fZinZx0rnA2PXxDrdiIzwzCgiO9dpu9KDjbcUSZXstnjhRdeQE1NDV5++WX09vaGHAG8wb5sr1696nYsbCrwSBJH8+P49x59i5nMbMxkZjsRhw2fycyGGd/Z4r633LWFy59KgOn6V661xox7EFkinUyfY9qOZGDj7a+9ESUrKwtbt26FSqVyOhQg1GFP6qBoEkfYV4B9mLdKsIf9S8XGxsJkMnn9en1pI7lqT/nyHEvQgoIC5OfnY+XKlbh7965T/P2AoJHE25do/1X7i4ULF+LWrVu4deuWy8oQooLsCbplyxYnr+z9Yn46Ojowc+ZM3k4Bs4eNJP5oA1fw9Lw713dERASWLl2K5uZmj5UxVdl8AStbdXU1xGKx0zqgUEdLSwuUSqXtN58fGEeTuDInwIQ2cYxjwx3j7MPv0bf4gcjq4GEYxinuPzNX4fTp07b8bTDPBGbc85q2ffvDMQ13165gT9La2lr84x//wObNmz0+E0o4ffo0srOzbb/51IA2kkzWZLh7zpMZmoGHbHFpaWloamqyPcOBeabPaTuGubv2BZGRkTh27BiOHTuGPXv2+PxcsDA2NoaWlha3qw6mCp8aru40zGRhz/L4+HjMmDGDs/jb8Z5gYM6cOWhqakJFRQUOHToUVFm8wWg04qmnngrYaR0++UkCDbVajU8++cSv48uEQHR0NE6cOAGtVmvTdqEEtow++eQTqNXqgOXj1U8yWTPkD9atW4e6ujp8//33Ac1nMoiPj7cdBHD58mWneCHJ7JgXwzAYHBzE8ePHsXr16oDlGxJTqmQyGRYvXszZ5SiU8LOf/Qz79+/HypUrnebKCmkWXZ3IUVtbC5VKhaioqMBlPJX9PflEc3MzyeVy2/m9fB0ezSdqampILpdTX19fsEUhIut5w1KplC5duhTQfEJCkwBAWloaFixYgOrq6mCL4hbr169HQUFB0I8WYaHT6aBSqQK6XxqA0NEkRERtbW0klUppYGCAysvLQ06TsCeAl5SUkFKppLGxsaDJ0tfXR1FRUdTT0zPltC5cuEBE7k84D9pmv3Yk5dj1N954A1KplLPZbyhi3bp1YBgGBw8eFCxP+7Lia7PfwcFBLFmyBPPmzcOePXuQmJjoMuOQQl9fH0kkEtJqtSGnSewxMjJCSqWS3nvvPZfx7r7KqYBNs6uri6KiomhgYIC3tCsqKkgikZBGo6Hbt29z4kKmTcIiOjoaJSUlAdtrw1+QG0UbGRkJvV6PxsZG7NrlvFqP714P2WkIrVaL0tJSXveVf/vtt22LzePi4lBVNbHMjCkrKwu+18oBo6Oj2L17N6RSKbKysvDjH/+Y1/SJxzmqd+/exb59+5CRkeF2Gw1v+dL4rtfuCGmPmzdv4siRI3jrrbdsJplv3LlzBwaDAUNDQzh48GBwl3mycCykyMhIyOVymEwmHDhwAGazGTKZDE8++SSefPJJPPHEE5OuaHfPMAwzKcfYww8/jPXr1+PPf/4zZs+ejaeffprzXpzTwXzI29N7DQ4O4rPPPkNeXl7ACOISvBm1ScKd7d66dStlZmZSSkoKXb9+nWpra6mwsJAUCgVFRERQWloalZWVkdFotPlW/M3Dn3u8xZ8/f56kUimdP3/ea16TwdDQECkUCtq3b19A0iciunPnDmk0GpJIJFRRUWELDzpJ3IF1pm3YsIHy8/M5lXTnzh3S6/Wk1WopJSWFAFBycjKVlJTQ4cOHA+Ls8oVoRqORpFIpdXV1eX3O34ZtdnY2lZSU+PWMP7BvuN65c4cTF/IkGRkZodTUVNq5c6fbe81mMzU3N1NZWRkplUqKjIwkuVxOarWa9u3bR1evXvWYl6+ahv3nCXV1dSSTyXgl6qZNm0ilUpHZbOYtTRYDAwOkUChIqVRSW1uby3tCmiTl5eVEZNUcMpmMGhoafH7+/PnzVFFRQXl5eSSVSikqKory8vKooqLCrUngq9uq0+koKSmJcyzcZNOura2l+Pj4gB4xxzrT3CGkSWLvJ2G9sb6OUzhWSldXF+3bt4/UajXJ5XKKjIwkpVJJZWVl1Nzc7PIrnUo7RavVklKp5LSX/CVKa2srxcTEcMxXMCAASby4rt2Um6sBvhMnTpBUKiW9Xu81V29tgb6+Pjp8+DCVlJRQcnIyAaCUlBTSarWk1+ud7PJk8luzZg2tXbvWr3RY1NbWklQqpebm5kk9zyeE0SS28huznuBp3XGMAJBSo3P5iLtR4La2NpLJZB7bKJPB6OgoGY1GKisro2XLllFERATFx8dTQUEB1dbWUk9Pj9+awGw2U0ZGhtcGJ5su+3fTpk2UkJAguAZx93aCmhtdUQYB6WRiC4Xa6T8YK1FsBTV+r6epAnfu3KHU1FTKz8932/3lo33x5Zdfkk6no+zsbJJIJBQTE0Nr166lyspKr2aPzf/f//43JScn086dO73KNDQ0RDk5OaRSqXh1uXuChYj048fxFun0RDRG9R9tJACkb7OQhcaEMze6IiVBudEp1qpZ0qndgcfWhut/u011ZGSE1Go1JScn23oSjl+kO/jSS3GVTltbG1VXV1N+fj7JZDISi8WkUqnogw8+cDIL9s/29fWRXC6nmpoat3n19PRQYmIiaTQat72YgIwHsRftekLGRtLvKhonCxHRmFAkIZuJOdrm/JIeSbK1zGvaOp2OHn/8cb+dWHwU+M2bN6muro40Gg0lJSURAEpNTaVNmzZRQ0MDDQ8P2+7t6emhmJgYlz201tZWkkqlVF1dPWWZpoI3M0FFuqNO4QEnicVioaIM920Pq6pLpysuSOLrKLDBYCCpVEpqtZpu3rzJydubbHxiaGiIDAYDlZaWUmpqKgGgpKQk0mg0VFdXR6dOnSKpVGqbA9LT00N5eXkUExPjsYEaCA3iCvU6qxZxzE2AI1+v4nojoMpQuYxuNOyFUvMyFthtkkpk3RfV1ym4K1asQGdnJ2QyGZ5//nls3rwZg4ODgm4hQUQQi8VYsWIFtm/fjjNnzoCIUFFRgXnz5qGmpgavvvoqZs6ciffeew9vv/02Fi1ahEWLFqGrqwtpaWmCyOlWfnSg8eR1XOvucj46IeD0bNcTGJDehTOPNUN6F2ZosnNc+/r6bOMPOp0uoA1bfzE0NEQajYZmz55NWq3W7252wGAh2qUpojZqo/Rx06/X621lFHhNkhgHJQE3urhbd9P4CVNKjQ45Ci53aQpD+dHR0aisrMTFixfR2toKuVyOAwcOOG3gN5Wvk/wcLR4e/hYff/wxno17Bv39/bh27Rr+8Ic/jM9wF+ZsHHeo/0gDJoIBKTVQQIFnM5qgYERA3KqJMhKCqLoiJSGzyEpai8WqXTz4SIismmRredmU825tbSWVSkUSiYQKCgqotbV1ymn6CqPRSGr1f5FYLKbs7Gxb49r6hY5RUQY4PiMApKt3PX4iKByUrGB+EscCOdpmce+9If6XVNy8eZN0Oh3Fx8eTTCYjtVpNNTU1vEwkZsG6/tkuskKhoMrKSs5gn6OVK8qYIIbV/IpI3272WDZCQ9CJ0AQ4NYqIY1osILIeRshOgPZnIjT5aKauXr2Kv/71rzAajWhubsasWbMQGxuLpUuXQiaTIS4uDgCQkpLitH3o6Ogozp07BwDo7OxEb28vzpw5gxs3bsBsNiMtLQ1KpRLLly9HbOzE4UiOslkL3YQM5tfYM2aEQgTAVA9GkYujbRa8ogjuWmj7joNwM9MImCijCQG4lSoCnw15d6RJSEhAQkICCgsLAQDt7e3o7+9Hc3Mz2tvbUVtbCwAYHh7GxYsXOc8mJydDLBYDABYvXoy5c+di27ZtiIqK8jh90SqHBQQRGFg/lvajJ8BoXrYSBIDm17lQanQhQBDAvmcpGEkIBAbMeMVNCODr1+8LHNPxthU4G89W7ksvvRT47ibR+AE6InTe6Iaxai+YKuue9fo2C6o4BPHdDcAfnPMUTAJ3e7i7qxSiqVeWJ0vqKt/A+yNE4/NZrfk0GvbiaJsFRGPQ7ypC7gLR+Nk5rOzCVA/Zza+Fiw5v0A4gcDyEyhEMM/VC4qvSHeXnFKqLePcJ2cllqsdeFI6bFhFWvaOBEkCj4aj1HgFPA+V8wJwmgRVBO4CAcXPNRXB9CCzcaT9fTrjgPjhxWX+iCRtVE15oxnQdRgDz5XFO9wYHIhdXYQgICxpPViJzhfXsPoIJGYpcAOl4eZWLZZZBRpgkAqP9cx0YJgJ7G4HcBdY2iohRwJixEUSnbIdOh8BGTzaExOKsBwmKV7Qgcn8CF+tLYphg9GxcIzSkeJAx7oNmG78TTZHQqZrQkeQBgZMVGfes2XudQw1hkggMl50WO+bw4R/iG2GSBAOuTiwfR7D3r3WFMEmCAccTy0OPFxyESRKGV4RJEoZXhEkShleESRKGV4RJEoZXhEkShleESRKGV4RJEoZXhEkShleESRKGV4QsSQRcDhSGF4QsSSa7Q3MY/OP/AfYNm+ppGl7CAAAAAElFTkSuQmCC"
<image>如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的度数为() Choices: (A) 30° (B) 40° (C) 50° (D) 60°
30°
11,009
null
30°
"iVBORw0KGgoAAAANSUhEUgAAAHAAAAB3CAYAAADb5cTzAAAV3UlEQVR4nO2df1BTZ7rHv+cEizui0WmmpGMsVMIaG9zFJruyI9c0Git3VKwDU9wtbuOdttwW7wx7L7R0lpnWGf6g1Xt1d7zXqN0tTu2UTtnSWmYvILZxtzuLA53VmSBYEoEG19Dwh23SW2yTPPePcA45+UV+57DymbEl7/ue9zznPOd53ud9z3velyEiQpYhIjAMEybHB2u/CeMPv4CdRRkXa1HAZlsAAALlBT5NhJto3Fkf/iBf1p87USAKBQbCAPDNqfHMS2fg27sXDxf5AAiVCzacxd57iEOBQcbEgkHv2SbAYAC6AzN9GRVrMSAOBTIQKJFsfbhEO/HceuCjvRuhnBOTEYm4YkI8dyTAI750uh+vPfc4AKBSpcySQIsD8SiQACLg4tkmHD16FCzDgFXuCltuiXlEokAfwPhAN/twkXaCyAsiwljfKWwoKhQWDXK39zo52RaAg2z9kPx7P+jD1/m08QkbgPWhhZlofcd7DBIBpqa9BL9dUZ/Vn9ZUCWLm0ipfPE2+7IooWhii7I/E+LsHkb05QRDjLBGASNrA6GIsKS8yIlEgR3wddRG4jqwjDgXymohNHK74kmWKRYFMGMsjf6QZtniaxVlMZF2BfhWFEYNBSDeBD1XFEHeJhKz3A6NZ0+nTp0FEeOihh2C32/H3v/8dly9f5vNtNhumpqZ4RRMRFAoFior8Lw+XLVuG8vJyrF27FsXFxdBoNMjLy0vn5YTARdA+ENiQqw0XfXNp0SNzDpF0I+aZmprCpUuX0N/fj+7ubty5cwcAoFAooNVq8Ytf/AIPPPAAAKCwsBAFBQWC4ycnJzE+Pg6GYeB2uzE4OAibzQa73Y5PP/0UCoUCer0eBoMBBoMB+fn5Gb5CH0Bs6tqB7HVB57l+/To1NjaSUqmk/Px8qqmpIZPJRG+99RZptVqamZmhs2fPUkVFBQGgJ554gtrb2+nOnTtxn2t4eJhOnjxJ1dXVJJPJSKVSUUtLC1mt1jRcGYdX8Mvn883/P8IIBVdmIbKmQKfTSSaTiTQaDSkUCmpsbKTr168LyrhcLpJIJOTxeIjIf1FOpzOiMgMvOtoNCMyzWCzU0NBAcrmcysvL6ezZsyF1RTs+VvhjfMLf3ggajPUMGVegw+GghoYGysvLo9raWuru7g4pE3iDVCoVDQwMhK0rWJn79u1L2DKJiDo7O6mmpoZWr15Nzc3N5HQ6Q+RJhHBHp2poMCMK9Pl8ZLfbqa6ujqRSKTU2NtLt27cXPIaIqLa2lkwmU0h6MOEs8/z58+RyueKW1263U319Pa1atYoaGhrI4XDEXUcg6RzHTbsCXS4XNTc3k0wmo1deeYV/qoOJ5P5OnDhBzzzzTMzukUioTIlEQtXV1Qkp0+FwCGSfnZ1N2hpTTVoV2NXVRXK5nOrq6iIqbiEGBgZIrVZHLRPtpjqdTnrjjTeSUqbD4aDa2loqKCignp6emI8TyCj45aW+M418txaVTeQjGzU1nSIu4PFRbK47LQr84osvyGAw0ObNmyO2X0SxCehyuSg3N5fcbndCxweW4Sxz165dCSnTbDaTSqWiPXv20Jdffrng+YLTfETks/YSANrbFNAszKX9x5le4gvGSMoVODg4SHK5nFpbW1NWp1qtjvogJEKgm2VZNmZlejweamlpocLCQhoeHo7rnD4ao8q595sBiUQ+olMv7iXTxbG4ryOlCmxvbyeZTBbWzSTTdjzzzDN04sSJZESLSrg2s6Ojg2ZnZyMe09nZSTKZjDo7O2M+T9/pFwnYS+HU1HemkX+Z7fN5Yq4zJQr0eDxUX19PSqWSLBZLKqoUYDKZqLa2NuX1BhPcz8zNzaWampqIyhwcHCSFQkHNzc388RHrpjHaB1DT6V7B+SLJEStJK/DOnTtUUVFB5eXlMfW/ErHEgYEBUqlUiYiXFLEo0+FwkEajoerqaoH7DbnOsV5iGCbUTfoilI+RpBRosVhIqVRSXV0dP1qSDmZnZyk3NzehPl2qCBzOC1bm7Ows1dbWklqtjjwkN+YPVCK1c4k2MAkrsKenh6RSKZ08eTLRKuJCo9GQ2WzOyLkWIpxlvvvuu9Ta2kpSqZTMZnNIv5ULYAJdKN9lsPaGVWzauhEWi4WkUmlMfaJUdXzr6uro2LFjKakrFhaSm8sPVubWrVtJKpXylujjBrJ9xPf9ApU11neKUNkUVLuXYiUmBQb3pZRKZcYsj8NkMlFNTU1GzxkvTqeTWlpaaNOmTaRWq8nlcoW4xrG+U3wHnmEYQX8wEWJ6H0hzk2i9Xi8qKiqwYcMGnDx5MkUvtGLj6tWrePLJJ/H5559n9LzxcvfuXRQWFmLbtm347rvv8P7774edgEwpmpgc05QK7kSNjY0AgN/85jdJnzheNm3ahC+++IJ/wStWcnNzUVFRgW3btsHhcODIkSN8XqClpGxWeaym2t7eTkqlMuExzVRQVlZGvb29CxfMMmazmcrKyshut5NC8RB1dXURET/o4v/b5wvTzsbe9nGEKDBc4z0wMEAymYxGRkbiPkEqeeGFF6itrS2rMsRKQUEBjYyM0ODgIMlkMuEARwpfaIS40GDTnpqaQlVVFc6fPw+VSpUas0+Qn/70pxgaGsqqDLFiNBpx7tw5aLVamEwm7N69GzMzM/7MVM6LXEjDBoNBFE+9z+ejkZERUigU2RYlJiYmJkihUPADHC0tLVRdXT2X6406H4YoRVMq3nnnHdJoNGkdZYkHj8dDeXl5Sb8hzxQ6nY7+2PO/RET07bffkkr1Q77vHIuCYikTUYEul4sUCgUNDg6GVpzFt9Ll5eUJv1TNNO3t7fTkk0/yv/v7+0mlUkV9yxEvEbsRR44cwe7du6HVakPysvFhJc11V7Va7aJpB6uqqvDxxx/jq6++AgDs2LEDP/rRj3Ds2LGIx1C803TDadVqtZJMJkt4dlc66ejooD179mRbjJgxGo2CSVkOh4NkMlnYZiARz8YGKRMA0Nraivr6ekil0jifufTz4x//WJQWSBEs58CBAzh//jz/Oz8/H7W1tXjttddCyibk2YI16nA46P77749ofWKYlbWYAhmPx0MKhYImJib4NM4KU3GP2eCnp62tDc8++yxvfRT0ZIlhYYGysjL89a9/zbYYYQm+XxKJBLW1tXjzzTf5tPz8fFRVVeH48eNh64jrHgdq0+l0klQqFf3T3dzcTC0tLdkWI4RIljMyMkIFBQWCNC7OSPYltcAC3377bezfvz8LX+zEB9cOkrg+rIpoOSqVCg8++KDg07iioiKUl5fjD3/4Q3InDdRmaWmp4K23GNq7cExMTJBMJsu2GHFx6tQpMhqNgrSuri7S6XRJ1csr8G9/+1uImYtVgUREMplMEBiInTt37oS4TI/Hw19Hovea70acO3cORqNR4JbEELBQBDep0WhE2Z2IhFQqxY4dOwQuMzDASfRe8wrs7OzEgQMHRKG0QAI/nw5k8+bNi0aBnOwHDx4URKOAv5/47rvvJlw3CwCjo6PweDxZf10UjeAHa8uWLREDmUhWmy042SsqKjA8PIzJyUk+T6vVYmpqCtPT0wnVzQLA5cuXodPpUiBqZiAiaLVaDA4OhvUYYvMiHJzLbG9vF6SVl5fDbDYnVCcLAB9//DG2b9+eChkzAsMwUCgU+MEPfoDR0dFsixMXTz/9dIgb1el0+OSTTxKqjwWAP/3pT9i2bVvy0mUYrVaLa9euZVuMuCgtLcWaNWsEfUK9Xi/4HQ/s5ORk1tu/0DYrypppNF9msUWiHEajUeBGt2zZgvHxcf61UzywVqsVarU6heLFD8Mw80okIOpsx7kVe31g8LOfbRHtmGg0nnrqKXR1dcHtdvNpGzduxNjYWNx1saOjoyguLg6bmZFojgDANx94RIw/5q2SGP/WBKWlj+LatWvwer3zeSKLQDkC5ZLJZNDr9YI+oVKpxI0bNyIeEwnWarXy7jP4gIxEcwzAWVx0ceetkpMqPz8fq1evFjy5Yo1Ag+X65S9/iY6ODv63SqUKscBYroUdHR3lFZjti2cw/xBZL5rAMAz/b99LZ/yFgrRcVlaGK1euZFbQOIhkRZWVlRgaGsLU1BQAvwKHh4fj9iCsw+HA2rVrkxY0WWjuPwzDwPRSJYof/yPG5lavJxoDXq/zKzHoGeP6g2IlklFIJBJUVVXh7bffBuBfC87pdMZtRKzb7cbKlSsBAD7PXf5fpmHm/mN6qRLPj6pAdAFFvNtcj2O9/4MLr3djLOgJLS0tXTSRaLB1HTp0iI9GV6xYIQhqYiXH7XbzSzCyObnwee6CzclNWthEsF404fnXP0Kf9cKcNXJLLrJgWU6ZPgAS/hiNRoPh4WF4vV5IJBJBfSTyrQm2bNkCALhy5QqkUim++eYbPi9W2Vm3240VK1akTcgFCXgoz5x8HnteOu3fKzAguAF8uHnzJgCAZVjBk3zt2jXcvXsXjzzyCP7yl78Iqo7lBmQyag0nj9FoxO9//3vk5eUJLDCS7CGBpj9tPjHQAgNdKWedgb8DywRbbbiy0fIIVjzBFOOf+z7Hv+4sDijnt8LmquUY2XgaH7U9JzhevamUH05bX7gOB5/+F0jmlnD2Egu9rhxgl4W9GYFwT3ymx4SnpqawefNmXL9ugVL5Q74z/+I+BkcvQLBTzel+K57bIdwJM+qKvcEuNfh3LH/HnGez4gKAw+uLQ8qN9f03jl4A+v7LrzwmJ5ePZe7L8f+1/D4JGIaBhPHBSywkjA/Tt6fwypFW3JfD4DvPwpY2MzOD4eHhBcsFEq/CH3vsMcFvIkJOTg66u/8osLrXPyTQEwyUh8dQZ1DCetGEYoMSD1tJsJtpTl5eHr755puY3Gi49jFVAQ9TtAGVAG6OW4Gi+R3LCFY07jqMyhf9rtXnEQaix48fR/2/NWD58uU4+dvj2PpPj4XImq523e1247PPPou5vMfjwZ///GcQEViW5a2+ru55+Hw+rFy50u8iGQaAFTcu7EHdB/6th4rWh9mCCADkcrlgFpr3+9B5+1xacF64sguVC8n7bv73qRf3EvY18eW4NcQCl6byfi9cMTBS3dHOKUZGRkYEa+GM9Z0WXHfjvrn7EDTzAkqlkqxWa0QlBabFqph4FOj57lsuh4j8eyYBoOX3SQhgqc+aWN2LTYGDg4OkfVTD/xasZhiwp1QwbF5eHlwuF4DIriZS94JLD84LTF8wb9lyLgdez12/7yfCt3c98H7/f9hREP14RnIfAMD7/Sx/DRyR/g6E5gI4WiAaXSg/OXz+ZmzlKj7lYvcx9Fn996LvTCMeVzK4aAs9kpXL5bh16xbYnNwQBcUidLjjAtMXygtszyRhHhBmoePnGn7JsuWC87E5ubxyI8kBzIfrC3U50tufZGG/NQXZA/cDAMjWg6Nows4igODDjmefQyWAvv7e0CNVKhWsVmtUobPZuU/mtom5Ex+M9fMxlDyiBgHo+6QfTbsN8L80Y8HenMAFAMXrixD8rpRVKpWwWCxhK83WsNq9yPDwMIqLi8EAMHf/J3YaDABYEKzYV/Q4gL3YvjM0Es1RqVR47733wlaaLau7F7HZbFjxtYX3Gm0fBgwLVjYJdjYNhJmYmCCtVgun0ynIIJGPI/6jsXz5cji+nMbqVdw3mRG23gnaDZMtKChATk5OyOyuJeVljitXruDhhx+eV16YaSV8OBmkFpaIoNPpEp4VtUTymM1m6HT6+YQ4bIdlGAZ6vT7heYlLJI/ZbIZerwvqtvmjzYU2u2SIiEZGRrB9+3bcvn1bkLnUDqYfr9cL6ZrVsI1Zo36XyekieENoFvBPaVtqB7PD0NAQ1q1VLPhRLT/gEJTOt5TV1dWCWVJLpB8iQkdHB2pqahKug5kbE8W1a9ewf/9+jI+Pp1DEJaLh9Xohl8sxNDQUspFlrLCcby0tLcXq1auXotE0EW5c+aOPPoJarU5YecBcFMoRPGd/idQTqMhz587h0KFDSdUnWDN7ZmYGxcXFGB0dFf1KFYsdm82GsrIyjI+PJ7Uxs6C7L5PJYDQaceLECdF+Y/CPwtGjR3H48OGkd9UOWbWemyVltVpFuVbaPwLT09PYsGEDJicnk77HvAVyelQoFNizZ0/EZaCCyy+xMMH3qq2tDYcOHUqJgYTdN4Lzz0tWmHqmp6dRUlICi8WSkjgj4sYfTU1NcLlcMJlMSZ9kCT9EhJ///OfYtGkTfv3rX6es0rC4XC6Sy+Vhl1xeIjEuXbpESqUypZspR130vKOjQ7DouZiX3hI7s7OzpFKpUr7ed9Std2pqarBmzRp+jefATj8tBTFx0draipKSEuzatSu1FYfTaqCl+bePUSyaleLFSGdnJxUUFKRl26KY9k6KtPXOkktdmLBb76SQRbX51WKD817c5lfpIKb9Azl+9atfwWKxoKenJ+Rr2HsVijBrYXZ2Fnq9Hrt27cKrr76atvPHpcBsbgC52Dh48CDcbje6urrSe6J4TXZmZiYrW7AuJlpbW/ktWNNN2jdBvtfo6uoimUwWeTvyFLNotiFfDLS1tfHbkIcjHVF7wgok8luiUqmk+vp68ng892y3YnZ2loxGI6nV6oxZHkdMmyBHQq1W47PPPoPNZsOOHTvw9ddfp6ppXjTMzMxg69atcLvdGBgYQFFR0cIHpZCkFAgAq1atQnd3N9RqNbRabdhP1ShKoBuYF62cGBkaGkJpaSl27tyJ9957L+m36wmRSnN+8803SS6XU09PT0zudDG73M7OTpLL5dTZ2ZnV60ipAon8Q0dyuZxaW1tTXXXWEKyK4fVSS0sLFRQUpG14LB6SdqHBcKsHms1mPProoxGXgqRF5C65kZbLly9DrVbj6tWrGBoaglqtzv51pPPpeP/990kul1NdXV1CY6hicbEOh4OeeuopKigoEF3fN+UWGMj+/fsxNjaGNWvWYOPGjXj11Vfn91KPgUx/XENB1jQ9PY2XX34ZJSUl/JLIKX+flyyZelLsdjvV1dWRVCqlxsZGUe9RaLfb6fDhwySVSqmhoSGirGLwEGm1wEAUCgVMJhNu3LgBr9cLpVKJ2tpa9PaGrn0S8HBlSjwAwIcffogDBw6gpKQEeXl5sFqtOH78eMTZY8EegpM3o3Jn68lxOp1kMplIo9GQQqGgl19+OeSFMVH6nnKuXovFQg0NDfTggw9SeXk5nT17VpS7d0cirtdJ6WJ0dBS/+93v8MEHH8DtdkOn00Gv10On06V8Q5Lh4WGYzWb+n0wmQ3V1NYxGY8ZHUVKBKBTIQUS4desWLl26hP7+fpjNZty+fRvl5eVYt24dioqK8JOf/IQf8SgsLAz5NGtychITExMA/MtBDg4OwmazwW6349NPP4VCoYBer4fBYIDBYFj0H/FkRYEUx7f3X331Fa5evYrR0VE4HA7BYgxWqxW3bt0SlFcoFLwlLVu2DFu3bsW6deugVCqh0WgWHO6KRzYxICoLXCJ+MhaFLpEelhS4yPl/03cTlSTO7aQAAAAASUVORK5CYII="
<image>如图,已知圆心角∠AOB的度数为110°,则圆周角∠ACB等于() Choices: (A) 110° (B) 70° (C) 55° (D) 125°
125°
11,010
null
125°
"iVBORw0KGgoAAAANSUhEUgAAAOUAAACFCAYAAACkPT9MAABAoElEQVR4nO19e1xU1dr/d8+AozQychPwCCQIoQQRHi/HUIokzfDyxvF49Jj5M8zUk6WJaSon01Lx8vHSCbzkpbxloqVyEtCTUlbS6yVKSRgBQSBBEUEYBmbv5/fHsDd7zw3QAdR3vp/PKHvtdXnW2utZz7OetdazGCIi2GDDQwoCBwaypmciMAwDAOBAkIGRxFenJyHf9w1E+bUrma2CrPkoNtjw4IIx6MI8QwKADAwIDfoHAghqvPPCjGbz7Gg5ZWNKGx5tkB04jgMYYMu7W0CjRqGXH2cxCcMw+jQdBBtT2vDIgqBnMJlMhvStcaCoSOBYy6SgTNZxrGFjShsearRE1aSraUinKEzvJcPRUUHoDZmeY5vJr6OkpY0pbXioIZ5DGr1r/P/dzf9FwusvAABGB/rq+dF8Mtuc0gYb2hLpW+OwevUqvRrbezjAcGAIZiUlwzACo3eUCmtjShseapDB3+JnTp2KExQFjtOBiJCblognfH1BDMxKygdBfbXrkFJtsMFKYMz8TVfTIH/nJOjrBCEsv+AqAF99PIIRY3IcJ5GONklpgw1WQtK7o/Wq6pHVSLvKAgDmj2HwwutrsPqN4Rjz7haTktLS/LQ9wdh29NjwqMGEEBSkoHjHjyEMJWVHoeMpsMEGa8OEnOGZjQEDHceKopJRnI7Gg0GFDTZYEeYk4eLF7wEMYCeTAzC/9NHRyqONKW145GCKpbZv34bt23dixozpQph4+QNoYsaOnlvarK82PBogAIx+CUO8Sf3QoUNYtWoVLl68iPr6evj7P2Ey+YMynwRsktKGRwJco2VHBr5LX7t2DU8/3Q+v/b9YBAYGYvPmzVCpVEhPT0dJSYlRDg8KQwI2prThEYC5Nf6hQ8Px7en/YteuXThz5gzu3LmDjIwMXL9+XZRWmrgjT4fwsDGlDQ8UWmtk4dXOM2fO4Pbt20K4j48PNmzYgJCQENy9exc///wzAMDe3h4KhUKIZyghZTJZhzOmjSlteKDQnJGFZZuWM+rq6nD8+HH069cP//M//4P8/Hyj+DKZDMeOHUNxcTEA4O7du/jiiy9QV1dntgx+PbOjYGNKGx4aEBHkcrnwvHXrVkycOBFeXl44duwYQkNDTab77rvvcPPmTQB6pl63bh127dol5GkKHWmBtVlfbehwmNtlQ0QgIkGlNFQ1o6KiMHDgQAwYMMBs3uXl5cjNzZWEabVafPHFFxg3bhycnZ0t0tARsElKGzoc5piB9xoAACkpKVi+fLlEfQ0MDDRiSH4+yEvAEydO4PTp00Z5Z2RkYP78+aiurrZIQ0fAxpQ2PHAQq5Tp6en4y1/+gokTJ6KgoAA6nc5iWmE7HcNArVbjk08+QX19vVE8lmWxfft2LFiwQGIgehBgY0obHiiI1UitVoukpCQ4ODjgP//5D7Zt2yaxnJpKCwDV1dVITU3FnDlz8P3331uMv3nzZnzxxRcW82tv2E6J2PBAwXDuWFtbCwcHhxanb2howL/+9S9s3bpVMO40h4iICOzbtw+enp6tprctYJOUNrQrzK0BnjhxAs888wzWrFkjCTfHkGJZwv/9xx9/ICEhAevWrbPIkIbzx4yMDLz11ltCmo5ep7RZX21oVxhaUktKSjBt2jTk5ORg8ODBGDJkSIv2oRoy1pEjR7B27VqcP38eWq0WDMO0+BQIEeHLL79Ely5dsH79ejg5Od1HDe8fNqa0oV0gniuKGa6+vh4hISFYv349/P39W5wfz7gcx+HkyZOYM2cO8vLyAMAiQ5oCH/+zzz6Dvb091q5dC5VK1WHLJLY5pQ3tigsXLuDxxx+/b2lUXV2N7Oxs7NmzB8eOHUNeXh7kcjlYlkXfvn3h7Oxs0cgjl8sRHR2NU6dO4c6dO5LwqVOn4t1334Wnp2er5rPWgm1OaUObQ6vVIiMjA1FRUXjllVeMFvNbAvH6JAB88cUXeOutt5CXlwdHR0cMGjQIU6ZMgb29PVasWIHnnnuu2TyfeeYZBAQESML+8Y9/ID8/H9OmTcOZM2daTac1YFNfbWhzHD16FO+++y6ioqKwadMmPPGE6TONpsCrkOLtdQAQHh4Ob29vdOnSBfv378dLL72Ezz77DMHBwYiIiEBFRQXCw8Ph6uqK3377DWq1WpKeZVns2rUL8+fPx+LFi1FUVARArxZ/9NFHKC8vR58+fe6/8vcAm/pqQ5ujvLwct2/fFqSSpW11rZ3DnT59GjU1NQgKCsKKFSswefJkDB48GFqtFgBQWFiIKVOm4IcffjBK6+TkhAsXLiA3NxeJiYn47bffEBERgUWLFsHHx+ceamolkA02WAkcx1FGRgbNnj2bqqurO5ocKigooMGDB/M+mgkAMYzgH53s7OwoNjaWWJaluro6yszM7GiSiYjINqe0AUDrd68Yxj9z5gzGjBmDKVOmoKGhAXZ2HTczqqqqwn/+8x+8+uqrRhJSTLdOp8O2bdvwz3/+EwDQv39/ozgdAduc0gYArd+QLY7PcRySk5OhUqnw1VdfITg4WAi3lpuNluZVW1uL9957D9u3b4dGo5HQa47ZEhMTYWdnh9WrV0OhUHT45nTbnNIGsyALczyNRoPOnTs3XWX+ADie2rNnD7Zu3YqMjIx7knZz5szBihUr0KlTJ9t5ShsefPBM9/PPP+ODDz5AQEAA1q5dK7znJZH4//bAzZs3ce7cOeTk5OD9999HRUWF5L0hXZawfv16MAyDjz76yGjje3vWycaUNkgg7nziTnjnzh28/fbb+P777zFw4EC88sorknSG/lPbsgNzHIf6+nocPHgQ+/fvx4kTJ1BfX2+S6fiwlkhOIsLGjRuhUCiwfPlyieRvz8HGxpQ2SGCp0z3++OOYNWsWBgwYYLGTN3dnx/0iPT0dq1evxpkzZyz62rkXsCyLhIQE2NvbY+nSpZJ37SUpbXNKG4zAcRyysrLg5OTUset1BiAifPvtt5g0aRJKS0utmreheiuXyxEXF4dx48YhLCzMqmU1i3ZaerGhDcFxXIvjsixr8d3FixdpwoQJ1Lt3b0pJSbEGeVZDSkoKeXp6CuuMf/vb32jkyJGkUCgoKiqK7O3tJWuS9/JjGEaylunj40MLFy6ky5cvk06na5d62tYpHwE0p1aJzwdaspCmpKRgzJgx0Gq12Lt3L0aMGGE1Gq2BzMxMwZDz2muvISEhAfX19YiNjcU//vEPjBw5Evv378fChQuNtuW1BH/5y18QHR0NIhIMPdeuXcOKFSsQExODxYsXt/jg9H2hXVjfhgcG5iQly7J048YNyszMbJXkbU/cuHGDjhw5QrGxsVRaWkqffPIJTZ06lYqKiig+Pp5ycnKIiGjjxo0kl8tbLSUnTZpExcXFtGDBApo1a5bJOAkJCcRxXJu2kY0pHwHwHaS5jiJmyAsXLtDixYupqqqqTWmzBgzrVVdXRzU1NbRhwwYqKSkhIqKKigoiIiouLqbevXvfk+oaGBhIq1evpqKiIsrMzCR/f3/q378/KRQKioiIIAcHB5ozZ06b19dm6HmEQC2weP7+++9YvXo1Tp8+jbCwMOzcubNDzgzeLziOM3LO/MUXX+DTTz9FRkaGsCG9NeDbbsiQIXjttdcQGBgIJycnvP/++7h9+zZGjBiBQYMGWfQzaw3YmPL/GObOnYsrV65gwYIFCA8PN8vELWHwBwE3b95EVlYWCgsL8d5771nFKsswDIYMGYLU1FR07twZ165dw6VLlzB8+HDJINBWu5hsTPmQoznmqa+vR6dOnYRnjUaDLl26tAdpbYq6ujqkpKQgOTkZx48fR0NDA+7evWu1/HkPBAkJCejWrZvV8m0JbEz5CIG3sspkMuTm5godavXq1R1M2b2D4zgUFRWB4zjBInr58mV8/vnnSEtLwx9//CHEba1vnubAr1WuWLHCanm2BLYdPY8AeGkpk8lw9+5dLFq0CMeOHYOvry/i4+MlTqY6etN4ayGTyXDkyBHs378fHMfBzs4OJSUlgpMsMYgI7u7uqKysbNGcUiaTITAwEMXFxbh79y7c3NwkTM6yLA4cOICpU6e2yqnXfaPNTUk2tBs4jqPKykqaO3cupaWltSj+w4Bdu3ZRp06dTFpMfXx8yNvbmwBQ79696cCBA9SrV68WWVtdXFzozJkztH79egoKCqIlS5YISyniJZUxY8ZQcXFxu9XXxpQPCO51V45arW7XDtPeSE1NpT59+hAAGjBgAIWGhlJERATJ5XJycHCg3bt3065du6hnz5508OBB2rJlCzk4OEh25Zj7OTs7U05ODrEsS8nJyZSVlUUhISHk4uJCH3zwAQUEBJBCoSAAFBMTQ+Xl5e1SZ5v6+oCgNZZOmUyGoqIirFu3DikpKVi1ahXGjh1rNb83Dwry8/Px9ttvIzs7G3K5HAzDwMvLCxMmTECvXr0AAMOHD4e9vT3OnTuHkpISLF26FLW1tS3K/86dO/joo4+wbt06vPzyyyAihIaG4tKlS+jevTsmTJiA/Px8/PTTT/jqq6/w2GOPYe3atXB1dW3LatvU14cR6enp5OvrS5GRkXT8+HGqq6szGe9hUU9NgWVZ+vDDD8nV1ZWGDh1Kb731Fo0fP57i4+OpqqqKKioqqLS0VNAajh8/Tu7u7ve0aWDatGnCJoo1a9aQQqGg+Ph4ysrKotjYWMrIyKCpU6cSAJoyZQqlpaXZdvTYIEVxcTGlp6ffU9qHhVGvX79O4eHhtHHjRqqoqCCNRkNpaWl0/vx5Sby6ujo6dOgQTZkypUUqq6mfXC6niRMn0v79+6miooJ2795NN27coMrKStq6dSuxLEvZ2dnUv39/Cg0NJZVKRR9//LHFzf33AxtTPuC4du0aJSQkPBTb4e4VpgaKqqoqSktLI61WazJNVVUVZWRk0KRJk8jDw+O+T4eg0fCTlJREZWVlRuVpNBrauHEj/etf/6KwsDDy8PCggwcPWr0tiGzb7B5YlJSUYNOmTThw4AB8fHxw5MgRKJVK4b255Q16iOeQPJpbuvnhhx+wc+dOpKSkoLS01Kprk4GBgejRoweWLFmCZ599VvLujz/+gFarhUwmw6effgpPT09Mnz7damXzsDEloB8nRf2Y79hELBhGLgkTgyUOMjDNusK4l/XB9evX4/Dhw4iLi0N0dPR95fUo4Nq1a0hOTkZFRQW2bduGGzdutEk50dHR6N27N6qrq9GjRw+8/vrr6Nmzp8m4bbY7qk3k70OOeWMYYgS1RiZScWSUlJ57X3m3dB7yIDgzfhCg0+koISGBwsPDhUPIsIKqau7XqVMnevPNN+nUqVOUkJBApaWlZmmzzSnbEKbOx8WNBqWpRXEol0Yx0ZRjZUNJWVkZLVq0iF599VXSaDQPjSGmPcCyLH300Uf3dDbyfn+vv/66cD6TqH0NZP/39CATYAxVUKiRjThE+emft2zZAga9ETivD/wb47VW5yciiQeAuro6rFy5Es888wxOnjyJUaNGwd7evtn5kfh9c3EfVvDttHbtWixZskRy41ZERARefPHFNp03MwyDLVu24JlnnsHixYvx73//Gzt37pQ46WrT257bjf0fIuSmbaa4Ld8QcUScOpVGz9+sf8E1SVWW9P5aDEfQlo6oLMvS0qVLaffu3S2mq63UpQcRH330EXXq1IkYhqFJkyaRq6srhYeH07Vr12jSpEltoso2l99LL71E+/bta/O625jSBNK2zNN/pMaPEbc5VfT23hjjxo0bj/R2OGtBo9FQQkICeXp6EsMwNHz4cFKr1RQSEkLbtm2js2fPkoODg9WZ0lJe7u7uQpmPPfYY7dq1q03bwKa+AgA4iTqafmwN0tQEjghpW+bBz9dX9FZmIoV5VFdXY9WqVRg6dCh2797dbHx6RFVSSxDXOSsrC0lJSVi2bBn+/Oc/Izo6GnZ2dnBwcEBJSQmmTZsmbKOzZluZysvBwQFhYWEIDAxEbGwsQkJC4OjoiA8//BBz587F77//brXyDYmxQQROnUoYHSc856YlSgw+TWCpOamZk5NDTz31FPXv35/2799PGo3GqrQ+aqiqqqK4uDjau3cvlZaW0rFjxwSVfeHChW1m1DF0K8n/PDw8KDMzk7Zs2UJ5eXmUl5dHFy5coGPHjtGIESPoqaeeorNnz5qtz71ONzqeKdmmORjHSf1qGs3XDJK2hT0sbcs8itucKuQt/G/CQss2Q0FFRQUlJye3m7/Qhx0ajYbOnz9PLMvSxx9/TGq1mmpqaiglJYWGDh3aZgxp7p1SqaSUlBSTzHXnzh2aPHkyRUdHU0ZGhlXbocOZUlxhlmUtMCIrYQJrGj04ahoA+KUQjthWcX1lZSVt2bLFaN5ojk7b0odllJeXU2lpKU2ePFk4PtXcz8fHh6ZMmUJDhw612nzTz8+PTp06ZZJGlmUpNTWVPvnkE5Pf+V6/cYczJZFeQvKVEhiPE1eq7a2OuWmJko8hWaO00Li1tbW0Zs0a6tOnD/Xr14+ys7PbnNZHCZbaNiUlpcUM6eLiQqmpeoNcTU0NvfTSS1aTplOnTqWKigoqKysT+un/wVMiTVLqQZYnWVlZFBoaSv369aNPP/3U6AiVqQ8nHlFt0tI0ampqaMaMGeTt7W1W4jEMQ56ensLGgujoaGGakJycTF5eXlZTY11cXCgkJIT69OlDCxcupKysrDat/wPBlPqu+WCvwZlSrUtLS2nHjh1mzzPa0HpUVlbSzJkzm2UiBwcHWrlyJTk5OVFYWJjAKMnJyeTm5mbVuaVhPF9fX/rwww8Frcjag6uEKbmGeqrXaoVfwwPCJ2KjC2cYaDWwQr6m5gdqtZoWLnqPiktL/k8t4rc3srOzSaVSmWQGuVxO48aNI5VKRePGjaP09HSKiIigCxcuEBHRqVOn7vmgM2+BbY45xe8HDx4s2YpnLRhLSk5HDdp60rWTZiUuhmUbqEliWur4bcMUTe7/dcTznVqtppkzZ5JKpaLg4GD6/fffW5yPDa1HSkqKsFAvZgQfHx+aM2cOZWVl0aBBgygnJ4eqqqro4sWLQlpz93+05S8yMpJOnz4tXJtgjXtGOpwpiUwvLcSNNmgApvH/MfPanB6O9CP23Llzydvbm5588knasmUL1dbWNsWxMZ5VINY6zp49SyEhIUZSSaVS0dGjR6mqqooSExMpPj7eKJ+NGzcaSdj7tcC2NL27uzt9+eWXVmsTC0zJUoOgyur0qmOjeiuotZxOiNPQwBnkwadtkLKciXeCRcsg3rxR9vTN5abyc9M205i4REl6luOIiKfVgO4GVlqegT5uap5YXFxMb775Jjk5OREAGj16tE1dbQewLCuZSyoUChoxYgQpFAp6+eWXSaPREMuytHXrVqNlp61bt5pUea31awlzvvjii1RYWGiVtrAsKTkdNUiYiqWGhib1sqGRWfR/89KVlUharkHMDKbfSeaKjfG02sv00qh5RMRRg/YyJSWmEUdXKPHf31ADq2dESd4C8zXSKzzrRM88ExujsLCQFixYQD169CAPDw9asWIFRUZGkpeXl+1sYzvg7Nmz1LNnT6GT+/r60u7du8nHx4eSk5OJSM+44gGysLCQtm7dSi4uLu0iEZuLP23aNLPuS1qDZtVXrqG+qeOzDU1Skm2QGIUECco2NDGCkF8jo1h6RyKVkG2g7G8+oXe26Ned0rbM0x8utpSe01F9nbZJ7TZUwzkdaWvrjNTygoICmjt3rmCx69u3r+Df8/z58+Tg4EDLly+XpLFJTuuCZVl68803hc6tUqlo9+7dlJKSQiNHjjTpnygzM5PCw8OpW7duVmWs5n5yuZwCAwNNnvHs37+/ZIpzrzDDlAbSUVtPOo4jXYOIIdgGI3VQCBenN2JKM+8M8vgm8R1940E/n0xTN6VnDdKzHGeSCS09X79+nebNm0ceHh7k7+9PiYmJtHv3bvLy8hIsapWVlRQYGEhubm7t5oj3/yLOnTtH4eHhFBISQiqVitatW0dERJcvX5bM1cSDoZiJrcmEDMMYGZrEv6ioKEpPTydPT08aNGiQRLp7eHgIUv1+IDCloApyOpFayr+rN7FEop+7NYWxxLGi8IYmqSdVX6XvtA1Na3yCpGycTx7PISKWo7hRL9EVljVIzxKxhupr80xZ+scNmjdvHnl6epKvry+tX79eslE8OjqaRo0aRbt27aI+ffpQcHAweXh40IEDByQNZzP0WAcsy9IHH3xAe/fupczMTNq9e7dk3ddQKykvL6ejR48KVxW0lPlaypQODg40ZcoUs9Jw4MCBlJmZSbGxsfTBBx/Qrl27yNHRUaJ2iy3C9wIRU/JrlKYsr6xZiVZvyqAjMeboLBh6dNT0toEa6mqpgSVic48TRs8T8k78d2IzeYuNUg3EmXguzM+nBfPfJc/u7uTn60sbN26kmpoaI+a6dOkSOTg4kKurKy1YsICqqqpo+fLlFB4eTg0NDffYzDaYA8uydP78eaMTNGJm1Ol0dOrUKTpy5AjFxMRYzaWkOeYdM2YMZWRk0LRp0wgA9ejRg5ydnSVq6vLly2n//v1ERPTWW29J8pg9e/Z9TXFauKOHJV1DW0oG6TGo440nNcQnSIiI4uL0R6paQ0lxcTHFx8eTp6cn+fv709q1a6mystJimr1799K5c+eE5+zsbHJxcaGjR4/a5pMdgP3795O3t7dgEW8r51l8vv7+/lRZWUnl5eUUHR1NkydPpoSEBInk5C3CREQZGRnk6elJbm5uNGHCBAoODr6v6U6LmJJraGindUu9dc3QaRWRft1S6gGgCaZO9JeXl1N8fDz16NGDvL29aeXKlffl0HjixInUv39/G1O2E/h2rquro6ioqPtmRsNLfxQKhdFmd/69g4MDrV+/noj0FwwNGjSIMjIyKCAgQIjr5uZGhw4dEuhNTk6m3bt3U3V1NX355ZdUXV3dNucpuQYTa5DNNKI5XL58mb7++mvKyckxe77Q8KSGsGGg8Wd82Jg1cgHIM6Onpyd5e3vTqlWrqKampqlO9zgXvHTpEjk5OdG33357T+kfZnTk/HnVqlUWDS8tmTsqlUqKi4uTqKB/+9vfKDIy0mwes2fPJiL9KaCxY8fSpk2b6PPPPxfWQxUKBQUFBd33/NEULN66xdh1gr2lCCLwDoINnQUTEX755RfMnz8fFy9exJ/+9CdERkbCyckJDMOgU6dOCAoKQlBQEBjfKKjVavj6+lr0Vkb6wQSMTAZ3d3cAQFlZGZKSkrBt2zYwDIM5c+YgNjYWTk5O0jo15ttap8Z9+/ZFVFQUPv/8cyPP2dRGXsnbKt/Woq1pMFfP1atXIz4+vkUXwIrzMoRcLsfTTz8t3AQNAN7e3pJr58Xw9/fH7NmzwXEcunTpgldeeQWOjo4YNmwYKisrERcXh8jISAwePBhHjhyBv78/HBwcWkxjSyrRpkhPT6d+/fqRXC4nFxcXsre3p8cee4xUKhUplUry8/OjoKAgioiIoMGDB9PzUcNMbvJtOsemk4zc5eXl9NFHH5GXlxf5+PjQ8uXLW6zPt1a9OHr0KDk6OlJeXl6r0llCS6XQw2ztvRfaN23aRC4uLhLJZ8oaGhoaSv3797coPUeNGkVpaWmS/OLi4mjbtm0UHBxMzz33nCR+nz59JBqYeNMCy7KUlJQkqKg7duwQ9r1aC1ZjSlMdPCUlhby8vEgul5NCoSAvLy9ycXGhLl26kFKpJAcHB/L39ydvb29SKBQks5OTYzeVZPlBsi9WdPCZt4p6e3tTz549aenSpVZvHEPodDoKCQmhadOmtWk5rcGDwqz8Rux7oYdPw7Is6XQ62rZtG6lUKlq9ejXNnj2bAP15yVdeecVIzYyPjxespACEviSOt2bNGrp48aKwdOHv70+XL1+mnJwciomJoczMTAoICBAYlr8Kzxza2q5gNW92hqpgYWEhNm3ahJKSEiiVSigUClRVVUGj0YBhGLAsC3t7e9y4cQN37tzBY10c4NC5C6oq7yAnJ0fIh2nURggAGKCyshIffvghgoKC8EnSvxEbG4usrCzEx8fDycnJopPc+3WgK5fLsWTJEhw+fBhFRUUtSkNt7J2uOdWSL7+t6eBpMXdxbXPpAH0fysvLQ1xcHHx8fDBu3Djcvn0b/fr1w/z58+Hv7w9PT09ERESgZ8+e6NmzJyZNmoTAwEBBNX3uuefg6OgIQD/lcHV1Ra9evSQOnVmWxd27d+Hg4ICBAwfiySefxEsvvSTQqdVqceXKFbP0tvldLvfL1aZGxvLycsGBrpubGymVSlKpVOTg4EAKhUKQnAqFgpRKJbm5uZGHhwcplUrq1KkTrVixwijPiooKSkhIIF9f30bJuIz++OOPdpcUdXV1FBISIljnWoMHRardK1pC//3Usba2lmbPnk19+/aljIwMmj59OoWGhtKVK1fo2LFjFBsbSzExMXT58mWKjY0lX19fqqiooKqqKgoKChJUXD8/P4qIiKCVK1fSa6+9RnV1dXTu3DmJoSc2NlYoU6PR0Llz5ygiIoKefvppAkABAQFGnupM1a3puJ/1vu19s7ypkTEtLQ3ffPMNunTpIowqDMOgS5cucHd3x2OPPQatVouuXbui62NK6HQ6dOvWDRzH4cUXX8SECROEUev8xQtYvXo1nn32WWzZthnTZ8RCrVYjPn4x3N3dLUoKa7iWJ4NRXqFQYOrUqdiyZUur82pLg4khnW2BltBvLk5L6GMYBoWFhUhKSkJGRgYyMjKwb98+BAQEwM/PD71798aNGzfQtWtXeHp64o033oCTkxMqKiqg0WigUqlgZ2eHIUOG4K9//Ss8PT2xZMkSKBQKhIWF4fXXXzei5+zZszh48CB0Oh08PDwwbNgwyOVy5OTk4Keffmq2bgzDgOM4q2okFq2vrQXHcSgrK8OePXug0WgEC2eXLl1QX18PjUYDnU4HX19f9OvXD/3790ddXR2++PIAPN098NRTTyEk5El4e3ujvr4eP/z0I746dBhJSUnw8PDA22+/jZ49e+LgwYOCGtwSkMi6J/5bf91dy1Qrcbzq6mpcuXIFM2bMwIABAwTmHzZsGHx8fIR4arUap06dEp6HDh2KgIAA4fnatWtIT08XnsPDwxEYGCg8l5SUIDU1VVC9Bg0ahCeffFJ4X15ejm+++Qb19fUAgH79+uHpp58W3ldWVuKrr74Cy7LgOA5PPfUUBgwYILy/e/cuvv76a2g0GhARAgMDMWTIEOF9XV0dDh06JDg/9vf3x5AhQ4SBVqvV4vDhw7h79y4AwMfHB8OGDRPaTKvVIiUlBRUVFQCAHj16YMSIEUJ6lmWRkpKCsrIyAICzszO2b9+O69ev45dffkFiYiJu3LiBw4cPIzU1FX/961+xY8cO9OjRA++88w66du2KEydOYOnSpcjLy8PQoUOhVCrx97//Hc888wzkcjl++eUXpKenw87ODuXl5ULd7Oz0XT8kJASBgYFoaGjAH3/8gaCgIISFheHnn3+Go6NjiyzgYnXWGgOvVZlSJpPh22+/xdmzZxEaGopLly5Bq9XCzs4OHMfB3t4ecrkc9fX1mDlzJp5++mkwDIPJkyfD3t4e+fn5WLlyJZYuXYqrV68iOzsbGo0GTk5OcHV1xc6dO1FfXy8wU3svF/CMaW9vj759++L06dM4ffo0iOHAkAxeXl4Spvz110tYt26dkNbZ2VnClDk5OZL3Xbp0kTBlfn4+1q5dC47jwLIs5s2bJ2HKkpISrF27Fg0NDWBZFrNmzZIwZXl5OTZs2IC6ujqwLIspU6ZImLKqqgrr1q1DbW0tWJbF+PHjMWTIEGEw1Wg02LhxIyorK0FEGDlyJCIiIoT09fX1SEpKwo0bN8BxHCIiIvD8888L34VlWXz66adQq9UAgAEDBmD48OFCep1Oh88++wy//vorAODJJ5/Eyy+/jN9++w2zZs1CREQEJk+ejMzMTHAch9TUVMycORMymQwqlQoAcPDgQVy8eFGo74wZM/D0008LF+weOHAA//nPf8AwDCorK4Wy+YHU2dlZCIuJicHNmzeFtPv27cPzzz8PLy8vcCDIJJeYskDj3aXWhlUvjb19+zbefvttYe0mNzcXGo0GCoUCDMNAp9PB2dkZ9fX1+OyzzzBw4EAolUr88MMPKC8vR05ODjZs2AAXFxdcu3ZNuJCzW7du+OSTT/DMM8/oiW6BhGtLCAYNjsCS/uPKZDL9upeMgYwYgAF0Og4NDU1rbAqFQjKqchwHrVYr1KdTp06Qy+VG73k0914mk0nW4qzxvr6+Xmhrw/eAXpoavhcPmOL3DMOgc+fOZtMzDCP0FcP3fJhhegA4ceIE3nvvPaxcuRKRkZGSd1qtFhzHgWEYJCUlYc6cOQCAadOmGU1BEtasxu1bNxEY0AdTp05Fdw93/PfUt+jzRCAMQZDcM2xVWFVS6nQ6aLVa6HQ63L17F0QEhUKBTp06oba2Fvb29rh16xZcXFxQX1+PJUuWYOzYsbh+/Tpu3bqFX3/9FZMmTUJYWBiWLVuGK1euYNCgQUJHaJNbc1sJIhYM5GjkOwH8h2egf8GBYGcng52deZp51d5a7/nOzUu65tIDlttUJpOZZAK+LEMm46WPmKk6d+5scaOGufz5NJ06dTJKK84vNzcXCoUCvXr1QnBwsFE+4kHEXFk8evv2Ql2PP2HIkCHoE9QXo8ZE487tSuHGZsnUx2JO9wer2nbFDejj4wMigr29PRiGgUwmg52dHbRaLZ599lk88cQTUKvVKCwsxOTJk+Hu7o6BAwdi9erVsLe3R/fu3TFr1ixER0eje/fu8PHxads7AS1ALJUZRg4wHDa/O1qQmAzD4GS+DFsWvIscNErONvpsYqOCIXiJ21KTfUviWSqrpfm1dglBzHSm0orDDh8+jCNHjsDOzk5yf6Qp6HQ6i+9ffvmvmDhxInp6eWHmmDCs/GgV/vKXv8Dh5TgQ1FiwQC9ZORCIWIt53Q+sypSdO3dGUFCQ0EA+Pj5QKBRwcnKCo6Mj7t69Cx8fH8TGxsLPzw9r1qzBiBEjcPPmTWRkZMDPT39Lq1arhYODA5599lmUlZUJ1jbxVr72BImnElfTwMjkOC57SdjuxxEhfS6Dbxh/BFi3SY0gk8kszqVbMs8WM1pzbdncdseW5sPHb0m81tgKYmJi8NprryEuLg5ubm6Sd+K1SUOYGyjoahpkDINUXXjT9/14NGTMEyC/Xvq0IOhZp236oVV7kEKhwMSJE9GrVy+UlZXh6aefxq1bt1BRUQEigk6nw6BBgxAeHg6ZTIa+ffvCw8MDpaWl+N///V+wLIvy8nL8+OOPuHPnDr766iscPHgQgwYNEibfQDss3hqgaQODGv/jPxxxSan4asX0xjC9KrNqXSoCfH1gbqZraQ7cmkHmXubShmnEnd5s52zhEkZz+RjGl9yY3UIpzHGc2Tby8/NDYGAgQkNDjdRT8fzbEPw7IhK+GUGNsb2HY/T8zfh6VdPyCeP3AhLnvwTfXr0a4/EDY9v0Q6vn2qtXLwwbNgwFBQXQarUYOnQoZDIZ7ty5Azs7O4SFhRl9wMrKSgQFBWHXrl2YOHEikpOT0b17d8jlcri6uuLPf/6ztclsFfhOsvndufh6VBwSXn8B/CjJMyzjNwwJr78gKK2G6o2ppRUeljq0JYZqLf1tncYQhrTz825zZRjGFz+3po3EYeaYuaGhQWQH0CN9SxKOYBTWrZpmlE+v3k/Az9dfTzdgdvC1BqzKlHwDTJ8+HX369EFGRgZ8fX0RExMDhUIhmLzF2LFjB5KSkjBr1iz89a9/hVKpRGBgINzc3JCRkYGpU6dKlgnE5bQnCGp8k3AUcS8NawxpbLrGL2q4D4MxYy5vqTrYkvgPKsTWVDGak6aG8cXb7yxJbnOL+pbm18eOHcN3333XRDPU+Pf0tZi/+Z/wI9663zSIDJ+2GlF+ovwt1uT+YFWm5BvAz88P77//Prp06YKdO3fi0KFDkMlkmDFjBnr16iUw1aFDh7Bx40ZcuXIFa9aswc8//wyZTIaEhATBwDN27FgjM3x7q68AgKt5OAI03epMAMAhfWscZAwDmUyvmqVf1YffCx5GBjSFtqiHtaQ9r0KXlpYK66ccCIxa/319fX0BhteADPsZZ+Zv68KqSyJijBw5EjKZDPv27cNvv/2G4uJi/Pzzz/Dx8UHfvn1x9OhRvP/++/jnP/+JgQMHYuLEiSgvL8drr70GjUaDDRs2YMqUKfDy8jJbRkdsIBDAAIAMUbGrkfO4H/w/zgN9ndD40nZr/YMGw21wcrkc9vb608IyMHpjHgMIzCZrnG5ALBVlorC2+8ZtxpQymQwjRoxAZGQkKioqcPToUaSkpGD79u1Qq9XIy8vDxIkTsWjRIuzbtw8cx0EulyMrKwubN2/GkCFD8Oqrr1oso10Z0s8XowFczcsD0BsgvVWWYYD8gquYH/1C00Sj8eMSmT41YUP7Q7x8JbEaN+7U4fx8MZqAq3kFAAIEbmQAcFfTsC3PF69H9ZZu2UQbqbH3tZ29ldBoNFRWVkYxMTEUHh5Od+7cofT0dOrVqxc5ODhQ165dycXFhTZs2PBAnqjITUskMKDNJ6R+SUz5FCJ6+E+FPGpISkqSnMXctWuX5Gxk6ubRBEDv+LsRuWmJhNGNDtva6Xu2q57VuXNnuLm54fXXX4evry/27t2Lt99+G/n5+VCpVJg/fz5efPFFYauV2KDD/00duL2ud9Qb4HJTMX1Y78YNEXZgGAarEScxAvCwSckHB+Xl5fjvf/8rPJvanDBs6ADkpiXijSh/Qaq+c0ImTEsEVzJtanu1kvpKrZzbRUVFwcnJCUuXLsXNmzcRGRkJR0dHvPLKK9i4cSOuXbsGQNpg4iNgHQnG7wWJab8t90DaYD3k5+cjNTXVYhwuMAC9A8eB6A0TLwmQMbgCIIAAMFyj6mv9TelWkZTNnaEzlG4Mw6B///74+9//DplMBkdHR9TU1CApKQkXL15sdjtUu8LEoChZa7NghetIqW6DFJa2JwL6byXjYozCBDQafgKI//6yNmFIoA0NPUBT5xV3Yn5fY1FREQ4fPoyYmBgEBgbCzs4Ot27dwtixY5GZmYnMzEzJMSNx2tZK5vurhIkwiXiUmZWWHS3VbWiCue2JvKHHVJ9iGMbEt9WHGB3lsiLalClNgVdD+YOvr7zyihHzffzxx0hISMDSpUsRFBRklLbDOztj8dGGhwg8Y5lb+zb8tsKGhjb86m1u6KHGTb2G8PPzw4wZM3D79m0jv57Tp0+Ht7c3EhISUFJSYpSfDTY8ymhzSWlOqtnb2+Pq1auoqqpCUVERvL29ER4eLmxIv3LlCq5fv46qqir06NGj2fxssKG9wE+jWuvQu6VoF/XVUF9nWRZfffUVMjMz8dRTT+H06dMoLy/H559/jsrKSsjlcnTv3h3Dhw/H448/bnYvpQ02tBS8Tx4x+B09QOtWEHi7Rltt92wXphRX9pdffsH69etx+vRpxMXFYfTo0SgrK0N4eDj27t2L4OBgxMfHo3v37kb5tKuBx4ZHBhzH4Y8//kBDQ4MkrLy8XJB2phyrmUNb98N2M/TcvHkTv/76K44cOYIffvgBd+7cwYULF/DLL7/gl19+gUKhwPXr1xEQEABXV1eTedgY0oZ7QU1NDTZt2iR45QP0jJWYmIjRo0fj8ccfF8ItLe+1V/9rN6b86quvcOHCBSxYsAATJkzAihUroFarBY8Cv/76Kx5//HEUFxdjzZo1qK6uhpOTEyIjIxEaGtpeZNrwCEKr1aK4uNjoTGtRURGqq6uN4ouNiaY8J7Y1c7a59ZXfHnfz5k0MGzYMXl5eGDBgAF599VW4urqitLQUlZWV+Pjjj3H8+HFs2rQJubm5AhMvW7YM2dnZbU2mDY84WJY1WglQqVQmb8vimdDUOnt7QJCUrRHPrZ0UA4CTkxOuX7+OmzdvwtXVFS+++CICAgJw69YtuLu7o3fv3oL3suDgYPj5+aFv377Ytm0bqqqqJOWKrV7mLGCGNN6v+mGbz5qGufa3hmVSbOBrafubiufk5IRhw4ZBo9EgPz8fAODp6YmPP/5Y8AslTttc32op7c3Ray5/RqPRUG5uLjiOQ6dOncAwjOAqAWhy0ScOs7e3h0wmE8L4jO3t7VFfXy/ZG+rt7Y3OnTvjypUrWLt2reAipFu3bujSpQtKSkqQn5+PW7duQalUCiqFUqlEbm4uwsLCMH36dHTt2hVVVVVwcHAQPFfznsEZhhHuGhTTyddH7LvU3t4eLMuCZVnJyXZ7e3twHCds8WMYRrDOabVaEJHkDB5fjlwuh0wmk4zE4vbgfafyH5sP440OfBgRoaGhQUhvWI64fHEdDfMUx2uuHFPfkpcQfDniOpnKUy6XCx7YefDtLl5/NixHTJO4bGr0gMjnaapPNkezqbbRarX44Ycf8N5776GmpgaLFi3CP/7xD8EvrKVyWJaVbP1UKBQmyzHsf6Z4x1Q5MpkMSqUSPj4+eqNTdnY2DRs2DPX19dDpdKiqqkK3bt0kZ89u3bqFbt26SRwR3b59G0qlUiCGdwuvUCjg4OAgfMg//elPICL07t0bBQUFuHr1KnQ6HWpqauDu7g6NRiN4+Oa92PGNy/va9Pb2hr29Pe7evYvq6mpUVFRAq9XCyclJ+Ii1tbWoqalBt27dhAbVarWorKwUvGDznVLsiIlhGNjZ2QlewJVKpfCB79y5I5TDfzhT5fAMCTSNkHK5XFje4VUke3t7YSdT165dAegP21ZXVxvV5+7du6ipqZF48OZ9HXXq1ElwEmVnZ4eysjJ07txZKMfOzg63b9+WlGNYH/77EJHZb9mlSxehHHt7e5SVlQnfl283fsDhmYPvxJWVlUI/ksvlQj/q2rWr4HZULpcL5fCOqsV58vlWVlbC0dERcrlcGEgrKirw2GOPCYMxwzCoqKgQ6DOk2dHRURgoeI/xXbt2FdqB4zhUVFTA0dFRoM9UOXyenTp1glKpFIRSfX097t69a7b/8d9Vp9Ph1q1bcHJyEgZ0mUyG4OBgHD16VM/IdXV1dO3aNSotLaWBAwdSv379KDc3l/Lz86m0tJQGDx5MoaGhdOnSJSooKKDy8nKKiYkhHx8fyszMFMImTZpEHh4elJaWRgUFBVRQUEBqtZo8PT1p5MiRdOnSJVKr1VRcXEy+vr40cuRIunLlipA+PDyc+vfvT7///jsVFRVReXk5RUVFUZ8+fej777+nnJwcKigooJMnT5JCoaClS5dSQUEBFRYW0rfffksqlYpmzpxJubm5VFBQQBcuXCAvLy+KiYkR0l68eJHCwsJo2bJllJeXJ9Czd+9eksvllJSURIWFhVRUVER79+4lBwcHWr58uVDOyZMnSaVS0axZs0itVlNBQQFlZGRQUFAQJSYmCnUuLi6mPXv2EADau3cvFRYWCuXIZDJKTEykwsJCKiwspPT0dFIoFPTBBx9YLKe0tJRWrFhBCoWC0tPThbCVK1dS586d6dChQ0I5e/bsMVkfpVIp1CcvL4/Ky8spOjqa/Pz8hG9ZVlZG48ePpx49etCpU6eEcubOnUsqlYoOHTpEBQUFVFRURMuWLaN+/fpRZmYm5eXl0dWrV6mkpIT69esnfMtr165RcXExhYeHU1BQkKTPjB8/nnr27EmnT58W6j5r1iyKiIig7OxsKisro3HjxpG3tzdlZWVJ+p+3tzedPXuWCgoK6MaNGzRnzhxydHSUtE18fDwplUo6cOAAFRYWUl5eHlVUVFB4eDiFhYXRlStXKC8vj0pLSyk8PJxCQ0ONyvHx8RHKKSsro8mTJ5O7u7tQTkFBAV2+fJlUKhXFxsYK/e/ixYvk7e1No0aNEvqfWq2m0NBQGjRoEP36669CWGRkJL311luk0+mIGlUTIiJau3Yt+fj4SO5w37JlC3l6etL58+eFsOPHj5ObmxsdO3ZMCPvuu+/IxcVFEkZENGfOHOrbty8VFRUJYfHx8eTr60uFhYVC2NatW8nT01NSdnJyMimVSvrtt9+IqOk23ZEjR1JUVJQQRkQ0ZswYevbZZyVlz5w5k4KCgkij0Qhhs2bNosDAQLp+/boQdufOHQoLCxOuRiPSH8bu378/TZo0SZLnqFGj6LnnnpOERUdHU0REhOTC2srKSurTpw/NmTPHqBzxhbN8fV544QWjciIjIyVhOTk55OXlRWvWrBHCCgoKyNfXlz744AMhrKqqikJDQ43q069fP6P6HDlyhNzc3Cg9PV0IO3XqFKlUKkpNTRVovHz5MnXv3p22bdsmxCssLCSVSkUff/yxJM9NmzZRz549KSsrSwjbu3cvqVQqys7OFsJOnz4tlMMfHs7IyCCVSkXJyclEpO8DPAPwSE9PJzc3Nzpy5IgQdvHiRfLy8qKNGzcKYWq1mjw8PIzoW79+vVE/37ZtG3l4eNC5c+eISH+YmS/n6NGjQrwzZ86Qs7OzpGwiomnTplFISAjV1NQIffLNN9+kPn36UG1trRBv7dq15ObmRiUlJUKdN27cSO7u7hJ6wBemUqlox44dwousrCxycHCgrVu3CmHXr18nNzc3Wrx4sRBWVVVFLi4utGjRIgmhBw8eJKVSSSdPnhTCTp48SQzDSML4csQf/PLly6RUKmnLli1ERMIIsnDhQnJzc6OysjIh7pIlS8jT05MKCgqEBt2+fTupVCrJ/YLbtm0jV1dXSdlERBMnTqTAwECqq6sTwiZNmkRBQUGSchYvXkweHh5COSzL0rJly8jDw4MuX74sxNNqtTRu3DgKCgqSlDNhwgTq06ePpJyFCxeSh4eH5Dr4RYsWScrh23jQoEE0cuRIoY51dXUUHh5uxLymypkwYQKFhIRIyikoKCBXV1cJQ9+8eZOcnZ0lYXV1dRQQEEBTpkyR0BMWFkbjxo0T6CEiOn/+PCkUCtq9e7cQ98KFC6RUKmn79u1CWFlZGTk5OdGyZcuEsMLCQurVqxfNnj2biPSDUI8ePSR9rbi4mNzd3SV9rba2lgIDA2nChAlCGMuyFBwcTOPHjxeYhOM4+vHHH8nR0VFCC9//+L4mLmfx4sVC+qqqKnJzc6OFCxdK2vvTTz8lhUJBV65cEcJ27dpFjo6O9NNPPwlhaWlppFQq6fDhwwKNaWlppFKpaM+ePZJ7LlFeXk5eXl40Y8YMIYPy8nLy9vaWjLY1NTU0aNAgioqKEj54bW0tjRgxgsLDwyUSKScnhxwdHWnVqlVC2OXLl8nFxUXyIfhyxNKjrKyM/vznP9PYsWMlld+3bx8plUo6fvy4UIGvv/6anJ2daf/+/UK8H3/8kVxdXWnDhg1CWHZ2Nrm6utLKlSuFMJZlaeXKleTs7ExZWVlCnps3byZnZ2fKyMgQ4h46dIhcXFwk5Zw6dYqUSiV9+eWXEjpXrlxJKpWK1Gq1pBwXFxdB6hORoE6KpcChQ4fI2dlZcr08EVFsbCx5eXkJ0pjjOHrjjTckGgfLsrRixQpycXGRSKnExERycXGh77//XgjjmSo6OloY8Kqrq2nYsGE0dOhQIYxlWRo/fjwFBwdTeXm50EFnz55NXl5epNFohHYrKysjT09PevPNN4VySktLBebg86uurqbIyEiKiIgQyqmrq6Po6GgaNGiQ8PzUU08JGgTLslRTU0Ph4eH0/PPPC31Np9PRuHHjjAacKVOmUJ8+fai0tFQIM+znycnJVFBQQL169aLXXntNiFdTU0ODBw+mYcOGUX19PRHpNY0XX3yRBg8eLJTNcZwg2cUMffbsWXJ1daV169YJYXl5eZIBh0jP+AEBAUaak0ajIRQUFNDMmTMl6tfXX39NoaGhVFlZKYSdOXOGgoODhc5GRLR9+3ZSKpWSyhPpR8c5c+ZIGHXjxo0UHh4uiXfo0CGjchYvXky9evWimpoaSdzx48dTXFyc8FxbW0u+vr4SFbGuro6GDh1KY8aMkYxwwcHBFBMTI3QCPm5kZKRwIzPLslRUVERubm60adMmSTl+fn40d+5cSYMadkBxPT///HOjcsSDBF+fBQsWWKwPT9e//vUvCfNWVVVRSEgIHTp0SFLOc889JymHr88nn3wiyfO7776jkJAQunbtmhCWmJhIKpVK0rmPHz9ODg4OdOHCBYH5tm7dSg4ODka3HB84cIDCwsKourqaiPSddt68eRQQECDpB5988gmpVCqJFhIfH0+urq5C36qtraVZs2ZRTk6OEOfs2bMUEhIiCSssLKSgoCA6c+aMEPbtt9+Sg4MD/fjjjxL6ioqKaMaMGVRdXU0pKSnk6+tLO3bsoP79+0v6/tmzZ436+c6dO0mpVFJxcbHEp8+8efPo73//u9E3GDVqlKTsyZMn08CBA4W0Op2OoqKiqH///kJ7EemZ//vvv9err+KCiPSjpvjj8BxsyHxnz56l48ePU3PgOI5u36qgqqq7pP+0LBHXVI64/LTjqfRT5lmjPMTzUr4CO3bsoIqKCiE9y7K0Z88eKi4uFuJdv36dYmJiJHNYHuJ4RPrRdOfOnRLmra2tpe3bt0sGjvPnz9OECROoqqqqRXXnyxHX01x9xOWYA8uyVFxcbOTIyVR9duzYIWkfIr00uHHjhiTu6dOnJYxPRHTp0iVKTk6WlLNy5UqJBsTDsM8QEaWkpAjzNL7s77//XlIOy7I0Z84c2rt3r8U619bWGvW/uro6ozpnZ2cLc1IeXOM/nEFgUdE1I5pNlWOun9+4cUMy4PD9z/DbJicn0++//y48azQamjBhgtHAxrIs1dXVkVXvp2w1Go91m1pEJRMbBVqdvWgB917yYVnW7H0U4rzvB+bysVb+LUFbHUGyBky1g6W2MawLESvxVi94EpC4AzWNlmxSsQYM8277Q87ivw3vimAAYg0qy9/NIVrYN5lvG1xAYwhLF8QYetu7V5jrXJbuHjGEqTgtpY3MHEFq6VhtrSskzOVjig5D363iPIwGd8bgOgnRH2TggMkwT1OO21qC1so5Pm8+nVWYUnzlmCFBvFM+AHh3rEziFFfGMJDZjYVa7HyqhcKBYRiLV53dC1rbwe5Hgov/twRD5jRFo6l8+AXx5mho6dY1czDXBtZqS7NuOkQakKW4MjCYP4aR9DuGYbD5hNqkTx4erWUscfzWaDhi+ptcjZh42VrCxBLFNEH6u/wSvibMGwOkXW3akpYYJ4M/MxZqScGAnhzLo6ehJLPUccUw9b69VDjxFkRLKpghLKUxpfqbCjeVnykYqofmJJMleq0pWe5lUBAj4WtC3GgGSem5ICLBt+uJPOMy+O19rRms+PitHYjMaSlCiMmNsa3oNGIiTceXgaDG7xSHKN+msqavOoy40Ufxzrui++cZQCbTM6YpRrOk8rWEuQzVBXFYc/W63yl4SzqRKfp4mPTIZvA9DL08tBamyrDUSe9nMGvJ3JnI+LLZ1nwHDrn4/ehLeH6Y/nIm/pImcRY8DfzWN0u0GGoZlm6dNuVQ3LBMQ9xTa5q7msxcQ/HEqtPSIQvsLYnPMAx8A0fhyO95JnX65uaW5mgTN545NCctTMW7V+OLqcHlfugTw1LbyOXyDruWviVoCXPx+0PFaM13yEs/CSZuFHo3dvf57+gvhuW92lsWJlKIj3S1BKbmpc19j3se4lqiRhni5MlvMDIqEoB0hPTr/QTEdwG21Cu8ucYUzx1aEt9UnLayfIqlYHtZVzvKstpShmtp3JbEM/U+v+AqjiRMF/rEC2tJelOzOYnVRu3WrCbXJqUagIhAUCMlgdOrECRuCA5X1VcwWiRBW2PsaQ1aEr+tGMWSUeFRRWvq2NK4pgZaMvFeHJZ+bA1SczkQR0jfPA8v9ObvEX0w0T5DKMMAV/Mgmz8afpBJmI6unsCMhKOCBLXBhtaAYRiDMbzxSF7jE11Na7qAiQGef306RgNIP5nWrnS2Bu3ClAyAk9+ewBO9vfX3xYtGt3ffGQ6MmYfpwxolJWdztmxD60HEG7SkXfrEf9MR99KwJut1Xr7+xuZePu1LYGtguHWoLcDRFRoN6R2OnDpVf1fg6DgL6WywwTL4bZscmb4/Unx3KEe5NBogYBTlEmsU90FBmzNlblqicFGn4U98OacNNtwrOI4zGsCb+p1M2u9EQuAQ6ehBxP8HKcdtjnLnhr0AAAAASUVORK5CYII="
<image>如图,小明同学用自制的直角三角形纸板EFG测量树的高度AB,他调整自己的位置,设法使斜边EG保持水平,并且边EF所在的直线经过点A.已知纸板的两条直角边EF=60cm,FG=30cm,测得小刚与树的水平距离BD=8m,边EG离地面的高度DE=1.6m,则树的高度AB等于() Choices: (A) 5m (B) 5.5m (C) 5.6m (D) 5.8m
5.6m
11,011
null
5.6m
"iVBORw0KGgoAAAANSUhEUgAAAGgAAABXCAYAAADoMADZAAAJlUlEQVR4nO1dy3LbyBU9DUqeLPIRlkiVnNVIvzBF2lVjkdJHJCNVlrZAZ2e7KkmVH8luIpHON4Qc2fMwwfFvJCmS9mwnKy9NAuibRaMbjadAiqJFsk8VTIi3u0Hfg3v7cRsXjIgIGggAk+dEYIxh1G/h/dYxamUA4AAsGMwKDoKldCxBRGBgiAssACBwSJYYuBIyxkAY4kHtJGglqEIwmAFCbSE5doOBMXFYlgVmMTDWwFDjwAIAFmHUijTYftQG1eu4ve2H7DIAWiMGedBu+JjkxQXBbgC9IYFIHGdNYIcdKZKEBVG6SfRf2UC1CrwRri4K4+aKwYo5nJAwH0P8Gzaq5VB68uwCduM1Hj76JwAeWJCu/KA1GvXgUA1/2CK8btxBxRAyM6K3dqjHD04f1p0KoBsIAdt37uPiP0MAVorWg9b+1P4Zz7+5C8YIjd2djEsbN3cVOM73+LpaTXin7fKdkDTSwIPPXvuUIGyJAFCj2dKLRWTmKH5EdT2gOjugAfkUxz+adaXziAUxhK5NdlqD3hl2y7cT7Eu5OS4/eFofPxqC2XWUY06MRj388fn3+Lr2FQBgIy60HvRB3z1Xc6APv4xAtJVCkGA0PnQwSIJxQZDUKQD03/2M3fK9QH/h3PLRg3vA4SmOqxVRWbq1s2adABBjjHpD8Z3diLs5X7k4YaYGRcEYU+ecBtQAlJ6JiPjwrdB1ww6/45yifRAvpnLE/KnB5ZA6G/TOCLBS+6hzZ5Cox4LK05ksY5lzJ4N06DrTl9PiiMuCHipc6ikGyxA0BeK6CvudJDKWA5KLd4C+5BZvjKesLBikgpChq2IT/9xSaetzBlOi6H2c4ZASmhflclYIjGebCoXVxcKogqxD5CcJEoTrK9o8WcCsZhfGNB2BjCqooAErwcrq7EmrlC40bm8RsLI6e/3bVAqNq1sIYgtB6YVSKTSDuIVAEUQAmkdhCDZyHDZB5Ju5z2eAIogR8Py7WAiWi9Xs+m4ZjJXM3OczIOLiKAjB1srivNV2UKnVcL+8HcgNFg1LKZ0BI+cdfnf/LgCg/6oFlLdAKOP4uCaLGCwYlq70D78M8OK4BsuycPebl9i6XZ47KaYfmw4RF+e8eYnekMA5h12vY7uSoswc/erKzyLC9GPTIdwT9N7Bi6D/AYDKwUHqTp5f//crAGB/fx/dbjci05VviJgTZGCo1z6lZruXCBjZth39QgTYqdPp0Jdf7tPe3h51Op3MQFXRIOCqQ1P1dPXkid0AOaNQwInIPgSdnv+Ue7FOp0N7e3uXErXumJkgEYIVexEAEFg0DCvj5tISeMbFDFH5uJIFRZ1Qcp/WNBfLI2qd3d2VXVwW0pTKClzMWFQU10bQVS/W6XRof//ywURRLKsV3liCJHSL6na7qWV05S8rEVm48QRJrKvrWxqCJIoStSqWtHQESayLRS0tQRKrTtTSEySxqvOolSFIYtUsauUIkliVedTKEiSx7POolSdIYlld39oQJLFs86i1I0hiWSxqbQmSuOlEzYUg7k3o03isDjcjNHQTCZK4qfOo+VkQ92g8npCb83+5yQRJ3DSLMgRl4KbMo2bVWfIpb/IxcTmszRLgevABgJVwa7ME+C4mPuE3v/0CNKGgrC+eTC5t4laJaW34Kj/a5q0NbZd+jizxO4JywfVZZn0Ob+LBB0NJ/93WBr4oESauj4vXr/Hnv/4FjBOePHmCw8PDtB1OaruYfj4PzPxkfPIW0SyIezQeu9ouBZ9c1w/uBp/ciRfsZ/DJVVannxP57pg+qc4sT6ZDL8fJncj+MKc+92g8HtMn+Xvl3/I3Bv+Xf30m15em6kL1Et/EXBz3JqESfJdcP7iY70YGFGpQ4buhUlR7gdLyZDp8N524vPpx13zJ34ueR82ZoJjVjCfkck6u64XbrvKUqNePE5Qli7ehE1Gk7SkJkljUYOLKBCl3wT0ax5Qjh9+SD+XiIkNxn3zlhsY09pQfirm4LFnkgjSetu0ZCZK4bqJmJUgNEigYAAAMpc1NbET6Rw5vwmEFHbrq8LiHsSef9tY6/KwOPlcmOnps3MKGhSnbloMEWdYCz/07Y2ACoNvt4unTpwCAx48f4+joSO+vZx44zG+QkAqfXC+89QpXW2LM26Jm1VmhWtxzI65hHQiSmNc86loI8l0xOht7Uce9TgRJXDUeFddZXJ42WkzkiyuKdSRIYlbXl6kzHvlI1pvq1112sTXCtERl6UzPasn0BH9MJPgzBF0RRYnK05ndEI/5hI/4hBmBDUFzwmVEZenMowEdNGzl4s7bIh2zfLLREDRnZBEFIHUgMHC+Jbv1lohEYtlGsxXpjwxB14Q4UVk6iyeRP239EJEbgq4ZkigA9PHjx4Rc9T8kyIpn/jVZfxeENJ3JRPK8+wyMMQydc3zYPlGpEIBY5nmDa0LGvdx/56B5cFet71VqJ6jEypi0idcOnkhyJC3JefMS1a9qubUNQdeOpIqHzjkYK+HFBXCvwuCMsmubPmhByNSZiPAAnILUVtGXOBoLWgDSbmU9DRwALe9YlBJD0AKQCPGJiUpKSR7Kg88woV+ifHpe7OzyBtlI5h6PRmbDyLGUU/BpKSYTNKcnBFbFTLaxwtD7nvT7Wuo6+UpPK9yol9+w4WN2MFYKzxNSrrEmiNL1Hmb9jdej9Nd3RoqYkdwcYCWUr+tdy5sdU3Z8cpViQszYVSFkDq8L3N+WLKuz1jwM3i+tJTdv94fJ9gw/haDrltQ/UPpzXtmBnksiiTyGOH10DkC9yzsKmeD8zBmARNI/nNR20M+Z8RpkI9GXM7H8Q6MeGGP4drADzjk498D/XoXFdmAFucpT4wZhyNUlzrl6Q2FvSORzE26YBYgF7OSbIBvNViKQd9asq7DDRnxpAeAYOX0wu44KNgAGNB/cQ6PZiiyDZ4HDh4WSkadAjZghEsdf4ACDZ7/X+nLBRbmyC2xVxOuedOYkk732w0iUzxlF923BWNDU0HUmrcdu/xh+F7GuEFYaw86bv6kXbPTaD1ErM/Tfs0KjDoMUxPU2eo8LAOUtGf2JvrQxMiaI08aHbyNvwyXJdrCxQd4N6tCyBFsoRWVGHjnUgxZBn66Ht7M2LlqK4YC2/jsH9v1qSKBke3tbJ1UcnBBs3QIRwScvlMljzeVcO5eWQeUtNAAMR6PAfjTZ6Ce0+sNw5Kd8X/AhNzGIr4T1AHUazvDmbn5Jiud1k+v9jNzNc+78V5Ud9s5i3kvb1SMTnCeOWIWbklplFRDXuXihvYDU8v8B2DvrbZ7JARMAAAAASUVORK5CYII="
<image>正方形ABCD的边长AD=8cm,AE=FC=1cm,那么EF的长是() Choices: (A) √{65}cm (B) 2√{34}cm (C) 10cm (D) 12cm
10cm
11,012
null
10cm
"iVBORw0KGgoAAAANSUhEUgAAAHkAAABcCAYAAABKmxrMAAAI6UlEQVR4nO2dT0gb2x7Hv3n3cQk8eJWu4qa4UCleF4EuGuLCLCf3bpJNfT54mNDHWFfq4oKBQl0ULHThDDyIKQ8SF8XWTezjNZNNEaHVtptECMU6Ad2lFEp0lbzyyrmLmDiZZGLMnJmTP+cDQ8xkJudnvvP7zTm/OX8chBACTl/zJ9YGcKyHizwAcJEHAC6ylSgy5DxrI7jIFqJg/tdt1kYA4CJbhjL/GDnvJMZHWVvCRbaEvDyFncBDTO6ztqQCF5k2eRlPsYnY2DFy3gmMsbYHXGTK5CE/BX5fvIjRk+PogmgNB8940SMvT2FsSROjxRRIzM/OoAu4J9PiIkwTQipbSoR3ohuCNfBn1gb0BXkZU3PA5rvL4Jw/zjE0SAfhmAYAAbxEUgkhRCWSFxf7QCCmWJtH+D15AOD3ZIq8ffsWkiSxNqMB7smUODo6wv3796GqKr5+/cranDq4J1Mgm80iHA7j+fPnuHPnDtLpNGuT6uAimySdTmNhYQGKomBkZAQzMzN4+fIla7Pq4OHaBIlEAq9evcLW1hacTicAoFwuY3h4GIVCobaPNdyTO2RjYwN7e3t1AgOA0+lEIBDAixcvGFpXDxe5A1ZXV3F4eIh4PN7UW7stZHORr0k4HAYARKNRw2MEQUA2m8WXL1/sMqslXOQ2KZfLCAaDmJ6exurq6pXHh0IhJBIJy+1qC5bptl6hWCySQCBAkslk2+dkMhnidrutM+oaDIAn5yFPOeBw6Ld5KG2cfXZ2hmAwiPn5eQQCgbZLdbvdACptaOawvsrsQSWSt/oAoUJKBAFE0urxwcnJCXG73SSTyXRU6traGllZWenoXJoMiMgpInolotbtu3haZPCUKJPJEI/HQ05OTjoutVAoEJfL1fH5tBiAcA1A2cGzhq44oxifBJA7bjj8/fv3WF5eRjKZxMjISMfFulwuuN1ugzSn0W3EAceU3HGZzRgIkZWdZxADjd1wxia8DfvS6TQikQiSySRcLpfpso3bzKNYfKdC8nohqaSuRwkmx02XWwfrUGI9KSIa3HtTYn24jsfjRBAEUiqVqJVeKpXI0NCQwXdqbyMpIkmq5pUe/d/9J3+MnBhArGG/jMfPADFV8XBBEHB4eIjbt2/D76fb+c7pdGJ9fR2RSKT+A2UHuXu/YxRAXn6MT+PvAIxicZFq8f3fxyv/ehuY2NTvhTy3hH2vhE0/EIlEcOvWLaysrFhiw8ePH/HmzZsGkfPHOewvjcGxBABeSKolxfd7uE4REfVNJ6JKxAsQXITJUChE1tbWLLfE5XKRQqGgNUTTrFOJ5G3dnDNDX4sMoOkmpir3SkEQSDwet8WWlZWV+otJlYhX06xLSfomHj36WmQjisUi8fl8RFEU28rUpzlVyUu8DRUslUgifbEHTuRCoUB8Ph85ODiwvezL7FljBq6anGkU3jwDJfLJyQnxeDwdpynNUk1zGt1GoK8/UGJgRK6GSzNpSrOwSnMORMYrnU5jeXkZu7u7ptKUZmmd5rSOvhd5Z2cHsVgMyWQSQ0NDrM1h0jWor3trNutNyRoWvTn71pNXV1ext7eHZDLZNQIDbHpz9qXICwsLAIB4PM7YkubYHbL7KlyXy2UsLCzg7t27ePDgAWtzWjI8PIxMJkPlceZV9I0nl8tlzM7OYnp6uusFBmzuzWl7o80CisUi8Xg8tqYpzWJnb86e9+TT01P4/X5Eo1EIgsDanLaxszdnT4t8dHSEcDiMeDxe+9F6CdsqYFq3/v//SrWt26HRm5I1dqU56zz5p5+dda/din5McK9iV5qz58J1IpFALBbD7u5uV6QpzWJHyG5oJ//4Xq558o/v5dr+n352NrzXHqP3/mbHtvNZq+M2Njbw4cMH/Eter2WxtOdXbdfapP1/uhE70pwtPVkfvvWv1R9QfwFo91/nMy3a44DLMcH/jkXxl78ONZyvfdXbZ1RGN2BHmvNa4bqZV/z4Xrb8R/znfCVN2WpMcLP6RDd7sBarQ/aVIl/lCVqvpM11xwT3KlYPWq+JbNYbaXvz+fk5ZmdnMTc3h3/8/W9Uv7sbsTTNWW1LXdU+NvrM6LxWbW6jz6rva70p//ufts/X7zP6u1uxMs3Zdu7arh/J7JjgXsaq/7utipddzZBsNovZ2Vkkk8meTFOaxbIKWKsrwM4058HBAfH5fLqhJIOFVWnOrnjUqCgK8fl8pFgssjaFOYIgUH9kyjytmUgkIMsyFEXpizSlWawI2Uy7/zx58gSfP3/u2r5YLLAizcnMkyORCM7Pz7nAOqxIczIRORwO48aNG1hbW2NRfNdDO2TbGq6racqZmRmEQiG7iu1JaPbmtM2Tz87O4Pf7sbi4yAVuA6ppTqp1dQNYjgnuVWimOS335NPTUwSDQayvr8Pj8VhdXN9AszenpSJns1kEg0FsbW0NZJrSLNQqYFTiQRN4Fss8tNKclnhyt40J7lVo9eakLnIikcDm5ia2tra4wBSgErIpRJUajx49IqFQiOZXDjyt5+asTBWF6sQyXomoJEVE3fTO1Dy528cE9yqGac68jCmHA2OfHl7OsLsJzDl+RU6/bjONKy0UCpFoNGr2qzgGKIpCBEHQ7EkR0WDZ3pRYmXFQiymRS6USCQQCtk1dOMho5+ashOjmc3GqktgwF1jHIvfimOBe5nJuzooXX2fmPgORdat5ayYeJYT9zHaDSC3NeTHL73UWWG/hyRWha1+WEmvTArpcrhZTB/LNqu3mzZuklHt6bZFb1K5VfNoXUVu6YWwC1RUbCoXCZY2Ob7Zt3759g/OXX1BZHyXfKFlehtxssStD+VOipvbWenkdjr1U28Z1cqTE2kTtegxFrmtkWzR7K8cEKbE+nLdwQINwncfrbdSWslElYGlsCnKTCMFhhD9WH85jxoujNBc5/xrbuIffLlbLGl18CBH72H7NVe5Fmoqcf70N3PvtckW0/DFyACbHR5sdzulymohcCdX3qm4MBfNjS9iHpqbN6Skaems6HI7Go7wS1HeL4H7cmzQs/qXTnNMHMB8LxbEeLvIA8AeR7SAaerzyCAAAAABJRU5ErkJggg=="
<image>如图,在△ABC中,DE∥BC,AD:DB=1:3,BC=8,那么DE的长为() Choices: (A) 2 (B) 4 (C) \frac{4}{3} (D) \frac{8}{3}
\frac{4}{3}
11,013
null
\frac{4}{3}
"iVBORw0KGgoAAAANSUhEUgAAAJoAAACfCAYAAAABMsCkAAAt5klEQVR4nO19fXRT15Xvvhapp4NBpIhBpErVxCKIiPcqItI6D7WGhyimyCA6omZap+OZZeI0blbUiSDKG7fu6zirpjgvZuIEE/etOms5K87EiSk2xYAaixWTOIXUzmCeYCwHE9NBRHQQEayaIOv3/pDv9dX3lXT1wcdvLS+4954vnfu7++yzzz77EG4DBAKBqPcPv2IFEQX/yq0IYBTbt+/hpZjKTgNvAxTQbQCGYUKuMXaYGIahFtdiAkCBQIACL6yhAmYxkep+Xsrbonuyglm5bkC2AXKRSbWONu7YS7/d+RgRTROxuIz27Cgn5v77E5RwB6nglicaiIgBEU0LNXvbXtpP5TS6szoibbHqAcJXi0PzZqWVtz4YAMh1IzIJPllALjIxi2nJ3kP0q8e+HbwHRA6tUe7dQXq45ZWQELqMfUz7qYBUxcW855GEukMy8XHLEy0SASIKSjoiCjIRvGe3tHzPHW4vohXfTxuJyDU2FirHmOBMdK/942kRGLjDN5FxyxONTxiGVPTjV6y0q2Yd7bW7uPuuI61U8E92qjGopu8U5M0kQAwVOnoZgbB/M4tbfjIwgwCx35XrSCst/vaPuCd8U0cIwqadqU4S+PkSlZGxiUiOp9C3EdHi49ixY+TxeGh4eJjOnTtHZ8+eJYZhKBAIEMMwNDg4SNevXyeGYQgAzZ49m1asWBFSxn333UdKpZIefvhhmj9/PpWUlCTdjnhE47+qlAjP5k2yXjFwSxItXqe5XC766KOP6J133qFTp07RmTNn6KLbTV/Takkmk9HKlStp0aJFpFarQ6SQTqejoqIirpwrV67Q0NBQSD2nT5+mCxcu0LFjx+jSpUs0PDxMCoWCiouLadmyZWQwGGj16tUklUrTerGikCLU7pNxaXdLEo2Pq1ev0tGjR8lut9M7jn769+GPaOHChfSTn/yESkpKOCKk29exXv7Y2BidP3+eBgcHyW63k91uJ51OR6tXryaDwUCrVq2iwsJCUerKdhnJ4JYk2vXr16mrq4s6Ozup90AvlXyjhAwGA/l8Ptq/fz/9+c9/pm9961v08ssv07333pt2fckYfaempsjhcJDdbqcjR47Qhx9+SGazmfuTSCQ5NBjP6LEAgjZGsZqR2TX77MJut6OqqgpFRUXQ6/Voa2vD5SteAIDX68WiRYtQV1eH6upqNDQ0QCaToa6uDpOTkzlrs8fjQWtrK3Q6HaRSKaqrqzEwMCBiDTMeKIFAANs3EuexwhDv/4wErUdGgeiOLmnjpiea1+tFQ0MDFAoFVCoVnnvuOYyPj0ekq6+vR1VVFTo7O1FRUYEAgImJCZjNZigUCnR1/Vum+jgqorkuuVwu1NXVQalUQqlUorGxET6fL6kyhGD7RsJhFzhSBTCKcmYDRnEjpfKE4KYlmsfjgc1mg1QqRUVFBY4fPx4zrdvthlQqxfj4OHp6emA0GkOeOxwOaDQalJaWYmRkJOIFJvNCU3354fkGBgZgMpkgk8lQX18Pr9ebUrkR9WAUxo3bueu9e/cCAKw7tiOT/nc3DdHYF+F2u2GxWDBv3jxUV1dHlV7hqKmpgcViARAkVWlpaUS5ANDS0oJ58+bBYrGI9mLThdPpRFVVFaRSKWw2GzweD/csFVL/x6GXsX3voWB+1yFs3LF35iG/uABEHUZvGqL5fD7YbDbIZDJYrVa43e6Q57E63el0YsGCBRxxhoaGoNVqY9bj8XjwxBNPQCaTobW1VbwfkCYmJiZQW1vLSbi//OUvKZVzZC/Pq7iAwY69hyL5lAEd4qYg2ptvvgm5XI6ampqQL1oITCYTmpqauGuXywWVSpUw3/Hjx6HX66HT6XDs2LG4aWORPNVhNB48Hg8qKyuhVCrR29ubdF3bNwX1swCCruytR0ZnHvKKELvtOSdaPH3I5XLBYDBAp9NhcHBQcBksBgYGoFAoQmaVbrcbcrk8YV4WHR0dkMvlqKqqCpGimSCRUAQCAU6vNBqNmJiYEJQn4DoEmtbPAgBGD+8JTgpCwNPTbvWh0+/3o66uDjKZDM3NzXHTxnvhJSUlaG9vD7k3OTmJwsLCpNrDDttSqRRNTU2YmsqPTSt+vx+NjY1YsGABGhoa4Pf7o6Zje+jwK0/j6VcORU+T4Q8n74g2Pj4OnU4Hk8mU9DDJR3d3N5YvXx5VYkokkpgvJRzhEtZoNEKlUqGvry9h+kyCX4/b7UZpaSkeeOCBCN2Vj+0bCUfGwu+GfzRTcZ6ljrwiWnd3N2QyGVpaWiKeJfMC/X5/BBn4+aVSqaBZZaw6e3t7oVKpYDQaMTYW8eayhvHxcbS0tECv10MikeDBBx/E/PnzYbfbQ9KNHt4zMwEgijJcziBTH0peEM3v98NisUCpVMa1h0VDtI5pbW0NMWGEQ6lUCjKLxKvP7/eHrC6whtVo7RHz5TmdTjQ0NECr1UIqlaKyshJdXV2cHjowMAC5XI66ujrR6hQDOSfaxMQEHnroIRiNRlFsVz6fD3K5HENDQzHTaDQajIyMpF0XEBy2KioqIJfL8dZbb4lSZjhOnDgBq9UKlUrFzb57enpipvd4PCgtLYVer487lGYTOSWa0+mEQqFAQ0ODaGXW19ejsrIybhq9Xi/yemJQkmi1Wuj1+qRIHEva2e121NTUcEtrFosl7sw7GlhyRpPe2Z4154xog4ODkMlk6OjoEK1Mt9sNmUwGlyuOEgKgrKwspjKfDgKBAFpaWiCTyVBbW5vUZGZychJvvfUWtwqg0WhQX1+ftuRtbW1NKOGzgYwTLdqX09vbC7lcHqG0pltHbW0tfvKTnyRMbzab0dXVJUrd0eDxeDgrfrSJDQuv14uOjg6YzWYUFhZCr9ejubkZZ8+eTbsN/H7v7u6GXC6Hw+FIu9xUkXWJxhpAhSj9yYh3l8sFmUwmSIpUVVVF2NcygZGREej1emi1Wm6odrvdaG1tRVlZGYgIRqMRbW1tKetSQvvI4XBALpeju7s7pXrSRVaJ1tHRAaVSmXBoSwUmkwmNjY2C0losloSGYDHR0tKCoqIifOlLX0JhYSG2bt2Kjo6OuC5AmcDIyAgUCkVOyJa12BsHDhwgm81GDoeDink7xaedL9PyKP3ggw9ocHCQOjs7BZU1Z84cunr1asr1CcGpU6eos7OT9u3bR263m0wmE12/fp3eeecdWrZsGW3dupUkEknK5afSZw8++CD19fXRmjVr6O6776bS0tKU608a2WDz+++/D5lMlrSNTCj0en3UoTDWsNLU1ASr1So4vVC8++67nD1QoVCgtrY2Qg9lVxcWL14csigudlviweFwQCaTiWbiEYKME83pdEa1VouF7u5uaLVawUtKQHAmVlNTI0r9vb29qK6uhlwuh1qthtVqTTjDCwQC6Ovrg0qlwoYNGzKiSiRCd3c3Fi1alLLhOlmIQrRYX9/4+DgUCkVME0a6X63f74darY4rGaKho6Mjoa2NRXgbJycn0dnZicrKShQVFeFrX/saGhsb4XQ6k2pDIBCA3+9HU1MT59QoVGcTS9q1tLRg8eLFWTHqZkyiTU5OYvny5aIaY8PR1tYWd6kJmHaPCXsx3d3dMJlMcfPw4fF40N7eDpPJBIlEglWrVqGlpUWQe44QuN1uVFVVQS6XJ2VXFINwVqsVer0+4x4pGSNaTU0NysrKoj5Lt4MCgQAmJycFm0nCEe7OHQ0TExNoaWlBaWkpZs2aBZPJhPb29rQ8ShJhYGAAOp0Oer2e+11sX2VKZ/P7/dDr9bDZbGntlUiEjBCts7MTKpUKly9fzkTxAIJLTRUVFSnlPX78OHQ6XcR9p9OJxsZGaLVaFBUVobKyEp2dnVnfjtfa2prS6oIQ8MnD34ehUCgyslrCQnSisYbTcIVYzK/jwoULWLBgQUIlOladfHfuoaEhWK1WLF26FHK5HNXV1UnpfJmSNF6vFxaLBVKpNO7qglAkaifr9SGWOhAOUYk2OTkJrVab8U0dFouF29WUCt5880389V//NRQKBZRKJSwWS8Qie6IXk61F6ZGREZSWlkKj0WR8CamxsRF6vT6pGbxQpEW08M622WwpD2dCwUrMCxcuJGwPC7/fj+7ublRVVUEmk+HBBx/ErFmzsmpHShddXV1QKBQwm81JSR3+ZEjIx7Fu3TrBKyzJICmixWuo0+kUvNaYDsxmc8RMNlq7fD4fOjo6UFFRgcLCQuh0OuzevZvziM2SrVo0sBMgdi9FQ0NDRnTHiYkJSKVS0YdQ0XrbYDBgz549GR1Sjh8/DrlcHrOD3W432traYDQaQUQoKytDa2srLl68GJFWqDt3PmJiYgJGozFiy12qCH9njY2NMJvNaZfLhyhE6+zsjDqLExulpaVoa2sLuTc+Po7m5mZ885vfRGFhIcxmMzo6OmKSiO1UhUKRMcU3W7Db7VCr1TAYDIJWF4QKAdYQLuYsNG2i+Xw+KBQK0dcxoxlZNRoN/H4/RkZG8LOf/QwajQZSqRRVVVUhfvNCyhbTnTuTSEQOdnWB3cEvlkfI0aNHUVxcLNrwnDbRrFaraOuG4eBvBLn//vtRXl4OlUoFhUKBmpoaHDlyJGHeaPcCgQBKSkqSdo3OZ/BXF8TytauoqEB9fT2A9GfZaRGN3fWdKV2nt7cXNTU1kEql+OIXvwir1Yo//OEPopS9Zs2ajC305xKsMbqkpCTtUSbR+02GfGmFf29sbKSqqiqSSqWiuCxdv36d3nrrLXr00Udp3rx5VFdXR3K5nO666y7q7++nXbt20cMPPyxKXXPmzCGfzydKWfmEFStW0IkTJ+jxxx+n9evX07Zt2+jSpUsplbVw4ULatGkTvfDCC1GfJ+UPlxrXp+B2fwqpVJrWyn8gEIDX60V7ezvMZjMkEgn0ej1efPFFzn2loaEBf/u3f5tyHbGQLXfubCJcwni9XlitVshkspBAN8lgbGwMMpks/qglQLBFEI0fejLkb+P2kPKsVitqa2tTaHpwet7a2gqDwQAigslkQltbW4QNzuPxCNrVlApqa2tFWdq5GTAyMgKDwQCNRgO73R7VoyUeKisrBXjhTIELoRAeZw0xdDQu9OR0AaOH93AB21gplCwBXC4XmpqaoNPpUFRUhIqKCnR2dsadJVkslpTJHA38zq2rq8Nzzz0nWtn5gngE6u7uTml1YWhoKK79kq03Xt0RRAuGnrRy/29tPcz9y4KNB5sIw8PDqKurg1qtxoIFC1BdXY3u7m5Ba2kulwsLFizghmaxDcGNjY2w2WyilnkzYHJyEvX19ZBKpWhoaBAc0M9kMgnY0BPdpy2AKEQbPbyHCz0ZEagNQVODQnEPhoY+jFqow+FAbW0tF/C3trY2pcVg/tQ6E2hpaRFVWuYDkvEn4weKFrIryuFwQK1WCyob4I2e4UPnTAwta9zIM4cO9kGj0UxXNMUtWFdXV0Mmk0GtVqOurg5DQ0MpSyEhojpdtLe34+///u8zVv7NArvdDo1GA4PBkNCArVAo4toeo+n3rKAKlWiBUP1sx8aNOBMmDisrK/GLX/yCC6NeVFQEnU6HpqamqDpbNEe7RCgtLY3paiRW1OtE7ty3G/irC7FmmDabLWIUCH8bOzbNkOvMkT2csAohGht6kn0pbGhw9h1dvHgRd911F4gIBoMBra2tMZXKVAnR29sLtVqNGzeix7wXS1cT4s59u8Hj8XAjUzTTD+uhEzuy5CjKGSNGMRUM6u06BIZhZogWmJZah/Y+zelnfGzf/gyA4HCzdOnSjK0E+P1+aLVa0XdSRyNnLHfuWw1CPszwGePx48dRUlICnU4XsboQ/n74+fjWCSA4OrLXIRItxKwxnd+6ibCjrQ8IBIc0jukB8aOEt7e3Q6/Xi1xq9M52Op0hyu3tBiHOkO3t7RGBopubm7F58+ao6ePp9wREhp4M/SvAYVdw3auwsHDG7iUyyyYnJ6FQKDAwMJAVN+mJiQkoFIqM15MPSKc/+asLzz//PIaHhyGRSPDqq6+GVRIqqFjSsdfEJkqEzs5O6PX6jJ2X1NjYmBXlnO10r9eLuXPnZry+XEOsj/b3v/89lEolJ4DC9xbwQ8sDQX1tIxGnigWDvMRYGwUvkEh/fz8ZjUYigEjEI/4A0GeffUZNTU00ODgoWrmxwP4eqVRKn332WcbryzXSCZ5z4sQJ6uzspAMHDtCnn35Kn3/+Of3whz8kuVxOBQUFwSMfKUgf+ztH6GnjWiKaPin5449pPxG13jd9Tn0o62PvVl6yVJ0x/y2LxRLh05aN4XPevHk3rTt3psCPJcKGNO3v74der+fWO/v6+vCNb3wjJB9/2GSlGVE5Rqc5ldB7I4CgflZUVJSRbVjj4+OYO3duxuI/xFuDUygUOH/+fEbqvVnARp1kbaJarTYilkhlZWVIrBKfz8fp60H9viC6Ewav32d0tCgr7uy/nZ2dEeENxJI4lZWV+NnPfiZqmUKhVqujBmdJ1rvhZkO490x5eXlMm2h9fT1WrlwZsUpTUlIS3FMQ1k2xei26jsaE/tvf30+rVq0SbexnMTw8THa7nUZHR6OWiQyfHT579uyoAflyc8z0TFvF+N3hOHXqFO3bt4+6urrI5XLRhg0bqLq6mrq7u6moqChqnjfeeIM6OjpocHAw4tx3g8FADoeD1q1bF3I/ZquFfAGPPPIItzCeypJSONh8BoMhwicsm5KktLQ0pwGEMw2Hw4EnnniCCwxYU1MTsT0vVn8PDg5CLpfHDMfV3d0dM4hPNAgKLTo6OkoqVXD2wP/SUv3qGIahQ4cO0fj4OD3++OMRz7IBAHT33XfT5cuXs1JforZE+938+7HS8HH9+nXq7e3l/mQyGZnNZtq3bx9ptdqoeaKVee7cOTKZTPTaa6+RWq2Omk+lUpHL5Urwy0J/TFx4vV4UFRUJZq5QaLVavP3226KXmwxuFnfueFLe4/Ggra2Ni93GhpBP1SvZ5/NBo9FE7J8Nbwt7SqDQCWJCiXb69GlOmomFV199lb74xS/S5s2bWbLnRC+KpaPlG8L7ZmxsjHp7e6mrq4vef/99+u53v0smk4na2tpIJpOlXM/U1BRt2bKF1q9fT9XV1XHbUlhYSHK5nEZHR2NKPT4EEW3JkiVJNnkG4SS6fv061dfX06uvvso9y5XyPWfOHLp27Rp3nSvChyNaO4aHh+m1116j3t5eunTpEhmNRrJYLGS32yMU9VTx1FNP0V/91V/Rrl27BKVfunQpOZ1OcYh29uxZQQXFQniHtbS00PLly7MbejwKANCcOXPybnWAT7IDBw5QT08PHThwgCQSCW3evJl+/etf08qVK0Wvd/fu3TQ4OEgOh0NwniVLltAnn3zCXcf7UAVJtPXr1wsqLBGuXLlCjY2N9O6774pSnhDEKp9hGJo9ezZ5PJ6Qe7mEz+ej/fv3U09PD/3ud7+j4uJiMpvN1NfXRxqNRlAZqfTngQMH6IUXXqBjx47FNHVEw+LFi+nkyZPcdbx6ExLt2rVr3LifLikaGhrIZDKFDMWZfrnxyp83bx55vd6M1h+O8D48f/48HThwgJsplpWVkclkoueff56+/OUvJ11+sv156tQpqq6upoMHDyZd37x58zjVIxE3EhLN6/XS7NmziSg9Upw/f57a2trozJkzWZccsTpBKpWS1+sVXarGK49hGDp9+jS99dZbIcbTrVu3UkdHh2i7/oXg4sWLVFZWRi+//HJM80c8zJ49mzMPJeq/hES7evUq3X333Uk3Ihw//elP6cknn6SFCxemXVayiNUJRUVFdPXq1ZRIhjg2rmjlvffee9TV1UU9PT109epV2rRpEz333HP0ne98J+m6xcDnn39OGzZsIIvFws3+k8Xdd9/NzdrTlmiXL1+mefPmpdQQFsPDw9TX10enT59OqxyxkeyZUPzOTESs69evc4p8b28vzZ8/n8rLy+n111+nFStWpN/4NFFRUUHLly+np59+OuUy5s6dS1euXCEiESTatWvXuKEzVTz77LNks9myOiwIASvRhCJRZ166dIkjVk9PDz388MNkNpuprq4u4qA1otyZU5599lm6evUqdXV1xUwTT2KzmDt3rvD+S2TRlUgkca2/idYm7XY7VCpVRlyM0kWy7txshEX++ZsulwvNzc3Q6/WQSCQwmUz49a9/LcjtKReRv9vb26FWq3HlypW0y2djowhBQqIJ4GJcaLXajB1qLwTxOtPr9UIqlQouS61Wc/5W99xzDzQaDWQyWdIRJxNBTILxy3I4HFAoFAn33wrFlStXIJVKBeVNW6LFQ0dHR95vaYv3IfE7sLe3F1KplCPawoULb6pAfi6Xi9v8w0c6pBZVos2fPz+lkO6Tk5NQqVRZc8NJtcOKioq4nV38Mnw+H3eKnVQqhVarxT/8wz/gvvvuCxk6ozcmvTaJDa/XC5VKldSBZtEQ/ntGR0dRXFwsKG9CoimVypTOdNy9ezeMRmPS+bKJQCAAuVzO6VOs52l5eTm3G7+l5WWcO3cu6IQc0tFTCAQCEVsVN23fG7WubCGcDH6/H6WlpRkJmDM0NAStVhu3fhahIRFwA9cDM383ENSxEh10Gg42flo+RL1OJFW+8pWv4Nlnnw2J2xY9fHzkxp2Xd2zibcCY4jZl8Hdr5xpVVVUZO82mv79fcFiJEPMGQ7PoC0yAbiBABcwsklDQBMDaSoSisbGRjEZjxPoc8sQ74tixY9TV1UW9vb30pz/9iZxOJ9XV1VF5eXnUc86DW8pCw/22PrORnjizlICd3D2GVPT84b20+Nu99B87q+kBSitEcNrYuXMnnTlzhvr7+0Urk/8OvV4vzZkzR1C+hHY0/nqWkEZ8+umntGfPHjpz5kzE80yQLBF5GYahqakpznh64MABkkqlZDQa6fXXXyer1UoWiyWuNwm/dBDR2JFW+tGveuiwa//MTS5RgIgoxxQj2rdvH+3Zs4c++OAD0dyIiELf4bVr1wQb8+MQDeTHFM2eP5cuXvYQiIjITzdAQWkHEMOAbiAQ7GdGQncxDNlsNnqitpa+9Dfz6XP4iYihWYyE1/EBLk/kMz546ZgCuosKpt9lZH5muq0BIpIwEgKm6NM//5n6Dh6kgz2/o0Pv/Z7UxYtpy+Yt9PTTT5NareYImqw7N0NEr7T8iDbueIXWFvNuTmP87BjX/lzR7cSJE7Rt2zZyOBwZXfK7cuVKVGN+tI8/DtEYmsUU0JIHHqDx0bPTfSmhAmY6E0PkJ6JZzCzuRX/40Qj19R2ik86T3NAbID/5CfQFYihI3kCMZyFN5aUDTdEUTVEBzYqTfxZTQGOfjNOBgwfp7dffpIETJ2jjxvW0bv06+td//VdaJP8bugGQhAkOjWxHFBUVCZbYwZa56Mx+ovU/XhUqyKZx+MDztHFHK6loFmWLbPwX+6c//Yk2b95MHR0dgl2LUoXL5aKlS5dG3I82wiQYOgvovnuV1Hfk8PR1gIgk3P8DAAWmhwoiop//75+S7X89Q3Pn3U0FFOyAAqaAGAQowEiogAIUYAroLq50/jM+gve+EGw2SbhmRub/94+GaF9XN+3bt58uXr1IZd9cS0888QQd2lROBV+4iyNlsO2YloQzEOLOHfKFjn1M+xmiJ+9fHPx0eM/G7Htp137Qoee3cS3MBtgteteuXaN169aRzWaL2AaXCTidTvrWt74lKG0MojHcl6pevIRe3PsyTU1/vyGqMiPhpNHRo0fp9Mhp6ur8NyKAAgSSMEEpFgKAwITpPdHieSBAYCSR+wQBsr/ze/ptdzf9tucAzZoroQ2lZdT8QhOVrlkdQqwbCITnjoCQhfWZLzRAVHw/bQTR2FkXGYpVM+uB5KJ/Wvs4bXxmD31bxd6Ls88xRbDEDh+eGIah73//+7R27Vqqra3NyMQrvEyhbtxsZgDAFG7gOoJxaT+fjtgHBE0Vcxb+DWfumEEAN3j3tNqH8Pobndz9z7kS/NPlIuazSBPEFD7nlX31qg+vv9GJyspH8aWvLsSy5ctQV1eHkVMneWUH8/jDyoh9HURDQwPq6uqizcijIwC0bi8HbeJFznEdAuXYrGGxWLBhw4asrSmnvAuKISLCFH1ORBJmFvclSqVSKpwiuvCf/0n3fvkrPIoyNIth6HP46bW3uqhgNkPf+14FERHNYgroxnRZQUWe4eWJfBb8SIJ6HjGzaBYV0H996qZ9v/sd9R3qoz5HH+n/2yNkMpmooeEXdM9XFLxJwozuByKawhQxTAEF4l7PDNVz5swRdoQNK54Yosd2/pbGTAXEMLuImZ58HHaBDJEOGlnB3r176ciRIzQ4OBjVPJMJjI2N0b333iu8PiFsLCn5H3gnxlLS1NSUaEtNTqcTu3btgk6n487ebG9vz2jEn/b2dkFnJgCIElgidvQlMRHP6Gy323Ny9mhGdqp/7aH/Th98MEirebYmTI/XL774IqlUqgg7FATqCCdOnKA33niD9u3bR1evXqUNGzbENZ4mU7YQJLW3kwkPDxdd2RdbN4v1W51OJ23dupUOHjxICoVCxBoT48MPP4xw/477XuKxcGp6Seq1f5uJJsT/urxeL+RyOf74xz/GLCPa2ht7LgE/BpeQ2GtCA/8mg76+Pqxbt05Q2mDJ8aVYIENSLvx3eTweKJVKdHV1ZXXxnq2LiyaUIB0LQUNnrPho//zP/xxz2AknZEdHB7Zu3YrCwkLodDrs2rUrZgCRbGJgYCCJAM2hJAoNeCNioxJgcnISJSUlEQeBZYtw/PhoQiHYq1GtDo346Ha7IZVKOd0g/EeOj4+jpaWFi8FlNBrR2tqasYB7qWJkZAQajSbmc/aEmMh7LLKjp/GxdetW4XplBtDX14eSkpKE6fj9FF9H4ykbpaWl1H/UQV//xjeIIaK6ujratm0bpxswDEOnTp2iN998k7q6uuj8+fO0cePGhDG4co1E+waCOgcT5R6L7C4z/fznP6cLFy5QX19fVuvlw+FwRMTLi4aQfgpSL3HceX5U7pMnP+IOC7Xb7dwhY2wMrpvJ8zRZd+5coqOjAyqVKiVHVDGh0Wji6mfRQBGhIWMQjT1n4M+X/wtf//rXodPpMHeeFBqNhjtk7GaE3++HRCLJdTMShjNlA+Nl4pDcZOB2uyGRSJLSzwCAAoGAoLMDfD4fZDIZiAiFhYVobm7GuXNnY6bPFzfmRAgEAigsLIzYWJJP7R8fH4dcLs+L6JTNzc0pnQcRczIQCARPVOEfs/L9738fRBQRql0I8unFhUMmk+V8OIoFn88HtVrNBQzMdT/qdLqUzuqKTbRpt2Q+0fr6+sAwEjzwwAOwWCwpH9OT684KR3FxMUZHRxMnzDL8fj8MBkPenJTsdDqxYMGClNZTY06ZXnnmFUJ5Od1XPOMBsW7dOjKbv0uVlZXBcFbfWZ+0m3fEbCQPkGxohGyhtraWioqK6Je//GVO2wEEPXDa29vpe9/7XvDEFIQ7XMVHAet6zM92pG07MWvXEnMgMkN1dTW9/fbbdPDgQdJqH6IVK1bQ2NhY0hXnE6RSaUofTCaxe/du7oicXIMVDJ2dnfToo4+G3BOMCBk3dhjb9x6KOESKhd/vx7333svNMjs6OiCXy5Oe7uYTNmzYEBEWPZfo7e3NyUJ5PISfqZ4sIobOHa2H6FePfZsIBbRRHRkkWSKR0D/+4z/S7t27iYjoBz/4AfX09FB1dTW99NJLyX4seYFkg71kEsPDw1RdXU09PT1ZXyiPh927d0eE6k8KM6fzTEUc7BnLkc/r/QwymQyjYzMzhYmJCeh0OlRVVeEvf/lLQobn04Tgsccei3mGezbxySefQKFQ5JV0BYIbhRcuXJhWbJECdoEFY3Y6grWE4EyURg/voSXFX41KTql0DlVVVdFLL77M3VMoFHTs2DEiIlq9enVIbFgW4Olx+TQhSCr8Uobg8/lo8+bNZLVaacOGDTltSzh2795NTz75JBUWFqasixcQEWHsMBX8kz04ZE7j7PhYzExERFarlX7zm/9LFy9e5O594QtfoN/85jdkMpnooYceohMnToTkySdy8TF79mzy+XxZqSvWi3r00UdpxYoV9NRTT2WlHULBnmnw4x//OL2C9uwojzgD+5mNiYdPIOinHsvG09fXB7lcjq6urpTFbbbQ3NwctAuGIVvDu81mg8FgiLBP5UK9CD/rq6amRpS4HfHdhBK4LrvdbixatCimq/XIyAhUKlXeGBxjoa2tDdXV1Tmpmw2Ml+zaYTbgdrshl8u595sO8QtCBHm4VA/fAQeGE/0gooULF9IPfvADeuaZZ6JKS41GQydOnKATJ07Qli1bcq4HxcKcOXMihk5kwS549OhRstls1NfXlzduVPzf/dRTT1FNTQ0XEjYt1Sdd1vt8PigUChw/fjxmGr/fj9raWmg0mpx7H0RDX19fyEaLTEVc5MPlckEul8d1Yc/lzNzhcEClUoXMNNNpT9pEA4K+akIiO7a3t0Mul+PYsWNiVCsaBgYGsHLlyqzV5/F4oFKp0NnZmbU6E4Hvj3jjxg2o1eoQI3y6pBeFaEDwkFchtqiBgQEsWrQo5EDYXNvUogWUExP83zc5OYnS0lLueO9oaXKNxsZGmM1m7lqMtolGNKfTKdjdZmJiAlqtFrW1tXkRrXt8fBxKpTIrdWUyMJ4YmJiYiLsXhEWy5BPN4V2tVlN1dbUge4tCoaCBgQFyu920atUqbkEbOVqYnz17dlIRhVLFc889R6dPn6ZXX3014hn723PVB2y927Zto2effTZkL0g0pL+ongYmJyeh1WoFDaGs63J9fT1UKlVOw5CycSQyia6uLiiVyrx1sASCQ6Zer8/IKCMq0YDgbEomkyW1h6CrqwtyuTwlz02xEM2dWywMDg5CJpPlxT7WWBgYGIBcLo/rMZLzWWc4Ojs7oVKpkoqZMTIyAoVCgcbGxkw0KSEy5c7Nns4Sa2dYPkwC3G43FAoFN8vMRJsyQjR26aKsrCypRns8Huj1emzZsiVj0iUWUg1zHw8+nw8ajSYvPENiwe/3Q6/XZ3z1JiO7XxmGod27d5Pb7aZf/vKXcRVc/jOZTEYOh4OkUimtXLmSzp8/HzWd2ACQdCzbRJiamqK/+7u/o7Vr11JNTY1o5YoNm81GRMFDezOKdJkaT2KNj49DoVCgo6MjaXHc0tICuVwed8VBTOj1erz77ruilWexWPL+QI8XX3wRKpUqK2EqMjJ08sHa11LZvW632yGXy7mtZkDmdJqysjLR3NFbWlqg1Wrh8/nyQgdjwW9Ld3c35HJ5THVB7HZnnGjAzKwrFenkcrmg0WhgsVgy+tIqKirSWhJi29bX1welUhnV4Jkr0oXX63A4BJ1sI2Z7s0I0YGbDRfiiupAf4/P5UFZWhrKysoxFf6yurkZbW1taZYyMjKT8QWULJ0+ezMmu96wRDQjumFIqlSl7cNhsNqhUKi6/mF/cU089hebm5pTzu91uKJXKnNoCE4E1IeWijVklGjCzPS/8qxdKmkxt76uvr0/Zk/T69esoKSkJsQHmw5DJR39/f06N4lknGhAcRuVyecrhrY4fPw6FQoGXXnop6byxXnpTUxOsVmtKi8hbtmyJGhgv2wSLVR+r+OcySExOiAbMTBBSPayUv71PDONuqu7cdXV1KC0tzQsvlGhobW2FXC7PeVixnBENCJo+FApFRCzWcMT6UicnJ1FVVYWSkpK0l486OzuTdt9hA+NlMjx9OrBarVCpVKKveKSCnBINmJFMRqMx5RfW2NgY151cyHDY29ublIF1YGAg5Vl0puHxeFBaWgq9Xg+3250X+mLGiSbkh01OTuKJJ57AV7/61aRMA/yy+/r6sGjRopDtfcl0qsPhiHqabrQyXC4XFAoF+vv746bNxEtNVAfrhWGz2UKG81x/ADmXaHx0dXVBJpOFuHlHQ6xOS2d739DQEJYvX54wndfrDQmMl09obGyETCaLOSNPFKc4k8grogFBaaHT6WAymVLSu7xeL9asWQOz2Rx1r2S8XUkqlSruS2AD4yV1SFkGwbbV7XbDYDBAr9fnVQQiPnJyRC7ieGIUFxfTsWPHaNmyZbR06VIuapHQ8qRSKR06dIgWLlxIJSUl9PHHH4ekjeWCLJVKyev1xnVRfvzxx2nevHn0L//yL0m1KRNAMP4w7dy5k5YtW0arVq0ih8ORVxGIQpBbnsfH2NgYDAYDdDqdoCN8+AgEAtz2voGBgYhn4Ujkzt3U1ISHHnpIUKSkZJGsbhcIBOBwOKDRaGA0GvNWivGRV0SL1sGBQIBz9X788ceTHk5Z5TiR3gcAEomEU6DDPR0UCkWIO02ulGuPx4PKykoolcq8C28VD3lFtHjw+Xyw2WyQyWTYvn17Uj5UQrf3SaVSXL58OeTe8ePHIZfLcfLkyZzO3CYmJlBbWwuZTIb6+vqseyCni5uGaCzcbjcsFgukUim2bdsm2Bjp8/lgNpuh1+tj2uvC3bk/+eSTnEsOp9OJqqoqSKVS2Gy2vN5FFQ85J1qqG1QvXboEm80GqVSKyspKwfa3eNv7NBoNd9/n82H58uVpeXREg1CpODAwALPZzEmwK1euiNqObCPnREsXXq8XDQ0NUCgUUKlUaGhoSOg1+uabb0b1ZNDr9VxcEJPJhNraWlHaKJRco6OjqKurg1KphFKpxM6dO/MynFUquGmIluisJAA4cuQIqqqqUFRUBL1ej7a2trix28K397Hu3FarFWVlZVlZKPd4PGhtbYVOp4NUKkV1dXXELPlWQF4RLV1lm80/OTmJjo4OGI1GEBFKSkpQV1cX4SYTvr3PbDbjRz/6ETQaTUYkSSAQgN/vh91uh81mg06nAxHBbDajs7MzbWJnYwksVTDATXwShQBcvXqVjh49Sna7nRwOB42MjNCaNWto9erVVFJSQvfccw/t2rWL/vjHP5JMJqM//OEPNDT0ESmV93JlpHNG+tjYGJ0/f54GBwfJbreT3W4nnU5Hq1evprVr11JpaSkVFhYG6xHxrPh8wy1PtHBcunSJjh49Sv39/TQyMkJnzpwht9tN99xzD124cIEeeeQR+uEPf0hLliwmhpEQwwSjXOp0umBUxmnWXblyhYaHh0PKPn36NF24cIGOHTtGly5douHhYVIoFKRSqUij0ZDBYKDVq1dzERT5uJVJRnQbEo0F/8UCoPfee4+czlN0/vx/0rlz5+js2XPEHl9ERDT43vt0/cbnwQuGqGh2Eel0upAy77vvPlIqlfTwww/T/PnzqaSkJOm23Kq4bYk2gwAJPa46nSE0ZpkxSHarkS8ni+r5BFAB8SVXPES+dmH54pYpVvyxPMdtTzSGiGjaicW2iSGGCf3b9MwrkZm4MSCy+9gB4rYfKMJw2xONiDhR1fhb0J4d5dR6ZHT6qCIX0a9qaMcrh2fSJhg/40kiTB9/xL8Of36r4g7RwjD2/0BrDPdPS61iWr+jnM6MnZtJIHBEi0Y4VkrGSnOrDZd83CEaDxg7TE3Mg6SiAo5QY84eWlKszG3DbgHMynUD8gn2d47QduPa6asAtT5joqaechrd/z+5NLfabDBbuGPeYAGiHSaGdu3n3du4nfDbX/GTiG7euF1wR6JNAx8fpl20nYBfxUzDsEy7w7ikcUdHIyIC0djHH9NG9eKozyLAxLh/B1EB4M7QyWLHJobW/h/Q2mKKIrECQVsbc0eYpYrbnmiBscMkUa3jrg+PTdHa+6MbYhli7rAsRfx/VMdO1ZvGen4AAAAASUVORK5CYII="
<image>如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点C,连接AC和BC,△ABC的中位线所在的直线与⊙O相交于点E、F,则EF的长是() Choices: (A) 4√{3} (B) 2√{3} (C) 6 (D) 2√{5}
4√{3}
11,014
null
4√{3}
"iVBORw0KGgoAAAANSUhEUgAAAHsAAAB7CAYAAABUx/9/AAAeaUlEQVR4nO19fVCU1/3v59lFccZVknTNrvIgRtayFqZdA8ZNJEF/ri9pFZkrHaTBih0bsZopvQFfGjs6t/TGRCelU3vF2E7wSqaaHxlo1FwRjMsECw4Y6AgBwq7RgLIE5xoDpoC7z/f+sfssz+4++8q+4f19Zhj2Oa/fc77nfM/3vH0PQ0SExxgEDgwkE99EYBgGAMCBIAHjEN5QV44vFxZidVJYyQwLJN6DTG0wTkXkGQ3AxmjO+kEAwYDX1+wMI3XhxWPPbO+wVQEDvLv3XdCGDXgmiYssSSHC/9fMto5fVsbWnSwBrdYB5x/fUe2xZ7Z3lUQCMl5CHa3GqwsI5zYshgoSviU8VnjsmS0co138bP/3nqjH26+uAcMw2JCcBAIHuI82ZfHYM9sb6k6W4MiRI2AYBhLVWjAMA4b+q2dPSZDTb+E3Z6hFPa0GEYGI0HvpOJKTFoAYgB5DbsdEmgBfIZwf+wPGzW8yXoK0+BNQzVt2ty9vGQEstIV7DOU4PQbgOM4v9+N7NvCdnC4ZrG4lWbaOz4Cy9pwIFakRBUP0eK+giUFs5cwTKECpEm147MZsX9quZ0ZzjuP8Y8JoYIox2xdGTp4xEtw0GoOYXvRgyihogO8V/+DBA7S3t6O7uxsDAwPQ6/V2P6PRiP47/WDA2BsPy7JISrLufNy6dQuDg4N44YUX8Lvf/Q7p6emQyWRBL0sk8FiM2f39/aivr8fly5eh1+sxMDCAjIwMJCQkICkpCUuXLsWsmTIQw2HBggVITHzGHpeIcPv2bTQ2NqK0tBQKhQJffvkl/v3vfyMlJQWNjY1gWRYrV66ETqeDTqfD008/PTV7fKQ0w8miq6uLiouLSaVS0dy5cyk3N5fKy8upq6vLJSzHmW3/RbRzjujkyZOkVCqpouJ/ExHRD3/4Q3r22WftQTo6OujPf/4z5eTkkFwuJ7VaTQcOHCCDwRCawoUIEWe2u+mRGIaGhqi8vJzS0tKIZVkqLi52YK4vaQnDfPPNN5Sbm0tpaWkOjFMoFJSUlOQ2jc7OTioqKiKlUkkZGRl08uRJ+uabb3wuh6+0BhsRZ7YvMJlMVFRURDKZjPLz8+nChQuTTrOxsZFYlqV9+/aR2Wy2u4+OjlJsbCzFxcX5lE5VVRXl5ubSE088Qfv27aOhoSHRcJFgrjOimtl9fX20Y8cOiouLo+LiYjKZTJNO02w208GDB0mpVJJer3fxb2trI7VaTbGxsTQ8POwXrbt27aK4uDgqKioKCq3BRlROvUZGRrB//34sWbIESqUSBoMBR44cwdNPP+02DvmgZ96+fRsZGRlob2/HjRs3kJmZ6RLm1q1bUKvVSEhIQH9/v880syyLY8eOobu7GzNmzEBqaioOHTqE0dFRn9MINaKO2TU1NVi0aBHu37+Prq4uHDp0CN/73vcAeNmu9KIdnz17FlqtFgUFBaipqYFcLhcN19PTgwULFiA+Ph6Dg4MOfr40KKVSiTfffBMdHR0wGo1Qq9Wora31Gi8ciJp5dn9/P7Zt24Z79+6hpqYGy5YtAzD5FayRkRHs3LkTHR0dqK+vR0pKisfwBoMB6enpMJlMLj3bHzoUCgVOnz6NhoYGFBYWQqVS4b333nPbyMKBqOjZra2teO6557BixQp89tlndkYDk1vBam1txZIlSyCXy3Ht2jWvjAaA3t5eqFQqsCzrlxh3h8zMTHR0dECj0SA9PR2dnZ0AfJMSQUdkVQaiiooKksvldPHixaCmW1paSkqlks6fP+9XvISEBLp16xaVlZVRUVGR3d2bNu2Ltl1VVUVyuZyqqqr8oilYiBizzWYz7dq1i1QqFXV0dIiGCWS6YjKZKDMzk3Q6ndtpkDvw0y6z2UxnzpyhnJycoNAkREtLC8XHx9O+ffsmlU4gCBuznRcz1q1bRxkZGR4XI/yt2OrqalIqlXT06NGAaOSnXUTWebhWq3Whgf+eDNNNJhOlpaVRTk6OfXrnLp9gImxjNj/2dnZ2Ij09HfPnz4der8fs2bO9xvGGsbExFBYWYv/+/fj444/x+uuvB0QjP+0CrFOpgYEBFxqCsSauUChw9epVzJgxA1qtFkajMST5OCOsClptbS2WL1+OoqIinDhxAlKpNOBCkU3BaW9vh0ajgcViQUtLC5YsWeLg7w96enqQmJgIwDqF8qSgTZYZsbGxOH36NLZs2YK0tDQ0NDS4hAmkDB4RdFnhBh0dHRQXF+ezIuaLGCsrKyOlUknV1dWTpM6K7du3U3l5uf1bLpeHZSWspqaG5HJ5yDdWwsLsoaEhUqlUdOzYsaClp9PpKDMzk/r6+oKSJhHRSy+9RPX19fZvjUZDbW1tLuFCMZ6WlpZSSkqKX0u0/iLkYtxsNuNnP/sZ1q5di127dk06vcuXLyM1NRUrVqyAXq8Hy7JBoNKKmzdvQqVS2b+VSiXu3LnjEm4yIpycRDP//cYbb2DJkiXYsmVLwGn7knlIUVRURDqdzmFnKRCMjo7Sb37zG0pMTKTm5uYgUeeYPj/t4uEs1kON0dFR0mq1dPDgwZCkH9Ll0lOnTuH8+fNoamqCVCr1uvTpzr+7uxt5eXlITU1FR0dHSI4JdXV14ZlnnoFUKrW7xcfHY2BgIOh5uUNsbCw++OADvPDCC9BoNMjOznYJ460OPSIkTYiImpubSS6Xi54cEcLb+Hf8+HFSKpVUWVkZTPJcUF1dTdnZ2Q5u5eXltH379pDmK4aWlhaSy+XU0dERVP0gJD27v78fOTk5qKyshFqt9tga3bk/ePAABQUFMJlMaG5utk+JQgV+t0sIlmVRU1MT0nzFkJ6ejvLycvz4xz/G9evXg7Z5EhIFbdu2bdi9ezfWrl0LwH+FpqGhAYsXL0ZqaioaGxtDzmjAutvFN0we8+bNg8lksn9TGDcvNm3ahJ///OfYuTOIliCCJiPIKpLPnDlDaWlpbhUyT2LJbDbTgQMHiGVZamxsDCZpXpGZmUn19fUO9JlMJpLL5WGlQ4jR0VFSq9VB2yQKKrOHh4eJZVlqbW31KbywYg0GA2m1WsrOzvb78F4wwLIs3bp1y8VdKpXS6OhoyPL1NibX1dWRWq12oCHQcTyozC4uLqYdO3b4Ha+yspKUSiWdPHnSY7hQHdoTm3bxSExMFG0E4QLHcZSbm0ulpaWTTitozDYajSSXy/3qlfxRXo1G41VrF0OwmC/c7XKGVqsN+ZDirRz8cDLZpVurguaT3sE5/XfE73//e+zatQtxcXHudAOH72vXruFHP/oREhIS0NLSYt9t8gfB2hkS7nY5Q+zEinNZJgtv5VAoFMjPz8fhw4d9SI2zmglxAgFCBc1i+yMiPzsM3/IePHjgU3j+KK9wHTqSOHz4sMOpFCGKioqorKwszBS5gq/j+/fvuw3jTULYp15EDIhsLYxxbhJOrcSpZR8+fBjbt28X3ZsWhu3v78eLL76I69ev48aNG1i1apXHdMMFftolBm9bneGCQqHApk2bUFZWBkBQVzTBIs8SgnOeellcW4vbb2vYr7/+muLi4mhgYMBjq6qqqiKlUum2l0TyxgQ/7RJDZWUl5ebmhpkicRgMBpLL5W53xrzxyq2Cxrn9cERZWRkVFBS49R8eHqbt27dTSkoKffbZZ+J5BeGoz2TgbtpFRKTX6ykzM1PUL1z0CvPJzs6miooK0XAlWVYzIYDEbkYE2EC9Ysy22xUR/JXX9TokaHHivEajEb1GQ2Rd41Wr1bRjx46QzlUnA0/TLiLrbVFPl/zCjerqareNj4hoz8YJOzEc8fZjNtAXnJng3Db3bJxgcE/dcQIDcuK3HW1tbZSYmCjqd/ToUftRXn8N3IQTnqZdRFbJFBsbG0aKPMNsNpNcLp+QRIIq5KiXNmwscYlTvNFqFEjiqIsZ0PXReqzSLQQBWPTMQquFAtFxn8OpU6dQUFDg4Do4OIjVq1fj3LlzaG9vx09+8hO/N0HCCU/TLgCQyWSYNm0aHjx4EEaq3EMqlSI/Px/vvfee1X6boApv1l8Gk6xyiaNSZ+GjbgMkJNCAjXX1YEo2QGUzMbP3v6/FhpLyCdvbDlbjJKiqqsLmzZvt8S9cuACNRgOdTge9Xg+FQmHXGikMmrZYHt7yFdvtckawbod4gj/1s3nzZpw9e9ZmjXHCva7uAn68+j9cwi9M+r49EzsuvVvsMF5fcnv+zUJdXV2kVCqJ4zj7KRKVSkUtLS1uRVA0iG0iRzp8OY2i0+mCfmNlMjCbzSSTyRxW1DjqpQ3MersyJsTxPRusYnyiaQF154/iksFq2vHSu8VYo2JQZ3RpKAAkaGhoQGZmJj7//HOkpaXh/v37aGtrQ3p6utsWGQqxTQFIDCEd/N0uT1AoFC43OiMJqVSKjIwMB8NAMN60SWUhOHCGWux8+xxe1q2cuMVJNy/hCErwtk1k6365A1mvHkXd5UtYnbTGJcMrV66AiKDT6VBWVobc3NyQFMwb/GlAJDhEwf82Go1emZ2QkIC2tjYkJiaCYZiAGhh5OU7U1NTk011uhmHw1VdfYebMmbhy5Yq93us/qUNy0lo4HlGQYN/r64CsvShcvQgMR9Z1s7qTJajFahz95RprYW7WQaJai/K6XuzQqUDgF9Y43Lv3f8GyLJ566ink5ua6XQ8XYmxsDE1NTV7DBYrBwUF0d3f7Hc+Zee6YGRcXB41GExQjeGJ5PP/884iNjXUJazKZcPfuXdy9exeDg4Po7+/HnDlz8Nxzz6G3txc9PT0gGJDNLMJuA03oVzfrwCStAbJKQP9425ov2XLds5HB6nesgfnIH2EDeqkGScTYC9jf348lS5bgu+++Q/GeEjDkvdUyDGO/6hJs8BWnUCh83kzh6W1vb0deXh66uro8hv/www9RWVmJ6upq0XSCBaPRiNbWVrS3t6Opqclulmvp0qVIT0+HVquFVqu1N4oZM2ag+YPDWLLxN6Lp8R3Vjt5Lx51WXGx/WSVuFapTp055nNgTeVbGokVREztkKIbm5mYHU1lEky+DyWSiixcv0sGDB0mn01FcXBzJ5XJat24dHTx4kC5evOj1FqpGo7ErxM6rkDx1QipjVLpCEBVOtFZ4N748PDyMRYsWWcO7ad3ObsJw0TC/BnybdgHWI8V37951cPOnDGNjY2hubsann36K69evo6WlBffu3YNWq8Xzzz+PwsJC/PWvf/V41k6snlUqFXp6epCenu5at0QAw1h5aWNqjDNnfSmCcJfI10JP5gLfRAFgLYTEfUNyBWfdzeMLbo9k1cSXLl3qlYZ58+ZhaGgIFovF4Vy5O1y9ehWtra1obW3F9evX0dXVBa1Wi7S0NGRnZ6O0tNQnKxBCiJVPrVajt7fXe3jbz4COEnd1dUGn0wUS1W8wDOMgbUgiZBoHQOKW0dZ4Eti9hQkx1kabl5fnlQaJRII5c+ZgYGDA5bpRe3u7nbH/+te/0NzcjNTUVPsYu3v3bgezIZ4bpjj4OM5x1Wq1y1FnT+kHxOzBwUHEx8cHEjUgMLAVAk69ExL3w45VirkmJIDz3S5PiI+Px7Vr13D16lW0t7fjn//8J65evYqEhASkp6cjPT0deXl5DgqUWMUH9BqCm+GPZVkMDQ35nH5AzB4ZGcGsWbMCiTo5iJSDdzLUlWOR4LW9rD0n8I+3Xp0I6NQqxsbG8PXXX4NlWVGmDA4Ooq2tDc3NzXYGFxQUICMjA8uWLcNvf/tbpKWleTzAH2rdZObMmRgZGfE5fMDMDrdZ5omKs4puIcr3ZmHn20AvWaCCBIQvkM0kYyMwwXCnehfe7eIVqMbGRrtIHhoaclCg5syZg+XLlwflJmqwMGvWLL+YHdDpUplMFtJ7xP6gfG8WIct1W6/30nECk0W99MjFr76+nubOnUvTpk2j+fPnEwDSarW0a9cuqqioEDXoU1paGhGjN57Q399PCQkJPoefMj17AhM921BXjsK3PsIlg5vlSyI4SwECsHv3bgyYBgCy9g7yYflToVDAYDBMjvQgQyaT4dtvvxX1I5GhKeC7Xr5UUNBBgJDkd4/txPq9J0SfP751W3QHZ0Ka28ZwX3UPf7Y5I1I3ThDTFxyYTeZHGB8bt/+Z3Tw2K5PJ8PDhw5AQ6REO9BvR8xGwXue6fwsAl84dRdae9dZ3NZ1w7NgxzJ07F7NnzcbRo0d9ylrMcK07poZr0Wh4eNg/Cesi2DkzjY+Ok9nDaqBSqYy4iWXOUCu6585xnHW89rgfb12ujI2N9fkGy9DQkN0GeaSWe53z7erq8nikyhkBiXGZTOafFhgMOHeipIXIAnDzS6dxlDHi9TU7kbVHXLzzUCgU0Gq1bu9fk1OvlcvlGB0dxfDwcMSWe53zHRkZwcyZM32O74HZHMy8SB+3WFcqbWJ+9qxZGB4eBsiCR7Ywj8yCyhG4j4+ZHS+jePJzF27cMnHWiix4NDqOR2Pzsa44C6/9+V0QWay0fv5/EMv8AHj9OP7zf/wc4484x3QeOeaWl5eHyspK0ezFGJqQkCBqUCdS8FdR9sBsCWKmS8HY/wNMjBQSSQwUSiXu3r0D8yMgJnY6psfGgLGYYSEA4GAe5yCZPh3TY6cjRsLB/Gjinph7PyGE4aZBCgssFouVqeMcJLHW+Dv+8J/4NZVBIonBtBkyxKX8N/zj8+9QfbQQ06dPAyxmjPM0TpcCFs6hcW3atAmffvop7t2751NlKZXKqDqxcufOHY8G953hWYwzUsRIaYIhHAdIJUhOTkbvF73g7L3GDA5knelwHDhGYt+rkMRIwXC2SvbkJwTHgZNIIWUAgIF0+nTESKVgiATxOTAxEvzPD76DhQjE/Rvfjn6L1eoYe6EYhoF0mnRiOZyx0WiDXC7Hiy++iA8//NAhe2cRziM+Pj4qrgLx6O3txQ9+8AP7tzu6ebhhNmNfV2ZipJBwFliIYLEwkEqsW2s3btwAJDGYbutl1p5qz9X9xVBPfr6Es7vbNkDs0pazUS4I6kM2+fn5+Pvf/+7gJibCichBI/dWseFAZ2enfasZ8D4LsDObeyQY0xy2AyWQSgHL+COQ1NpL1Go1DEYjJJxZMD3jwHEAJBJIwMHCj+FEIInEmpEnPyEYBgxZYHFOm3GObxHEF6bC+bQvDwDZ2dlobm52K555pjIMA6VSabexEg178gaDAcnJyT6Ht9cQwzAAZ8b4OAeJQPQBtt4NCSS20CqVCh0dHYiZJrE2krFxjI9xttSsYzwstjm7mcG0aRJ7du79rAqhmQPASDFNLG3GOb7UFp+DedwCAsEyblX6LA7frv484uLioNPpUFVVJVpBQqaG4/y4P+jq6nLo2YAXiePbDM1C5kcTczyO40ipVAZkLSEa8f7771NGRobXcLwN8mhAc3MzLV682K84Ps2zyczBpi0BsLb2zMxMUbPJUxFZWVloaWnx2muVSmVYLR56gl6vx0svveTgRoEpaFbwYtQMqZDXICKsWLECn3zySeDURgmICDKZDC+//LKLVu6MaBLjer0eK1eudHDzqkcEKkb46z9THfwSZFVVFaWlpbm4OyNcNsg9QXj9x5/nJgLe9VKr1YiJiQnoYH40ge8Na9euRU9PD27fvu3g7gyFQhFWUU7WO/QObq2trWBZFgqFwq9jT34zW5hxTk4Ozpw549Z/KkEmk2HdunUu5XFGuJdMGYZxYeDZs2cDum7lN7OFGW/duhUVFRVuw041xr/yyisOzBajP9LjtsViwenTp7Ft2za/407KUK1Go8GTTz7poJULG0M0LDz4g5dffhkGgwFGo/Xggxj9kdbIz507h5SUlICM907aKnFBQYHH3j2VEBsbi+zsbJw+fdptGJZlI7LzxUuZU6dOBdSr+UQmBX5TP9IaarBw/vx5SklJsX87a7fnz5+ndevWhZssIrKaxpozZ07Ahz0n3bPlcjkKCgrsxtimOtatW4f+/n50dHSI+isUCgcb5OHEkSNH8Ktf/Srww57BaHF9fX1+mbOMdhQUFLh9lCVSNshNJhPFxcVNyjx3UF4SYFkW69evxzvvvBOM5CKO/Px8vP/++6J+CoUC9+/fx9jYWFhpOnz4MLZt2+aT4QO3CFbL48eTSBiGDxb48Zm3NSb2gBvRhEXEcB08DK4J6iAgKSkJW7duxd69e4UNKVjJhwX8VEsqlWLTpk04e/asaDh+rh2uqeWvf/1rFBUVQaFQTC6h4LQ9K0ZGRkipVDqYx4oWKwv+gOM40uv1bq035uTk0JkzZ8JCS319PalUqqCYAw3q6z8zZ85EWVkZCgsLYbFYAEy9hRXASnNGRgbGxsbQ2trq4h9KU1kkkIZjY2N47bXXcOzYMVHjOuSn5Az6U0+5ubl48sknfb5pEWm4qzBelAsVNT5sQkIC+vr6QkKP0HQXb6GBfzLLXVifMWnZIIKvvvqKWJZ1axVwqoj2xsZGYlnWxT0cNsirqqooMTHRqxEdfxCR5xmjjdkcx7mlSeyNsfr6eq/WoiaD1tZW+/OMQhoni6AxW4yYiooKUqlUQW2d4UZRURHt2rWLiCbK2NXVRSqVKiSNtq+vj1iWDdoD8EKErGfzCNaTypFCS0sLKZVKB/pDZYN8dHSUli1b5vFJ5ck0sJAz22w206pVq+y9YypiwYIFLq8lyGSyoC8g5efn+2SEL1CE5OFVIaRSKc6cOYPa2lr85S9/CXV2IcHmzZtdbo0EeoiB3Gj/f/jDH9DW1ub2omFQELJm5ISOjg6Ki4sT1dCjTWFzRltbG8nlcgdRHkwb5DU1NSSXy8lgcLxQHux6CXnP5pGSkmI/O3Xs2DEHv2hfeNFoNHjiiSccTuQIrwIFCiLCW2+9ha1bt6KqqgpJSY4XyoNdL2FjNmA9wXn16lX86U9/wmuvvWZfZZsKeOWVVxxOsEz2LNrY2Bh+8YtfoLKyEtevX0dmZmYwyPSIsDIbsPbw1tZWGAwGrFq1KmoeWvGGn/70p6iurrY3UJZlA15FGxoawvLly/Hw4UM0NTVh4cKFwSTVLcLObACYPXs2zp8/b7fx2dnZGQky/EJKSgpYlsXFixcBBH4xv7W1Fc8++yxWr16NDz74ADKZLHzDWFA1gABQUVFBSqUyqh5ccYeDBw/Sli1biIioqanJ4QaJL+CfqKyqqgoFeV4Rcmb7olG2tLTQ3LlzqbS0NKo1c4PBQDKZjEZHR6mvr8/n609ms5kOHDhAiYmJotYTw4WI92wefX19pNPpSKPR0LVr1wJOR9hYgvXGpzC+RqOh6upqevToEUmlUq8rgw0NDaRWq2n9+vURXzaOGmbzqK6uJqVSSa+++qrHygmVBPCW7uHDh+07Xkqlkvr6+kTDmUwmys/Pp8TExKgZoiKioHlCdnY2ent78dRTT2Hx4sU4dOiQqDWjUCk13tLNy8vDhQsXMDIygvj4eJcLA4ODg9i/fz9SU1ORlJSEnp4erFnj+lRWJBB1zAasl+zefPNNtLW1wWQyISkpCSUlJVFhlmr+/PlITk5GbW0t5s6da78KdOfOHezevRvJyckYHR1FR0cHDh06hNjY2KhZNIpKZvNgWRbl5eX44osvYDaboVKpsGXLFtTW1vqdFgXx8GN+fj4qKysxb948fPzxx9i8eTNSUlIwa9YsGAwG/PGPf/R6ODCY9PiMSI8jRL6Pv0NDQ1ReXk5paWnEsizt27cvbHZdhDRevnyZpFIpKRQKysjIoJMnT06JI9T2R9ymGrq7u/G3v/0N1dXVePjwITIzM7Fy5UpkZmb6/Jibr+js7ERDQwOuXLkCvV4PuVyOhw8f4o033sCOHTvcxiMRm99ibuFCVDE70Mrp7+/H5cuXUV9fD71ej4GBAWRkZCAhIQFJSUlIT0+32xVPTEx0ecvr9u3buHXrFgCrPdCWlhYYjUb09fXZX81buXIldDoddDodFApFhA3sB4aoYnaw8ODBA7S3t6O7uxsmk8n+SCz/0KrzBgbLsli4cCEYhsG0adOwfPlyxMfH4/vf/z7S0tJ8YqqvRvYiiggNH1MGnJvfRE7vjWeVEEe9VFJyXDRsNCCqtfFoACPym4yXwDAMjhkW2Q3ccO/oIGEWAaqFLvGiBQE9CBPtoBAqQQQDslVrXd4NY5LW4PieDWD47coolOuPJbMDYbS7BmJ356xvgNafPGF9avqtV+H8xpgqKRn0jO0FwChjNPCYKmj+wpMkcHgH1Pau+KJ3a3H0l8IlUNeH5fgHX6Nl9QyI8hU0XzHZ9urxoXfhh/EmPmKARc84nyyZsKxsJUjoFj2IPooCgPAynDfwCpUv4RwdAAj0WfE0bP68Yf4o6tXAY8JsHr5UrpjFQJ/SYgCoFmAjAcabN10Xf4yXcKI+ul70c0Ek5ntTGfzcuryul4gE74htdH0PNBogXNP/L2YHgC9q/9fEYgpAWXtOOC2iWCJEmWf8P3MKx0gdfKDDAAAAAElFTkSuQmCC"
<image>如图,A、B、C、D四点都在⊙O上,若∠COD=80°,则∠ABD+∠OCA等于() Choices: (A) 45° (B) 50° (C) 55° (D) 60°
50°
11,015
null
50°
"iVBORw0KGgoAAAANSUhEUgAAAHkAAABiCAYAAAB063wRAAAOpUlEQVR4nO2dTWgb577GH5fAGSgl2nV6ufd6QpPDtBg8oaEWMqUyt1yP3YWnFGJ1ZXkjK4siFXqwAgV5EVDMWUgKFCXeyIaC7XRhuW0khVsqBxrLO8slRCYSSFkEKe2lckuKlPbc/O/CHkXfnzOSLesHwtFoPt7MM//3a973eQeIiNCnp3ml2wnooz59kVUhDvfoAAYGSj6jbsS7kJq+yKpwHpb7BL8JMPkJRAQiP0zbVsy4Oy9zX2TViOPRAx3eviB/n4BkArYfxjqekjMdv+JpIX4Ht3EZK+ePvrpHMblkgp8mOp6UvsgqEb9zG9vb27gwYAUA6FwxEJ3vSlr62bUqxHHnNuCKHZXHMRdgvYDRLpTHQF9klYjhIS7jQzlwz1vwhQnYvn2nX7vuGQI+PLj8IbqTOZfTL5MVJw73tQe4vPJS4sDcACaXAJPf0hXhB/rdmsoyOjCA7bKtOrhi92HpUmj3RT4F9MvkU0Bf5FNAX+RTQF/kU0C/CaUAOzs7yOVySCaTSCaT+OOPP/Ddd9/hyZMneOedd8BxHAYHB8EwDLRaLQBAEARoNJqOpK9fu26BXC4Hn8+Hu3fvwufzged5MAyD119/Hel0Gj/99BNGRkYQDAYRCoXy4j9//hw7OzsAgEgkAkEQMDU1BUmSwHGcegmmnidGLh0IOPzoXDEiv4lM/ubOkslkyOPxkCiKxDAMGQwG8nq9lMlkaHd3l4xGI7EsS3a7nVKpFBER1bu9oVCIrFYrcRxHPM+TzWajaDTa6n+0Kr0tcsxFOlnY/CYdAToq2FSTbDZLDoeDOI4js9lMgUAg/9vq6ipptVoSBIG8Xm/Zsc3EUDQaJYfDQTzPk8FgoEQi0fCx9ehdkSsIfIifTDBRI4Hs8XiI4ziy2WyUyWSI6DCiZdENBgOFw+Gqx7eaUa6urhLP82S1WvO5Qjv0rMh+Ewg6F5UHbIxcpkrbXxIIBIjneTKbzfmbHI1GyWw2E8uyZLPZGoq0dkrDbDZLTqeTeJ4nu91O2Wy25XP1qMh+MlWM4vpYrVYSRTFfNgYCARJFkXieJ4/H09TNVqLKk8lkyG63k16vbzmqe1Pko6y6mcpVJpMhSZLI6XRSNpslj8dDPM+TKIpF5XAzKFmvDYfDJAhCzeKhGj3cGVI4iK42+/v7mJiYwMTEBJ4+fYpz585hb28PGxsbCAQCEEVR3aQ2gFarRSAQwNWrV7G2ttbcwYo9aseK6tl1zOUqqnSFQiEaGhqiyclJ4jiOHA5HvpLVLmrc3mw2SwaDgaxWa+PpUDwVxwS/CWVNpZhLVyT8559/Tq+++ipdunSJVldXFU+DmjFkt9sbFrpnRSaS28QlHSFHJBIJYlmWPv74Y9Wur3ZGaTabyePx1E+Hqqk4pmSzWdJqtfT9998Tx3FtNU9qobbI2WyW9Hp93crYqRRZkiTa2NggosMmk9PpVOU6DMOo9gDJpFIp0mq1Ndvtp05km81GDocj/313d5cEQVDlWhzHKdo9WY3d3V3SarVVH6gebkKVE4lEEAwGYbPZ8tsEQQDHcfD5fN1LWJsIgoDp6WlcvXq18g6qP2bHCK1WW7H82tjYIEmSFL9epyKZ6LB85jiuYq/YqYlkn88HlmXzL+0LkSQJyWQSkUik8wlTCIZhYLfbK0bzqRA5l8thcXERdru96j4zMzNYWVnpYKqUx2g0IhKJlD+sHclLuozT6azbcVAru2uVTmbXMpWKnp6P5FwuB7fbjfn5+Zr7MQwDSZKa7xc+ZkiShFwuh2AwmN/W8yJvbW2B53mwLFt33/n5ebjdbuRyuQ6kTD2mp6exvr6e/97zIm9ubmJqaqqhfeWK2UluTgGAKIpFkdzzZTLLsk2Vs0p2jnSjTJYpbC72dCTv7OyA47iGsmoZQRDAMEx+6OxJZWpqCpubmwB6PLtuJqsuZH5+HouLiyqkqHNIkpQvdnpa5GAw2NKoDkmSsLOzg3Q6rUKqOgPP8/lZHT0t8v7+Pnieb+nYjkRzYK7YsW8uoOjpeZ7H/v5+74p8cHAAhmHAMExLxxuNRqytranUnDqyZbz2NmJU4Ni3NKmoQxDLskin070rcjKZbGt+kUajgcFgwM2bN5VL1BGBuQuwwoXY/UIPkQn8w6VT1CFocHCwt7PrdDrdVK26EnNzc7h165ZCKToiMIfJJR1cK1VMYrYfQiljRpZl8fTp077IteB5HjzPt9w58tdff5VsicN9bQkwfVHRJCb2cBvQvY0GRxLX5VRk14ODg22fp9VoXlhYwJMnT/Dee++93Bi/g9vbgEmq5K8Zx6MHgE5B/y+O43o7u1YKURSRTqebete8vLyMGzduAAB++eUXHBwcFPxaZdB/4J+wbutw+UPlfKAYhkEul+tdkTUaDX777TdFztVINKfTaSwsLOCNN97AvXv38NVXX+G1117DjRs3ShwFtlHuhhzA3OQSdK4VRb2+8kVWYX9n7v/+yn9OOkoO6an1rlmegM5xXNEEdKLKfddlsy2P5m2h2VnxDeD1esloNBb3Xf/tlTNFf08ycqVDCRiGgcFgwPLycn7b2toaxsbGMDs7i/fffx/RaBQLCwt1K3sTt2JwwYoLcgfIhdu4HCPQLeV9sOVIPvlqVkFJkQHAYrFgZGQEZ86cwZdffgmtVgu73Q69Xt/kmQ6XLrAolrLqPH78GMPDw7VFfv7iX/l//+2VM2XfC/cpjf5K+zbyWyP71doup/ON//z3QzOWo23tkEwmsbi4iJ9//hk//PADQqGQukYuCpFOpzE+Pl674lWafZf+lW9g6QNQuL2Z3wop3K/a9sLjC//Kx/zb4H8g8/P/Vr1GPYLBICYmJjA2Nobh4WHcu3cPqVSqYYHl2m23kLPrpmrXlaLi+Yt/tXwTG6WRSKxUn/jvsf8qHiHRALlcDjdv3sRbb70Ft9sNi8WCRCIBs9mMd999FxqNBltbWw2dS+kioxkODg6QTCYhCEJ9kWtFm/x7pYg7DoyPj+Pu3bsN7ZtMJvHZZ5/VnYBusVjgdrvVSK6iBINB6PV6MAzzUuR2o1HNaG713KIoYmtrq2aWubW1hU8++QRjY2MYHBxENBqFx+Op+opSkiREIhEkk8mW0tQpigZMyG2qeu3jar9VO65Wm7vab5W+N3p86Tb533q9nv5n64eifbPZLHm9XhIEgfR6fdMT0BsZx01EpNfrKRQKNXVuJchms8SybN4xoeGBfCe1g8Tj8ZDZbCaiw2medrudOI4jo9FIu7u7LZ0zm82SRqOpOy21WyKHQiHS6/X57w1VvJRohnQLURTxzTffYHZ2FhcvXgQAhMNheL1eCILQ0jkZhoHRaFTlXbMSrK+vY3p6+uWGWk/ESe/mlG0Rz549S59++qmi504kEsRxXM19uhHJqVSqzD2hbjv5uNacq3FwcIDr16/j3Llz2NzchNPpxP7+Pr799ltF26wcx0EQhGM3EH9xcREWi6V42FNHHzMVqWeLqIZtRGnZV0qnI7naxIATL3KjtoiZTIZ4nld01iIRkSAIVStwnRa50AulkBMpsmyLyHFcU7aIjTZ9mkF+nVeJToosP+yVOFEiJxIJslqtxLIsmc3mpucZydZOrTadqp2z2rvmTomczWZJEISqhugnYmTI1tYWPvroo7JeqWbfBDEMg9XVVVy5ckXRd80zMzNdbU7Nzs5ifn6++kQC1R+zFpF7pXieJ71eX7GsaZVwOEx6vV4xj61KzRaizkSyw+Egm81Wc59jJ3IqlSKbzZbvlVJjTQai2mVpKxiNxrIlCtQWuVY5XMixETkcDucX63A4HIrXgiuhZLOqUvNFTZETiQQJgtCQo2/XRZZ7pbRabcXFOtRGkqQih752KBVVLZHD4XBdq8VCuiKyvFgHy7J1F+voBDabjQwGQ9tldOkIUTVE9ng8TS9V0FGRo9FoPku22WwdyZIbRc5R2rV/4Hk+X49QWmSz2Uxms7nph7EjIm9sbOR7pbxer+rOsa0iG5G2I0xhh4tSIqdSKdLr9Q15W1dCNZHlFdE4jiNJklperKPTyDdUkqSWOk0KX9i3K3Imk8m3NNo5j+KdIfJYqYsXL2Jvbw+hUAgbGxvHYrGORmBZFqFQCDMzM5idncXs7GxTHSeVBuI3Sy6Xw/Xr13Hx4kWcPXsW0Wi0hfHdBbT8eJQQCARIkiTiOI6cTqdii3V0G6/XSxzHkdVqbbi8TqVSxLJs05GcyWTy1ytcVa5d2hK5sFdKFEVFe6WOE/Jqa/LCmVartW6LQJIkGhoaqityIpEgp9NJoiiSRqMho9GoeIW0paV10+k03G43lpeXIYpi7X7THmN/fx/BYBDr6+tIJpMQRRHDw8P5oURarTbvAzY+Po7Nzc18VhuJRHBwcIB0Oo29vT34fD7kcjlIkoTx8XHVirSmRP7xxx9x5coVJJNJjIyM4NKlSy0br3SSx48fqzKE9s8//8Svv/6KZ8+e4dmzZwCA33//HS9evADDMHj+/DnefPNNxOOHLiDywtgsy2J4eBiSJHUkOJoSeX19HV9//TWGhobUTJPicBzX8blL6XQa8XgcH3zwQUUj9U7SXwn9FHAi3if3aY++yKeAvsgdIQC3gk57zVIi8pEd4EDJZ9StmEvcaSQwN4nbXbx+icjnYbkfg0ungysmez4S/ENWXBiYg7L2nqeDuHsU1x7oMPR3BW19mqRCdh3DQ1xGoZ3UxC0/TFjCtS5mOSeSuBv/xAq+GNruajLKRQ74sDT09xJXuAlIJmC73ICqT1UCmJsB/mEBHj1ofFV2NSgTOeBbqmILCODBo37Z3CCBOR+k+1VMUjtNcVe2n0wwUbltWIxcOnUMxXoSv6locW5UvKedoziS44/wwCShLI5rGn/2KSLuxqhPyldaKeaCTkHn21YoEjl+5zbKC4843DNWbJv8UME0rreIuzE6A6wU3qjYQ3S32oXC7NpPJujIFSuIc9n3sdALsk9VABAK7qHfdDyy7PwLioGBgYoPgclP/Qg+4fw/IWDlpk08mRYAAAAASUVORK5CYII="
<image>如图,AB是⊙O的直径,AD是⊙O的切线,BC∥OD交⊙O于点C,若AB=2,OD=3,则BC的长为() Choices: (A) \frac{3}{2} (B) \frac{2}{3} (C) \frac{√{3}}{2} (D) \frac{√{2}}{2}
\frac{2}{3}
11,016
null
\frac{2}{3}
"iVBORw0KGgoAAAANSUhEUgAAAGIAAABsCAYAAACRr2d+AAAPXUlEQVR4nO1dbUwb15p+jn1Voq0l/6ilJsKVl+UjCFjFrqLkR4kaXUwgEt0kmw+oCmp+WKLYkWDTe1VWF6m6KlLo1mSpltCi5AcSSZMoaXBuo41JqBSpVAJR1bSxSXNLWFKIml1YKVUcLeTa8+6P8dhje8afY+NgP5Ll8fma43nPeZ/zno93GBERCuBBAIHAGIPnej9+LjuJg9UsK7dWZeUuLwoYwMBAmEPXwT9k9dYFQQAIUwoM+PcTZ8Dq61FRnb06FAQBDowxCKJwnLaB6s3gJnxZrUVBEIFHwABgzoFbqMf75QxfmytQhezwQ6gWBQAAbGduY+jkQXAMMFeUZ/XeBUEE4Dhtw9DQEBhjUFcdyvr9C4IAgDkHblM9OCIQ+eF22FFRUopsDux/l71bbRQ4EDEwJqPv710H67oFujUUCFDh5wcLAEohZBFGVbJlKAHa5OAirsW/7VYzMcYIADk8fJi1HgSoiAFkttmDaX0+X0bryYjyy7ImomDLJvCjJQr8kGvw4+PjePz4Md59992M1StvOIIk1AsDeAFAXgjLy8tobW3FzMxMRuuXdz1CgLhnSIYR4Of+hr17fw+NRgOv14tvvvlGMp8SyAOyDkH8EAVrWvxI+TgOgApgwKlTH0Oj0WB0dBQlJSWiNJmp3KZGiJz9MeLEAXy6yclJMhgMtLKyQhzHkV6vp8XFxYzVc9NzRKj9Rv/VqLbN+HSrq6t45513cOHCBeh0OjDGYDKZ4HK5MlbPTS+IVNDW1oaOjg688cYbwbAdO3ZgdnY2Y/csCCICH3/8MQDggw8+CAs3Go344YcfMnfjjCm9Fwwcx4XxQiTm5+fJYDAQx0UxiyIoCCKAlZUV0uv1NDExIRnv8/lIo9HQkydPMnL/gmoKoK2tDW1tbairq5OMV6vVqKmpyRhPFAQBnhe8Xi8++uijmOkySdh5ZdBJ4dtvv8XAwABmZmagVqtl0xERTCYTpqamgr+VNO7yukesrq6ipaUFIyMj0Ov1ACI2EojAGIPRaAz2CKUt7LydawKAlpYWlJSU4NSpUzHTCa3f6/VCp9Ph2bNnMXtPKsjbHjE8PIxHjx6ht7c3blqh9Ws0GpSUlODu3buK1ycvBTE7O4ve3l588cUXSbVsIsKOHTsyYtjllSCICF6vF0ePHsW5c+fw2muvyXKCFIQ5J7fbrXjd8koQjDFYLBYcPXoUDQ0NwbBkICZsJZFXw1eBFy5cuCAZLzUkjQyrrq7OjC2REXs9B+FyuUin09H8/HzaZel0OlpaWlKgViHkhWryer04cuQIBgcHUVpamnZ5mZiJzSFBcEAivJmC1WOxWGA2m3Hs2LHkM0sgEzyRQxyhil4yi1xUhsTvOBgeHsb9+/cxNTWlmDVsNBrhcDgUKSsIRRVdOpCZ5pef/Y9eg46E2+1WjBciyy0rK1O0zNwRRAKI3LUnm47jaG1tjYxGI128eDEqLl34fD7asmULPX36NO2yBOQQR4SDA0UZW0zmOhKMMXR2dmL37t1oaWmJiksXarUaVVVV+PHHH9MuS0DOCkKFGBuH4+Dy5cuYnp7GwMCAspUS4fXXX1d0V0cOkXVioDjrAA8ePEBXVxcmJyexZcuWjNVD6ZFTTvSISBVk28f3BsYYmEp03WCVFQIRYX19HUeOHMHAwIAi9kIsbD5BULTePnOLYK0HxtwciOO5wu04DXO5/MMVeGHnzp1obm7OdK1RU1OD+/fvw+/3K1OgYrSvJDgP1dXb+EvykN1+jTjy0L/1XwuERePSpUtUVlZGXq83a9U0GAw0NzenSFkb3yMiQOSH5y83UbGP301x/fR/gErLwVCFP57kz7ZFKqeFhQWcOHECV65cwcsvvywqK7OLjyaTSXbkRBQ96ouF3BEEBQxppsbPDxbw2R//GYwxHHr/c5RWVEtPbRCwvr6Ow4cPo7e3F0ajMSw6o0etEHtXh8BriWLDBRFsNSzU0ifGh3DdzYGIYKs3Y3sVpA0HBnR2dmL79u1ob2/PUo1DUHTyTxEFly7ESt8zRqjvCIb39/eLIv1h3zdu3KDS0lJFLVzJ6slY44uLi7R161ZF7pEbgqDQnx3rt1LHJ9dEMfxDt9lsYemXlpZIr9eTy+XKUg15iIXCcRxptVp6/PixbJpEseGqSYCgT287h9C4/6AoRoUT9QxUYg6GcByHt99+Gz09PVG8kK16CtdS9kQq3JQzgvBc7wdjDEO3gQM1qpARxxjOTAD1jQeCaf/0p39FcXFx3E1h2YDJZEqeJ0jC9ki3q2YbTqeTSsvL6NGjJWpqaqKtW7dSV1cX3bt3jziOS0otKDETOzIyQs3NzSnn5wKq94USxC+//BLFC7/++ivZ7XYqKysjo9FIn3/+eca2zkvB5XJRZWVlyvmFprDhgohslZxEGBG/BrBnzx6y2+1RcQKmp6fJYrGQTqej1tZWunHjhuQ9lMTa2hoVFRWlPXLbcEEQkfSchT88sLu7m/bv3x+ZSLK4tbU1On/+PJnNZtLr9dTd3Z30Kl0ywquurqaZmRmZgsQ//Lz6jArPEUFwUT/CH7DT6SS9Xh88UpXMQ1pcXKTe3l4yGAxUW1tLZ8+eVdzuaG1tpbNnz0aFh9UzTpVzQBCx156XlpZo27ZtNDk5mfad7ty5Q8ePHyetVkvHjx+nO3fupF0mEZHdbo+yc8TgHa3wH8EJC1BHHpF0ckAQkfAHq+fz+ai2tpb6+voooQPrCeLp06c0MjJCtbW1ZDAY6MMPP0zrMPvExATV1tbGTPPePtCYO1Rju9UcJowcFEQIfX191NjYmNF7zM/PU3d3NxUXF5PZbKbz58/T+vp6UmWsrPwvaTR/JxvPUWhaXwxrfcgVUZggfGvrwc9GI9ZR20zB6XRSa2srabVaslgsNDU1lUAuvqfq9fqoAQHH8T6e3A57mO8noSvbrebgvFqYZa0ueinse6MQ6YIhW2hoaMDo6CgePnyInTt3wmazoby8HP39/VheXpbMQ8RPZ0ROdQhT+kQE5y0nGusbwTtc4b0tg4DS0gqAVAC43JniEEPKBUM2odVq0d7eju+++w5fffUVlpeXsWvXLrz11lu4fPly2PKoMK+0wyQWBBeatWf38J+fEfYfqELQtSnj5/znF/4K8/YSPjyyo4nVUqSqklJdcqoslpqTihOGemJekCsjVnhknRJVs1GGpcQQ+erVq9Tc3Ew6nY7a29vJ5XIFBwxXrlyhpqYmUQGBj2eM9lkljFDPGAEgu8NNRBJkLffnpH4ncp1MnJgXki1brtFI5UkHHMfRysoKDQ4OUmVlJVVWVtLg4CDNzMyQXq+PSu+wW8lqH4sKt9YjtO5CSQoiVstMVRB/+781Igq5YHA6nZLpki071j2VhNvtpvb2dnrllVdIrVbTo0ePiIgCFrSHfs/Ch63k5nsC9lnDyokrCHFYvN4iF56IkBobG6m7u1uxshMVRDwrPVEr3ufzUWVlJU1MTBDHceR2nA4acQAILHRtd/zIly3KHyRr//rztAguVn6Ks14guGCIPGor5Eu3brEQbxEn0UUetVqNN998Ey6XC4wxVB/4l+BODiIK7s8iIrx/4B/5skX5w7Zc+tefSw5d1UUvScYJ4cK1VDgA/G5LkWzc1HczQRcM8PmBwHHbRMsW4oQwcT3lrpUGBbaBGo1GTE9Pp1xIYl0vA3r2yZMnYbyQyenqbGB6epqMRmNKeRNyAZFuayKx01vRdaIuGF4UpOMiIqZB519/roh+jlxwB5JzwfCiIB0XETEFoS56KfhREoILhosXLyruXGSjkaqLiKxPcXi9Xhw7dgznzp0L7sLYTDCZTClt18+6ICwWCw4fPoyGhgbJYW0ClJXTMBqNKZ0kysqJIYGgh4eH8fDhw6ALBqkxeqY3DmcaKbuIUGroFg9KumDIdeh0uqRX/LKimgTXPEq5YMh1GI1GfP/990nlyYogLBYL6urqsnKkKheQynb9jHEEiXhBcMFAlJl3L+QajEYjrl69mlymjCjJAObn5/OGF8S4e/cuGQyGpPIoJojIcwNra2tkMpno0qVLUfGbGRzHkc/nS3obpmIcETmN0dnZiV27dgV5IR9UEsD/T8F9dTI8kRGyFlwwfPrpp5ko/oVAsha2omRNRFhYWAi6YCgqKoqfaZMiWc8EivaI58+fh7lgoBd8uiIdyE11iJ+J+FpRl9Tvvfcenj17htHRUaWKfGHx22+/4dVXX014bUIx1XT58mV8/fXXGX0hUq6DRHaSVqvFtm3b8NNPP6G6Ov6r4hVRTQ8ePAi6YNBoNEoUuSmQDE+kLQjBNY+UC4Z8Q+QQPZaLiEhGSFsQG+mCIRcgR75A7B4RKbS0OGJ8fDzveUFqPV5AUrZEqqa8nAuGfJnKSBRarTYh99UpqSa/3x/mgoHE4+E8mcpIFJFT4iRjLaQkiJ6eHhQXFwd5Qfzw5W6UD5D675Hvm5BrqElzxPj4OL788kvZFSipjWT5AsZY1P82Go24efNm/MzJ6LuNcs2T64jFi4m6iEh4isPv92Pv3r1oamqKeqFqAfJYX1+HVqvF6upqTGM3YY7o6emBRqNJSAgJyjYvUFRUhLKyMng8npjp4nAE/9p5p9OJvr4+2Gw2/PnPHwIcA7H85IFU4Pf7MTs7i927d8umYUREHAiqGG7PhwY/w/+s/ncok4iQC4gNYgAjYM+ePbIvpOUTihDmMyLgN0I49SiN+O9wKCAcY/3W0HGu+g7iyEMdHZ+EG3SCK2i7ww2OCHfHPsEfDtZgbE6u5efkMe2cBHfPwbvFW/gHcETgiEADZqhYNVhpWahHcFzAZ4TYa0rgLPA1T2HaIh1w5CEzEO4GgvjDjHarmT655qYgWTMAnus3AWsjqgJ8Yes6BLPNjkNV0fwh9fqfAqRx/fQZTKAOnsGTYeEMATcQFVWA2BgJ01+IOB9MRGGcUOgkCUHoDVKH3kPwk4ofAfHOOm7dHMKYxwciwli/FYdqVHB4eH4gIog5gQrdISGwub9iAiqUlldExVFw1KkSnqwKmHPgM9aBg1X8Qvc/neyAGQy3ndf5AhkDifyV8nLgMvcPNhU4yaE+78yMh0q4dDhvw9qwLxQxN48JEP6+rFyUNXKUJDNqIuH2Mi+5yKN4qqqAGcB/zf8cnW7uL+h3zAXyBGCtD3GCoNeAOpqj8D2tknowjuPbfI8XuFewyTjinWmJndHD7bCH+4wQ/EYEPafEIeiYL4QrxAtfbodd5FgRVHcifCj7/4VlFAzmVlFuAAAAAElFTkSuQmCC"
<image>如图,在△ABC中,点D,E分别是AC,AB上的两点,且\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{2},若△ADE的面积为1cm²,则四边形EBCD的面积为()cm². Choices: (A) 2 (B) 3 (C) 4 (D) 5
5
11,017
null
5
"iVBORw0KGgoAAAANSUhEUgAAAJsAAAA0CAYAAACdK0q3AAAJAElEQVR4nO2dT2jj2B3HvzO7Qzx7qRiY4jlFuSzaU0ShG+UUBVrGYQYin8ZhGKLcklOS08xNDEyZ5lA8paV22BY7MOCUFpycnLRQeweKnUOR0kPtWcrYudTuocgszEqhhV8PQVr/iR3ZlmRnRh8wWNLTe0/OV7/3e7/38t4NIiIEBPjAzXFXIODjwTex7e/vY2Njw6/iAiYQX8TWaDSws7ODSqWCo6MjP4oMmEBu+OGzbWxsYHZ2FpFIBEtLS1BVFaFQyOtirx2maaJUKqHZbELTNADA2dkZarXapekFQcDU1BRCoRAEQQDDMOB53rf6DornYiuVStje3kaxWAQAvHr1CmdnZ4jH414Wey04OjpCqVTCyckJNE1Ds9m0RTM7OwsAYFkWLMteen+pVIJpmjg/P7dFWqlUIAgCeJ7HwsICRFEEwzD+PVQ/yGN4nidVVdvOCYJAxWLR66InDl3XKZVKkSRJBIAikQgpikK5XI7q9borZRiGQfl8nuLxOEmSRAzDEM/zpCgKVatVV8oYFk/FFo/HaWtrq+u8qqokCAIZhuFl8RNDPp8nWZYpHA6TLMuUzWZ9LV9VVVIUhViWJUEQKJPJjOW390xs9XqdWJbt+VCKopCiKF4VP3YMw6BEIkEcx5EoipRKpSbi5SoWixSLxSgcDpOiKKTrum9leyY2SZL6vsGGYRDP81Qul72qwthIJBLEsiytr69P7PPpum5bO79E54nYcrkcRSKRK9MVi0USBMGLKoyFXC5HHMfR+vq6az6Y17SKLpVKeVqW62IzDIM4jnPsjK6vr1MikXC7Gr6i6zrJskyRSGRiLdlVtD6DVy+K62J79uwZvXz50nF6wzCIZdlrYwk6sayZ11bBL7x8HlfFVi6Xief5gR1hp83upKEoiqeWYFxYVk6SJFd9OVfFJooi5fP5oe6NxWKUyWTcrI5n6LpOkiR90L1pIqJsNkuCILjmGrgmtkwmQ7FYbOj76/U68Tw/8VaiWq2SKIq+x8rGRblcJkEQhjYirbgiNl3XieO4kYWSSqVIlmU3quQJltA6R0Q+dHRdp0gkMvIL5orY3OxRRiIRyuVyruTlJqqqkiiKYx/yGReGYZAkSSN1HEYWm6qqxPP8qNnYVKtV4jhuIqLtFh+70FqRZXlowY0stssG2kel15jqOLCE5uewzqQzrOBGEpuXopiEmSHVapUEQZj4Tss4GMbdGVpsVw20j8q4Z4bouk48zwdNZw8MwyBBEAZq1YYWmx9xsXHODLlqIkHAheXned6xizGU2PyK+I9rZsiHPv3JTbLZLEmS5CjtwGLzWwB+zwzJ5/MkiqJv5X0IbG1tUTwevzLdwGIbx1vv18yQwE8bDqf+20BiG3agfVT8mhkySgzpY8dJvHUgsY0zuu+1n+h2cPpj5Krm1LHYRh1odwMve8BeBKc/Nq4aI28T23vTsD+DZOIXXs0MGaRHFdCffoH+LsvWKTQi570NP/BiZkhg1dyjn3995VofmqahUChga2vL+/+YdoAsy2g0Gq6tGXJwcACWZSd62YLrRCgUwubmJnZ2drqudS2/8N25ic+mQvb3+fl57O7uQvjxl/ju3LTTtaZpPbYof/MWm5ubME0Tn+BG27Xf7CYxPT3ddt/BwQEYhmlbr+Ky8qy8JUlCsVjEnR8wXXVvrVPr81xGNBrF6uoqJEnqmSZgMEzTxMzMDMrlctvSD33Flkwm8TdNxVfJ3bbr3+pNHB0d4a+lIv759huEw2H8Lp1qE+BNuliLAgDO//dfTH16y/5+/yc/7SovnU5jb2/PXlTl8y84/GiWx9OnT/H5F1xb3p9Nhew1Q37285dtAgPgWHC1Wg2Li4uoVqvD/7IBl7K9vY3p6en2FrGzXbV8tnq9ThzH0b/+3bCv7f72K+I4zl5G4Je//hUd/flP9J+m3ubrdfp9Tq+1ov79lDKZTJcv1ZpeEATKv/n6ynJ6lTHof4IFOKdcLhPHcW3neoqtNcxgnfvH20rbMFWvP6IbYut3XlEUSiQSdHJyQl/Ofz8zZFCxsSwbjBZ4SOc0MbuD0NoMFQoFvHv3DrFYrM00Tk9Pg+O4S81m6/1u05m3LMs4PT3Fo0ePEAqF8PDhw4HzLBQKfZejChid5eVlHB4e2sdtvVHL13ry5AnOz8/RbDYB9PZ7rPOd11rPD3LtMr/rsvt/eC+MX7yK4y9fF3Dr5id48+YNfv/HP3Tl0es7ABwfH+P+/fsOfrKAYYlEIu1Rg07T9+DBA5qbm+syib2aokng8ePHdOvWrYHGbIPYmj8wDGPPd2uzbOl0Gnfv3rV7kRZXhQ+csr+/j2QyOXI+nbx+/RqSJOHFixeO0pumiUqlEsTWfEAURRQKhYuDVhXeuXOHNE2zj3sNXw1DPp8nAATAk+lChmEQwzCOrFswZ80/WoevbMtmmibev39vr+UKXPhH1mdUWoN74XB45Pw6CYVC4DjOXvi4H5qmBVbNJziOQ6VSAQB8ap0MhUK4ffs2ms2mJwv+8jxvrxLeq0c7Kk7rfnJyguXlZU/qENAOz/O2AWjz2bp6Dx4U7JXQSqUSGIZxlH+tVgtCHj4RDofRbDZhmma7z2aNGly3QKeu6wOtwREEc/3F6vnf7FRhNpvFysrK9z2ICadUKmFxcRHxeNyxHxZYNn8Jh8NoNBrd2wlxHIdsNovnz58jGo06crjHQaVSwdraGra3t5HNZh0LzSufNKA3PcVmXczn81hdXcXa2hrm5+exv79/0e6OEdM0cXBwgKWlJUSjUSwsLKBYLA5kpQKx+U9fsVlIkgRVVRGPx3F4eIh79+5hZWUF6XS6535KblOr1ZBOpxGNRjEzM4O9vT1sbm6iXC5DlmVf6jAJaJqGpaUlT4LiXjM1NQXTNAfbu8qyLMfHxygUCjBNEzzPY25uDjzPg2EYCIIw9CZo1v5LpVIJp6enKBQKYBgGoihieXnZlX2Yms0mZmZm7HHf60JrvOo6kkqlRtsordFoQNM0WxyWUEzTdLxDXOsOdNYmYZZ4J2qTrzGTTCaxsbEBURSRz+fHXZ2h8GxXvlYR9WPSty0McI//AwtgB2I9McmQAAAAAElFTkSuQmCC"
<image>如图所示:一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的底面半径是() Choices: (A) 1 (B) 2 (C) \frac{1}{2} (D) 4
\frac{1}{2}
11,018
null
\frac{1}{2}
"iVBORw0KGgoAAAANSUhEUgAAAKYAAAAUCAYAAAAHikYJAAAHiElEQVR4nNVaS28byRH+apQsYOScXBNKIo2VnB+QnOKQo0hAsLRyS37Awho6Xnml/IYEMEdeA7IS34NFLusZ7gIRLcoL5BCfkpM449WDyj3npQJEZFcO8+yepkSRMxbzAYKG/aiq7v66u6pmwMzMgiUcOU8ZQPhX5a4Ysq4d81AtuBJdtynJ9TLyNBA6vWGVEFmZLFiMI/cWMNH4C7aFUvM2ap5vA1ALZIPlBU/jpmOQF0UvtwiZs4Iixl+ELUXZEMtVzjKvZQf6Sd4g3wEAQICZQERoH7QBAAwDgABgAHiDJ795hJ9Uvh/+FrgJiIG/t/+sqUnL1YOZQUQpWxK83Z9M5vvGNOMvAm//+rnWls1fN/DTuz9IzXk+ICIwc6b836dv8cfPO8EPDmxYJhMed6KVNmRDCEjIdzMSqmAK/sAGYGQHSyy3VfsmdhmptjJBR06iRt/7xrTjz8UGlWikX9OojYG5fBTH+vUD6Z2ea0rfYL/lY+RVjpyvx3FdBBlX+7CxrfT/c5XnOf5pbCGikWscWVT0LDatmoZr4KbbzfqYkeH5LXQyufnKDWTnLzNvFDn+yeFLttzPxhB5R5BC+sfM6nwY0rwQc3L58yjfghFe77ODyGwimkXzZh6zMmfel03cq/8ORHNg/hk87mAJBImYY2PaUY3ZnxmQ90nkGxma1pPpuBVMPP7CVSr68w2CbqLPkFkpO8Vey4braXg7yla1qdBxXozsr+6R9JwEdQYypIwuA7X/DJEyMwtX2pasQZ5DIMEaQ67pUwQpFRvSa5bWp8SJyaIzfGw+2J7KBu+rHRARaMXK6IgMeteyQTSHhu1qJ4KVH7pFdp9tgIhgGAbItMDootGwp7I9TzxaCVJxRAQyoucafG3GI7XxcuBFvPAG3e5mjRZOyQiMJL/im8awGxabpqk4xUPJKdY7yENJXtfdSTn6YZ0YhG08roVRmNR3XMfbcxgA1xrNpKzbYgBsNZ0ZepMxZMsEO93EoCAirbIvRkXe+UfkcbBhbsgV4Txq6wqEZeojcmblzU9ECMe2uOm+4iqqfKQQcxSECN4aDBUyfLHTzBA8IubDFTBqHyc1NyBSROqAlLJdTavGdssbX1jBEOxx1WyohdyoKZvqPdlSQ7hJUvMtuq8KtGX0gWOZIRlFdIgFtkk+JhEBvosOm9gqE96YFdyTzn8DzMPU0SykvoRsDvnrXg9ldHDmpfXMwd1pYK7cgLW6lmgg+dRXnyN9zIzWzgsc4j6e734a2JVqtbh4FwuLS/or4hbgt/ZBlZJcSMCP7tZweNK7FZs67ZZ0tftn57AePilIW7A+Qeo04QzDx3GnirX6hwABy+VS4JIFPZIlvRgwHv7pb3j6SR0AUKssZFQQhW8FSGQz+gpZAQ+lkon5cg2nZ35SHJK/xMeYXyxndYx4jv0veocXW3uwmo+xFLZIt6s/2UV9dniJ9kEbq+ZqpnxxvnJ1x5vnS66RI+C39mF5XRxv78KLDhkAr3uE9XtjZDsmRPROKe1Df9PaBzXWsBSWNTbXUbWe4qNlgpF2Pg+eP8bLly/xve8aoOV1qFE6B1d/+MsId4CKRLHXamNh9QEWFio4PzsNZMDHyuYhdrcq2N9jrGkYpJMa6WVmkH+CQwDzi2XtO9hZAqOL1yPG2eudoFZONiYzy2PPK1UUyzFwcG5gfWkZaxah/eU3oXPng7mU7VfY3Aa8Ou6d4/DFdhwYms8EDna3Qksj+C46qKLf74OZ0XWbqJTKEksiAWlySlAmsn1OeLAsFz579ALPD3bht/aBR7/Ah6xEppxdD0YSvalR3PvMs00C8s/AjbX4ZAfCBfddbO8dYnWlFpdF7lDSMCcb4qd3GKIEQGB1ZRXtThsUnqJYzJ7e+oNnGkSuWGBRp70HpysgmOHYFtbvGWiF6cmAWb4L2jzA7qf1WMRp7xwDMnAxZFwMgsYXg+D5P0PEkxaVAfI89gfvcMkLuBgwFudLOPlXD+5OA2xa+OGA8dXh16j9/JeJaxDPRvJ4MRgG+gaR5GBg/cpd3P/gDk56oX+WsgW+iz84vmSzDnzNxynT1Sd1bruDSmkBqj/e2PwVYG5gq/7juCwj/4o9N5F9/jFovgzAwHJ9C5WTbbge4XXnHGv1JY0/P/pqn2x+gi/TolhmDxt4sEwgwfjoiYUagM5rJ2iafpHudAX3L4UUxt//7WdSFNW/FHGE1b9Mvt/79r9DqU3Xbcbpkf5RksIJ+nhcRZX9UIYO/csBR+mpdJvo2bEtBsC/d7y4/B/OZ4zVx/HvqG3/UvCQB9fEjdPV6yBFwBGi1IySlinaPiEEO3ZTyo64Ow227C/Ytu0r++ahX4VjW7xhO0lB11HSRQovVKLoSJH+nf6L8PHqHZnsR604FfEX+xPpQ4Z/Xg60aaJvRxA2vQG6bpPxwR2GQcomGobE1tvNfH2udLp69eMSfa6uOP36+gwBPWdse6bXL6f05LyuzzXlw5ZriZkuSy/2qLa68uvInYYQInMaJ5Xjy75KZxEQPMkXOcV81qbCsR8Gm4LAG09fSXUNs5b53C1GAdN21NJsWMreIP8DOd42LT6ENPcAAAAASUVORK5CYII="
<image>如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,AB=9.8cm,那么线段MN的长等于() Choices: (A) 5.4cm (B) 6.4cm (C) 6.8cm (D) 7cm
6.4cm
11,019
null
6.4cm
"iVBORw0KGgoAAAANSUhEUgAAAKsAAABcCAIAAACeHdLvAAA9hklEQVR4nO19d3xVVfbvPvXWdEIIgYSEXkLvoChFxIJYQLqKguLYkBF5jo4+GWzYdRgLzk8RRQYEpUhHxQIIIr2TgJBebj11t/fHyj1eWgQ06Lz31ud+8jk599x99tnru1ffZwucc1SXxBEiBMkyohSJImKMU0plWRbFmgsCwUBKchJCKBwJJyYkChd8B/HXL7mEdKGjecHPe0E3EBBCiDFGKVUUBSFEKdU0LTExEb6PRCJCXSOAccQ58B4hhBzGm5aJMU7wJyDEbGyLoihLcigcSk5MqdP+1DX9CRFACJFl2TAMt9uNEBIEIRwOu1wul8tFKa1zBFBWw35BQIRQUUKSKHHEBSQgxAglpmm6XC5FlhBCjCNJkOu0P3VNdY6ACySMsaIojDGEkCiKFRUVqqomJCQEg8FoNJqdnV3nw40xVlWFEKKqsqJICCFMsCyLkWg0wZ+AMRZFpMgSocS2ba/Hj9DFwPy/nBhC4vn9vfCmGUMIEUJEUTx48KCmaYSQnj17FhQUfPnllw0bNqxzBCiqJAhIEDlCiFBy/Hjh119/nZ6eHggEvF53t27dcrKzEeI2tjwej41tl+Ku6y79yYghxGIHv/rXofNFjMvlMk3T7XZv3Lhx6dKlo0ePbt++vWmaXbt2PXnypKIodW5GiYKIEJJlGSFkmvrevXvnzJnz/fffJiUl2La9b//edRvWmbbpdXsZZ6ry360CLpwuiP0sDgcXcD1jLBqNrl69unnz5k2aNPF6vaIoIoSuuOKKgQMH1vmIE2pTSlVVRUjw+/wpKSmCwAcPHnxFvysIw5s3b37ttdcSE/3du3bXtEiiP5mjixDs7NcviZHwZ/QdLkjtXcDDIiRyxtxu97Jly06ePPn44497PJ5wOJyYmKjrenJyMroErpQsyQghzjnjDCFEKaWUdu7cGf5t1apVNBrdtWsXQyzRn6gZGkIEIYIQO7+/7AJH5P81YoIgMMY2bdqEEBIEgVKamJiIMfZ4PAgh0zQvwYQQORcEQRIFORgKbtiw4ZZbRvj9fl3XZVHx+/0pKSlffbWxtLQcIdHjcVFuc2QjhE07ghC2iYYQhg9HNkMWQ5ZzBiHMOAEwOcQRp4wihCzbggPK6GnXnIs45yxGvFYihICRddpvz7wXRzXoZ5wRSjDBhBK4jMdmv03s0w6AGGKmbcIxphgeCpqKv4thGvCkDmm65vzVdb28vHzUqFGCUOP6SZIkCAIc1LkWKK8or59ev+Z5GDp8+PDll1/OueD3JVKGy0rLOeetW7Vp2KBhVNNkRVIUwcKWW3G7VdUimiIrCBGLWGBJCEgQkMARRghxRBASBUFFSKCMMsYEQRBFURRESZQoo4qigBUiiZLDA0k4BfQwIpxzUI2CIMDQOF+di6A/zpXOxZIondI+4jVAEWquhB9ijBljoohCocCx44WCIKSlpZWWllJKU1NTjx49Sin1+/1+v9+yrIqKimg0Ct1DXJAkCWOckJDAOY9EIuDlAyI9Hs/+/ftTUlJatmzZrl27RlnZAhJcLlfLli2PHj165ZVXyrIMt5YkSZIkRal7ywvYTwizbXvZ0hUnTxa3b99REhU4WVpaXnC08B8zng1HIqrqdqvK/iN7q6rLq6urU1JSysrKFEUpKSmprq5OTU0F9hBCLMuybZtSiriQmFCPc0QIMQxD0zTLsiilKGYDq6qqqqppmoQQhBC1qalboiiCbISxANxgjE8TAA53z/pcqqrC9fBzVVUVRZEkKRyNwBlJkmRZlmVZkiRRFAOBgGVZkiT5/X5FUSzL4pyrqswEduLECYRQWlpaeXm5aZoAhYYNGxqGgTE2TROCOYqiRKNRVXULgqBpGjQSDocTEhJUVa2urhZFMS0tTdM0VVVTUlJuvfXWW28ZnpKUGggE3G73999/f8MNNzRq1Igx5nK5Tpw44ff7ExMT6xwBhoElSSKEeL3uxYs/S6+X0bNHb/jKsvDq1WtzcnI5FxITkhESZ/zjyfc+mJOd3dA0TV3XdV33eDyWZfn9fkEQYDQppaZp2rbNORcEyTKp1+tLSEiAuEcNMhACsPt8Pp/PB7MQuoGwIMuyKIrOxcAqR+zHsx/BtDsbSZIEl4miKMsyQE2WZYa4IAggZqHPqqpKkpSWlmYYhizLycnJqqpaloUQ8nq9hm20b9+ecyEhwacoruPHCy0L9+3r9/kSMjLS/f5ESRLcbi8hdjgctW0bY3zs2LHNm34oryhFXExLU1yqRzeizZu1rKwqLy+rbNY8LxgIHz58OKth48Sk1NLS0gYNGtx7771FRUXr1q3r0aNHSkqKoiiEELDJ6hwBHo+CEFJVNRzWDx063Lt3L0IY50JFRdV7771bWVE9c+azzZo2C0fChw8d/fDD+dGIsWf3IUppt27d7rzzzqqqqvLy8rZt27rdblVVXS6XKIqUUkeOlZaWJSUlpaWlJSQkyLLsCGTTNCmlCQkJSUlJoigqigKzVuaKoijAV5CcAIjf63l5zV/waU5Bj41tzrlLdSGECCUIIVmSw1rU7/PamIgSkkVVN6OIi16P2zAtj9sVjkQpwylJaRzRLVu2Goah63pVZaCg4JimRVTVjbHl8TCE+KFDR2RZTEpKIZhZFm7dqm2rVm0s22rQoIGmaT6f79lnnz169OjOnTsbNGjQo0cPEEWiKNY5AhhDkbAZDofnf/JRcnIyQsKyZcsVRa6oqGjbNv/hhwdrWgQh5PMmfPPNN4yil196/cjRQytXrgyFom3a5Oe3zYd2TNuUZVkWZYQQQ6xG/AoiobYiKb/cDjEnAmpZlqqqknCKYkb8l2kdr8udqQ/fOgbBaebeL83EXYziTAEpZq8ghOKNNVEQVUV1/pVjFpjf54fewqN53X4UM55sbP/0008FBQWyLG/dunX9+vWEkGAwnJaW1qlTp0GDBoXD4SVLlhw/fhzmxqBBg6666qoPP/zQtsntt0/IzW3CGLcJ9vl8AILGjRvn5OS4XK5AIJCSUpN/qfO8gG0jzlFVVXDPnl0ej8fn81FKdSOal5fXqFEGimUOT54s7dOnz7XXXvvM888lJHhXrV73yCOPJCQk/OUvf7nmmmtSkhNOa5YjxBjiiMkig4nHEeeIi2fzbxlijDNZkBFCIhIFXmP0ndJgbBzOJfZPb5OxeLMx7l5nmf0IIUwwqAbGmGMtEkpESeYIYUoVSSKMhcPhEydObNq06cCBA8FgsKSkpKysLBwOe73ePn36DB48OLdJU7AEQ6HQ2rVrv/jiC7/f36pVqzFjxvTu3ZsxNnr0aJ/PN2PGjLzcbAEhAXERCZxzQRBM0xQEweVyIYQwxtCHupcBnLlUsX795EGDLo9qls/nohTB3LMs6nJJkoQQQrNnvymK4jXXXJOY4GUcXX7ZZcuWLp05c+YTjz++bu3a5557rkFGPY4Q50gQkICQUJNmFBFCHAEIBBEJCAkCQhwh3dB005BFSXGpjFBZVRRVAd6AUwSDAowHnQIddmazIwzO+lyO4oh3BBBCXGCCUNPBmjOo5l7gmIiCxBgSRYQxDUWjES2qKMqCBQs2bNgA9kE4HBZFMSUlJRAIdO/efdiwYVlZWYmJiRDGSfB6jxYUfvjh4tWrV1ZVBdq3bzd+/O09e3ZPTk5VFPF//mfuiZ+PPfzwX5vmZls2FQTuVmR4Ctu2wWuAIDHYp+gSyIBfJUr5jh07brtt3ODBQ2bOnMkRcrtV07TdbtUwrCeffHLBggXdu3d/4okn2rdvRwiTZdEwLI/HhRCijAqACM4M2/K5PBRxCQk2I/v37B09bux9k++9+57Jj057JKxFX3nxJVmWXb+I4lOlBYdENpckYDlDCIGxiWIJVrgQYyxJEhgQCCFKqWVZbrdbFEVCbMKworqc9jniAqpJe4oCsm1eWFhoWZgQsnnz5hUrlpVXlYbDQcZY8+bNGzZsGAgEmjRpMnr06NatW7tcLhGJlFNKqSqrmOKyktJ5c+cuWrTI70vs1btHs6YtRo4a4XH7FEWilNvYHDF8ZKvWLWa9MMvGtiKrwpmy6Az6w+LwlmWBOCLEXrToP1VVVT17dne7VUKIgJCqSLZleT2uGU8/lZyUMG/evIenPHjXXXeNGjUKY8wZEZALIUQxQaIgyzJjyKN6EBJFxCljqqi63V5s4nr16uua/sgjj/bp02f+/AV3TrgDIXR6ti02BUQBMSRQSgVBEAQuCFwQAASCJEmGYYBN4PP5EEKiKGqaJkmS2+32er0gCSRZlpDIELcJxhj7PAkCEsrKy7Zv304ISkpKKistX7VqzZdffh0MBhMTE/1+b7eenZo0yc7Ly2vfvn37du2hJxDUEpFYFahyuVx+r7+opGj16tXvvTuHETJ40FWdOnW6+uqrvV6vqqowmJTSNWvWVFdV9LvsLkYpI1SQOcEECkNqoT8MAS6XC2pXvv3229WrVw8ePHjQoEEIIcYYTDjLskBeTZs2rW/fvm+88cbUqVOPHDly8803t2nTxjTNmqgIQowzWZLB/IZonaRKhYWFXq+3SZMmfp+/uLi4QYMGTmHMWQkksygizkVCCGNEEDnEl8BFhDAq9NAwDPAz4UwkEvF6vZIkmbaJEFNU1TCMH3/8cdeuPaWlpVWVgcrKysLCE5TS5KSUDh06zJw5o0WLForiMgytW/eOooAQQja2DUOHQIIoioooI4TqpaQdOHjg008/XbVqlaZp48ePz8rMvP7a6wB5CCGMMaXU7XYXFRXNnz+/TZs2l19+uSRJqqo6Oq52+oNzcZqmvfPOO4SQRx55JDk5GXJIuq6Louj1euHxFEXp169fixYt3nnnnU8++eSTTz6ZPXt2v379KKUYYzmGcYjwuFwuVVUxwQcPHuzZs2dOTk7hscJZs2Z17tx5wIABtfSEUo6QIEpIEARFURCSYhkHESEkiiLnHEI6iqJ4vV5UoyME27ZBSFRUVHzz3cavvtpQHQoEAkFN0ywLM8Y8bp/fn/jSSy/5/f766Rn169d3u1VCajBHKTWxpaqqqqiqojLOREEklBimUVZWNnv27D179lBK09LSpkyZcu2113prVAwyDAPCUJqmud3uLVu2FBQUvPzyy0lJSSgWrvhVAYD+QDsA5vfy5ctvu+22UaNGvfnmm6AXYFgRQhCrQQhB8MTlcmGM33333Tlz5hiG8eSTT44cORIhBPIWoi6OmV1ZVXn11VenpKRcf/310Wi0c+fOnTt3rp9eP6qFE3z+uGqLU7QAQogyzjkVBIFzyjihlLpdfoyxGCOEECGkoKBAFEXbtnVd37lz5/Lly/fv3y8IgqSIubk5mNHU1HodOnTo1q1bXl5eWmq6x+MVap6aMsY8HuVM+xITzDlXFZUjfvLkyTfffPPQoUOWZaWmpk6YMKH/lf1D4VBSYhK1bcMwgM22bYMWKCkpmTp1ar169WbNmgVhEoj2gJ6tnf4wGeB2u8vLy99666169erddtttKJY2ZIwpigLmFQQEVVUVRdEwDJfLde+991599dV33nnntGnTjhw5Mm7cuOycHEVWGGc1Rj7iAhKCwWAkEnnyySevv+766kB1akoqQggT7Ha7a88liqIg1JSpCQiJSEEQGmCMVVVVFRYWlpeXHzx48Pvvv4epCaZAq1athg4dmpmZiURh6NDrMhpmeFw+p0mEkI0JIczrUd1uCSHJtms0DmNIlpFlW7ZtJ/gTOOI7du74/PPPv/vuu1AodN111/Xs2XPQwEEIoXAk7PV6RYQkVVVVFYwVjDHEPZcsWVJYWPjII49A3sERh+fDiD9SC6xYsWLTpk0PPfRQly5dEEJerxdAbRgG/AsaDkwwJ3KXkZHx4Ycfvv322//+97+3bds29ZGHe/bsKUsyQowQW5ZljtCGDeuaNcvr3bsnQiw1JbmquiI1NRVKEc+FgEjEcLvdiioghDjnhqFbtkEpnf/xQlEUCSFbt25dvXq1ZVnp6emWZbVv375fv34ZGRmCIHTq1Kl9+/YIoYgWFUWkutwIIcKIKMgIMVEQRVH0emqGmiMkyzUVs6KIiE08qsujug4eOrhkyZKFCxcyxi6//PKxY8e2atUqwZ9g2VY0Gk1LTYOfQ92fbdsQXLFtOxQKrVy5sm/fvu3atQOJTghxrJZfpT8MAYFAYOnSpUlJSSNGjNB13eVyQeDWtm1FUSC+C3XNHo+HMSaK4smTJxs1aqQoSqNGjWbMmJGbm/vMM888+uijr7zySpcuXSRRAp87GAp+9NFH+fn5ycnJlFFCiDN8jDPpHO6RqqqKIkDHtm/f/sMPm/cf2FtZWXnyRGlVVRVkdLp163bDDTd07949Go16vd5OnTqBLgBRrGma3+dHiBHEMMWyJAtItGxLkhRZAknARFGUJSSIiDHEOZIkJIri4SOH58+fv3btWlmWe/XqNWDAgGuuucaluiijNrZdqsuV6iKUyJJMKFEUxTAMh8Gapn333XeVlZU33HBDMBhMT08nhDiaHeBSOyMuBQJCoRDoLYhNwsmffvrp4MGDkyZNatGiBZyB7sJoIoQEQXCsd8gFNGrUCMWFYoYOHdq2bdu/Tps6bty4a6655oknnvD7/Yyzr7/+mlIajUZ37tzZuVNnSa0J9QAaJFWxsS1LqiAIum5YlmUadllZ2fr163ft2nXi5HG3W1VVNRQKmJauqurEiRObNWvWtGnT5ORkl8vl9XoVRXGMFYSQ02Gfz8cRYhwJgqRAXQxCasxwC4UjSYkJCKFgKJqU5BdFFAxFCwsLZ7/xenlFKULoyiuvvOqqqzp27AhhU4SQJEpO9BCiyPDXCVQbhpGQkDB37twePXr07du35kpZdkIX52MJXoK8AHPMFrDsQqGQ3+//+OOPs7Ky2rRpIwgC2IC1dzc+XQsMqFevntfrff3111977bW5c+fu2bPnrbfeaprXdMiQIUOGDHGC8LAwQZIkr8crqVJVdUVBQYGumbqub9iw8fPPP4+EtZycHIyxIAjp9dM6dMjv3r17fn7b3LwcWZI1zYIIGjwL4C8+hngaiYLIEGKcUUoVueaJDNNKSkwIR6IIiclJfoTQ95t+WLBgwVdfbaDYGjRo0M0339y5c2fIEaC4rMFZxwEGStd1r9e7aNGiY8eO3XvvvefPkdPoEuQFaoQkGP8IoWg0umXLlgkTJtx7772TJ09OTEx0vnLCRGeS4xqAlJNlGWYhR6yo+MSiRYteffXVvLy8Bx98cOj1Qw3T8Lg9gWDA6/W6VFcgGKiqqjpx4sTu3bu/2bixoKCg4OgxURRzc5tnZ2c3ysrOysrq2LFjVlZWw6wGXq9blqGwnYUj4cSEVLg7IBieJV4GxBNHyLIwFwUoeWUcQUhfVWTI9RHKtm/f/v333y9durS8vLxbt27XXXN1ty5dc3NzUaxsBAy9+KzV6XfhHKaNYRiTJk1SVXXevHkXzaC6rxaPLVYCHkciEUEQXn75ZbfbPWjQIJDz5yOsnDkHrg544YoiIUFIS0ubMGFC69atH3zwwUcffbSkpOTuSXfrhr506dI9e/YEg8GioqLy8vJgMGiapt/nGz9+fO9efSmlqurNyspqlJXtckmaZvl8LmeRDdwLagsgtALVCXAe/M+z9tPlUihCmFBFlkQB+Xw+sEA9bteiTxevXbv2+PHjnPMePXr079+/YcOG7du0hh9aluWkbWpHAELItm2Xy7V48eLi4uLnn3/+V0evFroU8QDHx0MIGYaxePHiiRMnTpo0acaMGS6XixACUVX0a3k5SimU98SdYxwhWHemKmpxSfGsWbMWLFjQsWNHSZIOHjzIOU9LS2vatGnz5s2bN2/ep08fSRSzsrIkUSGEyLLKGDINWxAEt1thDBGKEWKMMVkWZUUUkMCYeGb1wLksLI5QNKp7/V4USwQghKqqAzt27Fi0aNGJEyeOHTvWu3fvhx9+uGnTppoWSU5KZjXlYuL5TAOEEOecUso5DwaDd911V25u7quvvhqNRv1+//n8/Owt1jVBIQY4daFQqHPnzl26dPnpp5845xhjwzDgqUC8n09TcMwYY4wYVpRxrBnhn08WMo7//f67zVvmCRJKTk34+1N/C4aronooGK5iHNvEYBxbtmZj3TR1xmpuRwnnLPaJEaWYMosyS9d127ahdIzG6FzdgzZ0m4Y006LcwOyrbzfd99CUDl26Nm/d5r6Hpuzef4BwjjnXLJtw7jwwjhGs6allBODxKaXvv/9+//79v/32218taq2d6lwLcM6dgiqM8bJlywoKCmbOnNmxY0cUZ7hyziHyWrsYANccxLIoipxTl+qqClSmpaQ1yspa+Ol/XnxpVv2M9Ouuv3bFihWWbbo9LlVWDctAiIuSYNqGR/UghJAs2raNse3zeUSxJk+NELJtQilGCEmSoKoyJjjesYZq69p7iDFXFFFVXEcLjn/wwQeLFi1SFKlr164jR44cOHCAgFA4ElUUyeP2QPAKBIAj8+HAMTnPJDBCT548+d133w0bNqxr166maZ6/938W+i3wOR+Cwk7OOSjv/v37d+vW7fDhw5zzUCgE10Bqi8cAflY66+RgjDCOMTMC4YoPP/6flm2aPjJ9SmWglHH76Zl/b9K00ZS/3l9eVUy4aVM9FK1iHDNuY2xxTjnnpmkSwjjnhDBsn9Y25ZzatgndhorC83lexvmuffuf+t8zO3Tp2rZdx/unPLx+w1c/F5dgwnQbE8pB4pgEE0YtbMPg8JgYgGNd18/VPojM+fPnDx06tLi4GEYMTl4c1TkCGCMwmpzTJUs+zchIf+mll5zHPgfRs35MU3eOGSOGoXFOCTUJNf8x86nG2ZmPTJtSWVXKOeYc60b4mWef9niVt9/5JyZGJBqA8xjX3JoQAuWmcFxLbzDGp3XYtm3TNOE4Go0C50Kh0JdffvnAAw/07tunU6cuj/6v6Tt37jZtixBCGOUxJRP/t3aCZh2940AwEAhcf/31f/vb3zjn0I3fogjqGgGUc6obYc4pIfagQQPat2939OjRs484O+VXp31s24QDTYtEIiE4xtiybG3aow9n5zS87/57gqFKzrGmhzAxOMeRaOCfs19LTUt89rkZnOPKqlJdj3LONU3TdR3GlxBSy4TjMTZwzimloVDIAQ3nPBwOh8NhOF63bt0dd9zRqlWr/Pz8u+++e/Xq1fAVZLEvbuxglCBdDlYInF++fPlVV121ceNGp/O/NqNqo0uBAM6xbZtLlnyamZnx+uuv8nNhtlYEgOjG2AIoEGKXlhbbtnnPPZPq16/30EMP2LbJGHHAwTmlFDNGpk6d0qdPr7femh07zznnhmHYth2NRn+VQxjjQCDgjD703DFILcvauHHjXXfd1aJFi969e0+ZMmXLli2lpaWnj8L5aZBTBiOO5fEKoqKiYuzYsVOmTIFyb+B9PC4vlOocAYTYnOPS0uKbb75x4MD+mhZx5OfpVCsCGCO6Ho1Hw+7dO8eNG5OVlfncc88UF5/8RSpYBufUsgxQQIahzZr1fFJSwvTp0zg/fR7X3K9WDjkSKxwOa5rGY4Lhs88+u/HGG7Ozs1u0aDFhwoQ1a9bEyzZd16PRKBxfnBiIRwC0jDFetGhR165dv/vuOx7nF/yptQAhNmXW6tUrW7VqMWvW884sPAvVigDgbjQaphRzTteuXT18+M2ZmRlz574PyAiFAnBZJBJyjA9CbM5pWVnJ1KlT8vKaLFgwn3POGNN13VGutbPfURaOtfXzzz+//PLLt99+e7NmzerVqzd+/Pj169cHAgFgQygU0nU9Hgq/hT3QjtPDwsLC8ePHT5kyBWQYNH7OGXV+VOcIoBRjYtx66/C8vCYnThyPRELnvPbXEECITSmmFK9evbJz5475+W2XLv0MpjtcEAxW63rUYT8ggzECZx57bHrXrp23bdsGTLUsq6Sk5Fc1qCPwbds+fvz422+/PWTIkKysrPT09HHjxm3YsMFhcLxCIYQ4zLsIFeAQdM/ROPPnz+/fv/+BAwcc2+VMK/VCqc4RYFnG2nUrs7MbTZx4Z0xKn6PHtSKAEBs4unz50k6dOtx007B9+/Y4EkXX9WAwyDmnlMLogLiG1WdwsG7dur59+7Zt2/rjj+ed5lyAXDnHh3POjx8/vnDhwjFjxvh8vszMzAceeGDTpk1VVVWcc8MwHGnPOQ8Ggw4OwNQ4f0/ylMFgjMeZ+oyxgoKCO+6447HHHuMx9w+atSzrT60FIpHQTTcP7dKl0969u6uqKi5aC4Duf++9d/PymowcOeLnn48BvJzZ4ChFB2HOAZRzcc7XrFnTpEn2HXfctmHDOkdlxBuPZ36Ki4u//PLLW2+9NTU1tXPnzg8++OCSJUuA5bCKz7mXbduO8IcogvM85xPuPH3gaE3EAh7NsqzNmzd37Njx22+/BXDruu4IpwttPJ4uGAG12B3QFYwxOELBYJBzumnTd4oqvPbaK9XVlRhblNZI4LP8nnFew0iqaRGw+aPRGk8SY+s///kkO7vRkCGDgf0xxX9h9MMPm4cOva5165Zff/0l5zQcDnJObdskxAajAf6CIfnFF8tHjhwJL195+OGHd+zYARP6Ijh6oeQMshMtnjRp0rRp05xaut/rRheMgDPvHR8zhzPOQXHxycGDB3Xs1G737p1xtnptWsC2bbgyEKjStIij5l988YW0tJRRo249frwQLrAswzC0C+0/53T9+rU9enTr3bvnpk3fgbMQrwuCwWqMrZ07fxo69LqGDRvk5uZOnz79wIED8GPHLK9rYoxVVlY6/77zzju33HLLvn37/ngExBMEKzDG8QIwXoG99967SUkJzzz7NKU4loyhIMTO1pzTph0MVsdz5bnnnmnQoP7QodcdOnQARDfMVE2LXGifKcU21t//YE7TZjk33nT94SP7OceUWTbWOceBYMXXG9ff/8DknCZZLVs1ffjhh3bt2uVYEk7853dkQC3kKPtwODxhwoRnnnmGx0zLPxECQCRCaYPTObCET5w4MXBg/+7du+7avZ1SHAoFwJSDdd1na85ploBktiwjGKx+883X3W719tvHFxYeBUzA+Zj5dmFkmjqEh197/aWMBmnXDx1y+Mh+xu3DR/avXrNi+IgbW7dp7vWpY8eNPHhor43PEi5kjFVXV1/ofS+OdF23LGvZsmXDhw/fu3cvi6Pf6xYXowVOu71zxjF6QR68++67Pp9n6tQp4UjNhDYMDeNzG64xLQAuH+d0164dd901oWfP7lOnTikqOhGb9NRRDU6Q/0KI6kYYIscLF81v36HN2HEj337nn/0HXN6seZMh1wz6+5OPLV7yH0CJYUYcv45zruu6k826BASStbq6+qabbrrnnntAFP2+7Oe/CwJ4nMPqnCkpKbnllltatmz+ww+bGbcdBNi2yc9lGzMea4SGQoGKirI777wjNzdn3ry58e6ArkeB/bZ9cSF3amOdUJNzXFVd1rtP9/T6Kalpibl5jf/+5GM7d/0I6sC0opBlgDKCeKFlmiZ4nnVNoEkXLFjQqlWrL7/8kl+UT/Gr9JssQZD8YKw6ygmWK8yePbtdu3avvvoy55RzHImEIKQPvsDZw1ixhjG2jh0ruPfee7KzGy1Z8qkT2wH3nTFCKcbYqqgo++WH5/nhnHGbc5tze9nyxWPH3ZrVqP6AgZe3bJXXo2fnvft28Ni38DlxspCQGl8r3ve7ZFRYWDh27NgHHnjA6cOZ1/xGqXDxdgDoe8iTOkFKznkwWF1VVXXttUNychrHHDYcS8nTX9XclmXt2LG9c+eObdu2fuedtxxpD8YB/OuE+S5CHzNur1y1dMY//t4wK715iyb3TL7zw3n/fmTaQzlNGo4eM7yo+BjnNqFGOFLFuc05htuB4cnBDLkkODBNkzH2/vvvDxw4cO/evZSe82H/GAQ4s9+yLNN0iq6obZuEmps3f5+c4v/n7NdgBGuP8XFOIeIBwqOoqKhVq1a5ubkbNmwAA5PXKv0YY/HZeojMcM4duz0cDgPPwuHwF18sHz1mRNNm2Q2z0u+ZfOf3m76ORKsx0Rm3Zr34TPsOrWe9+IxlRzm3Gbcw0WMgwJgYmBiUYts2nTz1RdihZyUn6wO6xhGoJSUlgwcPfuKJJ/hvy//WTr9UienUgAOv9OslR1ApBXWbUGoqCEIkEklI8DHO3np7dpMmTYYMuVo3NK/n9BfAOLVJHo+nqqrK5/O53W5KsSDwffv2jR49NjMz87bbbrvssstkWYY3wtXypidKsaLIjAmGoTnV3JTihASfaeqGYcALc3bu/Olf//rXkiVL6qWn3njjjcOHD2/fvr3b5UYIUUZN04S3Vi1cuDAjI+Omm25yuVyyJDPOoGBLEARYvCGKEkKiU97+O5JTS+e87nHHjh2SJF1zzTUIIUIIvBbvd7/vKTJAI7XVSpybaua0bZuc4w1frslpkvX8CzNjc+jsMsC2zXA4GF9B9MUXy3v16tGtW7dFixbxmOMLWfBa7g1BQ6dNQmzQEU5a6IcfNk+Z8mDnzh27d+86atStO3Zui2pBsPMj0QDjNufYsjXO8f4Du+/9y6RevbstXDQfThJqYqJjokPMAC7jceUqFzVcp5Mj4eIftqioaOzYsX/9619hEEDI/cYA8Fnpd0NAbFDw2HEjO3XOLyo+HgxV1IIAx7ULhQKGoX3++ZK2bVtfd901e/fuhUYhp3I+d2eMWJYBpoYT2aUUr1r1xfjxY5s3b9q6dcsJE25fuvSzyspy8ALiP4Sa4Ug1wKKismTYjdd16dph/YbVwO+YOsCUWVEtiIlx6lP8DuQw3gk4GobxwQcfdO3adcuWLbzWSPxvp7MjQCM6fE47dv499VdR+Oh6dM3aL3KaZD0ybYpGwgGjolovPzvvSVQj0SiOANs++OB/Mps06Dugz/c/fsdjGU+4SxRrUazZtn0udAYCVTyW6IMogmnqu3fvfOqpv/fq1SMjI3348JvXrFnlhH6B5ZatgWqPTWtMmQXy4MftW/pe1rNN2xZfrFzKuI2JrhshcBGdSsM4w/Z3IDBleMwCoJTu27dv/PjxUAkImHDEwO9O55QBZz3WiA6WZxRrcV/9wtfRY0Y0bZazY/+PmBiMW4xbGomeyX44qNaqOKeffbY4pUHyZZf12bVrh2nqGtGDwWDEjmpEj2INY6wRPWJH+TlF1C91QZzTY8cKHn/8sdzcHL/fO2bMqPXr1zpfgbQALrKYicc5trEeClc5YQDO8ZYfvuvarWPrNs1/3L4F3EInbMw5Nk3999UCPOYegzAIhUJz5swZMGDA0aNHHb/DNM3fmAU+F/06Ak47eaZIcKbgj3u2tWnb4uGpD2gkzDkGO6AWBFRWln/yycdNmmR36tlxy5ZNsW9rIl8ROwpBsbP2xCFQ/JzToqITr732Sr9+l7Vs2bxXrx7//OcbBw7sA3w4WQYntOAcO7x0pjVcsH792vbt2015+P4dO7eCRxCOVMMakviS5d/OgPg0CuecEHLgwIGRI0dOnz6dcx6JRHis3qSOvNDa7ABHC5zrAh6HANs2H5z2YLv8Vvv27yquPsE55tw2rUgtCJg9+01ZFocOvW73oV0gpU1TDxohzrlt22GrJutTEa4ENXkuGXD48MHnn3+2R49u2dmNhg0bunDhgkCgCixTp/TDMDQnigCZBac/GFtxeSbKY3nnHTu2t2nbYvSYEbt2/+iIB85xPIZ+6/DHhHz8qoHvv/++TZs2O3bsAFhYlgXXxNeh/I5Ug4AzmX3WkxrRoVthKwLwrIpWQ7jm+PFCf5r/xZeeqw6UayRsmBHKTM7tsPVL/QXk4AEBGzasy2zSoEOH/N27d0ZxJBIJAbc0osfzG2MMmHDOONZyNBo9evTo6tUrR4y4JTU1+fLL+86d+35paXEttmctHwccjlQoKjqxbv2qFi3zrrt+8LYfNzsWQyw6dBYEXITX7uQdCCGQNf3rX/86bty4QCDg1IBA9KWOjMFfEHDWGXbWSV8RruScW1ZNpr8yUqGR6N0PTGraNHf1mhUwTBoJh+3qKq0c+IqxFbFr3LayspJVX67Ma507YcLt3333jW2bpqmDbVgZqeAxrkOXbNuGYzAGNaI7FTIff/zx1VdfnZPTePjwm99++1/btv0A5R48VldyQR9HWsQHfCory196+fkWLXN79+leVHycc3z856MOminF8Jbz3yifTdN0tMDatWv79eu3cuVKZ0UDUJ0j4Fx0VlhA5YLjqmlaZN26NY0bZ91//18gm2KYEfCjbKzxWCjXsgyo/Fm06D/NmuXddNOwH37Y7KheJ/IKzcJLmkDMADljVF5e/u677w4ePLhNmzbdunV75ZWXnPITR7b/at3fmeSIlvjFqZzTgsJDy5YvbtS4wbjxo0rLTkI8ALpKKXZK05zw5YWSU4vMOQ+Hw/fdd98999wTCoVOa+2PQcC5HDAIWQOrbNs2DG3s2NFNmmSvW7cGBEB1oJxxG7QAjA+o+Ugk9MAD97Vo0Wzs2NFgncUx3oxNXFjOVxMkiUQi4XAY2BMKhZYsWTJkyBBZlrOzs2fMmHHkyBGHtaapa1rkVBF9AQiIp7iyFxsySXffc2dyiv8fM58yzEg4HIxD2C8/gSXG5zfsv1B8efGCBQsGDhx48ODBM5cxXaJ4gEOnGfzx5GSpKa2p9di27Yf8/LYjRtxSXHwSlmvFVu6FGLcoxcDaUCjw+OOPtWjR7MEH7wdTC2pA4tkDKzU555ZlRaNRZ16Wl5d/+OGHw4cPT0hIaNSo0eOPP3706FFe4yXrTr7YEQAXIQN4XGQ+jijnuLTsxIGDeyZOuqNBZr0nn/qbcxeMrfgo3kVPU6g5KCsrGz58+MSJE3ncerG6KAk5jS44M+QYqDxWkT1hwu316qWuWLGMc2qYESfoFolWc17jqhUWHh0x4pasrMw5c95xDC5Ni4BsAEMdREJ8DRnGuKKiYtGiRRMnTvT5fPn5+Y8//jiU7EEhNufcYS2YmSBULg4BkJo6dYEYZdxm3OIc79q9/eZbbshrmr148aI4wNXkSOEnF5G/dyqm5s6d27Zt22+++QaKw4DrgLA6LUq7mNygYRhOL7ds2ZKRkT5wYH8YFEJNcJohos65TYh97FjBqFG3Zmc3evfdt51Vf/H2lGFocfOYO2bwN998M2bMmNzc3ObNm7/00kubN2+GNHS8kHTCwODcQ4OOX3cRWgDkP4RfYMkb53YkGqDM+vlEwcBBVzRs2ODjj+dVV1c6rTmvmLgIkxByvsXFxTfeeOPEiRMZY9Fo1HEB6nT2A11MhYjjvUSj0TFjxmRkpK9YsSyWIK6JtFNmQbitsrJ84MD+zZs3XbToPzwu9gJMAlkapwJqRnDr1q2TJk3KzMxs2bLlE088sWXLltMW3zjiFwpGTlMBtVoDZycwbs44TTnHoXAVPAsh9smTP3fp0ik7u9GXX64vKSmCixyX/eJqeGzbXrx4cYcOHbZt2wbG77m4/luWH52LLhgBNrEYp4xTysnX33zVoGFGn8t6R7Qw4zQUCcJX1cEqyomFzSMFh3v27N6yZXNYpuMIT0dQE2I781XTItXVlStWrBgxYkRiYmJ+fv6sWbMOHDhQFwmx8ydCbKfbIPm2b9/ev3//zMzMhQsX8phC/FWfEL51ZD7wGNZWlJeX9+nTZ8KECc4OWpeyGOnC7QDbYJwals44nf7Yo+kZ9f719uyoHtGMKOMUoACfLVs3X9avb15ek+XLl8Ls1LSIE3hhjDjh1UCgqqysZNmyz2+88Qa/39+7d++nn3568+bNzoSoo6TIeRL4h85KGM75xo0bhw0blpubu2bNGh73yo9aZAB85aDZ2dyOcz5nzpzBgwdv2LABvqr9fQa/O124FuAUEPDDti1ZjRte1q9vVaASRAKIh6geMW3j2++/ufyKyxo2ygT2a1rEyd464RrAQTQaXr16JRgKjRo1fOaZZ7766qvTWH7pC/TOevf4UMHGjRuHDBnSq1evFStWcM5DoVC8E3smOflf+NeJHlZUVPTv3//+++93Hvmc6ynqhi4GAcDpBx66PzE5Ye68D5xJb9qGhU3G6ceffJTbtEnP3j3mzvvAEfJg7oElCME7J4XfunXLZs3yJk+++6effnRupOu6ExH6Le/J+e0Un5WBBVyAgyNHjnTo0GHAgAHOmVoovtzNKTZkjH300UcDBw7csGEDNALOyKVUfBeMAJD/h48eymuWO3rsKMKwYemY2sFwAHCwYOEnbfPb9L28z8Zvv8bU5pwWFZ2Iz6aAw7Zy5Yobb7whPT2tY8f2jz02ff/+vTAy0Wg0Go2CbRUfFa+DZ7+QpzYMJzkbv6J75cqVnTt3HjFixKZNm/h5TF/npQXQwsmTJ++6665///vfPJYGPC1VeAnoghFAGGac/u2Jx7x+z0fz5zFOCcOUEzAA5877ICc3e8Cg/vsO7IUrHd/PNHWQ/x9/PG/8+LEZGektWzZ/6KEHnJiuU48LBIx3zOw/iuLztnAAC2McMf7OO+9kZWVdccUV+/fvr6WdeNcO/obD4UWLFg0YMODEiRPOBfz0sHSd08VogR+2bWnfMf+6odceOnJQNzWY+mUVpc/Pei4hyT9m3OhjPxeWV5ZF9QiLC9cEAlVr166+7bZxWVmZmZkZU6Y8uGvXDkJsJxzkvOQtXuqCYPwDQXDatIaShfguGYYxZ86cDh06vPzyy7W0E89XkAF79uyZNGnS5MmT4Q3BcB4irXXyJOegi9ECM2Y+3SQvZ+nyzxmnmNrgB973wF8kRbxu6LX7D+5zLAObWJzTaDS8fPnSu++emJmZkZPT+Omnn1q8eFG8c+i88ycYrCmJ/zNIfoec987Fl6VzzuFVNBAOmjZtWv369V955ZVzNRKfNQD0rFu3rlu3bsuXL4eT8LxOqK2uHuYMOicCnGfmvCZTB+fXrl/Tq0/P8bePA8VPOdGM6LPPP1OvftrY8WMqqysYp7qpYWrbxCIM//jj1smT7/Z4XH6/9/77/7Jnzy7GyKkLSC44c/MnpOLi4hkzZqSkpLz//vsQ54/HSnwCkHMejUYLCwsHDRo0cOBAWBt6Gtz/FAgghEQikXgcQBr77XffcntdCz/9D8zykrLiyX+5R5DQhLvuqA5WOZ5CRAsfOnLw/gfva9OmVb16qb169Xj//X9XVVXYtlkr+/9rEHBm0H7nzp0vvPBCXl7eBx984CwsBBzAu21qimvCYc75Rx991K9fv1WrVkEU6DSW/ykQwGPWKefcMAzo97FjxwZeNaB+g/SikpOM08LjBTNmPp2Z1eD2CbeVlBU7PuHBwweeevrJzKwGXr+nc+eO7733LiwNcHgfV7n734oAzrmzVN45U1paOnbs2I4dO37++efO+ZKSEh6nBcCQvOWWWyALcAlyP7XT+doBgIbZs2enZ9R78n//nXJi2sbkv9yTkVn/muuGQKCQMLzhq/Wvvv5Kn8t6u72utvltXnvj1aNHD4OR77wHlnNa66t7/mvIce2ct4hRSktKSmDvrJUrV/K4l4bz2OuAOOdLlizp2bPnV199FR/pujR5oDPpnAiA2GR8tvTQoUM9evTI79AuFAn+fPL4o/9rWn6Hdq+/+RpYghEtfO99k5vk5UiK2LN3j3Ub1m7f8SP4AuFwsKKizIkDnrru7r8VAfEOYfwrijnnJ06cGD9+/IgRI1avXg2WXSQSAZsRYxwMBm+55RbYGS6++PNPhwAet1YBtNrjjz+empr65uw3ikpO3v/gfdlNGs+d9wGm9r4De++cOKFho8zOXTsNufbqH7ZtwdSGBEFpeYnzokcICZim/n+HHcDjgvxOxRSw0DAMQsjkyZN79uy5evXqYDDouDaU0jlz5vTu3Xv79u1/EmfnnAg4cuTIzp07OdRtBoOFhYVdunRp2bLlmnWr75p0Z736aXdNunPb9q0PTnlAUsT6DdJvvHnYJ/+ZDzEAwjBYhSzG+HA46FQGxC/w+K9GwGkxIn5qrfCRI0fGjBkzdOjQb775hseMu4MHDw4bNmzq1KnOvPrDKR4Bp3DinnsmzZw5w5mv//jHP+rVq9ejV/defXq6E1xt89tMnf6w1+9JTk+67Y7xr81+1bQNwjHjtKy6lHFKOA6EqlnN6vFT/jJGKLPOPP/fhYD4Fwk4ohtjbGPKOI9qBuP8aMGx4SNGjho9NhiKmBZmnL8759/57TuuXbfBeacF5Szu/RZ/AAmMU1hETKgtiqIoCAihhZ8umD59+t///tRt424jlMqSfONNN3/77beJiYlRI+pP9OtRPRQJtW3d9o4777hp2E3p9dJh628RiRxxjjhDTEKSgJCAkIA4QkJsw7iaY1GQnGPGuSgIsN8Ro0gUY/uIcc5j+w/B1q+ccyFGMPRwHvZ+jl8TzRhzfogQopQ6i7TjLwBytg2hNVvPC84PnRXWcJda1rEzxgjlgizB9kKYcEUWli774vnnn+/Ro8cLL7xQUVExYsSIbt26vfzSC7ALkY2ZaeoffvhBaWlps2bNEGNNmzbt3r07LGtHCNW2m8nvRDJCKBQOJSUmyJIcjoY8Hs/+/XtPnvy5V68etm0ihBinH328YP/+vampqbDRh23bnbt2HjZs2PXXX5+emo4Q0kzN5/YRTjDDsiSLSBSQQBEVOFIESah5EBjSmmPTMmCtf9xQc0KoIrucBz+NDaeNvsN15zyP2eewgTtCiFJqGIYsy86ye9jzRBRF2JmFx/a1AR47u73AZZRSSZJkWXa5XA50YMsR2HcSNot3uqGIyCLcJNTjlk3LZlwdfPWQEyeLPv3000emPXr8+PG0eunXD72BIRSJGh6PB4YqOTVl9+7d1157rSRJb7zxRlFR0fDhw2vZcvD3JZlQlpSYhBCjjCb6E6sCVVu3bu3UqcuqVWtycnIQQmVlZZ999tnx48dTUtISEhKYwPr06nPrrbd2795dj+rf7v9WkqTMzMwyVgYJctg3lMci4Xok6vC/BgKCgOJ2GAJ3A04yxkRBppTDZkLOdt9gScG/Dpth9GVZBpcahAEhBCEkSVJZWRls0BoMBt1ud0ZGhiRJ4XC4qKiIUpqWlpabmwu7XweDQUEQkpKSDh8+7HK5OnToQAjZsmVLJBLJzc31eDwul8vv9/t8PlEUTdOMRCK6rsM+ebBVvaqqsPk5EiTMeHFxcWJi4s8//1xaWpqamrp3z+5jhQU/Hz9mWdb06dOv7NcHIZTg9yCERAEl+Hxbt27t1KlTzx49EUJ79uxp1LDhqJGjLg37EUKyJEmUMYS4pmmJCQlz587dunWLaZoHDhxIT09HCO3fv3/79u0ul8eyMCEBw7a++uqrzZs3O2JW07RQKJSRkQH5U2Ct49hQy3bYHy9dbdsG9pumxTlyuRS32y3LMuIyeE0IIUVR4M0aoHThX6cgE9gvSRJAzdEUsHMbvHwEnHWY8VCE6fV6o9EoQigxMRF2tGeMKYpiWZaiKKIoOj2HRezAWlVVXS4XbH5rWRbG2OfzgfwACQGXCZKoKt6Uemk+n6+6uhp+JQjCiBEjDh482KpVqz59+pgWURSZMR6NRr1et2boRUVF6Wn1DNPYvHlzixYtRo4cCTtmXiIECEiorKzMqJ+emJC4dPnnBw8ebNq06ZYtW+rXr29ZFqa4cePGQ4YMadeuvdfrP3hwf2p6vdTUZFEUg8EgIcTr9cI773JycuI1JUxiWZZVUXKmfjyVl5c7s1aSJJ/P5/P5FEUhuEbMws8dMCGEgN8stusKIIDG3vLrvHxFkiRFUXRdBzUhiiLGGApBJUlKTEyEtfggrjweD+xfRghJTExkjAWDQYRQamqqKIrhcNjv9/PYy11ib83h0BQABXYKg63RuYBMg7Tr0N4wjIKCgvr167tcrurq6kaNGpWVleXn57tUycZMEpEkCinJCQih0vJIJBJp3LjxypUrX3zxxdmzZ7dq1cqxAy4FAkzLzKifwRHVNL20pOzWW2/t2LHjunVr9u3bB0/YumWbZ555LjEhESERIWRggzEiCIKqqiISEUIMMdgDFyEkIEFAAkecUCKKoiJInNcYXIIgCHGWjWmZqqqKgsg4QwiJAuhyESERNIgz6ChmtcXrexh6+NfR/Sim18/cEE7XdUVRTtu42yHYsVHTNIQQ7I0NAPJ4PAAvAFO8xeBICxR7nxJ8RSiXVRkh1LBhQ5dLFhBCqKmNWUZGhqqINmaSJIYjOkIoMcFr2fiLL5a3a9euT58+wWAwPz9/y5YtHfLzGWexAalzkkVBRgiVl5fPmzcvL69Jr1693Ko7L68Z5wJjSBQkymhiQqKN7UhES0tN8yguhH7ZGljTNVVVE72JCKF4XooSPIBwridxqZ6a11EJIuecMdh00vJ4fKBc4y+OH26HnNGP9wLieQ8yCcU2cYWpDOwHQw8hBLtKg44A3sMW1ABoUGqAAGfGO2LMkQpwO8Clqsq6biqK4nXJtk0IIV6v262ICCHbJm5VRggleD2ccxEhSZI2btzYokWLpnlNdUPv2LHjqlWr+l12WZvWbS6YkxdLsqrK1dVB2yabN2++8sp+kigTRvbv39+nTx/Ya1lAgmVbiuJKS3Xrhq4oiiT9wlePxyMIAmVUEiVBEAghgiyAJEAIMc6kMxBQ4xSCMyoIcACjqSgKO3WzRccbhJPOv/HfOkZA/F2cdjjnjoUPtj3IcOA3lHsA4GC6O8fAY6eT8bcAQDjH8b3lHLndbngCRzJRyiVJgG5QChJFiEb1qKEzQm+66aZQOJSUmHT48GFKaZvWbSzbcqln34H7dyeB/bLvMEMInip+J2J4PBFUQNyV532DC+7SJZJ+dUTn2sWZMSSKNX9tm6iqbJr2zOee3bVrx6LFn4pIWL9+/ZtvvnnHHXdcfdVVjhl4CeIB8QhAZwOBcAb70f9HQC1U+z7ehDBZFm2bCIJgGMaSJUsSkhM6dOr487HjHo8nGo1edtllLlkBmYr+UAQ4JMb9RZemT/+3Eo3bgx1M3ZPFRfXq1xckMVBVndkg07RMCICoSs3W9pceAegMEPx/BPw+BIYFioWla8wLhFiN2OBgORFKpNj7S9ElGe3/A0PcE0m3vgXkAAAAAElFTkSuQmCC"
<image>如图,点P是平行四边形ABCD内一点,已知S~△PAB~=7,S~△PAD~=4,那么S~△PAC~等于() Choices: (A) 4 (B) 3.5 (C) 3 (D) 无法确定
无法确定
11,020
null
无法确定
"iVBORw0KGgoAAAANSUhEUgAAAJcAAAB/CAYAAADiiFCWAAAhFElEQVR4nO2debRdVZXuf7s73U1LMILSFHmCllCINJpAGgloKAj1CM0gQQqeKFBioMhzUFrPKku0LBpDV3SFkdQwiEgrkBTpIEonMMRSLAwCCUmIGAhpbm5zzu7W+t4fJ/vcc28i5OJtziXnG2OPe0+/ztnfnmvOb801pyNJNNFEP8Ad7AE08f5Fk1xN9Bua5Gqi39AkV8OhAhaIoUyCsSEVqrettg7y2HqHJrkaDoY2uw3rQZ4A75Gr+cHrQBCDGT3Yg+sVmuRqMJTxGWFH4ngpnvkvPn/yYqJOS+gYrD/Yo+sdhthw3/8ohQWUh62In1/8b2yb8GE+/lGXQlokdQSeM9hD3GU0LVeDQQVLK5bOmyax6OTL+NAvxyEbIj/F19AhFjTJ1XCIcBn96k1cxQLmj1vH7z+xH4f7Bd5MykA62MPrFZrkajAUwt/zw6t8vjz7IEK/k+jT4xhJyJhgBLhDy4txmss/jYWXb53Ax2Y/i2/HkLqbCb64lPjWzxF5EfkkD8Fgj3DX0bRcA41OiOggIYQUQqBMZ1XbWnkjV6b/iUw7SbIJs/ALfPSQ/UDgsg28wR587zC07Oz7ASXIx0XSXMxmB8aUt0IpIHn1W5x4kcf1P/8YtBsYvoU/vLGBkjMCUjB+Cc+AO5TMgZoYYIQyNpKNJSVSolh3nt+iQm604NOa/4Ik/U43H4nI55UHjTx3kawkRZ2DOvLeoulzDTBCAwWvDTSCsC2ikGujXPwApTLEperM5ykCa4m9Ijkg6kjwh8W00sKYwf4CvUCTXAOOViJGkTdAAqYAIqKNMnt0jkYt4GCJcMkb2CYYSYU4qWCLoygMITe5Sa6BRgKJY0n8TnIUiG1A3gEci6cyqQJ++JMf0PqGw5cv+yKlJF81Z7YN+SMYSjJqk1wDDQEGUt8S00op3gOjMh4lwnzKb594is9/9f8yyt3KL59YQ0duC74ZSSH1SAohAYXB/ga7jKFjY98nkGOR34mPSyneA4IEzy2hvGXda2/y1a9dzZP3P8irL26h1XQwTCUc36MjJwLiwR5+r9Ak1wDDGuHQUr2RA+FjPUuaGM6ZdRo3/ccV7LXffpx65mncf9fdpNYnDwxzHaThgzr23qJJrgGG53kkSYIxBgBJuK7Leeedx6WXXsrBBx9MmqZMmjSJZ599Ft/vkiIdZyh5XE1yDTiMMQRBgOd5NWJdfvnl7Lvvvpx++un4vo/v+0yZMoVly5bVXlculwdx1O8NTYV+gOF51TWcMAwpFAosXLiQ3/72t9x///1A1ZIZYxg3bhylUomXXnqJAw88kFKphKQhZb2almsQkKYphUKBlStX8q1vfYu77rqLJEmA6tTnbl/jOfHEE1m6dCm+7w85YkGTXAMOSfi+T1tbG2eddRb33nsvAEHQle6Qkeuoo47iF7/4xZAkFjR1rkGBtZaJEydy3XXXcdRRR9XIZK3FcRwcx6FcLuM4DuPGjWP16tWUSiXSNO3m4Dc6mpZrgJGmKf/8z//MmWeeyeGHH14jVpqmuK6L4zgkSUKpVKJQKPCxj32Mp59+Gujy14YKmuTqY2QTQZIk1E8KaVpNUZ4/fz6bNm1i9uzZBEFQkyR838cYgySCIKhNhRMnTuT555/HGDPkpsYmufoYjuNgrSUIghoZsunsmWee4a677uKGG26oPeZ5HtZa4jjG8zwcx6mRDGDq1Kk8/PDDeJ5XI+hQQdPn6ickSUIQBMRxjOu6bNiwgTPOOIOFCxfygQ98oNtzgJqlyv4aY2rT5OjRo3n99dcplUpDampsWq4+RhRFQFf0l8vlcByHGTNmMG/ePIYP71rCCYIAay1RFOE4Dmma1ixWRixjDJ/97GdZuHDhkCIWNMnV58jn8wA1XyoMQz7/+c/zj//4jxx44IEUCgUk1UgUxzH5fB5rLb7v7+BXeZ7H+PHjef755xlqk0xzWuxjWGuBquWx1jJ37lw2btzI3Llzgapl8zwP3/e7TYvQNTXWSw6VSoWtW7fy6U9/mvXr1w/8F/ozMHREkyGCjFQdHR088cQTPPvss9x3331Al5UCalFh5shn0yBQI1aSJBSLRYrFIvl8nldeeYWDDjpocL7Ye0BzWuxjZELo22+/zeWXX868efNwXZc0TcnlcrWIL/uby+W66VvZe0CXTwYwceJEnn322UH4Ru8dTXK9B/T0JDICZL5UW1sbp5xyCvfeey+jR1fLHmViaWaV6qfDzGJl+lb2ftnrkiThpJNOYuHChQDdJInMt8v+NhKa5PozkaXNJEmCtRbP8zj11FO54YYb+PCHP9xtaWdXdKpMJ8tIlmlmxx13HE899RSVSgXf97v5dtnrGg1Ncr0HZCSpV82zHK3Zs2dzwgknMGXKlJrwmS1W78q6YJIkNfnCdV1c1yWKIvbYYw9GjRrFa6+9BnRZy0wbcxtwt2zjjajBkaZpbUrLTmg2JV1//fVI4rLLLusW9fXGqtSr+hmB8vk8xhimT5/OihUrhswCdpNcvUT9Sa1PVX7uued45JFHuOKKK3b6umyq25X3l1TLVM0+w/M8TjrpJH7yk5/UxtDTejUamjpXL1GfWyWJNE3ZvHkzM2bM4J577mHfffcFupZ2epuLlZ2O+tdkWauVSoW99tqLrVurhXfrp8JGtGZNy9VLxHF1e1d9BsMpp5zC3Llz2XfffWv+WDZ1Zg46UJMa3glZPpcxppvVMsZQLBY57LDDePLJJ7tZqiyQaDQ0ydVL5PP5msruui4zZszg0ksv5ZhjjqlZj3oyWWtrOle9/PBOyMhS/7ps6ps+fTqLFy+uTZvZ85vR4hBBvTOdWao4jmtyQj6fJ01TvvOd7/DRj36UmTNnAl3+WDZdBUGwg761K6iXF+rf03EcPve5z7FkyRLSNO02PTcimj7Xu8AYU9OaoHoi4zhm0aJF3HPPPdx9990YY2p5Wf0tCUhizJgxrF27lhEjRnRLjW40NC3XTlCvuLuuWyNWlte+bt06rrnmGm699VagK2ocCK3JcRw+85nPsHjxYqBqUTNi1Sv7jYAmuXogE0Z7Rm2SKJVKbNmyhTPOOIN77rmH4cOHY4whl8vV/Kv+hrWWU089lWXLlhHHMYVCoTbuRhNSG2s0DYBsiql3ksMwxHEcwjBk1qxZXHfddeyzzz61heVMgR8oy3XMMcewYsUKcrkcUPURm9HiEEBGkMyHAigUCnR2dvLNb36T448/nqlTpwJdWlZGyF2RGvoCBxxwAGmasn79eowxDadvZWiSayfoucBsreWBBx7grbfe4rLLLqvdFwQBaZqSpukOiX/9hWxZ6eyzz2bBggU1i5VFtY2EJrl2gkyryqzYc889x+23385tt91WS6vJNKhsQXog/R3HcTjqqKN48cUXsdbWFrsbLfDfLaWIzE+q91MyOSH7P/OjVq9ezTnnnMN9993H3nvvPVhD7gZrLWEYMnbsWNra2mrEbrRt/7ud5coWg7MllWw6yYiVOcfZJtXzzz+fK6+8kr333rshEvIyq1ksFjnyyCN57rnnalpcIxELdkNyOY5TI1I2nUDVZ0mSpJtzfOaZZ3LBBRcwadIkoDG209dHslOnTmXJkiW1paJGm4R2O3LV+0vZZomMZEEQEIYhAFdffTUHHXQQM2fObDhxMiPRlClTWLFixQ73NwoaM4btR2RXfrZ1Po7jmrWKoohCocDy5ctZtmwZjz76KNBYAmX94viECRN49dVXaW1tpaWlZUCi1d6gMX6xAUZ2hWfqepZKnM/nefHFF/na177GI488QqVSqaXVwI4SxWAg8wWzhezx48ezYsWKWu5YI2G3I1dPq5Xdl8/n2bhxI2effTaLFi0iCAKKxWLN0nV2djaMWOl5HuVymSAIOPbYY2v5XU2HfpBRf3UXi8Vu93/hC1/gqquuYuzYsd2S/CTR0tLSENEiVC1uViP1+OOPZ/HixQ2Z6jzkyBUSQwwkESkJ1RrHFoxFeoNrJzn4jsNwv/rXcQo43ldYYmJSwMWpdrFQ9SQZwLouF1/895x8wnSmTZu2Q15WFiU2QrSYSSWZpTr44IMJw7Brq7+FTkC0QecfuOZkB8fJ4fgOrjOaouMwyinhTL6Kt8IELIhO4hAMrX061iFHLh8XHMB1gAAZQZoALtYZyZwn3+SWyccw53ci1WYShTz4pTv4G/+LLKGM9VyMFahKFhe4884fsXXrZv7uogtrCnyjHr7vE0VRTduSxHHHHcfSpUur06K7hbxAZgRoH75670vceMx0vvdyjK28yTYlvLXwbPjkpxgbBIRuiGNayLngMqpPz9WQJJe1Am/7fkFLtfGSAwnDSHmB35RncO5HDYkZga92TrztORZMeYCTL3yWTsB6TvWbC5579lluvvFG7rzzDvC6siIa9YBqCYAsYnQch0mTJnVVwamMxjcQeqAWIPdH/tsfz2kHWGzhGa66+VXi6cfyowP+gi1eQsGEyEuJAxDtfXuyNNRgJWMSJYoVW8kkklSWtVKHUtlFFyt/wRIpeVsbJakiySa65wzkHf9veltGHdW30Wsvr9YRnzxcra1bJBnFcShrbUMfURRJktI0rf0kb775psaMGSNjjBTGMqkkbdIf9Ja2/dff6zPXv6xQ0gs3HqK/XySlUZtUltQhRXGnIpWlWErU3qenauiRy0hWiSIlqkSSjJUUyySS0WY9/CV0waJUMpJSaYsk2bL+eM0EMWmB/hCWVZFUrkSacvRk/fpX/60oqsjatPrmQwTGVMeake3jH/+4XnjhBSWq8iY0G6RYWn3LROGiUU5OI/msrns5lVIjWWmTJMWS4lhWSfVC7EM0Rmzda7i4GAIfcA2p8atqsF3Nk7efx3HzPDptQkuSMhof4yX8z7pfw8HDGJUvsm3rVj5z9ESO+OTh3PfA/XgLfXzXwaQpanBPwVqLMYZCodBtl9CIESP4/ve/zzU3zaVoArB7EWstj/4o5ebfJ5x7wBZunXQFBx3kkkRvk6R5ci0OMAKCGMe0QK5vx9qNXEncFcoGucbSTGoQgItnUxwHDAbj+fgJxK88wvILZvItCyVroRCALOkf7+Rf/z3kwkdmUAD+be617P3BvfiLcfvj5wLkOKSpwcfDug36vbcjl8vV0myyZSxjDB/60Id4+umnycU5TM4lcaHw6zu4beSZLDvAx/H34MhZe7AnlsAfS+AmwFbiNMUJ8gRA7FbIUXy3Iew6epqyOLJ9axv7GjY7EsnEitSmTklqD/Xr/zxCJ35vTfW22tVhJKVrdMWUQMUJ12hVYrTkkcWafsJfK4liSdL2CaEKo0H3qd7tMMYoTdMdpkVJamlpkZI31R5LiTr02vWf1ZHXrqq6Dolk1KlO/Vrzv/B9/U+b1CZJKkuRlNj2rt+hjzD0yNUutWu1pOqPsU1vVu+Plut8PqHrX45krWRjKXztKk10ERMXaJXZqBd/t0ETJ07Uhg0bam9nbfX7GmNq/zc6MqJJUhzHtfsnTZqkZ5Yvl9Qu2TX63qRP6sZXpVTbFIeJpLX612PRx659vUooJar68IkiSR19PM53JFcc2dqxs9v19+3sfd7LY+/2vMS0qRxZhWWr1shK26Qtj16osQxTMGwP4XsKckV90C8qzzCd8uBbUhJKnW067JC/0qpVq6rvvf2kJElfX6/9jzRNa+SqvyD+5V/+RXP+6dtqf/rrwhmhHMghEAwXo/fUSNDeHKV5q6QofUsVbZLsJhl1Vh17G/bpON/Vcr3T7V35vzeP7cprtkRWqSRV3pI6UsUVK5kOdUSd2lLpUBxVVJEUbylrU2QVSYo2RDr29CO17MFfSupOqCiKatPNUEG9DFF/329+8xtN+MSBUhIrNVJFiRRJshvVmlRlhrZYStUuW35bkSQl2y1WpD4PlnsVGiWxdnD0k1jdAoH+QP1nDksgig0U9oCcR+q2s8VtweRShkUlgqBAQUCLT5CLyG1J+Yerv8Pxk6bx2elHditllDXWbMR1uXdCfZ0I6NoMe+ihh/L66rVs2BrguZYIHxOl4FgKvsUAQbAZLyrguHvihGB8iyEl9Nv6fJzvSq4g57wjeYKcUzsGBEEnpcAjSnyMbyHx2IMORtgRpEUghdSJiNKIEYjb/usJTPkNvnbxN7G2XNtBXZ8aPJSI1RPZ2LNMj8NPOIEXH7+TMi4tgDc8xPBBPDMCz4KxI6i4Pp1AUOjAEjEiDSm4eejjlKIauf5c69Of1qv+vUNawFTI+yBC/KAE8TBIqp0rYk/E5HHSAi8+99/c+4OL+fp3/4PQcXDdUq2giOd5tRyobDG40TJOd4aeF4LqSlYaYzjlf5/OHQ89Ro4EP03YIgcM+A5YRbTYmCRIKeQjsHlIiuAFJCaPvD6WPbP58d0c7HfyjfrKod/Z7R1eHxnFYapNUagoimXLUqpQcYdVuTOshuaJtHLNG5o64US9snmDylGkuGO7r7YdmSPc0/8aCsh8rp4RbpqmWrdus/babx9lDlW4fWmnQ6mkzVJZCk1FSqxkypKk9uSPCtXnAv2uL/80ikRRkSRjFGvb9ghH6pCRFFd1GiOl5bKmTJmmR59/XKpUJCOZipTKdJMeMlhrFYZ9Gyn1J3YW6XZJEm9r/3F/qdVr35DUoSRU9aLqkCIZJZKsjGSksjZJFdV+t+2LZX2GXXLod+bIDxYKAK6La1qwngUHCkZAgA8YGb5w4YWcd95ZHHfEZCgUsFjcArjqyiyoz4l3HKe2WWMoIEu7rs+M7SrxNIa/Oel4Fi/6KVIJP19NGjEFQw4XH3BwwYUiY6CwfZnGBRjdp+N8R3INRCT4XpD5TNB9I6i1luuuu46xY8dyzjnnDIla7f2BY489lscee6z2fZMkGZRExyG349puL/yfXbUZudI05fHHH+fqq69m6dKltefHcVzbm1i/q/r9jDfffJNDDz2UjRs3UqlUauncA12Ut7FTAHYC13VrO2CywmfGGF5++WW+/vWv88ADDwBdhTlyuVy3CHF3wF577cX+++/P008/PWjEgiFILugq0JY1aiqXy5x11lk8/PDDQNWaZdYK6NZLeneAJE455RQeffTRbinSA40hR65s72C2O8f3fU499VSuuOIKxowZQ0tLSzdfI5s2G2Vb2EAgTVOmTJnC8uXLa+nRWbmngcSQ87mgu+904YUXcvDBB3PJJZcgqVYnKyuKlgmkGRkbZed0fyH7bbZt28ZHPvIRNmzY0K0+xkBiyP3Sme+Upil33HEHURRxySWXdJsq6+uY1lus9zuxgFpBkpEjRzJ58mQefPDBbqWhBnQsA/ppu4D6fjo9/9bLDr/61a+YP38+N998M7DjYm59Q6fdRYLI4DgOURRx3HHH8fOf/3zQxtFw5MqusvoF5YxU2bFu3TouueQSFixYQEtLS0PUcGg05HI5xo8fzzPPPANQa3c8kGg4cgG1Rpb1taiyrhaVSoWzzz6bW265hX322QfoUqp3Nwu1M2QXpOM4HHrooXR0dPDaa68NSgWchiRXtvmg3r/KWsWdf/75XHTRRRxxxBHdfIisrtbujvoSlr7vc+SRR/Lkk092q30xYGMZ0E/bBWQaVRbZRVFUs0zf+9732GeffZg1a1a3KoBZXa3dSct6J9R3sJ02bRrLly8HBj6gaUgpIpsW69cPFy9ezE033cRDDz1Uc9azrNKsZW+9w7+7ol5ukcT69euZPHkya9euHfCxNJzlyrpxZTWo0jRlzZo1fPe73+XHP/5xLS05DENc1+3WOm53JxawQxC03377MXz4cH73u981pYiswIa299qpVCqcfPLJ3HXXXYwaNQroqggI1SgoE0wb0AgPOLKM2vpMkayN3m4VLWY7hzNk3VEzZx7gtNNOY+7cuey3337d8sUz05/L5brJF03Q7fdzXZdJkybx+OOP1x6v/82z//vD2R8Un6tnK5MkSXa6/jd79mwOOuggLrnkEoDdYvnmz0X9b5TJN7lcjpEjR/LWW2/Vupxlz+uZD9eXv++gnKmeWQpZR9Vsodlay4IFC2hvb+fiiy8GuppqNvHOcF23Jsv4vl9r23LUUUfx5JNPdlsBqY8q+2Us/fbOfwJZsl/msENX7lXmrP/yl79k/vz5zJs3r/bls64WTbw78vl8twsxy5L4xS9+0a3kZX3XEOh7qWLAyeW6bu1LZEVjs/uiKGLt2rXMmTOHe++9t1s/wSRJmjrWLiCLmutzuIIgYPLkybW6+vUOP3Qtdvc1BsXnyhT3nukwkpg2bRrf/va3OfroozHGEEURpVIJaPpcu4qeOmFWY3/kyJGsXbuW0aNH76AJ9sdvOyhnqn56y64y13WZNWsWX/rSlzj66KOB6lRYKpUIw7BJrF4gE5WBbm1ojjnmGB577DFgx821/bHzfFDOVvYlMuvlOA5XXHEF48aNY+bMmTuk3eTz+YZsnNTIqN9Cl/lfM2bMqJELutKYMse+r537Pp8We+6w2dmSTCZFZB+9fPlyrrnmGpYsWdLUqv5M1Fv4+nNRqVRobW3lU5/6VFfN+n5Gn4dfPYlVz92MaJnG5TgOL730EpdffjmLFi1qEqsP8Kdch2KxWHMz1qxZw/777w9Uz0l/Kff9Mi3WZ41mDZCyIzPR5XKZ1tZWzjnnHH74wx8yenTf7vZtgm6/N3QlEP7sZz+rReg9M377En1Orj+1jamebEmSUCqVOP3007nyyis54IADas9pou+QESjTFiVx2mmn8dOf/rT2nCy4ql8S6isMiBSRXT2Z9ZLEnDlzGDduHF/5yld2m82qA4H6WaPezcju27RpE4cccgjr16/vts+gPzbN9mu0mF0x2RWUfZHbb7+dzZs3M3v27B2amDfx5+FPRX3ZRb3nnnsyduxYVq5cCXSP3Psa/UquTL/KEMcxzzzzDHfffTfz5s2rPZYkyaBsIHi/on6GyKbDendlxowZLFy4cAci9vXabZ+T608NsFKpsHnzZubMmcOPfvSjWgeIrC5p/fb7Jt476q1/z6ZU2cU8derUbsVa6jd19CV6TS4riICYiGqzwk4wkFbLttae11PvchyHs846ixtvvLGW9Fdv2Zrbw/oGPa1/T8KIhPHjx/PSylXEkUgSs93KAXJIsdW6sgBxe/VvAhgB7dWOjGkEWFqJtj8GbbTR06npNblCp5N8G1gArwJOC20e+JGHR/XqqCdWllN07rnncuGFF3LYYYfVVu3rBdbm0s7AwCHA8wIOO+wTPP7ECoLAwSrGcVIcFxRXwAe/YujIDcezUAnaMI4DGs4oAzgJKS7DyQMxOFCiiNuDXb0+oyXy4KYUcDEYOqkQCMh34pTz3Vbc0zTFdV2uvfZa9t9/f2bOnFkTUHtuwGjmag0QBL7nMv3kE1i6bCGpiZAsIESC67fQwdtQbGVYBLgRropsdYEyEEPqeXRWwEsBP0Uu+ApwiHt8Vq/xkq6ZiGAPefgKGKEcri56SIq0VVL3IvxLly7VtGnTZIyRMeZdO1YMdm+d9/1hJGul37zwvD5x2MdVrYha190gkdQhbTNGK286Qj4FeeTFZ/5Jf0wf0ucvvlcbK1uq/ZdSKU3bFFtT7Uxo4m7nsvfkCqX2dLXmTkR/t7hNqaRo6T8pz+G69fXOrqeFoV566SWNHz9eW7du3YE4GQnre9fsrDNEE32Lap1hoyju0F5776mtW7fJpFJYqfZgLFfekNbM18dHovzMJ6sk0jaVX71WEwpo6tw3FEpS0qaOKJVVLCtV7zPdz1/vHZ38Flq8V1i18svMmBCwmTZyH96PQ1os28JSLVrZtm0bs2bNqu3ayaoA1juYWS34+tvqh77QzaPrcBwBllyQ4/jjPsfDDy0GQT7vgpNSLKzkywecx8pzHyZcMJHEpsAwin8xh/93ZsBef/mhqi8VhXg5AR5pOQZS5PaQknbO73dALKWLzhMXZKx+UTcc5mnURUukSqU2/U2fPl1Lly6VVLVYmVVKkmSHqTFN06bVGkCkaawwatePf/xjzTzzb7efx7Jiu16/vm2C4GI9KimKJSXtUiq1qk1vX3WJfvhSVH16atSpssJ4e1MqJWpLupdb77UsGwcVXn/lj3jfn0Th+y6R82muXxXy9jjA+kiGb3zjG7z++us89dRTPP744xQKhZrUkCnBWRSZbRNrOvQDA5M6tAzL09HZyqa3W/nVr57HKMJxWrHOFm698Bn+5pa7mFgJCYoOyCVyUkYyHP3DDcwkwqbgyCXngRd4UAGShFype7n1HadFC2myvSErEKmTlBQsxArJ0cHD97zFD35raJVh5b8P49KP/DXzX3ExbjWlds8992T69Om14ri+7xOGIZ7n1fYm1m8QaBJrAOFYcl4McY4Pfmh/Lvjq/yFN8rjJKFi3mFW0MGbffckXHZw4D0mJiGh795tOcuTxfHAD8CnikIciUCqS70mnHUymCSWFkq02Kc+igooq1fYVL39bkydcpVWSlK5Tqgd1GUUdcdPL0nbnvFLpavSRtTwZSi3n3s+wqkZ41Ub0UqhOWSupXNa2NTfrGNCsFWXJSKGq3UfU1lntstHL7jU7WC7P9QBLKEsusaQGyiaikHRCHlY9dj9bzv5b/lcnxN5+uOt+zyOFCp86cH9QQBzHFAqFWvpstqxTXxyjeQzeYQG2e0OOBR+PJAGCIiM+fBh/hc+6VzaCuwWpAKlly/AYu3oeVy9p7Z2V7Mm21EZSKtkOUw0vtVEKNyqyktKnddWEqbpllZSoLHU+pq+CyH1Di9JIaV2X5PpeOkmSNB32BkFopO0NrxWXK0rsdstlJGm93rhhgnB9XfBIuzq0vS/Qor+Te+SNWtvLz9qBXElYJVi16VWibVskq1grn/iOfBwNA+G68kEeY8Qx12u1KlIotan8rr2iB11E3M2P6uVvtpOp2pDLqqp/WYVSIoXL5iigRSNAeRAX/EQ2lTp62WJ9h2RBUQEVMJUKplQirwgiERcK5JIt4O9BGncQ50ukqcsIvwJxEQKqUYDblXhmrSVN09rUKDXrZzUSqhtlHJJEuF4ALngJmKBCVAnwiwkOOTzKpAwnFwG96L+1g89lUlMV2ko5clGCcVzSQoFcGRSMoiKo5PP4uJT81yEp0p6DTqcdTHXAWfTnum6tSmB/1yVoYtdg40rV/wJwHcAlCMBzLS5ggw4cLKWCT44iJvFIyZMThL2U3HdMc7bVtBrXg5QUVz6OY0mokFMLRBAVEvJlQ+wWyBUsyMUS4Toe2YaiTHKoz9PaXRo7NTRsAvikrkOVWuBQBjxk8yQuBFRwOoqQhzSwpLgUYohzFXIUd/mjGrJsZRPvDzSTqJroNzTJ1US/4f8Du6JddJ1NoygAAAAASUVORK5CYII="
<image>如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为() Choices: (A) 3 (B) 4 (C) 2 (D) 1
1
11,021
null
1
"iVBORw0KGgoAAAANSUhEUgAAAKMAAAAXCAYAAABnN//jAAAEd0lEQVR4nO2azU4jORDH/6bZzjwF0iYwmsdAInAhHXZfguNcwDnnzAkuIzkST8GBUdxIPAVihEm00rwDCTCuPQz22J3uhA39kWH7J7XSbXdX+aNcVbbCiIiQQr/f937zoAiZRcqtkvfYpyxMH9eqbUbNquD6pH6/X8kiqI2xBgDAGAPgG2XZ1MZY42GMsmyIqDbGmmzK9JKMsdoYa7Ip20uyRbvp3w3GWKV5z3vg+voaALC9vV2q3vVStZXAezHEKhdV2UZoyPSMNf8fiGhhSH7NO2+l8pwxz7VgZNXr67+RNLK08Ssjf6zcGPPspJFV1fFEnlS5oLLGL9mmvNtYmjFmNbz2Yums4oJKtinvNpZmjFkNX8VBrymWLAe0Nq8yjmPc398vFLKIOI7BGEu94jheSmaSwWBgZXa7XQBAr9fLRXaRuGNq+rC2tlbIGM1j3hyZ8cyD0Wg00z/rkMjhaTKx18sum5RStl5rTcsipSTOuVcWRZEnfxkdd3d3BMCTrZQixhgJIZZub1UIIbx2SykJAEkpC9WrtabhcGjH0cxDsj15oJQi1/Q45xRFEXmecb3RsL+9Xg9RFKHValmrfktIHY1G2NvbAwAIIQAAnU7Hk7+Mjq2tLXDOcXJyYstarRaOj4/RbDaXbm9VKKWws7Njn9vtNoQQ2N3dLUwnvRzbjMdjO0ej0QhxHKPZbHrjSEtGR/e78XgMzrl93tzctC95PE0mJISwK3IZ0rxbFEX2vtvtvkmWQQhBjLHMuqTX/R1I64+Zi6L7484R57wwfZxz6+lNFJNS0oy1fbu5sRP5VxR5YTsZxt2yJGkh31y9oyN6mkzo8eFhbqPT9LnlYRB4IcRtp5Gd1rZVxQ2TLiasFW2M7hwt64iSZDkmoyOKItJak9aaZnbT5+fnODw8BABsffoEwA/f5peI8DydYr3RwHqjgefp1Mpwy9cbDcivX8E5BxFheHmJ1sePCMIQf3z44H3nYmQEYZha/s/373j88QN/bmzYcreeMWbvs3SsGlJKGyZdxuMxANiUhgo4Dovj2M4RESGKolzkJtMusyE2egDg4OBg9l87g8EAp6enYIz9iuMOZnJdJc/T6cLJjuPYDvLGxgaazearc0PGmNU5j+SCSd6vKq5h3d7eot1uz7xzdnbm5VhF/BF2OBx6C2F/fz832S5XV1fodDr2+fPnz7i4uPhppMZ1KqVICGHDWhzHJIQgrbUX/lzMc9IVJ98Lg2CmTkpJUsrMMPqacgAkvnyZqVNK0fDycqGsVUIp5eVsBiFEoSHazB1yCsuLMCco7m7d6IbW2uaHRL8mzt3SLzLGefdSSuodHXl17uboNUaXdq+1JiEEhUFgk+HHhweSUlL0kuumfb+qcM5njlBMblV0rph27FYESinqdDqeXjjHcuCcE2OMwiCgbzc3ROQnmObF5IQay563gfm726UwCGYS4zAI7CYm+U3yedHmyHQoDAIrN/ltlpxVITk+ybFP4y1nvi5pc10EnHOvb4yxn5HNWYD/AtHVQAyPyLdUAAAAAElFTkSuQmCC"
<image>如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=8,CD=4,则AB的长为() Choices: (A) 9 (B) 10 (C) 12 (D) 16
12
11,022
null
12
"iVBORw0KGgoAAAANSUhEUgAAALkAAABrCAYAAAArWyN4AAAXFklEQVR4nO2de1AUV77Hv92D4tW4FhUMbC1ZrggryrBBs8VigQ4VfAe3gjELiVfBEsU3qCBkFQxiQhLNLkYvSpQwJCYld7Ny7yZs8CIrM5ha0EookyEMQQZc3JSPLdcISeDK9Ll/DN30a14KzIP+VFk4p0/3nOn+9q9/53dO/w5FCCHwchobGxEUFIQZM2YIyhmGAU3TLmqVwlgxLq7wwoULwd7LDMNw5YrAxwdef5X37t0LjUaDkJAQAAAhRCB0Be+H8mZ3RavVYubMmQJLzsIwDCiKAkVRLmqdwljh4+oGjBYmkwkAEBQUBI1GI9muuCrjB6+60nw35OTJk0hLSwMAREdHgxAiseYK4wOvEjlN0yCEoLKyEocPHwZFUQJfXOyaKL75+MDr3JXu7m5QFMVZ7cbGRphMJs494YtdcVnGB14l8q6uLqxfvx4NDQ1cGeubA0pcfNxCvITs7GwCgAAgJpOJEEKIRqPhynJyclzcQgVX4dUhRDkUaz7+GHdXm6ZppcM5zvBKkdsTsWLJxxde667U19cDABISElzcEgVX4xUiJ7ywIMMw6O3thVqtBgDExsbi6NGjCAgIcGUTFVyIVzy3+YM8NE0jNzcXTzzxBNLS0hAWFoZZs2bhrbfe4up4wX2t4AReIXJg2A9vaGhATU0NlixZApqmUVRUhKamJtTW1kKtVqOxsRH37993+rhiiDJNwGPweJGzIqRpGv39/diyZQvefvttTJw4kasTHh6O8+fPIz8/H7/97W8REhKCv/zlLwAAs9ls8/hynVR2BqOCZ+DxIueLrbCwEJGRkXjuuee4Mv5NkJycjJKSEtA0jZdeegllZWVQqVQOfxfDMNzxFKF7Dl4j8itXruDUqVM4duyYxEfn8/rrr+Odd95BQ0MDzpw5g5iYGFy+fJnbzjCMVTeEpmnueEoY0nPwiitlNpuxceNGDA4OIjs7G3fu3OG28QVbXV0NAEhKSkJUVBT0ej3S09ORmJiI3bt347vvvhNM7lLwDrxC5EeOHMETTzyBGzduIDAwELNnz0ZLSwsACEKLhYWFKCgo4PajKArp6elobW3FDz/8gNDQUHz44YcSKy0WvWLFPQxXTJgZSa5du0amTZtGuru7ubKWlhby05/+lAQHB5O2tjZCCCHnzp0jUVFRxGw2C/bnf25qaiLz5s0jGo2GGAwGQT2GYUbxVyiMJh4vco1GQ0pKSgghQsEWFBSQZcuWkWnTppGCggISGRlJzp0759AxS0pKiL+/P8nLyyO9vb1W64lvGAX3xKOfu2VlZRgYGMD27dsBCN0IQgiio6PR3t6Ov/71r2hvb8czzzzj0HEzMzPx1Vdf4caNG5g9ezaqq6tl/XTFbfEQXH2XPSw9PT3E399f4lawFBQUkIKCAu5zfX39Q31PQ0MDCQ8PJ8uWLSPXrl3jyhX3xXPwSFPEMAx27tyJbdu2ISIiwqF9HLXiYjQaDQwGA+Lj4xETE4MDBw5gYGBAicB4EB4p8urqarS1teHll1+2Kzb+9oedR65SqZCbm4uWlhZ8+eWXUKvVqKure6hjKYw9HifyO3fuYPv27dBqtfD19bU76mhrYAiwP1mLPzgUFBSE6upqHD9+HBkZGUhKSsKNGzce4lcojCUeJ/K9e/ciJSUFv/71rx/pOKxwKYoSDNfztxNCQNO05EZaunQp2tvbERkZiaioKLzxxhvK20ZujEeJvL6+HhcuXMDBgwdt1nNEcGILz+Zs4W/n1xEfc8KECTh48CAuX76MCxcu4Je//CV0Op2jP0VhDHF7kbPiGhgYwIYNG1BeXo6pU6eO6LGB4RcvrN0gYleH/RwSEoK6ujoUFRUhJSUFa9euFUwrUHA9bi9yVkx5eXlYuHAhlixZ4vA+ztR71IRDSUlJ6OjoQFBQEObMmYOjR48CULJ0uQNuL3IAaG5uxtmzZwVv97gjjz32GIqLi6HT6fDRRx/h6aefxpUrV7jtStjRNbi1yBmGgdlsxoYNG1BSUoLp06cLtrkrc+bMQWNjI3bv3o3ExERs3ryZm+HoDO78Gz0JtxC5XHSD5eDBg5gxYwaSk5O5Mjbq4e6sWbMG33zzDXx8fBAaGorTp087tb8n/EZPwC3OIv9lBL7Yv/nmG5SWlqK0tFRQ35Me+35+fjh+/Dhqampw4sQJxMbGorW1lduuWOvRxy1EDgwLl2+91q9fj1deeQVPPvmkR671w78Zo6Oj8fnnn2PdunWIjY1FTk4O+vr6lIxeY4DbqEXsrx49ehQ+Pj7Ytm0bAOkMQ3eGFa2cD56RkYGOjg7885//RFhYGKqqqmSfYgojh9uInM8//vEPHDp0CKdOnZJs84QXiO09aaZPn46Kigp89NFHKCoqwuLFi9HZ2ekxTyhPwy3Panp6OrKyshAeHi7Z5k1CiI2NxdWrV7Fs2TI8/fTTyM/Px8DAgGLRRxi3U8wHH3yAnp4e5OXlubopY4JKpcKePXvQ3t4Oo9GIsLAwfPrpp65ullfhNiJnGAZ37tzBnj178O6777q9SzLSBAQE4I9//CMqKiqQmZmJxMRE9PT0uLpZXoHLRc5P/rNjxw6sXbsW0dHRXuWWOAohBAkJCWhtbcX8+fMRGRmJV199VTbLl7t3vt0JlyuJFXNNTQ2amppw6NAhF7fIdbBPL19fX+zbtw9Xr17FpUuXoFaruVTU4roK9nG5yAHg+++/x+bNm1FZWQlfX19XN8dtCA4OxqeffoojR44gLS0NKSkpuHXrlqub5XG4hchzc3OxaNEi2ZWTxwviiAr/87PPPou2tjaEhYXhF7/4hdtPVHM3XC7yzz77DH/6059QUlLi6qa4FPFgl7hP8thjj6GoqAjNzc34+OOPMXfuXHz22Wdj3UyPxCGRc50cYjvNsaS+FVgr1d/fj/T0dJSWlmLatGkOHXs8YG3laIZhEB4ejoaGBuTl5WH16tXYtGmT8pKGHRwSOXfSqaE0x4xtEdvrFLFW6tVXX0V4eDiSkpIE25XBECF8q86em+TkZBiNRkyePBlz5sxBWVmZYB9b55B/04wHnHJXOAtNWxcxGbL2DCx1xTm92b9ff/01Tp48iZMnT0obNQ7Dh47An60JANOmTUNJSQnq6uqg1Woxf/58Lg213I3BP464jjfj1K+kKAog8u4IA2JJ30ANnUAMv07GzrTjr2+/du1aFBcXw9/fX3Ac9i15BQuOWNuoqCj87W9/w4YNG7BixQrs2rUL3333HbddLGbW8CiWfAjWInNQ8u4IDcoiaFDga1ROsEePHsXUqVORnp4uOZb4LfnxjrWpuHLnNT09HW1tbejr60N4eDg++OAD2bqs4VEsOVdB2gmyZ235GhW/IHz9+nUcPHgQlZWVgnIx48XKOILcObJmCKZPn45Tp06huroaR44cQXx8PNrb2wV1xtuT0ulbmU22w09u7ygMwyA1NRX79+/Hz3/+c7vfoyAPK1Jb5z4mJgZffPEFVq5ciQULFuDll19GX18fgPE3Wuq0krYupjiR0xQFlUpl+bxkq6CexM0B8P7776O3txe7du0SnGj2yaBYbyl8q8vOYXFUpIQQ7NmzBwaDAV1dXVwaamB8PSkFImcG+7l/vNLh/zEMSusIti4Gzn1lBjMkzi//+00kzJopPDIjFO2tW7eQnZ2N8vJyyYpr3E2jWG8JfEGLz5u988VuDwgIwNmzZ3HmzBn87ne/w/Lly9HT08NdH7H74m3ujOAs0T6TBH/ZKgQWy0zTNBjSiq/JFiSpaZjRiiNHzkGduByLZ8wQHliUQ3Dz5s3YvHkzoqKiRuu3KFiBFS2bhjouLg6/+tWvUFhYiIGBAYHr6QlvXjmLY4NBGO6AGv6nBrOXLgYA/PmtY6DCZoFSqZG7e5VM0kzL47W6uhpGoxH79+8fwaYrOAKb/o5FpVJh3759aGlpwRdffAG1Wo3z589z270xEGBT5MxgP8wPfuTcl8EH/eg0XUPFvtWgKAqrsssQGhIC84MfQYh5OGkmQyz7MIO4d/c2tm7ditOnT3MzDFmXaPD/frDZOHn3yXY5+1dFmQVl4xVrVjkoKAgff/wxSkpKuDTU/OkBfFHzxzg8EZstp30mWXxln0kgxAyVjy/qL5Tjw88fgBCCrKUJCIucBNWEfwMxPwCI5aSazf2WfVUTkJO7D88nrcT8+fMBWERH+0wC7TMJPhMnWxUhv561ctpnkkDY/O0AoKLMgjoKUp599lm0t7dDrVZDrVbjjTfegNlsFojakwUOOBVdoUFa/wv/ad6EJLXFYgcvWYLwwYFhEQ0ZDdYHbNRdQm1tLV566aVHOlFioduqw69rJo4vKe6tOBK18vX1RVFREZqamlBXV4ennnrK7gxHT3Jf7CqPUk0A86AfFEXhz//bgC1LFlnKKQo7d+4E6InYmZUtEBdN0xgYGMC6tFQUFxfjxRdfxPbt27k4rcLYwUatHImYzJw5ExcuXEBhYSFWr17NpaGWE7QnJUXiRG7tkU5RKs5CXzz/Dhav+I3lw9A527FMBebfEyT779+/HzExMVizZg1aWlpw//59REREoLGx0fJ9zgwiKe7GI+NMxOT5559HR0cHAgMDERYWhmPHjknqeJSfzi4DZ37wIzE/+FF2ibjWPx8hkybSBBZpW/5Rlr+TJtKk+ur3hBBC2EX/mpubSfCTAeTmt38XHLOmpoYEBgaSzB1bSGdHm+T75D7LtYkt528TlxUe2EcKD+yz+9sUbGMwGEhcXByZN28eaW5uFmzzlMV6HV7H055IGGaQEELI4CBDoqKiSEXlu7L17t69S1588UVC0zRpampyoqnOIV7HU+HR0Gq1xN/fn2RkZJB79+55jMAJcXAdT37EYsj6S+pQQy9UvP76a5g8eTLW/Ucq9yIRv76fnx8mTJiAF1544ZEXt1IYO1JTU9HZ2QmKohAaGor3339fUsddfXS7cfLBwe8l5db8O6PRiN///ve4du0adu7cie9/lE4I+uSTT6DT6VBeXv4o7VYYI/jC/clPfoITJ06gpqYGb7/9NhYsWCBIQ+2uPrrdOLmPz5ShOPmwNZaz5AzDYOPGjcjP3wej0Yje3l6o1Wo0NDRwde7du4dNmzZBq9ViypQpI/crFEYNOeFGR0fjypUrWL16tSANtbti99Zjh+YFswap4XKWU6dOYXBwEDt2ZMLPzw+VlZUoLS1FSkoKtm/fjt7eXmRmZmLVqlWIj48f2V+hMCaIc8RnZmaio6MDN2/eRFhYGM6dO+fC1tnAGQee7VwOY+l8/P1GD5k+fToxGAy8upZYy927d8m6detIQEAACQwMJL29vQ/fg3ACpeM5NrAd0EuXLpGIiAiyaNEi0tnZ6eJWCXHIkrPOCdu5BNj54pbdt2RswpYtWxAREQEGQgvPWvWKigqYzWbk5eW59aNNwTnYQSE2DfWiRYswb948Lg21O2B/xJNSgciNeA2NEFVVVaGr6zoKCgqGyi03AhH57cuXL0d7ezv6+vokvrpcfQXPgf+iem5uLtrb22EwGDBr1izU1NTY3d9sNnOvVQKjEKV5lMfA7du3SWBgoCTebS2GypbX1NSQgIAAsm3btlFzXxR3ZWxhry3/2tfW1pLQ0FCycuVK0tPT46qmORYnt8bevXuRkpIiiXdbCyWx5StWrEBbWxsXgbl48SJ3FxMHLbq7xmTHK3K5XJYuXQqDwYC5c+di7ty5OHToEMxms+w1dvS6PxT27gK2AymmtraWBAcHk/v37wvKnR0JY6361q1bOasuPga/DY4eX7Hk7kV3dzdZunQpCQ8PJ/X19ZLt1nQ2Ejjgk0sHfvr6+pCeno7y8nJMnTpVsM3W7DS5crFV1+l0kicBvw3e9mqWN0EI4fxr8bUODg5GbW0tiouLkZqaipSUFNy+fVuwUp6tzL6PwkO5K/n5+Vi0aBESEhJkG2TPXRHj5+eH9957D6WlpUhOThZMyxWfMEXk7gf/hWg2e4O1NHXPPfcc2traMGPGDMyZMwd/+MMfuG32Mvs+LE4fpbm5GVVVVXjzzTe5MlvTLokTvpbYqjc0NIyrTE+eitgfFxsiuTTUxcXF0Ol0XBrq5uZmAKP0MrUzvk1/fz+JiIggZ8+eFZSP5Iw01jd71AiM4pO7L2K9nDlzhgQGBpKNGzeS27dvy9Z5FIR5V+z4QK+99hrCwsKQnJw8YsuAi7+TvYPlrLqtNlrLISIuk9uuMLaI9bJmzRoYjUZMmTKFS0PNTw7rLBKNOHo3GAwG8vjjj496vFOuly226uI6cne9Ysk9C/YaNjc3k5iYGBITE0NaWlqc2tca1NBfrnfLvg/I94nMZjPi4uKQlpaGTZs2AYCg/ljwr3/9C1lZWdDpdNBqtXYneR04cAA6nU6yDhH723Q6HQBIRl4V3IOysjLk5uZi/fr1eOWVVyQrkYg1agsakGaeFXP8+HH4+voiIyNDkOxzNAVORI8puZmNcnNg7LlcSnTG/RAv0mA2m5GRkYGOjg4uDXVVVZVAE05dR0JsB+K7u7uJv78/aWtrE5SPZPDe2U4GO7MxODiYXLx4UbaOnLvCb3N+fr7izrgh/GvE/v/SpUskKiqKaDQamzq0piOBJZcjPT0d2dnZCA8PF9xtZAQ7cM4+Efz8/KDVaiVW3Rkrrlh094MfOiQ8dyQ2NhYtLS1YudKSpMpaGmqr4zPWvgwAKisrcffuXWRnZ0sONBquijMjXBRFSSIwer1+xNukMHbwNcUXO2DRxq5du2A0GmEymTB79myHZjgCVkRO0zRu3ryJvLw8nDhxAiqVakxCb3Jr29jDUV9dwTPgT7kFhP1FmqYREBCAqqoqaLVaZGVlYfny5bh+/brNY1o1x1lZWUhLS0N0dDT3ZWKhj/ZMQGeeFnyrHhER4TYT9hWcQ5zy2xoJCQkwGo2Ii4vDU089hQMHDnDXnF2sgIUiMia6uroaq1atQl5eHiZOnDhCzR87bt26BaPRCLPZjGeeecbVzVEYZb799lucPn0aoaGhOHnypGBOFcATOT/mffr0afT09Mhab8C5GKWrYOPg4ji5gveTlJQkWOxBYsntDfB4VA48Ba+Er0FH9CjrrtjD3S25ciN6J7Z0Z+uaW1WCrQVS2SH9sYi4OEt8fLxgTrOtxW+VV+g8C/GLFe+99x53fdm+V05OjmQ/gcjj4+O5nVihsKmW2S8Bhie0u4M1Fwu1oaEB8fHxMJlM3I2Yk5MjaSsZwUn5CqMPa1BpmkZXVxcoioLBYOCWx6yoqABFUVCr1bI7C9BoNESv1xNCCNHr9QQAMZlMssOl7prZVKPRCD4zDEM0Gg3JyclxTYMUHhq56SMASHZ2tqQ8JyeHNDY2Ssolpkyn02HBggUALIsn2cIdLKHYkuv1ei62z0JRFKKjo3H58uWxbJrCCCB+AldWVoKiKBw+fFhSV61W42c/+5mknAaGhdLY2CjwadavX4+cnBzMEK3R6U6IT8Inn3yC3/zGshoGv98QEREhqEfcsD+hYJ+0tDRUVFTIblu3bp2sVgXRlcrKSqSlpXEbTSaTWwtcDBnys/kCZnvde/fuBQDBu6kKnkVXVxdCQkKg1+s5b8MRBP5GRUUFTCYTCCHQarUICQlBV1fXiDd2tOju7pb0rtmOyuHDh5GYmOiilim4Es5dYXusrOVOTU0FAI+Y2cdabr1eL3FLAIvbpdFoEBcXN9ZNUxhBWG2aTCbJtq6uLkEkUADbg9VqtUSr1XI9UpPJRABwkRZ3ho3yQBQJ6uzsJAAk0RZ3jQop2Eer1Up0qdfrJdeYD9gLrtFoBHmlMbTKmyeg0+mEK9Px/rEnQxG298CGttl/9kLDlF6vJwsXLpRYeI1G45Ev+dpLdMSPxijD/96DrfksDzV3RUHBk1DMmILXo4hcwev5fwakFs4gduEQAAAAAElFTkSuQmCC"
<image>如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,DE⊥AB于E,AD=3,DE=2,则CD的长是() Choices: (A) \frac{21}{2} (B) \frac{√{15}}{2} (C) \frac{9}{2} (D) \frac{3√{5}}{2}
\frac{3√{5}}{2}
11,023
null
\frac{3√{5}}{2}
"iVBORw0KGgoAAAANSUhEUgAAAJIAAACbCAYAAACJdMJGAAANnklEQVR4nO2dQWwaVxrH/+ymWlRVKu2J3LDiRDS1Gnwj+GBQDzbJSsaXqKgHzAWX7GYB7VaJpUqOpUp21UOYE0ku4FNSX0qqNdjarsCHGNSLOVgxCkggVVpzqcwto021bw82DmCwGZiZ9x68n4Rs3ryZ+cT8+d7H9817YyCEEAgEA/IH2gYIhgMhJIEqCCEJVEEIiUnSkKQybSMUIYTEIOnFW9igbYRChJAYoyxN4dt9ByaujdM2RRFCSCxRlvA91vHNxC5tSxQjhMQMaSz6gK9DwOt9B65fpW2PMoSQGCG9mITnZQh8DWjvMIjMNgOkF2G49bSpIYAUeQI3NYOUIzwSbcoSppIeEEKOX6UoHI7r4GxkwyXaBow0ZQlTPmD9ZZPvKb3CLq7Ts6lfiIAaAAjgINHS8ftUACdtIECApOiapwgRIwlUQcRIAlUQQqKMLMv49NNPIcsybVMGQgiJMisrKwCAra0typYMhhASRbLZLPL5PO7du4ft7W3a5gyECLYpIcsyJicnkU6nAQAulwuVSoWyVf0jPBIlgsEg7t+/D4vFAovFAqPRiGKxSNusvhFCokAymUS9XsfCwsJp2+zsLNdxkhCSztRqNaysrCAWi7W0z83N4cWLF5SsGhwRI+nM/Pw8fD4fPB5PS7ssy7h8+TIODw9hNBrpGDcAwiPpSCKRgMlkOiMiADAajXA6ndwOb0JIOlGtViFJEh49etS1z8zMDLdpACEknfD7/Xj06BFMJlPXPjwH3EJIOrC2tga73Q6n03luP57TAOJ+JI0pFov44YcfkMvleurf8EpWq1Vjy9RFeCQNkWUZfr8f8Xi8519ivKYBxM9/DVlaWsKHH36IBw8e9LwPr2kA4ZE0Ip/PI5vNKhIRwG8aQAhJAxpD2rNnz/raf3p6Gjs7OypbpS1iaNOAYDCIGzdu4Kuvvupr/2q1yt3dAMIjqczW1haq1WrfIgKO0wDAsaB4QQhJRWq1GpaWlhCPxwc+lsfjQTKZHNwonRBCUpFIJIL79+/DbDYPfCzeyiVCSCqRSCRgNBrxxRdfqHI8p9OJfD7PzaQAISQV6KUgqxSj0Qi73Y5sNqvaMbVECEkFeinI9gNPw5sQ0oBEo1HYbLYLC7L9wFPALYq2A1AsFrG+vt5zQVYpzWmAxv+sIjxSn8iyjGAwiFgspmlNjBevJITUJ2tra5ienobdbtf0PLzESaJE0gf5fB6RSESzIa0ZXu4GEB5JIY0hTY3sdS/wkgYQQlJIJBLB4uKirncw8jC8CSEpQI2CbD/wMClAxEg9Uq/XcfPmTWQyGVVqaUoZGxtDJpNhNg0gPFKPBINBLC8vUxERwL5XEkLqgefPnwOAagXZfmA9ThJD2wXUajW4XC7kcjnVa2lKYD0NIDzSBXi9XsRiMaoiAo7TADabDfl8nqod3RBCOofHjx/DarVqUpDtB5bnvImhrQvFYhFerxe5XI6ZoaRYLGJ+fh4HBwe0TTmD8Ehd8Pv9mhdklWK1WiHLMpOTAoSQOvDw4UPMzMxoXpDtB1bTAEJIbeTzeezs7CieIasXrKYBRIzUhCzLuHnzJp49e8bsaiCspgGER2piaWkJPp+PWREB7KYBhJBOyGazKBQKCIfDtE25EBbTAGJoA/2CrFJYTAMIjwR1Z8jqAYtpgJEX0vPnzyHLcssq/DzgdDqZumtypIVUq9Xw3XffqTpDVi9Yi5NGOkZyu90IhUKYnZ2lbYpi6vU6PvnkE1QqFSbSACPrkR4/fgyLxcKliADAZDLBarUykwYYSSFpsegDDVjKco+kkLxer6Ili1mFpbrbyAmJ5YKsUmw2G+r1OhNpAI6FVIY0ZYDB0PaaklDuskehUMD29jazBdl+YCYNQLimRKIOB4mW3rWkAiBAgKTaer5584bYbDZycHCgq4Va8+OPPxKPx3Nun+PPpPMr0P5B9QnnQkqRgCNKSu1tAHFEW1sfPHhAVldX9TROF46OjojZbCZv3rw5t18q0C6as1/CQeB4aAOQTuLpxDWMtzS64QkAu69Kpy2Nx6IP05DWoLc0QBmv9wPwuI/fpSUJZYzj9p07uDZ+zm4K4FpI6eRTBBqfTjv7r1HGceIuEonotugDDS5MA5Q3sTHhgRsAyhK+fXX85RsPhdDl01OOOo6NBikS6BALHbtsEJz48YWFBRKPx3W2TV/29vaIzWbrur0UdbTERe3Dvhrw65HKr7Ef8Jz9RpU3sbELBDzujo9FH0bOTwOUsbkBREsEhBCUog5MqDWeNcHtGpLlzQ3g+np7KyRfGLuBFOJXXmN6Oogvv/wSDx8+pGGirphMJqRSKdy9e7dtSwmvdifgOdXOHXSLBgaBU4+Uxvdh4M7tpm9WWcKU4SrCiKL0xA2/34/PP/8cH3zwATUr9eTKlSv46aefzm5IJ/G0yXM34qKytAipW8KtH1QfLHUAF+RE4vE4WVhYoGukzhwdHRGTydTWehwvnskVpQIEZ9Img9EipP+9/e/pi1cqlQqxWq0X5lWGEafTSTKZzOl7R5cvHDQIuFtiJMOl90B+fwvDpfdU9Hn6wuIMWb2Ynp5GNps9XavgpY63mnEaI3Wm18eiDysej4faXZPn/mojv789/b/hrZrfN/dp92Kd+vayrZd+ndoLhQK2Nv+JrX/93GIT7x5WCTabDbVaDbVaTfeJDOd6pMYF6Pa3cZHaRdbcrmRbM839urU39pdlGeF7f4UkSfjTpT+esa/bOYYRWvcoKRraOn27ye9vNb9QF3mUlZUVzN7+Mz777LOWvqPiiZqhddfkhQnJi4YH2hfrl19+QTabRS6XGynP043Z2VkEg0Hdz3vqkQa9CFpexG7HlmUZi4uLfT8WfRgxmUyw2Wy63+zWMrR18zzdvFKjvX1bc7uSbZ2C+/P2/9tf7iL893/AYrGc7tsej3X6f9hppAH05FRInQLbXui2X3NA3Ou2Tu+77b/987/x638OTwuy7cfs9v8oQCMN0NMESdZ+QtdqNbjdbqTTaW7m6+vN5cuXsbe3p9vnc+6vNj1+kfUD7VX4eUDvNMCFeSTWhoVEIgGTyQSPx0PbFKbROw3A1dz/arWK+fl5ZDIZ6guos069XsfY2BiOjo50OR9XtTatHos+jOi9NgA3QtLysejDyszMjG5xEhdCajwWfXV1lbYpXDE7O6tbnMR8jCTLMlwuF2KxGGw2G21zuOOjjz5CpVLRPBxg3iOtra1hZmZGiKhPPB4Pksmk5udhWkj5fB7b29sjMQtEK6anp7Gzs6P5eZgd2mRZxuTkJNLpNLPPceUBvdIAzHqkSCSCUCgkRDQgeqUBmBQSrceiDyt6pAGYE9IoLPqgN3qkAZiLkbxeL+bm5qg+0XoY0ToNwJRHSiQSMBqNQkQaoHUagBkh8bwKPw9onQZgZmhzuVxYXl4WtTSN0DoNwIRHEgVZ7TGZTLBYLCgUCpocn/r6SI2CbC6Xo23K0DM3N4dkMqlJuYmqR5JlGcFgcGQXfdAbp9OpWZxENUZq1NBELU0/tEoDUPNIrD8WfVjRalIAFSGJIY0eWk0KoDK0BYNB3LhxQ9TSKFCr1TA5OYnDw0NVj6u7R8pmsygWi0JElDCbzTCbzaqnAXQVUr1eRzAYFIs+UKaRBlATXYXE22PRhxUt0gC6CYnXx6IPI06nE4VCAfV6XbVj6iKkWq2GlZUVxGIxPU4n6AG10wC6CEnMkGUPtdMAmguJ98eiDytqeyRNi7bFYhFPnjwRBVkGaU4DqFHE1dQjjfIq/DygZhpAMyEN02PRhxU10wCaDG2Nx6JnMhktDi9QCbvdjmKxiHq9PvAPIdU9kizL8Pv9iMfjYkhjHKPRCLvdrsoKuKoLaWlpCT6fD1arVe1DCzRgbm5OlRVwVRVSNptFoVBAOBxW87ACDXE6nWx5JDFDlk8sFgtMJtPAdwOoJiSx6AO/qJGcVEVIoiDLN2qUSwa+Q1Ksws8/sixjbGwMBwcHfacBBvZIfr8fq6urQkQco0YaYCAhJRIJmM1mUZAdAgZNA/Q9tFWrVbjdbuzt7YnE4xBQrVbhcrlQqVT62r9vj+T1ekX2eogYNA3Ql5DW1tbgdDpFQXbIGCQNoFhIhUIBL168wPLycl8nFLDLQGkAopCPP/6YABCvIX29//77bVe8RKKOd9sd0RIhqQAJpFp7Kb6N5LffflO6i4BXyhKmroaBaAnk5fhJ0xQMt4BoqbUrEwttCRikSUQvQ+OnzeOhbxDABK6Nt3bvIqQypCkDDIa215SEsnamCxgi/X0Yu44o1kNtisFVXA9cx9X2Hc6Lh1IBNI2FKRJojJGCIUf5tT5naCvj9b4D10+l54YnAOy+KnXfRTAclF9jH8BE+/h1Dt2D7fImNnAH6yfHKktTuPU0gBRxD2ilgA+ancjFdPVI5c0N7O6GcfUkPvJhHYQ8gZDRCDB+DRPYxcbm2Yi4LElId9ila7C9uQFESwSEEJBSFAhfxZQkQu3R4CSMCfvQfMnL0hR8uN3ZmXQNthxR0hxqpQIgaGsTDDelqKMlWXle8N05RkonsX/na/QeagmGkfHQS5BQb307CKkM6dt93Fl/J6P0ogG3ngKBVEiIS9CRM/cjTRkM2D3TzYFo6SXO5KYEghOYeaiNgG9ErU2gCkJIAlX4P43u7VXjpTANAAAAAElFTkSuQmCC"
<image>若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是() Choices: (A) 1 (B) 2 (C) 1.5 (D) 3
1.5
11,024
null
1.5
"iVBORw0KGgoAAAANSUhEUgAAAIUAAACHCAYAAAA4Epo3AAAl7klEQVR4nO19fVRTV9b37waEfuBQX+kifc1MtMQaBacotKJggTGp+NS+hhFHXNJpOsu+fsSOttqpbfHBLjurVrHaGbXM2GeEIpWOWOJHRxSoocISRrukjyBYqB8jXYMDfUdL+jRRkv3+kdzLvclNSEIS4sdvLT7uveees+89++69zz777MMQESGEoXuawa5qgAHAElqob8GaefFBo4GIwDBM0NobbkiGmwB3ICLsOE5YoQa26FtARGjRF2KtJgH61qHxsjffwt3EEEAIMQXbSfzOYhgGRK24UD0Lc+ZNAgDEj4/zS3t3W0d7gxBhCitg7yTHzmo7fBSMbg4mwXZ+xapsqHSF0MQztvvuwe9ght+msAKQ2PS2vePB4wv9ezpkr9llNyok+PTcLWQnBJ6XXdkR7Ou6kyVNCEgKGwkMwwAMQA7vurpqFypbrCAroXLrMvxychhnT/jKzZ58B646nWGYO5ohgJBgCh5IICSA83rswnK7qgDmvaKDCkB11UEADmW9gDsJMNi5uwHhw02AAGxfWQmQMNBXVWPF7CywKgatbahhgCzFeI+rNJvNOHXqFDo6OvDtt9/CYDAIrl+4cAHd3d2Cc1KpFBMmTOCOR4wYgdTUVIwdOxbjxo1DamoqwsND69X5E8NuU1hBkLj45nVPM1Bvs0ITz8CK88iSxKOaZqGVqjnDk4+bN2/ixIkTMBgMOHXqFJqbm2GxWJCUlITx48djzJgxmD59Ou677z7uHqVSidjYWEE9XV1d+Oabb7hjo9GI06dP48qVK7h06RIaGxsxcuRIxMfHY+bMmcjIyEBGRgbCwsL89FaGF8POFGI4f+g9xM9b43xBvRx0fBd32N/fj9raWhgMBhgMBjQ3N0OlUiEjIwPJyclISUlBZGRkQGg0Go348ssv0djYCIPBgOrqakyfPp1jkPT09EGlyWBOseFymoUkUwyGms9rUVb6ESoqPkVSUhLUajVUKhWmTZvmdV3+7JiGhgZUV1fj2LFjaGtrw4IFC6DVapGamjpo/SHlNaUQgtVqdXGBqK2tjdasWUMymYweeSSW1q5dS93d3e7vCxA8ae8f//gHFRYWkkKhILlcTvn5+dTZ2RkE6oaOkBl9kIsvpa6uDhmZGcjMzITJZEJVVRXk8nEoKyvDrVu3AAyMJihIQs+TL/qnP/0p1qxZg46ODlRUVKC3txcpKSmYM2cOmpqaBr0/WM/iqvGQhMFgoPT0dJLJZFRUVET9/f1ERNTZ2UlRUVGkUqnokUceIZPJNMyUeg6TyUTbt2+n2NhYysrKosbGxuEmSRQhxBQWIiI6caKOMp5KJ7l8HBUXF3PMwKKgoIC0Wi0VFBTQ1KlTKScnJ+iUulIfnqoxk8lERUVFJJPJKCsri5qamvxJ3pAx7EzBvsbu7m7KyckhmexnVFxc7HSdhVwup9raWiooKKD//M8NlJaWRm+//XbQ6PUn+vv7affu3SSVSkmr1VJPT89wk0REAbYpyAO9aLVYsHnzZiQkJCA+Ph6dnV/j+eef51fC/dvQ0ACLxYL09HQAAMMQKisrsXv3buj1er/RFCyEhYVhyZIl+PrrryGVSjFx4kS8//77w01WYN3cgxlktbW1SEhIwMmTJ3H27Fls2LDBya/Ar6O0tBS5ubkCJ1FMTAw+++wzLF++HM3NzUOmaTgwcuRIvPPOO2hsbMSRI0cwZcoUNDQ0DB9B/hI5VquV+xkM/f39tHr1apLL5VRVVeVR/f39/RQdHU1nz54lIpttsWHDBu56ZWUlyeXykBHBQ8Gnn35KUqmU8vPzRa8HegjuV0nhyQxiV1cXpk2bhq6uLnz11VeYPXu2R3UfPnwYY8eORWJiIneOeIE5Go0GL774IrKzs2GxWAT3kguV4er8cCM7Oxvnzp3DmTNnMHPmTPT29gIIHr1B9VN89tlneOKJJ/DCCy9g//79iI6O9vhBS0pK8Nxzz4leYxnxzTffxJgxY7Bs2TLR667uC0XExMTg6NGjmDt3LiZPnoy6ujqO3oDTHVA5xMO6detIoVDQ6dOnvb73+vXrFBkZSVevXuXOOaoPFiaTiZKSkmj79u1DojeUcPLkSZLJZE6jrECpkYDP/5rNZmi1WvT29uLMmTOIjo72uo7y8nJkZmZCJpMJzpOIlImMjMTBgweRkpKChIQEzJo1y+meUJYQYkhNTcXZs2eRnZ2Ny5cvo6ioCGFhYQF7jiGrD7GOYWE0GjF37lyEh4ejqqrKJ4YAgL179yI3N9fj8mPGjMGBAweQl5eHixcvCq7dbgwB2GiOiYlBTU0Nent7kZOTA7PZHLD2hswUrl7ytWvXMHPmTEyZMgWlpaVOsQbumImPy5cvo7m5GfPnz/eKrieffBKFhYWYPXs2jEajV/eGKiIjI1FZWYmYmBhkZGTgxo0bAWknIIbmlStXkJaWBq1Wi82bN4uWcRcSx2eY4uJiaDQaREVFeU3H4sWLodFosGDBAqcRye2M3bt3Y/bs2ZgxYwauXbvm/wb8baR0d3eTXC4XuKqHAoVCQUePHnU6X1BQQAUFBR4ZW3PnzqXVq1f7hZ5Qwvbt20mpVNL169cF54dqgPpVUhiNRmRlZeGll14Suqp9RFNTE0wmE9RqtcsyntgIH3/8MY4dO4aSkpIh0zRcIBF1u2rVKuTk5GDu3LkCG2OodpNfmIKIYDabodFooFKpsGaNSCidDygtLUVOTs6QYx9HjhyJQ4cO4c033xxe9/EQ4KqjN27cCKVSidzcXL+pSL9Jiry8PDzyyCPYsmXLkOsiIlgsFnzyySd+kTgAoFAoUFxcjNzcXHR1dfmlzlBBUVERADg57XyFX5jijTfegNFoRHFxsdM1MbE3GBiGweHDhxEbGytwaw+lTgBQqVRYt24dnn322TtmRALYZlvLy8vR3t7u0rD3BkNmimPHjqGiogL79+8XFfO+6reysjJRtzbxnE/eMgcRQafTYdq0aXjhhRd8oivY8PQZ2eHqrl27hqwih8QUV65cwZIlS7B//36fhoyucOPGDVRVVWHx4sVO1/hM5i3DseV37tyJnp4ebNiwwaP73HWMr1LLU3jzjDExMSgrK8PixYuHNFT1mSlYwzI/P99JxA/1RZWXlyMpKcnJre0vhIWFoaKiAmVlZThw4AB33hXdnGRyc02AYZx8TU1NxfLly5GTkwOr1bdV+T4zxapVqzBhwgQsXbrU6dpQh0T79u0LmHhnOz4mJgZ6vR4rV67kgnPcrv+AF2tXh9mT/tprryEqKgpvvvmm4LzHH6s3Tg3WKVJVVUXjx4+nvr4+l2V8xZUrVygyMlK0bj5Y55UncEfTkSNHSCaTcWtIfK2HD4tTZGnw0dPTQzKZzKeIca8kBcMwMJvNWL16Nf74xz+K2hFDlRKlpaXIzs72q43izqX+zDPPYOXKlW4nmYjItiKeq0colh2/v4G1scOXVCUmJgaFhYXQ6XRe+y88YgriiZ1t27YhISHB44gpb7F3715otVq/1UciIpMcps9fe+01jB07VlQVAgO5MwYgge5phos0kzDs/yqcB2GAGYK71srxWRcuXIhRo0bhww8/9Loij3H16lWKjo6my5cvey2SPEFjYyPFxMQ4rfUQgzfqwxOYTCaaOnWqV8E5K9SgypYBVbFFpyJgFrWS1XltwjChpaWFYmJivIpd9YqVX375Zfzud7+DXC73jvM8RHl5OfLy8oZlST8bnLNt2zYcO3Zs0PKE87gAHZdQBQBe2XEcK9S1WLXyvWE3NlnEx8dDq9Xi9ddf587RIAanx0xRV1eH5uZmrF271ncK3cBisWDv3r0C38RgxPsbMpkMFRUVyMvLQ2dnp9uy5w8eBfPYOO6YyJZn49HxKtR8/Y2bO4OPgoICHDlyxKNRFuAFUxQUFCA/Px8RERFDItAVqqqqEBMTg+TkZADDFzaXnJyM7du3Y86cObYgFj5f0sDapKPHjiJLncVdYpO4xcU9FkRqPUNUVBTWrVuHt956y6PyHjFFXV0dvv32W+Tl5Q2JOHcoLS0VGJjDGTa3ePFi5ObmYv78+bBYeZY7Y8vsSDiPqg/A5fYEDSRwu3ixA6rH/JPr059YtmwZGhsbPVow5RFTFBQUYP369QHT9Tdu3IBer/cqDjPQ2LhxI+6//36sXfuKs4Oy9QIY3RxMZC+wg5PWQ1izsxpZ6izbPSG0rCQyMtJJWrhSz4MyBSslxOYh/AW9Xo+UlJSAGbC+4uOPP8bx4zX4L4chnb6qGo+Ni3PyW+hengc8vRxr5sXbmCREjE0WjtLCpTQWG5LwPXfp6elcaF2g1hk89dRTtHv3bq/u8feQlIXjM3Z2dpJUKqX6+nqyWq1koVZSAVTZyhs2tx4gAAT1cr/T42+8//77pNFo3JZx66c4e/YsyWQyj/wGvuLq1asUGRnpFGc4GALFFGIwGAwklf5vOr4739b57A8z8H+hviUotPgCPqObzeZBfU1u1UdJSUnA/QZlZWXQaDQ+rwkJBp5KT8dvf/tb/G7nEfT19YFsHxPIavtrJQrqVhPegq8mIiIikJubiz179rgs75IpLBYLKioq8Otf/9rlzeRDkIsj2BC5UARL70clJfjDH7Zj6tSpooE/DILvUxkKXnjhBXzyyScAxOkWMAW/QG1tLWJiYjBx4kSXlfsa5MK21dzcjN7eXjz77LNe1RMsMAyD9evXY9OmTaivr8ef//xnGI1GrF+/XrTs7YJp06bhxx9/RFNTkxPdRCRkCn6Bffv2+XViyhEMwwRFPfkKs9mM3NxcnDx5EqdOnUJcXBzCwsKwb98+lJeXC4JzWPA/qlCXHFqtFuXl5U7nGYYRH3309fVRdHR0QBOA9Pf3k1Qq9TlDXCANzZ6eHkpJSSGtVitqZLe1tVFMTIxPK+iDDVcjxsuXL9Po0aOdns9qtYobmg0NDZgxYwZiYmKGzJHk4oupqanBQw895FOW3ECApbO9vR3Tp0/H3LlzsWfPHlEpplQqUVxcjOzsbPzrX/8KNqlewZVak8vlGD9+PM6cOeNUXpQpDAYDl2zMFVx1tqdE/eUvf8HChQs9qiMYYBgGdXV1yMzMxNtvv+0UysaCeME5q1evxrx58wK6AjyQyMjIcNrVAHAx+jAYDMjIyHBZGQ1xsspoNOJvf/tbQG0Wb1FSUoLc3Fzo9XqPmXXNmjVQKBRYsmQJd47sw9XbAY5MwdLtxBRGoxFtbW2C2UpH+MIQ/HoOHDiApKQkjB071ut6AgH+CGMwdcYmV2fx4YcfoqOjA1u3buWuO5YJVaSmpuLUqVNcuB7br06ZbBoaGqBWqzld6q+hFr+evXv3YtGiRX6pdzDwpZqjhDObzXj++efR3d2NxsZGjx1o/DrY4Jzk5GRBmGLIZeYXQVRUFJ544gmcOXNG8DE4SQqDweCUEsif6OrqQmNj47A4rPgd1Nvbi4yMDNx///2ora0dkkc1NjYWlZWVyMvLQ3t7u2h7jggVSaJSqXDixAnBOSemqK+vR0pKSsCIKCsrg0qlCppbmy/KHUcYzzzzjMsRhrdITk7Gjh078Oyzz3IpDm8HpKSkoK6uTnDOiSlaWlqgUCj83jjbIf5cSe4p+KkG+SOM/Px8v7azcOFC5ObmYtGiRYOG1YeKWomLi0NbW5vgnIAprl27hqioKL+uuWDBMAyam5tx9erVYXNrsyOMgwcPio4whirSiQgbN27EyJEjsWrVqiHVFSzIZDJ89913gmG1gCna29sRFxe4ULKysjLMnz9/WNza/BHGk08+KVpmqF8ve/9HH30Eg8GAP/3pT0OqL1hQKBQCaSEYfbS0tECpVAakYYvFgvLyclRUVASkflfwdYQxFERFReGzzz7D9OnToVQqB3UEDjcmTJiA1tZWbqG4BBgQm52dnW5nRYeCmpoahIWFufxKAwF/jjC8hVwux/79+5GbmyvYzjIUoVQq0dHRwR1LgAGx197eLjAyPdWxnpQrLy/H888/7zR9PnDgXRvu2iQij+YwAo3U1FRs3LgR8+bNC+nMOQqFQjCUlvBfrtFoxEMPPcQde6JjPXHQGI1GVFRU4De/+Y3gPMMwaD24FQwTBmb2CvH6AbQe3AqJRALdVr29TftQkxmggY8vvvhi0DmMYGHJkiVQq9VBc9b5glGjRuGHH37gjiX8DjUajXjwwQe9qtATxjlw4AAmT54sGq0dP28NWvSbgeqvcV7042/Has1aFOpbsHONxt6mvW0aoIFlDF/mMAKNLVu2wGQyCZbuhRIefPBB9PX1cccCQ/Pf//43Ro4c6XWlg0mLffv2ufVNdHYCarXE1ss0sMKbyIKVsyeiRr0c1YPEQLJRUhUVFaivrw/oKMpbhIeHo6KiAk888QQSEhKwePHikHKBR0VF4fvvv+eOw/nEmc1mn3wU7h6O3XS+rKzMZZnqS5cwHtX4uhWYFA8QrGAgwcFtvwXzmA66R9VuXyI7wvjnP/8ZtBGGt4iOjsbhw4eRlpaGCRMmcBOOoYCoqCj8+OOP3PGQ1cdgqKioQFZWFkaPHg1AxGDEeYwbNwuPjlfhm87zAAAGElBrJapJjXF0AePiFC4ThvBHGJ9//rlPDFFbW4uJEycGfO+uCRMmYO/evViwYEFI5fKMiooS2BSCcDyMfJDM1pvczy2fAsCESExMpMrKSi7UyxHnDhbSp61Wqty6glYU2stRK81S62x/2XwPDigoKCCdTkcKhWLIW1AqlUpu/UZKSopLWv2FrVu3UlJSUshstHv9+nWKjo7mjoVzH30/IIIJAwMGEoQ7z6t7iebmZly6dAlz5swBIK5mjncyyJ4kPL9t5U784fgfbcv9dXMwSWT93ZUrV1BSUuLXEQbfYA2kvn/55Zfx85//XBCcE0oQMEVUVBQ3nvbHS/nkk0+Qm5vrtK0kBzoPIluOh/GKcfj60jfQv6cDVMswCQyqjleJLtYtKSlBRUUFcnNz/TLC2LFjB5RKJR5//HEuWMYVBsjwPZ8VwzD44IMPcPnyZfz+97/3uR5/oa+vTzjA4IuRhx9+mLq7v6Wb1lvUT1a6xakSW743q/WWg1qx0E17mZsCcWshc7+JxsY/SjV1n9s3rGYz/gzc89+HN9vTA1mIWisJgF2FWMhK50gVq6b/tpq59omI8tfn08SkeHpp7W9p/dsF9rpZWh3ptgraM7tRCaLqwso/b+E/hF/Q3d1NMpmMjhw54r9KfUBbWxspFAruWCApHnjgAU5SEAHhdlUSztjyvTFMGE+tEPoJCGdGIIIJBwMLLNx5KxrqG0FGCzJnpqGfFcn2axJmBF6eHYGk59/CoqcioW+1SSWVrhA712igf+8lREpTUPf/qvFzyX/ga/Tjf8xm5Ob+CifP1KO+ph7/68FRYKxkr5ux00qwkAUSZoRdDfbjJkdjGBhYXH7ffMloc6gxYCQMJBIJnl5RCE6o+lGrxMbG4vDhw9BqtWhtbfVfxV7CaDQKRp2CuY9Ro0ahr4+vPiQIB7hOBSwDniNYYIUFt+gWblI/rLDaRasFVkjwUXExtFotJEyY/dzANQmAnccJN7/7Ht/3/g/+TzwDTNKgesfLAADNK+/D+M8+3LxJIKqB9LvvMSszA/c/+CCOHjqOUdEPDZAj6GgGYUw4TycyCGMkgn4czCG/VadGguYoWqwW224C1hbQB69CvdK9WvEViYmJKCoqwjPPPDNswTk//PCDYNQmmPvgD03YF2mTDhZYQLCQBMIZhHCMQDgimBGIYCI4w/SHH/pQadf5/LpsPWIV7RgbY/IFF4HgsA7jv3YjLIyBlbECkPjXGCQbQ6ztGA+iGsQzEoAACROP7fpC1Ow86uBx9cymoEHmhYgI8+fPh1arRU5OzrBsa2U0GgU2BdcLVrqFqFFRuH79BvjpQQEGYQAs1A8SfHVhkKAfFq5jyP6awlB19DPET51sn4a3ghAGCawAEwYJCBZ7stKBa46GrQQMLDjBRUltxBtvvGlvk2AlBoAVYMDd7zPsfdZ6aCvW7qpB5bad4DrcsUMZ/rFnrQ7GuOz1DRs2YNSoUdDpdAOkBSmO8/r16wL/FPdkDBhMmKhEx+VOSBxErk1aOK4cYhDOMLDSLdykW7hJFu78R3v2InfRIvt5CUbYVRGr+wn9uAkz7xpgs0Vuot9O1selpfj1/30OBw7uR/avcnhthgHoh3UEwSqB/X5CP1lAIFioH9ZBjwWPAQD4YMdaqHSF0MQzIHamTWL72/HNwDaWvnYT8daDOHY2e620tBRNTU3YuXOnjbQgucE7OjoEcTScK4JhwjH+ZwqcO3cOYpPMjOgXGY4IB7p7e3tx4vPPUfrRR4hgRnASwcYUtr8RDL8m9hqDcMaWeY+dw6j7Wx0efXSscLodEoxgJJDcYnjTJAzCmRECOiSDHPNBOI8LNcCcl8T9KdVVu6DSFYr4S1jaB4e7LSn46vvw4cN48sknoVQqAxpVz0d7e7sgRFLwRAkJCYJ5dRZEfAPTPcrKyjBnzpyBdagMvxmxFzhwzmw2Y+HChTh58iQaGxsRFzfO+QXy//eTdGXOf40aAI/G2bPd8WTJ+UPvYVcNoFv+iv0Lt/K+dP+nWZbJZNi/fz+0Wm3QgnMuXLiA+PiBCUfBUymVSgEhrGroR5io9BADm4RETES6AhFxcxgPPPAAampqgjqpRZMewywAFzvYYaHttRDOY9W8tVCtsKkVdkQWCLHOfz+pqakoKCjA3LlzRYNz/G1rOEbcCYJsYmNj0dfXxxFiG++P4Ol992hvb8elS5eg0WhcikgxXLhwQRAlFR4e8C3YBWAwCXNWqLBm5w7bCQJwXg8JEw/otqB6h392T3RLg8P7WbJkCbKysrBgwYJByw4FXV1dGD16tMDrLHFsYPLkyYOmIBYDEaG4uBgLFixw7dYWgScrvYOBNTursYIp4pxWTHw2KlusQoawBndVV2FhIQDg1VdfDVgbFy9edIrLFTivACAtLQ1NTU1eV84wDJdw3VOERpTUgP2w8zgNJDkjGkjGzpkQTFATprK7CFZWVqKkpCQgQ9RTp05xGQbY+p0spYyMDNTU1HhdObuknR/O7u4h1q9fj3fffdflSu9gjdEdXwEJDEk7eMKUgjNK5GiIjo7GsWPHsG7dOvz973/3uR5X52pqajimYLWGhBwimlJTU1FdXe21Z62kpMQpOFVM94nlkhJDMEPVOP8BbAE+trYdPZa2Y4YtGGDwnz8uLg7FxcWYP3++18E5Yu+RPWc0GnH69GmnKDAnmyIqKgoTJ050SnvjDmazGZWVlYOuER3OdRjuwK01JTgNNwem7XkSZRhCK2fPno1XX30VGo3Gp8w5YhKjoaEB06dPd1r+IBEr7CrtjSvo9XooFAq3q8sc12FIJMHdSskjMCKOJe7X8GPVqlWYPHmyT7spiEkMVxmLnCQF4D1TlJeXiyYdZSE2wgiVSObbDUVFReju7h5ScA4rCFymsRILuvAmZWJPTw9FRka6LFtcXDyk1IiuEMzc3MMJseCf3t5ekslkXOyrL7h8+bJgvzZ+O05DUsBmV2RnZ7sNy2dRVlaGzMxMp/SKROQyl5Rje/fgGmISdfTo0Th06BCWL1/u0aYuYtizZ48gsS2/HYnjCRYLFy5EaWmp03nHDi0vL3fKcmc2m7Fo0SLeHIZwhHFPdfgG/rufMmUKPvjgA2g0Gp+Cc8rKylymmHJp7anValy7ds1pgozfoe3t7WhpaYFGo+HO9fT0hOQI406A48c0b948aLVaZGdnDzoi4TNUU1MTwsPDXWYCdMkUYWFhyMnJQUlJictGysrKkJOTw7m129vbMWPGjGFd6X03gWEYbNiwAVKpFCtXrhy0LIs9e/bgV7/6levC7owRsU1g+AaJXC6nEydOEBG7UYqUysvLfTZ+vMHdYmh6ArPZTImJiR5ttGsymbhNYFwteJK4M/kSExMRFxeHvXv3OnFcXV0d+q0WzJw5UzCHwedAumdQBgURERE4fPgwCgsLUVtb67IcEaGoqAiZmZmQy+We7yFmcVjYYDAYSKFQCLO9W4mWLl1K69ato/z8fFIqldTZ2ekVd3sDMY6+JymcUV9fT1KpVNAX/HdnMplIKpXS2bNnRe9nSzrZFGx0JuveTU9Px5gxY+zSwub/N9+8hfLycnz11TmXIwx/4t5oxTPMmDED77zzDrKyskRX+hUVFSElJYXLbcXO4RC3LscGB6awCgvYS7311lt4++23YbHYwu737SvDzZs3ERv78L0RRgiBYRhotVrMmzcPCxYsEExq3jSZ8e6776KgoIB3w8B9fDgwBS/UjGcO8KXFhfZ26HQvITMz894II0Tx7rvvAoBgX/oP/lSEadOmcVLC2drjzQp7qq8MBgP9bKycHn74YYqIiKCrV6/6oPX8h3s2hXv09fWRUqmk4uJi6uvrE7UlKreuIIZhbGkYVMuJ6DytWFFIDJFNXxA/rsIWWICWQ1vRGfcKF4GUnZ0No9GIlpYWLF261InXiIKXsoedsBOd0LkHAMA333yD/fv345e//CUiIyMHtp08rwcTnw2VrnAg3PD8p5DEz8fywkrYmMLOBHwQzuNpJh66FivHFFeuXMGkSZOwdOlS/OQnPwne0/HA5pC4xxSe4bvv/o2//OVDXLx4EbGxsVy/YsV7qN5pW7vL9v9WnRqk3mZfDCTycW9buROMWo3HePnH5HI53nhjHb766hz++te/Bv6JePBUCg3wt+cLde5kqNVqbN682cYQRNC/twM1mIXWnasHCtlfq+LRx0Dj44U2BTtOrSxcSYX6T0nFqJxSC5lMJlIoFFRVVeVSnwUiNdAKNW87afsPg9tjf/HhQnl5OSUmJg5Mj1MrzeJygLiCRWSv89ZK202tlQT1UtEkHVVVVaRQKKivr88vxA8GlgTd06DK8wPnW/SFpNIVur7REri8VaGOnp4ekslkwjiW1gMEgDbrW4hLwkLOXewkX1fuqsHONRpYGStU4yfwcloOLJCd/fRszJo1K2g5m2xLiFvQjuXQTLTZO1u3VmLSvDnIGveoU3mWTnaB8N2I5557Dnl5ebaZUFa22tUp/zfAC0Zmx6l8DqncukwgnsW+QparTCYTPZ44lYqKivzB2C7BqqIWfSEn9iq3rqBCfYvgujgsbq7dudi0aROlpaU5b0RLraSyqw+n99Z6gHunA0zRclCga7hOcHrnAy/68uXLJJPJXPrS/QGr1UpktTECn2FtubLYQgFrPuTh2Ln19fUkl8vp2rVrouX17+mIATgGILL1Nd82g9VqtdsPQoONn9fSEfxJs2DZFyvUA4ygU6uoxcqmQHOm7m5FT08PyeVyqq+v553lvQ/7y2rRF7rVCChcobJdZOwv3Sq09N0ZciyTrlu3jrKysujWLX+kYxVBy0GCapn9wEJbt24TlQ5Whwx9dwOsVitZrVYymUyUlpZGmzZtclFwsJosXBmP3dzuiCIiysnJoby8vEGHo+LXXXeg1Wol/Xs6mx50uKbT6byk9s5Ef38/aTQaWrJkiV/qG7J3h3Uo7d27F93d3Xjttdc8Ki+ExOVKPIZhcPzoTqiz5gl8bLqnGWCcyieab3eQQ/DSsmXLANimxv3VgN/Q19dHiYmJVFgornLcSRGxay36woEJG/4PI2Js3oWwWq2Un59PaWlp9OOPP/qtXr8yBZEti6xcLqfi4mJ/V30PDti+fTsplUq6fv26X+v1O1MQ2YaqCoXCo0BSR3uC/+0HMpP+7Y4NGzZQfHw8dXd3+71uburc37h27RqysrKgUqmwZcsWVlUBENoV9yaw3INEJgJffPFFtLS0oKqqKiBRbwFjCsCW/yA7OxtSqRTFxcWDR2mxlLj0Tt/djMPm9gBsK/O8SSPlDQL6hqOionDkyBHcunULWVlZuHHjhvsbGDjHdQh49u5liN7eXqhUKsTExKCiogIREREBayvgbzkyMhLl5eVITk5GcnIyzpw549V6kLs9kpuI0NDQgClTpiArKwu7d+9GWFhYYN+L360UB/CNxSNHjtAjjzxCO3bs8Oq+uxmbNm0iqVRKBoPB6Vqg3lFAbQoxdHV1QaPRYNy4cfjwww/vLQ9wgd7eXjz33HMwGo2orKx0SvUQSARdSctkMjQ1NUEmk+Hxxx/HsWPHBNeDzKMhCb1ej4SEBCQnJ+OLL74IKkMACLz6cIfa2lpSKBQ0d+5c0SUDjuLxTlIpYs/S2dlJKpWKEhISHGY63d/nbwyrOf+LX/wC7e3tSElJwZQpU7BhwwZBngVvUjnfbnDcD/b1119HSkoKsrKycO7cOcyYMWPQ+wKGgLOdh7h69SppNBqSyWQCF/mdJB2IhM/T399Pu3fvJqlUSnl5eQHxTvqCoDGFp51rMBgoPT2dmz/p7++/4xjDZDJRUVERyWQyysrK8nuSuKEiZCSFI1jmkMlkVFRU5BRvSHT7SRGTyUTbt28nqVQaksxAZHunIckU/M5mmUMqlZJOp6OWlpZB7/G0bn/ROBhOnz5NS5cupZiYGI4ZQpmhQ5IpxNDW1kZr164lmUxG8fHxtGPHjoDpYH902NWrV2nLli2kVCpJLpdTfn5+QBO7+BNBd14NFUSE2tpalJWVoaKiAklJSVCr1VCpVC6zvQ1Wn68WveO9DQ0NqK6uxrFjx9DW1oYFCxZAq9UiNTVVUHYobQYDtx1T8GGxWFBTUwODwQCDwYCzZ89CrVYjIyMDycnJSElJCdhMotFoxJdffonGxkYYDAZUV1dj+vTpyMjIQEZGBtLT04O+w5G/cFszhSPMZjPHIKdOneKy0SYmJmL8+PEYM2YMpk+fjvvuu4+7R6lUIjY2VlBPV1eXYC+1vr4+nDlzBleuXMGlS5fw5Zdf4r777kN8fDxmzpyJjIwMZGZmiiahD3WpIIY7iinEYDab0djYiI6ODnR1dTklor9w4QK6u7sF56RSKSZMmMAdjxgxAqmpqRg3bhzGjh2LtLS0OzqDz/8HeHj/NLx/BbYAAAAASUVORK5CYII="
<image>如图,△ABC内接于⊙O,AD⊥BC,BE⊥AC,AD,BE相交于点M,若AC=8,BM=4,则⊙O的半径等于() Choices: (A) 2√{5} (B) 2√{3} (C) 4√{2} (D) 6
2√{5}
11,025
null
2√{5}
"iVBORw0KGgoAAAANSUhEUgAAARoAAAB2CAYAAAAX8lwvAAAno0lEQVR4nO2df1BU1/n/33eh4qd1qjOhkYwYRdAimAa/wcRELSbswhoxLBGjqRhhxIosqQjLV6xYzScaMSyKFhQraTBiYypmV4URBKwmMqORFhpZpAH8EXECkU5kJC34de/5/rF7l7u7d3/B/ua+ZhS4P5977rnPec5znuccihBCwOMwCABK9xcNQKD7S3WmEB0hWZCEU8Yn8vB4EQLLh/CMBn0VMlzcBG3IlMicLQ4Pj0vgFY2TMDQb92eUgBKJMCucvZUG28DkjU0eb4FXNE6CwrDiUO6TgoiEoOto0IbHURTn7zw8ngyvaBwM2yahKApoU6KOiJA9k0KDaBbm6HWuBCBEzTrRUA3x8HgmvKJxNAbdn4xD9SjJlgAAhLOCjQ6nKB/tLzQI4S0aHu+AVzQOht39URa+i5KSElAUBSo8AYYWCyGE5ZcRgKJ4Hw2Pd8ArGmfRpkQdonXKpFUpx6ygmXp9K4qiQFGUnrLh4fEGfF0twJigTQkqswbkQikAjW7p6OoEMNNw/BsA7wTm8T4oPmDPsRRKRZAdqgcAKFppSMIoSGMpHKrT7BdK5agrztZZMbyS4fFGeEXDw8PjcHgngDMgBgF7BGhoqENjY6OrJOLhcSq8ReME9POdgKamJgiFQsybNw91dXVWn8fD46nwFo0TYJQFIQTt7e1ISEhAfHw8/vGPFrS0tLCOpDnP4+HxdHiLxtGwzJK7d+9iwaKFOLC/CDdu3EBLSwt+8pOf4K+nTvFKhcer4S0aR6PVIH19fRCLxfhD3nYsX74cgADPPfccrl69iltdXS4VkYfH0fCKxgkMDAxALBYjOTkZv/3tb7Vbafj4+EAmkyE/P9+l8vHwOBo+YM/BDA4OIi4uDq+++iq2bNlitD85ORmhoaHo7e3F5MmTQQjhY2l4vA7eonEAjNtLrVbj7bffRlBQEAoKCjiPnThxIjZs2AC5XA5gOGCPd53xeBO8onEAjLJITU0FAJSVlZk9fuPGjaioqEB/f7/RNXh4vAFe0TiInJwc3L59GydPnoSPj4/ZY59++mksX74cpaWlTpKOh8e58IrGAezduxf19fWoqqqCn5+fxeMpisLmzZtRXFyMoaEhJ0jIw+NceEVjZ8rKylBeXo66ujpMmDBBt92SzyU4OBiLFy9GeXm5gyXk4XE+vKKxI6dPn8Z7772Hmpoa+Pv76+2zxueSnZ0NuVwOtVrtKBF5eFwCr2jsRENDAzIzM1FXV4dp06aN6BoREREIDQ1FZWWlnaXj8QZM2cSEEJP73AVe0diBa9euISkpCQqFAr/85S9Hda3s7Gw+gI+HE1M2MUVRoAwnsnczzcMrmlHS3t4OiUSCiooKREZGjnpYevHixRg/fjxqa2vtJCGPt2Ho7yOEAIT5lLUKx82iI3hFYyPsl3z37l2IxWIUFxcjOjrabvfYsmUL9uzZY7fr8Xg+Rsv2sGg7uw/KNtY806qzoCgKSpX7mDW8orER5iX39vZCLBYjLy9PmyRpzEijeyUSCXp7e3Ht2jWj6/ERw2MTPdVC2L9qllbWRZQDUNbWAqKNbrWmO69oRsCjR48QGxuL5ORkXfQvF9Z2o7iUR25uLvLz8/X2Mask8Iw9iInfNUsrx2JmmHbOae12uVTqLNGsglc0VsD+2IeGhrBs2TIsWbKEM0nS1Hnm4FIeSUlJmikkbt2yTVger4RdQ5jqoihM1y6t/ES3jwC4hWBkxest6u5yeEVjBYwiUKvVSExMxMyZM63yodhifRgqJR8fH+Tm5mLXrl22CcvjZZhYFlmlRD1idEsrh4ECiEYhZWVluZsvmFc0tpCSkgJfX1+75iSZW2Zl3bp1qKqqQm9vr93ux+NpsD/RYaWTcbgexdqllaNnztBsdDftwoJXNFaSk5OD7777zqokSVswZ/VMmDABUqmUj6vhAQDdWuzKfVKUlJRAQFEQzEk0rkNuOF4w5hWNNX6U3bt34+LFi1AoFFYlSdqTjIwMoykkeMYmFEVpllYmItA0DUIIbij2YlZQsMGB7qdrxryiseRHOXLkCCoqKlBbW6uXJGlvTCk8f39/JCUlYf/+/Q67N4+H0KYEtfkCSrIlunrb0cU9WOBuvagxr2jMcfr0aezZswd1dXVGSZLOJCMjA0eOHOGnkBiDMM1PoVQEKjwBuHBYF4gnjaGQkH0Ih2QJiJUWDp9DDFcsdD38cismqK2tRXJyMi5dujTq/CUudu7cqffTMF7GkJSUFERERGDTpk26bfz8wmMJGp5sF3iu5A7kq6++wtq1a3Hu3DmHKBkumGA8U4pj06ZN2L9/v94UEryS8X50zQ/hGn3iGvo2MRzuYnhFY0B7ezvi4+Px2WefITIy0qWysK2c559/HnPnzkVFRQXnfh7vRNOU0AZOF81n29DwN471293zk3ZPqVzE3bt3ERMTg8OHDyMqKsrV4uitiEBRFDIzM1FUVGS0nw2vfLwR48+0ubkZEonEYwI6eUWjpbe3F0KhENu3b4dEInG1OHowCiUqKgoTJkyAUqm0eCyP99LV1YU33ngDb7zxBr766iu0t7e7WiSLjElFY9jq9/f3QywWIy0tDevXr3eRVNaRnZ2tZ9XwjB0IIfj+++8RHR2N/Px8hISE4MUXX0RhYaHlk13MmFQ07FZ/aGgIcXFxEIvFyM7OdqFU5mGUo0QiQV9fHy5fvmy0z9Q5PJ4L+x3++OOPiI2Nxe9+9zusXr0aFEUhIiICVVVV6OnpcaGUlhmTioaBSZIMDQ11+4mm2MoxJyfHoq/G3HYez4GiKBBCdA2iUChEVlaWTgH5+fkhKSlJL//OHRuYMa1okpOTMX78eBw9etTVotjE6tWr0dzcjJaWFleLwuMEKIrCmjVrMHXqVN3SykwjQlEUNm3ahI8++kgX0OmODcyYUzSMts/IyEBPTw+OHz/uYoksY9hC+fr6YvPmzThw4IDFY3k8n7S0NPz3v//lXPOLEILAwEAsWLBAL/TB3RhzioaiKOzevRtXr16FQqHA+PHjXS2SRbhaqLS0NFRVVRlNjOWOrRnPyNm5cyf++c9/4tNPPzU7a4BMJnPrfLgxp2hKSkpw4sQJ1NfXOzRJ0tH4+flBKpXi4MGDRvsMrRppDKUXeaz7F5PuLHF5RsCRI0fw17/+FTU1NRbramRkJPz9/d129YwxpWg+++wzFBQU4MKFC5g0aZKrxRk1mzdvRnl5Ofr6+vS261s1NEouEKTFAGdan+gmOG9VyiGcZTC9AI9LYTcQSqUSu3btwvnz5zFx4kSj/VxkZmZCLpc7VMaR4lWKxtyLqK2thUwmQ01NDQIDA50oleOYOHEiUlJSUFxcDGD4+fXLQQCCNnQRKd4I9wFBG+TyzxEWvwTioBkukJrHFEwDcfnyZaSnpxutemqpW7xs2TLcuXMHKpXKoXKOBK9SNKZeRGNjI5KTk3Hu3DmEhoY6WSrHkp2djZKSEgwMDOiNRLBpO1OLEHEMAODMvhIgZBYohCE7O8Hp8vJwwzQOKpUKiYmJUCgUNtdVHx8ft7VqPF7RWDInVSoVli9fjpMnTyIiIsLrRmUCAwMRFxeHjz76yOQxHZ23cFgWD4rSzF8SMlM7Q753FYVHQ1GUbkHC8vJyvPTSS5zHWaq/a9euRU1NjdvNM+3xioadeGgI8+JKS0t1SZJMAJQ3IZPJkJ+frzeFBJu62mIobmimfpSKhJjFrMTBD1C5DUyu3a5du7B06VKTx1nqPk2YMAHJyckoLi52q3ru8YqGwfAF9Pb2IioqCvn5+UZJkp40BGxNZQkPD8f8+fO54yjalDiE4VULZ4iXaJbm4HEbBgYGsHTpUqSmpmLt2rUmjzNXF9j7MjMzUVZWhsePH9tVztHgNYqGTX9/P6Kjo/Huu+9i9erVrhZnVFirFGUymd6UAUzFU9bUIT02Rrc9KysLgCZg0V0nSRpLDA0NISEhAa+99prFBQnZ1rjhMj3sejJ58mQIhULOAD9X4TWKhil4JickISHBrZMkR4t+60bjlQULMGXKFN0UEkzFq6s5BJE4Xu9caQwFEiR0kqQ8piCEYO3atXjqqafw4YcfWnWOoWJh1wO2EsrKyrKDU9hMQ0Rgk4/PoxSNOdORoiio1WpIJBKEh4fj/fffd6Jkzkff0hGAgibZkmkVVWcKQVEUDtUBCXMEuiA9gXabRvl41Ov3Ot5991309/fjxIkTnPtt9bGwldDcuXMxZcoUVFdXj0JCg/rBFoeCTT4+j6pplroRq1evxoQJE+y6kqQn0NfXh7179yItLQ09PT1oqKtHeHy2LjiPEAKaEBCaQK39W+Oz4btOroJJgzl16pReaoGlSeqthRCCnJwcXRKm+YO5zzdSdJSxjNbiEYrGGidYRkYG+vv73TqxzN60tLQgJSUFzz33HO7du4dLly7h4MEiyPcZLL0BbR2hDBshj3j9XkdZWRkqKio4UwvsNVBBURSWLl2K+/fv62X5c35LlGGDQ7MmyjdujExtN4dH1DRzQ9IURWH79u34+9//jlOnTjl9JUlXcOLECSxatAgrVqzAggUL0NHRgeLiYgQHByMp6R10dnbqKpcnjbCNBZRKJd577z2cP3/eKWuFyWQyvRn4uOuDYRdJYHof5zGW8QhFA5iOlykpKcGpU6eMWgd3iiGwB729vdi5cyeeeeYZKBQK7Ny5Ex0dHUhNTdV7bh8fH2RkZCA/P5+1VMfwdTTlQhtt53E8jY2N2LhxI2pqajB9+nSH3MOw3qekpKC+vt58AB8xSLwVUKAoH/3E2zYlKIrSLV5na4SEnqJ5/ITo/rkrbI3MJElevnxZl3jGdZwnc+3aNaxZswYRERH4z3/+g6tXr6KyshLR0dG6YwzfVlpaGhobG3Grq0OzgV0UFAXNazdcwoPHkahUKqxYsQKVlZUIDw+3fMIIYdd7QgjGjRuH1NRU8/NMU0DJBYJ0EaBopbX+GTValXLEzJwJADhzvg4QaeOxRqAe9BTNOF9K76c7U11dDZlMhoaGBkyePNnV4tgVtVqNY8eOYe7cuVi3bh2EQiHu3LmDDz/8UC/JjsHwbfn5+WHdunUoKDCetHr4WI8xZj0eJkL90KFDWLBggUPvxeVMzsjIwMcff4yBgQGT59Fox78ghSScAkEbCgvPICx+CWJmTNfuJ5BLpdoLa0e3beg1uFVts1ZwdpJkcLBnTnXA5dW/d+8etm7dioCAANTX16O4uBitra1Yu3atzb6nzZs34/Tp00Yms7d1Kd0Bc2Xa19cHsViMHTt2OGUZHy5LfvLkyViyZAmOHTum22Yo880z1QgViwAwibcheom3txCM7PhhS4wycS9TmFU0hl0prq6Vqa6WuW6YqX2GgnMd19LSgpVvJ6Hy8zMIm/O80fGGMrlrN5C9/O3ly5exYsUKvPjii/D19cWNGzdw/PjxUbV+EydORFJSkpHJ7C1dSnfCVJkODAxALBYjKSkJqampevucpfCZu2za9C6Kiop0+XCGMnd03kFJtkSbeFuK4BD97t1og1/NKhrDrpThz8dPCMb5UhjnSxkpH2a7LfvYsI9j6OrqQsLyt3DkcDGiFr2idz77p6F8rlA2liqSWq3GP/7xD8yePRvZ2dmIj49Hd3c33n//fQQEBNjl3rm5uSgrK0N/f/+orsdjO2q1GitWrMD8+fOxbds2o/1OU/jauvB8xP/B9OnTce4cdwBfXW2xxj9DE0hFr2FmGG3XsQKbuk7sj5i9zV4fsqmPc5wvhd7eXkRHR+N///d/8frrr3Mew/5p+LuzMVWRvv32W2zevBn79u3DvXv3cPz4cTQ1NSEpKcnsnLAjuffkyZMRFxc35gIY3YHVq1dj4sSJuknJXAUTGkKBGerWD+AjACvxlgAUEBQrRjglsOtYgUVFY8kiYFsno8XUx8kkSebk5GDlypUeaf7X1tZi2bJlWLBgAfz9/SGVShEfH4/IyEiH3jcvLw9FRUW6pTh4HAO7kczJycG///1vPZ+IK6EojWyxsbHo6+tDU1PT8D5oEm+lS0Rg1AHTTdIk3toHnaIZrVXiqO7JwMAAXo+LR0JCAqSM19vNYSpdf38/SkpKMHPmTOzZswdJSUm4d+8etm3bhp/+9KdWX2c0BAcHY/78+R6xrIwnwzR+e/fuxd/+9jcoFAo3Ch7VfuZEo0T0ki2JJvFWGCPRO8PeibdGcTRclglj1RjuY7Yb7mNvt2UfW1mN86Xw36EneGvVajwXHqpLkjR1Ppfz19TvjubWrVtIS0tDSEgIWlpaoFQqcenSJaxcudIm5WGN5WbN9XJzc7F3716TE2Px2Idjx46hrKwM1dXVbrfCBiGabtGaNWvQ2NiI7u5uTeKtwDjxlknGNcz6Hw06RTPS7o+p88x1qUztM/z7naS38fMJ/2PkY/iJj/F9Da9p6ndHolQqIRKJEB0djbCwMHR2duLo0aNGAVr2HHGwRhm99NJLCAwM1E0hwWN/qqurkZeXh/r6ejeL69JEgVNaj8s4bYxVVlaWQeKtWveT1ku8tQ++1hxkytKxFUKI1f6VtLQ0DAwMoKqqyug8d/LR9PX14dixYzh48CDCwsIglUrNxku4Svbc3Fzk5uZi+fLlLrm/N2Cq/l67dg3JyclGqxY4+r7WobUlKODRo0f45JNP8NFHH+H777/HgwcP8Itf/ELvOEIoOKKKWhVHYy+sLazt27dDpVKhsrISAoHArRQLg0qlwvr16zF79mx0dHTg4sWLOH/+vFOCskZCbGwsAKChocHFknguXPWwvb0dEokElZWViIiIcOh9R2oJ9/b2YuvWrZgxYwaamppQW1uLd955B3/5y19M3sveWIyjcVa3g+HAgQNQKBSoqqrCz372M6crGUsvk8mclkgkiIyMxO3bt1FaWuoREcpbtmzx+gnBnMndu3cRExODw4cP6ya/dyS2fgsqlQopKSmYO3cufH190draio8//hhhYWHIzs5GcXGx0/x2Dk9BMPXhcm0/ceIE9u3bh4aGBqMkSXPXsidcL7O3txe7d+/G1KlTUVlZiby8PHR0dGDDhg1u5/Tjgim3t956C/fv39cb3uQZGf39/RCLxdi2bRskEolTUzu47sWexrO6uhoikQgSiQQLFizA7du38f777+Ppp5/WHR8aGoqQkBCn+e0crmhMaWHDLNPq6mrk5ubi4sWLegVizbUcRVNTE9asWYM5c+bg4cOHuHLlChQKha4bwuDu+UNMuQkEAmRmZmL37t0ulsizYVILVq5ciQ0bNgAwrs+OhOs7ePz4McrKyjBr1iwUFRUhMzNTN40IM8xueJ5MJnPaYnNukVT5xRdfIDU1FTU1NQgODnapT4bJnI6MjERycjKioqJw//59FBQUOMTR52xSU1Nx9epVdHV1uVoUj0StVuPtt9/G888/j507d3Ie48z6++OPP2L79u2YPn06GhsboVQqUVdXp1sbypzSi46OxuDgIK5du+Zw5ehURcP1MC0tLUhMTHT4PB2W6O7uxvbt2xEYGIjz58+jsLAQra2tSE1Nxbhx48ye647OalP4+fkhIyNDb2kWHvOw621ycjLGjx/v9LQOw29HpVLhzJkzOHToEJ48eYKWlhZ8/PHHRt+QpbrJLKHr8DpMXEhXVxeZOnUqqampcZkMV65cIStXriT+/v5k27Zt5N69e065744dO8iOHTucci9DHj58SAICAkhPT49L7u+p5ObmkqioKDI4OEhomnaJDFVVVUQoFJJp06aR119/nWzdutXoGFtkGxwcJIGBgaSzs9OeYhrhsq5Td3c3XnvtNXz44YdGPg8uiJ1MO0IIhoaGUFZWhjlz5mDTpk1YsmQJenp6sGvXLgQGBtrlPu4MM4VEfn6+q0Vxa9h1rrCwEDU1NaiqqoKfn59TrVimvs6cORP5+flIS0vDnTt3MG/ePE5r2xbZ/Pz8kJaW5vjkT4eqMRM8fPiQhIaGkuLiYqfe986dO0QmkxF/f3+SlJRErl+/7tT7s3GlRUMIIT09PSQgIIA8fPjQZTJ4ChUVFWTatGlOtwAfPHhA8vLydPX1q6++0ttvrzr04MEDh9cFp1s0bI+9tUmSxAprxtwxDQ0NSEhIwMKFCzFp0iS0trbi+PHjDs+cdmcmT54MsViM/fv3u1oUt6a2tha5ubm61AJr6qIhXOeYu05XVxfWr1+P5557DoODg2hubsbx48cxb948m+9tDf7+/oiPj0dZWZlV8o0Ih6kwDgYHB4lQKCQZGRmc++3Z7x0YGCClpaUkJCSELFy4kFRUVNh0P0f3wV1t0RBCSGdnJwkMDCSDg4N6213lf3A3rl69SgICAkhzczPnfnuWE03TpKGhgcTFxZFp06aR4uJi8ujRI7Pn2LMOMXXhyZMndrmeIU61aJKSkvDUU0/hj3/8I+d+e/R7u7q6kJGRgenTp+Pq1atQKpX48ssvsXr1ar3jiIX8EU8aSRopwcHBiIyMNBpBGQvPbon29nYsX74cFRUVDkstAIbDKebMmYMdO3YgOTkZd+7cgVQqdWowaHBwMCIiIlBZWemQ6ztF0RBCsHHjRgwODurWGSZ2dO4CmszpJUuWIDo6GkFBQbh58ybncB+DqY/JXnK5M+xn3LFjh1ND0d0Nrvfd3d0NsViMAwcO6C1rY8hoFHJfXx92796NwMBA1NfX49ixY/jyyy/x5ptvjviao0Umk1m3hO4IcIqi+f3vf4/W1lZUVlbqpqu0R6vZ39+PgwcPYvr06SgpKUFqairu3LmD7OzsEa8COBZac/YzRkREYMqUKWNqKWE2hu+7v78fIpEIOTk5JjPdR9MYdXZ26pJxHz58iOvXr+v5C11Z/6KiovDkyRNcvnzZ7td2uKIpLCzEuXPndMOCDKN5WUzmdEhICG7evImLFy+irq6OnwJhhGzfvp1zgbGxYN2xGRoaQlxcHBITE80OVIxEGTQ0NGDZsmV49dVXERoais7OThQUFLhdOEVOTo75xeZGiEMVzbFjx1BaWsqZJDmSl/XZZ59h8eLFkEgkiIiIQEdHB0pLSzFjxgx7iTwmYboH1dXDM+Rb8mF5G2q1GomJiQgNDbVLhjshBGq1Gp988gnmzJmDLVu2YNWqVbh37x6ys7MxceJEt1HkbDlWrVqFpqYmu6eo2FXRsAVWKpV2mXGsr68Pe/fuxdSpU1FRUYGcnBx0dHRAKpVi0qRJdpCaB9BMYs7un48lJQMAGzZsgK+vr11SCx48eIAPPvgAgYGBOHv2LI4cOYKmpiajAQl3KWP2fDfM2u32Dnuwq6JhL4jGLGb+7LPPGh1njSZvampCSkoKZs+ejZ6eHly5cgXnzp3TJYvx2BeJRIL79++jsbHR1aI4BHN1buvWrejs7MTJkydHteTN3bt3kZGRgV/96lf47rvvdOukO3oZXHvBfL8bN27E6dOn7boemN27Ts3NzVi1ahWUSiXCw8M5tbYpTa5Wq3HixAm8/PLLWLNmDRYsWIA7d+5g//79XpE57c74+Pg4ddoAZ2OqzpWUlKCqqgpnzpzhXLXAmkaxsbERK1aswMKFCxEUFIT29nYUFxd7bJ39+c9/juXLl1u07mzq+tkzKOfmzZskICDA5iTJnp4ekpeXRwICAkhiYiK5dOmS2eO9IaDMHQL2DBkcHCQBAQGktbXV1aI4HJqmycmTJ0eVWlBRUUFeeOEF8sILL3AGhDoaR9Yhewfw2c2iYWIPioqK9JIkCcdi9gyNjY26iaWePHmC69ev49SpUxanRWRW3+OxD0xZ+vn56aYN8EbYdfHixYvIzMxETU2NyYnWDM8FNMPfhYWFmDp1KpRKJQ4cOIDr168b+V8Mz/M0mGDOTz/9lHO/rc9l1SoIlujr64NIJMLWrVuxcuVKvX2GJuvQ0BBOnjypG0LbvHkzysvLbe4bu4sjzRtglyWzHtW3337L6V/zZJgGilmC+Ny5cwgNDbXqo/n2229RUFCAzz//HG+++SauXLmi6xqZO9+T6ikxGGnMzMxEZmYmVq9ebfQctj7XqC0aJkkyKSlJN60hF93d3ZDJZLpIyNLSUjQ3N+Odd96xqGQ8tVXwRCZOnIjU1FTs27fP1aI4hFu3bmHZsmWoqKiwKkiO8b/Mnz8fzzzzDL7++msj/4snKRNzGD5HVFQUfHx88MUXX4z62hyKRrPgFLTftrmP/P8NPUZCQgIWLVqEbdu2cR7T0NCAFStWYN68eZgwYYIuc/qll16yWkhveZG24ioFm5mZifLycvT19XmFkmeeobe3F9HR0SgqKjKbWgBoJsqPjIzEhg0bsHTpUnR3d2Pbtm0jjjh3BfZ4dzk5OfbpSuu8NTb6V588oUliYiJJSkoycs4+evSIHD16lISEhJD58+e7xFHm7uzcuZNAo845/7ma1NRUt3NWj4aHDx+S8PBwUlRUZPKYH374gcjlchIYGEji4uJIfX29EyW0nR07dpCdO3c69B5PnjwhgYGBpKura1TXMa7R5hQOPfwjNTWVxMW9oeeV7uzsJFKplAQEBJCUlBTS3NxMaJr2ilEie0LTNPnDH/5gUqG4g6Lp7Owk/v7+RlNIuBtcdctw2+DgIImKiiK5ubmc17h3755uQrT169c7fFpLe7Fjxw69xomiKIc0VnK5nGzYsGFU1zDuOpnppRBK8wS/37oV7e3tqKz8K3x8fFBdXa3L4wgMDMSNGzfw5z//GREREbpFw3mG8YQymTFjBhYvXuz0SbhtxVKcllqtxqpVqxAUFIQ9e/borX/ELKczb948TJo0CTdv3sSf/vQno8UAiZt3H4l2NI2mabOjvCMlNTUVZ8+eRV9f38gvYk4LGbcValJYWEjmPh9B7t+/T4qLi8m0adNIVFQUqays5L4Gb81wwrRGXFAU5WRpuGlubjYZS+Ep73XDhg0kLi5O7xkqKyvJwoULSXh4OCkvL3fYZE+OxlwdsvBp20xmZibZtWvXiM+3SZqjR4+SZ599lvzmN78hAQEBJDU1ldy8edNjKp2rYZeTMyvJaBAKhaS8vNzVYoyIvLw8snDhQjI4OEgePXqkaxg9wf9iDc6sQ52dnWTKlCkj7kpbPbz96aefIiMjAzRN48UXX0R7ezuOHj2K0NBQt+8GuAueWE7bt2/3yNUSiouLUVlZiaNHjyIvLw8hISFoaWlBQ0MDzp07Z3HUyVNwVp0KDg7Gyy+/jJMnT47ofF/CCtKRxlA4VKd/gFzZiud/9h1SUlLwyiuv4Ne//jV++OGHEWV38hG9w1y6dAnAsL/GsFzee+89p5QVIZang7h9+zaUSiUkEonD5bEHp0+fxgcffIBXXnkFixYtQlpaGlpbWz1qaNpaHF1H2PVDJpNh3bp1WLt2rc3X8dVchAYgQMkFAsRQmCFtRXZ8OFRnCjFHMgdrc+TIzc3VnUQRrWPYxjlLeCWjr2yjoqKwePFiABxlSROzjnl7ymOJ3NxcDA0Nce8kGJbT1O9O5OzZs0hMfAsTJvwUjx8/xsaNGyEQCPTWLWLqryc2fJRWXFowXLwURWn+MHiU93bsBBn1OxCAIrTuOt3d3WhoaLDJIiSEgKJpmujmo0ArRFQmDpI6hIEC2pSgwhOgaKUhCfc8s59n9BAAYClBToUoGG6sHIPm2hrdZfo+arUaRUVF+PrrrxEUFGS0nyIADe+b0ItRnM66dkREhL51SwBQ2kBf1rvRa2vYDptWpZwIpR/q/k4XgQilcu1f6hE5gXg0pIu4AvOiiYorcMmNfeuKwvRh+UUbCU1UJD1dbvnEUWCvwQbNdYbrsRsXsx7s5zeU2SXPQHP+ahYB29rq6LqF+pL/q/Ub+EC0n0ZdcbaBpqLBYzslFwjSRYCilYl1UEOeTiGcEqENRN/sdcMGl76pBEVRKLk1AzQhoAkBKRJCQIUDM4INrXajv0eDZQvEXJ2kdbJorjPc4rphMXPCfn5DmTmfwWG9QdrophQA5T6pztdIxaSDoA1SaSHA7ItJ1xi9DHU1h3QfgqIwDQlzBFCqhgOcNL+5bLluj4YmKvwLUlYXVIDskjqkixqwKWMfd41xE/cBQRtiwxIglMpRV5wNClqXQNibkKcLMSNkpuZvlr/DcR+xprJLY7QVW6BpFAUCAQrOqIYPU50FRVFQqigzsnhGo8kuV2mMYPij1j1/jKaxYqCAQqkIMe/aITGWZjeCmm+fMP+1DTc+RBsoSIpidI0PoNEp6bExACFqjfnTqiAQbSSMaUmTm0QIiqTLFcwRPKNA0y2VG5WkPF2oLXf3hKZpTXeJEnJ28xQFG4iilbt+OLrWpItA5ErNJF2tSjkBQBSt9LDMblyuoyFdBL0yL0wXEiCatGlLnCYqIgRIocJ+E5gZdl+Ze0RnGHeb5elC3XuRil4jKkITASDQmD+1tUiPFeu0FtXWjnoQBM2cBa42gXiYt97V1FyogVgkNirJ4OBZpk9yhyKmbqIk+xDSC6SaAQIDJLJSvYECZ/QACSEgaMO/6qIRGx8GAJg9azhtgOlqFKSnO0gC10GjzcAyBrK0lvHvMoYtGCKSIkvCvXjiSDDUAWf2laAe0Tj4x6zhjQQgoBEcPAvBIWEgaMP0GE290fWD6mpKIRIv0x7fBlF4AoBovP7GbM4K422ee0dC0IbzhwiWaD8KzTYNnbe+gXBWMPeJblDEVNs3qIcAM0JmWne8vQUwULaEEICi0HbmPCjpEszR3vHdTZquHfMB3kIwZJI52rNor2kYb545D2qW8YhaUEg06r/RLJFCtX2DJdKN9r0x68UStGkaH3mGUeNDQQBJ1h8hCadAIQwymWblTYHqTCEoShOolzBH0/8TUOGoj9kImq7jbMV4bIBoXjwlXaJXlhQAtCmRU1IPsUjMOtz9/AYUaM7xU+6P187yG9yWojRt6zedXagvkUGg9VXoD1wAWVmslhYCz20YDYq45kINlsTEGh0WEvLL4T/CJMiOt581Y4jJxkdbxITDjysIj88eduTo/qlBag957stxIZqPb3ikAxSgrKnDrCBjq0WamQCINupVCsrNnO0kbBaiAdzq+sZoH3XzDArZDlgATLyLo6mvPQxFKw2aECjkGbqBC++wW1joWRKtOH+IQPyGsRLp6jJjGY8aWnt/tljabRzZ4pTuYFajYzdvEQ8njNNMz2GqUujiUMx7TN0hdkmti51hOxdblXLXOVtVp/XuzZRxeuFp18jjLFQKVlyb/nYKw45xDY6rO7ryliuGtzHOYtVpIld+bXSOCUXjDhXcw+BQGMxICNc/dqVgXpLRJdxosO+GokBPfmH6PucKwCoLpTydSFmVnFHc+h+al0EToihMI+lyhVG1SBfBYUrfVLCkpvER6JV5q3KfJoiT4xzTFo2ZSk5bUERjfb81mHqB1kTBOvP5bNJ1tMFPO9yfi3QRyOc3mDAMTevKjrK2VIaurh827dfNaqki0YaWcavWMo5JN7yAXeWjCXeZGjaknNaWFl2uE2H3rXjXzIjhLj7r84AIaO357uWrYTCuJwbP5sD6o0nylRnvEEpB6oqNNhMbk37dFfZzM7mTTEJogeIGa3TN2WjfveE756gD/x+ObYRvLoN0kgAAAABJRU5ErkJggg=="
<image>如图,△ABC∽△A′B′C′,AD、BE分别是△ABC的高和中线,A′D′、B′E′分别是△A′B′C′的高和中线,且AD=4,A′D′=3,BE=6,则B′E′的长为() Choices: (A) \frac{3}{2} (B) \frac{5}{2} (C) \frac{7}{2} (D) \frac{9}{2}
\frac{9}{2}
11,026
null
\frac{9}{2}
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABhCAYAAAAgLwTnAAAYUklEQVR4nO1de1RU19X/jahoGR4NgwwVBTJoJg5BEBQMULS+iC9IQZl+YCQJ1lVJVmh8sRojutQ2JqRKa4qWRiar2GBFwTappiFLVBJBUaDR+kIF8UF0TAcHPhmdmf394brXO8PcmTtP0qzvtxYL7r3n7L3P+Z29z+OecxEREYlEIvw/XAuRSAQisiu90WjE0C1btgAAiouLERERgfDwcDZRcHAw5HK5IIFEhO8zsfaWr7OzE83NzWhubkZjYyPq6+sBABMmTEBQUBAAYNy4cRg9ejQ6OzuhUqkAAEMDAgJYIdeuXUNlZSUePXoEAOjt7cXp06eRkpICmUyGyMhIJCcnQyaTITQ01MSA7zMZgO3y6XQ6VFdXo7a2Fg0NDRg6dCji4+MRHx+PDRs2IC4uDmKx2GLexYsXP7moqqoiAGQNjY2NpFKpaNWqVZSamkpisZji4uJo+/bt1N7ebjWvNRiNRofzfldQU1NDubm55O3tTVlZWVRVVUV37961S8bMmTNZDlBXV2eTECLTytPr9VRTU0P5+fkkkUhIoVBQcXExS47Qiv5vJaS7u5t++ctfkkQioeTkZCovLyeNRuOwvEmTJj0hpLW1lb1wtIIaGhqooKCAJBIJZWZm0qlTpyym+28lgMHt27epsLCQ/P39qbCwkDo6OpyWaTQaKTIy8gkhXV1dgjyETxgXWq2Wtm/fTmPGjKGZM2dSXV2d0wZ/F9Dd3W1CRHd3t0vlSySSJ4T09/cTANLr9XYL4mvxer2eVCoVRUZGUlxcHDU1NTll8GDinXfesUgEt+x89SAkInR0dJBUKn1CCBERAGpsbHTKcD5UVlaSRCKhwsJC0mq1gg0dbHR0dFBqaiqlpKS4JDTxoaamhtLS0lhChjCjrdbWVoeHhNaQk5OD9vZ2aDQaPPvsszh8+PB3foi8a9cuxMfH44UXXsCxY8cQFhbmlDyyMkFsbW1FTEyMSWICQLm5uW5rBQzq6+spMjKSFi9e7NSoxF1Qq9WUlpZGMTEx1Nra6jK5RqORNyrMnz+fuFMP1kOam5sFs+ooUlNTcfbsWYwZMwbx8fG4cOGC1fTusIEPFy9eRGJiIqKiotDc3IyJEydaTW+PbSKRiDcqtLa2Ijo62kQwASCxWEw9PT0uaxW2UFFRQVKplA4fPuwxnXxobGwkf39/2rlzp8l9d/d13d3dJBaLSa/XD+zUExMT6ZNPPnGrAeZobGwkiURCO3bs8KheLmpqasjf359qamrcqsdS2CovL6eMjAwiooGElJSUUF5enluNsoSOjg5SKBSDonvHjh3k7+9vdYTpTi+ZNWsWVVZWEpEFQrq6usjPz4/6+/vdZgADSxPK1NRUWr58udt1M/orKytJKpXS+fPnPaLTHBqNhsRiMTsVGEAIEVFqaipVV1cPioFarZZiYmJo3bp1vGnMiXRmqUcikVBzc7ND+Z0BY7NKpWLDFREPIdyYNhi4c+cOyeVyt/YpHR0dFBwc7PH+0hzz589nwxWRBUKMRiNpNBry9/cf1DlCR0cHhYWFUVVVlctla7VaksvlpFKpXC6bD5a8WKPRkLe3NxuuiHg8hIgoKyuLtm/f7m47reL8+fMklUp5V42JHAtXaWlpVFxc7IRl9sPS6Kq4uJjy8vJM7rOEGI1GE0JaWlpIKpWSTqfzjMU8qKmpIZlMRg8ePCAi50c7O3bsoPnz57vCNKeg0WhIIpEMeLHH6yFERBkZGYPuJURE+fn5Lhl5Mf1GV1eXC6xyDox3mMMqIYyXeGIIbA1arZbCwsKcns3PnDnT4kDBE6vOXB39/f0m3mExZHEvuBgsLzGvpIaGBpJKpXTnzh2H5JWXl1NiYqJVHZ7C9u3beUexNgmx5CWDVZCioiLKysoSnJ6x88aNGySRSEwmf4NVhrt375JUKqWWlhaLz20SQkSkVCpp1apV7rHQDvT397OFsadC8/Ly7JpouhNKpZIKCwt59QoihGG1oaHBXXYKhjV3t4Tu7u5Bn1MxqKmpobCwMKvRRhAhjDCZTGYyiRkM9Pf3U2hoqMXGYanFFRYWsi1yMKHRaCg0NJTq6+utphNMCBFRbm6uxxb+rEGlUlFqaqrNdIx3uHp3iD1gGkl+fj69+uqrNtPzEsI31Q8NDR30bT16vZ4iIyOpvr7eavxft24dFRQUeNAyy6ipqSGpVCoobNrlIUREhw8fJqlU6tYdGEKgUqkszrgZgrRaLQUGBprMhD09sjIajXTq1CmSSCSCd/PYTQjR445VLpcPakep1WrJ39+fd/9sZWXloC+RdHV1kVQqtestpGBCzFtXUVERJSYmemwWb6l15+bm8i7RZ2RkeHQ11xxarZYUCoXdk2qHPIRBTk7OoL43OXz4MCUnJw+4z3jPYHmwwWCgtLQ0KiwstDtMOkWIXq+nGTNm0IoVK+zK5yro9XqSSCQD+rPq6mpasGDBoNjU399PGRkZdq0ocMFwwO7LsgdeXl6ora3FuXPnsGTJEuh0OkfEOAwvLy/k5uaisrLS5H5tbS0yMzM9agsA9PT0YM6cOQgICEBVVZVzwrjsONIqcnNzKSEhweHFP3vADQN1dXUmcxK9Xu/xcGU0Gqm7u5tiYmKoqKjIKVlwJmSZo7i4mMLCwujs2bNOybEFLiFMf8Hs2m9paaG4uDi36jdHe3s7hYWFuWRV3KWEEBG7rcaTOxFjYmLYcX55eTnl5+e7TZd5J83My7gbFZyBywkhevLuoqCgwCNrX8uXL2eHvwUFBfT73//e7To1Gg3l5eWRXC536REOONOp8yEpKQkXLlxAX18foqKi8Nlnnzm8YVpIvpSUFBw/fhwA0NbWhtjYWIfkCMXRo0chl8sREBCA1tZWJCQkuEw2Cy47zoDPpfPy8kij0Vgclzu7pMHsTtHr9SQWi+n+/ftOyeODVqulgoICCgsLs7lq6yjgag8x324/Z84cXL58GT4+PpDL5fjjH/8Ig8FgNY9ZQ7GpUy6X4+7du7h06RKkUil8fX0dM55Hf29vL7Zu3YqIiAjodDq0tbUhNTXVZTr4FLusD+GC2/obGxspLS2NpFIplZaWurR/kUqldODAAUHL8kI9UqvV0jvvvEMSiYSys7Mt7v919YIl3NGHcMFt/QkJCTh06BAOHTqEr776CuHh4diyZQt6enrMG4fJbyEIDAzEjRs3BHmHJY/k6lKr1axHtLS04Pjx4/j4448tfl7EXcfyXEqItYokIsTExKCqqgpNTU1ob29HcHAwlEol9u7dC51OxxbSnsKGhITg9u3b4H4ixB709fVBpVJhwYIFCA0NZYmoqqqCXC5nbaHHI1K3n+pyKSHWKpL7TCaToaKiAjdu3MDMmTOhUqng4+ODRYsWYc+ePdBqtYJ1BgYGQq1Ww8fHR3AetVqNvXv3QqlUIiAgAAcPHoRSqYRarWaJMK945liauw+siogef57JXcwTz1d0zO/39PSgtraW/YmJiUFUVBSioqIwfvx4+Pr6or6+Hk1NTVCr1QAAo9GIc+fOmQwWvL29kZiYCAAICgqCQqFAV1cXhg0bBrVajX/961+4evUqZs2ahYyMDGRmZkIikThdHmfBcOAWQuwxmknL/d3W1ob33nsPDQ0NuHnz5oAKHzLksWMPGzYMIpEIjx49wuTJkxEbG4uWlha2b2pvb0dfXx/Gjh0LLy8v3L17Fz/84Q8xdepUTJ48GfHx8UhJSWHluaI8jsKlhLjC4KNHj6KsrAyffvopHjx4gCFDhmDMmDFQKBSIjIxEREQEfvCDH+D69eus8Xq9HlVVVXjw4AFkMhmWLl2KcePGAQAkEgkUCsUAPVeuXEFDQwNOnDiBpqYmXLt2DYsWLUJeXh6SkpKcKoMzcKuHCAER4fr161izZg0OHjwIvV4PsViMqVOnYvbs2QgJCRFEcllZGQwGAxQKBXbu3Gm3HVeuXIFKpcKf//xnAMCSJUuQl5cHmUxmtyxnYJEQY/9DNsGQEcMFCeKGGkawLZw7dw75+flobGyEWCxGUlISZs+ejdGjR5vIFIL3338fo0aNwogRI1BdXS0oD5+OkydPYvfu3di/fz/i4+OxadMmxMfHC5bpDJg6NAmeDAlCyWAEMb+5BbTkcUePHkVMTAyee+45dHZ2Yu3atfjTn/6El19+mSWDK1MIHj58CLFYjG+//dauYaklHVOmTMHOnTtx48YNpKWlYcGCBXjxxRdtfuDAlfDIxLCzsxPR0dH4yU9+gnv37mHdunX47W9/i9jYWIf7Hibfo0eP4Ovri3v37tkclgoly9vbG2+88QYuX76MxMREpKSkYMmSJejs7HTIVntglRBj/0P2x9I19x5f3pWvv4GIiAjcuXMHb731FkpKShA1Xo4heiNEjwxWK0n0yMD+mN/HQz1Ejwy4e/cupFIpNBrNADuZv9l8NjzYHGKxGGvXrsXly5chk8kwefJkMB8NdResEmIewsx/G/sfYsiI4RgyYvgAkk5/3YbREWEoLfsALyn/B6WlpVAoFI9JGObF/gzRG9l83EoySccJRdz7/UY9+u/3IjIyEpo7ahgMBtYmrn2WGow95AQEBGDDhg34+uuv8fnnnyMlJcVt3mJXyOIWlnuPKTBTsGXLliEhIQHDhw9HWVkZ5s6dyyvThAS+cDN8qMUK7OzsxJgxYzBixAgEjQ7BmTNnTOwT2hcKDXPBwcGor69HRkYGEhMTsWfPHkHy7YFNQiy1MK6RjIcMGTEcfX19ePrpp/GXv/wFS5cuxbvvvgs/Pz+XG81U4M2bN9nBgEwmQ1tbm8uH75bIWrlyJerq6lBSUgKlUjlgkdQZsIRYcms+WJq3XLt4GSEhIfj222/xu9/9Dmlpabz57a008z6EQUdHB0JDQ0FECA8Px5dffmmyGOgK8K1AKxQKNDY2IiQkBNOmTcM333zjEn0mHmIpJAFPvIT7TCQSsfePfv4FximexahRo/CHP/wBfpKn2E6XiflMoWiY15OO+qGefQaYVjw3HTcN9/43XTcR+nQ4RCIRJkSOx6lTp9iGJRKJBvRrjsDaCrS3tze2bduG3NxcJCQk4MqVKw7p4GIo84c9cw8uyj4sx+uvv474+HisXLnyyYPhQ2HeRtlCWXgGwKTimWuRSASY9TM0zAs6nQ6XOq6yn98LHjMaXd/cxv/qH0KM4Q71JZYgZJK6cuVKSCQSJCcn49ChQ6af7LMTgjp1Ps8pKyvDa6+9hvT0dFMyLMDRdwnmeZjrs2fPIjw8nP18t0gkgkKhQF1dnd06rEHIshIRYenSpSgrK8Ps2bPxxRdfOKxP0DzEEg4cOIAVK1YgOzsbSqXSptGuepfA6Dl58uSAZY24uDjs3r3baR3msGU38zwjIwM1NTXIzMzEl19+6ZAum/MQ5oeLpqYmZGVlYc6cOXjxxRcFGQ0419EyoYNpsadPn8aUKVNM0iQkJODIkSPo7e11WI8lvULuMUhKSsLevXuRlZXl0FzF7qWTa9euITU1FTExMXj55ZftyuuMh3BDx/nz5xEYGDjgxZK3tzeio6Oxf/9+h/VY0ivkHhdz5szBunXrMG/ePLsbh12E6HQ6REdH40c/+hHWrl1rlyJXorm5eYB3MEhISHBL2LIXBQUFmDZtGn72s58BEB4drBLCFUJEeP755zF06FBs3rzZCVOdw4MHD3Ds2DGkpKRYfD558mScOXMGN27c8LBlA1FaWgq9Xo/Vq1cLjg5WCeEK+eCDD9DS0oKNGzfCy8vLSi7Xgxuujhw5AoVCgVGjRvGmnTZtGt577z1PmmjRA7y8vLBv3z588skn+OyzzwTJGUCIJcG3bt1CYWEhFi1ahODgYI+/XTQajRCJRDAYDDh48CAyMzN5W5xIJMLChQuxe/dul82ehYDPHrFYDJVKhfz8fLY/sTYFMCGEbxI0ffp0hISE4Kc//alV5e4Co+/YsWMIDw/H2LFjrTYKPz8/TJs2ze1L5dbAtS8hIQHz5s3D22+/DcD6FMCEEEuJNmzYgCtXrrDCBgtGoxG1tbVIT0+3mo4pQ3p6OioqKtDd3c0+84Rnc19lc/Vt3boV1dXVaGpqspqfJcSSsQ8ePMDmzZuRnZ0Nf39/V9nsEBoaGuDv748JEyZYTceUw9fXF9OmTcOvf/1r9pm7PJvvFQL3b39/f5SUlOCVV16BXq/nlcUSYsnY/Px8+Pj4YOHChbxpPIHe3l7s2bNnwLzHVotfuHAhKioq0NnZ6VbvEFov2dnZiIiIQGlpKb8svm1A//nPfxAUFIT8/HxMnz7dKYOdRVlZGXx8fPDSSy+x94TuTPnHP/6B9vZ2h5cyXAkiQmtrK+bOnYuOjg54e3uzzyzuOuHilVdegVgsHhQyuI3j3//+N77++mtkZ2ebpDFvRHweMHfuXPT09GDbtm0eHx2aQyQSITY2FnFxcew+MHMMGGUBj73jb3/7G5YuXeqRDcZccPUZDAaUl5dj+fLlbGsyj9d8q8Fc/OIXv8DGjRtx8eJFN1ouHKtXr8bWrVsHHGACeEZZy5YtQ0BAAJ5//nnTDQZu2AFurUL379+P8PBwTJw4kfdFkfl9S7YFBQVBqVRCqVRarARPIzU1FRKJBAcPHhzwzKKH8A0v3XFGgm9n/IkTJ3D8+HG8+uqrJrbZgiX7iAjTp0/HyJEjsXHjRueNdhBcu9auXYtNmzYNSGMy7BWJRPjoo48APF6x9DQYcq5evYoPP/wQRUVFvP8/1poMPg/Oz8/Hhx9+yP4jYE+Da1dGRgZ6e3sHzEsGDHu3bdtmcoTL0x2hWq3Gu+++i9dff91ke6lQWLNXLBajqKgIa9aswaeffuqMmS6BUqlEbW2tyT2TkGUwGNDW1mbyARdPdug6nQ5btmxBenq6zX/KxQc+exmiRo0ahTfffBM5OTk2Z83uRmZmJrtBnLHbhJDS0lJ4e3vbnA27AzqdDps3b0Z0dLTVjXWOghvKIiIisGLFCrzwwguDOvJiNkOcO3eObTAmhOzatcviIRdnYSvs3b9/H+vXr0doaKjJbNzV4ZIrb+LEicjNzUVKSorb/qmmEGRkZGDfvn3stQkh7e3tmDFjhsuVWgt7arUab7/9NiZNmoSf//zngvO5AsnJycjNzcWMGTMGrU/Jzs42Gf6yhFy4cAFGoxGTJk0C4L7OnCv35s2beOuttzBv3rwBM3F3g5lUJiQkYPXq1cjJycGuXbs8agMAxMfH4/bt2+w1S8i+ffvg5+fHHoB010lTRu7p06dRXFyMl156CbNnz3a5Llt2cBtGREQEtmzZgq1bt+KNN97wqC0ATLoJlpAvvvgCUqnUrcNcIoJOp0NZWRlUKhXefPNNk4OWg7WaDDw+JLp+/XocP37cpccNhNRnVFQU+zdLyNmzZ90+urp06RJWrVoFACgpKcGECRMELRA6C/NlFT49I0eOxNq1axEeHo74+Hi8//77LtHNt2GbuTd+/Hj2mt3be+/ePUyePNmmUEeeGwwG/PWvf0VdXR1ee+019rtWnvIIWxVibsf8+fMxdepU7Nq1Cx9//DE++ugjp0af1tbZRCIRnn76afbaZJQlk8l415aswdJzhqR//vOfWLFiBbq7u1FaWmrykbHBXg4H+BtFYGAgfvWrXyE2NhZJSUlYs2YN1Gq1TY8WUibzNOHh4QAeN1zWQ5itPXwCLbUka57R0NCAPXv2YPTo0SgqKkJERIRNQ79rICLMnDkTU6ZMwYEDBzB27FgsW7YMq1evRmhoqM28QiNAUFAQgMfnXdg3hiNHjkRFRQWAgRUtZAc48JjhxsZGVFdXQywWQ6lUumWi6U5Yq8j79+/j73//O44cOYLFixdj/fr17HEIZ9DT04OAgACcOnXqiYdwXycyS9hCTyOdO3cOx44dQ2NjI8aPH4/c3FzExcU5beh3DX5+fsjJyUF6ejo+//xzREVFITExEdnZ2cjIyLD4ERt7PKWvr++Jh4SEhGDbtm2CMhoMBly8eBFnzpzBV199BR8fH8yaNQuJiYkmZwqFetZ3DUIr0WAw4OTJk2htbcWJEyfw4x//2Co5fPK1Wi38/PxQU1PzhJDIyEhs2rTJoiG3bt1Ce3s7Ll++jEuXLuH69et49tln8dxzzyEpKcnqtk5GOd9+pe8LdDodmpub0dLSghMnTkAmk2HChAmYOHEipk+fDrlcjuDgYIt5e3t74evri6qqqieELFq0CABw/fp19gNi58+fBxHhqaeewrhx4/DMM8/gmWeecfrDLN9XUhgQEa5evYqbN2/i1q1buHbtGnv+MDo6mk03YsQIpKSk4OHDh/jNb36D8vLyJ4T8PwYfpaWl+D9WiRnfZ09clAAAAABJRU5ErkJggg=="
<image>如图,在边长为4的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是() Choices: (A) 4 (B) 4π (C) 2π-4 (D) 2π
4
11,027
null
4
"iVBORw0KGgoAAAANSUhEUgAAAJMAAABnCAYAAAAE5nAaAAAOLklEQVR4nO2dT2gbZ/rHv15CV4WFzqFhdViacbLgMQQ8OnV8WY9/hV8kQrECNVFPlkkOKgsbGeS1+7vIPckh+0P1YVEONqYnueDg5FCk3SXMiD2Me5JaDNKWDTM+STfJl0qQhWcPjqaS9ceSNf8kzwdEMn8072Pz9fu88z7v+zxTRERwcTGAX9ltgMvk4IrpMuQ97Gl2GzEeuGLqi4z1xUO7jRgbXDH1QV5/ihP/Xdxh7bZkPHDF1ANtL4Dv7m/gbtZuS8YHV0zd0PbwV6TwjH2DEz8H1m57xgRXTB1o2Psr8MdH7Pnh3TuumAZkyp1nakfbC2D6cYtvi0mgZ6Jt9owTN+w2oBuapkHTNBQKBdRqNeRyOf1arVZDoVCAx+OBIAj6ea/Xi5mZGXAcB6/XC0EQ4PF4hmz43L0RsefH8joCb9jRf6BrgiPEVCqVIMsycrkcZFmGx+MBy7LgeR4ffPAB4vG4fi/DMOB5Ho1GA8fHx/r5SqWCUqmEV69eoVKp4Pj4GBzHQRRF3Lt3D6Io9heXtofAF0Aqw/5y6s2JGT/u5EI2oaoqJRIJ4jiOOI6jSCRC6XSayuWyYW3k83lKJpPk9/vJ4/FQKBSidDrdcZ8UAwEgwE+7KhGRSrv+5jkQYpJhNk0ylospk8mQKIrEsixtbm5SsVi0rO10Ok2hUIgYhqFwOGyocF0sFJOiKCSKIvn9fpIkyapmu1KtVml/f18XdLVatdWeScF0MamqSsFgkARBsF1EF6nX65RIJIhlWUomk/Tpp59SJpOx26yxxTQxlctlikajxLIsHR0dmdWMIVSrVYpGo3Tnzh2am5sjv99PqqrabdbYYYqYkskkcRxHyWTSjMebhqqqFAqF6Pbt23T79m2Kx+NUr9ftNmtsMHQGvNFoYHV1Faenp1AUBdFo1MjHmw7Lskin03jx4gU+/PBDaJqG2dlZvHz50m7TxgLDZsBrtRoePHiAlZUVhMNhIx5pK82fJxAIQFEUNBoNJJNJcBxnt2mOxZCeqVAoYHFxEYlEYiKEBJxPjkqSBFVV4fV68eTJE3z++ef48ssv0Wg07DbPmYzqJ4+OjkgUxYkesKZSKRJFkSqViv725/SXCjsYSUzJZJKCweC1mKeRJIkEQSBVValcLlMwGCRRFC2ddHU6VxZTMpmkcDhspC2Op1gstvXCkiQRx3HuxOc7riSmTCZDfr/faFvGgnw+T4IgtE0ZNGOM3eJ+14mhxVQsFkkQhGv9l9iM8bVSLpcpFApda9c3lJiq1SrxPD/Rg+1B2dzcpEQi0XH+Oru+ocQkiqLj4mt2EgwGe77VNV3f/v6+pTbZycBiikajYxceMZt6vU6CIFA+n+96vVwuUzgc7nvPJDGQmPb396/dm9ugqKpKPM/3dWmKohDP8xSNRifa9V0qpnq9TizLugvJ+pBMJikajQ503yS7vkvF5Lq3yxnmD26SXV9fMZXLZWJZ1l2GMQDDDgWari8SiUyM6+sb6H369CmePHky/Jaha0g4HEahUEChUBjofkEQkM/nMTc3B5/Ph+fPn5troBX0Ulk+nyee560U9thzdHREwWBw6O9Vq1WKRCIkCAIpimKCZdbQU0z95lBcejPKXJyiKCQIwti6vq5icnulq2PE7y6VShHLspRKpQyyyhq6jpm++uqrtl20LoPD8zwYhoEsy1d+RiQSQT6fxw8//ACfz9e2c9nRXFRXtVolr9frvsGNgJGTvM1VCuOwabSjZzo4OEAwGHTf4EYgGAwim80asryX53koioKFhQUsLi7i66+/Ht1Ak+gQ0zfffIOVlRU7bJkYGIaBKIqG7moJh8NQFAWnp6fOdX2t3VS1WiWGYezqJScKM+OZTnV9bT2TLMsQRdEmWU8WoiiONAjvx0XXt729bUo7w9Implwuh4WFBbtsmShYlgVwnrjMLJqu7+zsDLOzs6aJd2Bauyme5ycu+Ggn4XDYshUCzc0OoVDINten90y1Wg2apoHneRulPVl8/PHH+P777y1pi+M4SJKEpaUl21yfLiZN0/Su2cUYeJ4fOPBrFKFQqM31ZbPWJTLXxVQqldx99AbDsqypY6ZeMAyDRCKBo6Mj7Ozs4MGDB6hUKqa32yammZkZ0xu8Tni9XjQaDdRqNVva5zgOmUwGKysrmJ+fx/b2tql5EnQxnZ6eum7OBOzqnVoJBoMoFos4OzvD/Pz8CK5Pw15gClNTFz7rMoAWMdVqNTAMM7rlLm0wDGNbz9SKx+NBIpFAOp0ewfWxeJQhSDEgJhGICEQSYn9ZRGBPc8VkNk4RU5OLrm9ra2tI16fhzUkM98XmsYj7MSBbahFTo9EYi+Bua/c6DjhNTE2arg8AfD7f4K5Pe41DtBYn0vDmBPBz7C9iqlQq8Hq9hhrs4mw8Hg+2traQyWSws7ODQCCAH3/8se93tNeHwGef6GKS16fxOBvDxiPWrerkcv6SsLGxgZ9++umSyU4Nrw+zyD6e1r3D4skuVHoGES21U1iWxU+qit/+7ncAgPdvOKKsSgfkFqEylEqlgrW1NVQqFbx48aJ/BER7jUPsQqVHXcumtfVM770bhzhVSOOIUyMLjUYDW1tbmJ+fx9LSEiRJujyUppWQ7VN/TxeT1+u1ZJbUFuT1rvMi15WDgwPMzs4CAIrFIkKh0ADf0rD39AS7fxR73qF3Qd3eOur/+Y/+//dv3Og4br3nYm/W7d5Brg1yX7/zrXa+f+MG/v7nX+Pesz9BIoIIAJCxPrWIKVhTlNBJLzaFQgFra2vwer1QFGVwu7Q9BKYfIwsA0wFAzaBZKLSN5vKBZvKFn9++bVtW0O94kP8Pc23YdlqPf377Vv80j/+2/h7Bv0vFi21IMQJiJHVt2VhgXxU2nXK5TJFIhHieNzW/lu7mBpn2b/7lXzzX2lOYwSBjuOY9+r3//D/ce/Y/2E09wi0zjeuD3cHzRqOB7e1tLC4uYm5uDvl83tSVtLqYOI5DqVTquOGie+t2vflxDhq++f8dILbRtTu2qsKlnYPvbDaL+fl5nJ2dQVEURCIR09vUFXDr97+HpmloNBp4/ze/GfpB3Xotoxj+2Rr+9Q8gFhO7Xnt9mAViG+h21Ujs6JlKpRLW1tYAAOl02tr2m/7u57dv6Q+ffNLTp/Yb23S7dnEMM8i1bseDfr/tnLpL//vefUr9+23nc6RYS/lUc7EyX0OzzBnHcbbVzGsbHcbjcYrH411v7CUmZyJRDKDO0rrn562qucswjCUJKFKplCNKsrWJSZIkEkWx46bxEtI5UgwE/y6pzRPqLvktFJIVyT8kSdIThjlh/1ybmOr1OjEMo+cZ6OeqnM+FCuAWubYmiUSCNjc3TXl2a+0WJ+0m6pgEsXJ7ziRjRuKuer1O8XjcsVWlOlYNPHz4EN9++611bwATSKlUQq1WgyAIhj3zYggkGAwa9myj6Hjf9vv9WF1ddVQYYNwwMvlHoVDAF198AZZlhwuB2EG37qpXXRCXyzEqb3prCGRc8lx2FZObsvnqDJpgvhf1el2vuzJuaQh7RiFH/aVcR0btlTKZzFhXhOpZPbzRaGB2dtb5ftpBbG1ttf07KK0hkFQq5cjFdAPRT2lu7zQ4VxkaOCEEYiR9NxREo1HIsmx58oVxZNhqDs+fP4fP58OtW7dQLBbh9/tNttACLlPbVbPuXyeKxSLxPD9Qr9QaAhnHcVE/BloG6CYB688gqwNUVXVkCMRIBhKTW+S5N92KP7fSDIFwHOfIEIiRDLxA+TqXn++FoigkimJP95ZOp4llWYrH49dizm6o1e7u290vlMtl4nm+65xSs6COnfkl7WDorRORSGTsZmaNpl6vkyiKHWGO1iqX4xICMZKhxdTrF3mdCIVClE6n9ePWEMh1Xr4zdOIKj8eDdDqNtbU12zOi2cH29jZYltV3wb58+RI+n0/fBRIOh+010E6uqsJmyYVisWikuB1NMpnUS1gUi0Xy+/0UDAZJVVV7DXMII203bU4ZTEIooB/1ep1CoRBFo9GJC4EYyUj5mZop7XZ2dhxdumoUKpUKAoEAlpaWcOvWrckLgRjIyMm+GIZBJpPB6ekpVldXTU0NbDWFQgGBQADLy8t4+vQpTk9Pkc/nEY1G7TbNmRjZze3v75MoihMxt5JOp8nn85Hf75/oEIiRGJ6iQ1EU4nl+bOeiyuUyLS8v0+zsLM3MzEx8CMRITMn30ly/PE7xqGq1Spubm3Tz5k26efMmJRKJaxECMRJTkwcVi0U9Um5mXqBRqNfrlEwmiWVZ+uijj2h5eXki3LQdWJKJqrntPBgMOmpeKp1OE8dx+iu/K6LRsDSt2dHREXEc1xGOsBJVVfXQRygUciccDcSWHHnNNUAMw1AkEqFMJmPq+KRYLFIqlSJRFIllWdrc3OzRQ17MT3D+sSjXxdjTc3eKFdRqNRwcHODVq1eQZRk8z0MURSwsLIBhmCttr67VaigUCtA0DblcDrIsw+PxQBRFPHz4cIA0fBr2AtMobRCeiTjP1Lt4gt1eSUFddGwV00WOj48hyzJyuRxqtRqOj4/Bsqy+9cfr9XbUxMvlcm3f93g84HkeLMtiYWEBoigOuXVIxvrUd7j/Luv+eabZQ3zmiulSHCWmbmiapq9OqFQqHXk3W3saQRBGLyYkr2Pqu/vv0jqf91KP71qT5nnccbyYrEbbC2D6cbPCkd91b0PgFuJpQ8PrQ2BXPS/Mp+4Cj6cD2NPstms8cMXUivYah/gMn7Dnh+yjDcSQxeFrzU6rxgZXTC1crKUG7Q1OANy9w/b8jssvuGLSOXdxnzW7JchYn36MLFpLiLr0wx2AA+/mkv7Sed6/CzXTvbaaSyf/BbeBQC4ivKYPAAAAAElFTkSuQmCC"
<image>如图,已知PA、PB都是⊙O的切线,A、B为切点,且∠APB=60°.若点C是⊙O异于A、B的任意一点,则∠ACB=() Choices: (A) 60° (B) 120° (C) 60°或120° (D) 不能确定
60°或120°
11,028
null
60°或120°
"iVBORw0KGgoAAAANSUhEUgAAAJEAAABwCAYAAAAewJIEAAAVpUlEQVR4nO2dfVATV7/Hvwt6tRWlLbFkbJCiSUXB3mLRWuUW0NA3iY/eavVWWrGt1qvOlE7Fl7FFcfRqpVXbsTPg1EpfRp2RihXaEQM2tPJcRK3ONGiUBF9AJDh9Hh1SL/Zh93f/qLvmnWA22U3kM5NR9uzu+e3ud3/nd86eF4aICCEEEYFhGJ/3v3nzJs6cOQOTyYS2tjbU1tYKaRaLBa2trQ77q1QqjBw5EgDQv39/TJo0CXFxcdBoNHj66acRFRUlzoWg99ciV5hQE1FPtLa24ujRo9Dr9TAYDLh27RrS0tIwfPhwJCQkYMKECYIQHn/8ccTHxwvHchyHK1eu4PLlywAAm82GhoYGNDc348qVK6irq4NKpUJmZia0Wi20Wi1iY2OF4/lb6U0Y4SIce2Qrot7cbJPJhF27duH7779HZ2cnMjIykJGRgfT0dCQmJopqV2NjIwwGg/BTKBSYNWsWcnNzMWLEiLATiE+QjOE4jjiOc5vW0dFBxcXFNG7cOFKpVLR8+XI6d+5ckC0kMhqNlJeXR0qlktLS0mjnzp1048YNYlnW4zHe0kIR2YnIk2h42tvbKS8vj6KioignJ4cqKiqCZJkj7oRQVlZGc+bMoejoaFq1ahV1dHR43DeckJ2IiFyFxLIstbS00OLFiyk6OpqWL19O165dC7pdvoqhpaWFli5dSkOGDKG8vDxqb28PsGXSEiF1ccpDdqGZfVxhs9mwZs0apKSkIDY2Fk1NTSgqKnIIaH2B4zivf/tCRIRvt0ulUmHHjh04f/48Bg4ciOTkZKxduxa3b9++p3xlj9QqtsfZA5WXl5NSqaR33nlHKBp6ey5vxWOwipn29nbKycmh+Ph4Onz4cFDyDCayEhHPlStXSKvVUkpKCh0/ftwhzV4UoRZrGAwGGj16NGVnZ1NHR0eP8V+oXJ9sijOekydPYsKECcjIyMCvv/6KCRMmgP4SO4C7RR0R+Vy8SA1ve3p6On777Tc89dRTGD9+PM6ePev1uFC5Pll5otLSUlIoFC4un+O4kHkrfWX//v2kUCiorKxMalP8RhYi6u7upqVLl5JarabGxkapzQkaDQ0NpFKpaNWqVVKb4heSt1jfvHkTc+fOhc1mQ2VlJaKjo3kPCYZhXFquOY4LHTfvA1arFS+//DJGjBiB3bt3Y9CgQSHX6i3p02hsbERqairi4+NhMBgEAQFwKyAghOIEH4mNjUVdXR0GDhyIiRMn4uLFi1Kb1HukcoGHDx+m6Oho2rFjR4/79lSLCQVYlu3xOjZv3kzR0dFkMBiCZJU4SCIio9FI0dHRPrWZhEtA7Wt7VXl5OSkUCjKbzcEwSxSCIiL7m9TR0UEajcYnD3S/snHjRkpKSqLOzk4ikr8nDkpgzQfDLMvixRdfxKhRo7Bjx45AZxtykF0M+Prrr8Nms6G8vNztvnKqYATFCv5ily9fDgD49NNPg5FtyGFfifjiiy9gtVqxdu1at/vKRUAAghNYcxxHpaWlpFare/0NLNzxVlS1tLSQSqWiAwcOOGyXW5wouojc3ZT6+npSKBSSdBqTOz0JoqGhgWJiYshoNAbJot4TcE/U0tJCw4YNC8uv18GirKyM4uPjZevFAx5YZ2VlQavVYuXKlWHZST0YEBEKCgpgMpmwf/9++d3HQCp07969NG7cOOru7g5kNmFBT8VaV1cXJSYm0o8//hgki3wnYCLq7OwklUpFDQ0NLmlyCwxDherqaho9ejR1dXVJbYoDAasnFhYWYtq0aRg/frxLmqyqpyHE1KlT8eSTT+Ljjz92SaM7UQlJ8D09IDGR2WzGs88+C7PZ7PBRtQ//sVqtSE5OhtFodOlnLlUDpCg58jrkO6Fv3LgRS5Ys6RNQAIiNjUVOTg42b97skiaVhxfdE1mtViQlJcFisbgVEcmtZiFz3N2vnu5xsD2SKDnZD4PZvHkzFi5cKFyc8xCZPgH1Dnf3KzY2FrNmzcLWrVvdHhNsjySqJ7p+/To0Gg3Onz+PRx99tE8wAcRisQid2MScqeRe8FuyRASWZQEAe/bswcyZMxEbG9snIBFx956PHDkSaWlp+O677ySwyBG/RcQwjOA+S0tLkZubK6SF5WhPCfD0Qr7xxhvYvXt3kK1xRbTi7MyZM5gxYwYuXbokbJNTn5dwhGVZKJVKnDx5EsOHD/fYLz3QiPaEv/rqK8yfP9/B+/QJSFyc3/fIyEjk5OTgyy+/FIQjRRghmieKi4uDXq8XfVKp+x1v3pzjOJw4cQK5ubk4d+5ckC27iyiuwmQyobu7u09AAcCbN4+IiEBqaipaW1thtVqF7cH+9CGKiGpra5Geni7GqfroJZGRkUhLS4PBYBC2hVxMREQ4evQopkyZIoY9fdwD6enp+OmnnyTLX5Qq/s8//4znnntODHv68AHnL/aZmZkOUysHG78D68uXLyM1NRXXr1932C7Hb2Th3OQwcOBAWK1WST56+31HLRYLkpKSXLYHW0C+vAsRERFh2wA6evRoXLhwQZK8/RbR2bNnodFoALg+yGA+MGfRehJVuHki/h6r1erQFZHFYhGq9s4PTsoHZi+q6upqMAwj/FasWCGZXWLD3+PExERcuHBBkp6Nfj9lk8kkiEhK0dh7Pfv/r1ixAllZWcKUfUSEoqKisBIS8JeIzp496zAdYbBKAr+fent7Ox577DExbPELewFHRESAiLBy5UqcO3fO5e3U6/UoKioKtokBRaVSOVRu7D+MB5p+/p7AZrNh8ODBAKSvkdnnX1NTgy1btsBsNrvsE24QER588EF0dnZKkr/fUrXZbEKnKLkICAA+++wz5OfnC8tO8TAMA4vFEmzzAgrDMBg8eDBu3bolbAtmpUYUEQ0aNEgMW/zCWcAVFRV4/vnnhb/tPdAPP/wgzFBSU1ODkSNHIiUlBXV1dSHrqQYPHgybzSb8HdT41N+BayKcQnTMZjMBcDvbmF6vF9K6u7vpkUceIQAEgCZOnCiBteJw48YNio6OliTv8Go0uQNfhLmbRDMrKwv5+fkAgGeeeQZ//vlnUG0LBCRh+xwgQnEWFRWFP/74QwxbRCU/Px+fffaZ8LfFYgHDMMjPz8eWLVvQ1dWFhQsX4uDBg1AoFFAqlW5HloYCDMOgs7NTqOAEu6nF79pZVFSUbOIiHo7jsGXLFkyfPt0hVjKbzYKXSkpKEj7XLFmyBAAwefJkh3OEUuu2lM9AFE9kH9DJAf7hHzp0SGhgPH36NEwmU6/PESp0dnaGtoikap/oCT5W+PTTT/HSSy/JTuxicuvWLaE4CzZ+F2dKpRJXr17FU0895ZImdZHAMAxmz56Nixcvoq6uDgkJCQ7tSVLbJyatra0YOnSoJHn7LaLExESXVmEeOfQnysvLQ2pqKgYMGOCSFi4CAoALFy5gzJgxkuTt911Uq9UwGo1u0+QgosmTJ7sVULhx9uxZPPHEE5Lk7beIEhMT0dTUJIYtfvP7779j5syZYfdZwxfMZrM8RNRNrPDzFbVajcbGRgCOjV7ODWBi4O2cNTU1SE5ORmpqqsv3snCGvyfnzp2TTEQOMVE/JhLdxKIfE+nzCeLj49GvXz+HfkVAYIoyT+c8fvw4Fi9ejIqKCqSmpvp8PpJhP/DewjAMjh8/joSEBMkmFfM7sOY4Dunp6aitrZVs8OIzzzwDo9GIAQMG9CgM+/RQFxCPwWBARkaGZPl7jYmcizd3xR3HEDK1U1zGPXkrGn0tNruJxb+4bpf9uonFP27+02H7gAED0E0sGIZxsdmecBGOPbIWEV+sefqXL/qem/wf+Pvx/xWO47dHECMUkc5p/M+TkPj9+kfcdZZEhH/c/Cf+69W5WPLOfzscb/+vs33dxIZsF4+eYFkWx44dk6+InHEXL3UTC03iE0Jc5HByH9thegrI+TxPnTqFtLQ0xMTE4KuvvnK7D/8vETnYat/A6C2vUOPkyZNQqVQuM8kGkx6fsjdvwaf3YyLxt+zp2Lt37z0ZYV/EeCpuiAilpaXYuHEjiouLhbYfT90ePJ3HXtj2ndpDEY7jsG/fPrz66quS2iHc0d5U653hOA6v577h4h3EgIiEWGfHjh3Q6XQO6d68nU6nA8MwGDRokDC6gx8+FBERAYZh0NzcHLJxEhHh22+/xVtvvSWpHS7tRO6q956q/v2YSPzJ/gscQxj37yl4+OGHUVtbK+zP/+yP85ZmL+R+TCR++fsx3Lr9f16PjyDG4Vj7c5QfOgidTofKykr8z0ebAABarRbV1dWYNm0aiAgjRozo/V0LMuRh+M+hQ4eQlJSE4cOHS2DVXQQR8cVSb/m3yP6IvHOa3NxclJaWOpzPkyjdpfF/syyLgoIC/OffZqLJ5Dqq0/543os4n5P/f0VFBbKmaB3yqqqqcvFocsbeU9oXvV9//TUWLFgghUkO+BT59tQAyV/ka6+9hvLycocJl3pLa2sr0tLS8PPPP8NoNLrtHeAub3dUV1cLXWHtMZlMmDp16j3bKAV8sc1fr8ViwbFjx/DKK69IaRYAH9uJfGXo0KFYsGABtm/ffs/9fB966CHMnTsXBoPB7xpHc3MzioqKHIZQ8w/BvhjzFFjLefKHoqIiLF26VPI5rIEeWqzvpXh7//33kZKSglWrVt1TM3xUVBTefffdXh/njsrKSocusQCwc+dOAL7VCOXaVcRqtWLfvn24fPmy1KYAEHH2WP6tValUmDZtmsclA5w5c+YM1q1bB0DcqrbFYgERCQLi7TObzS7B9Pr167F+/XoXjyW3Wht/DZs3b8aCBQvkswBPIMYhmc1mUigUdOPGDa/7FRcXk0KhoH379gnbOI4Tfr3BeSG+kpISKikpcdnP3SUDoIKCAiF/b/tKTXt7OykUCmpvb5faFAFR/TXHcSAiJCQkIDc3FytXrvS473vvvYfi4mLU19djzpw5wvZ79QLORU9lZSWmTJniENeUlJQIgTY5La/Fb5N7A+S7776LvLw8SVuoXQiUOjs7O0mpVLpdvpPor1Wq+WUoe+t13MGfgx/hyv/4UbA6nY4YhiEALh4Kdp7IebucqK6uJo1GI7vlOwN6l/bt2yf5QsK+rDfLMIzsRdTV1UWjRo2S5dLwAa1+zJkzBzExMSgsLERGRgaqqqqENI7jhKKEAlh0eKthBSN/sdiwYQPGjh2LF154QdgmF7uZgoICUS3hFynhaWtrw65duzB27FjMmDEDgPcehd7SfM2zt3HN+vXrPaYVFBT0ypZAYDKZUFVVhUWLFuGBBx4Qtjtft1T43bPRGeeLGjZsGGbPno3Kykr8/vvviImJcehZ6Lz/vVSrnc/R2xvLrwaQkZEhi4diT1tbGyorK5Gbm+sgIEA+nihohX5paSmp1Wrq6OgIVpY+U1BQ4DYmChaeKhYtLS00bNgwOnDggMu+YlRGxCKgMVF1dbUwfGf+/PnIzs7Ga6+9JqzUKOfPCsGC4zi33rerqwuzZ8/G22+/jd27dwvNHnwXlpqaGgmsdU9ARZSVleXwNz91C/9ZQ66fFYKJp3uwcOFCKJVKFBYW4tChQ9DpdNDr9SAi6PV6ZGVlyWZ8XcCe4ooVK6DT6Rw+MURERGDPnj2oqqrC559/HqisQxoiwsaNG3H69Gl8++23wvaKigpotVoAQEJCglTmuScQZWRJSYnQ6OcOo9FI0dHRsmnzkDomsufAgQOkUCiERlKWZUmv11N+fr6wj06nc/hbakT3RLyLTUhI8NjxKykpCXv37sWcOXP6PNIdiAgfffQRFixYgLKyMuHDcUREhEuXlm3btmHLli0SW3wX0UVUUlKCRYsWAYDXwYwvvfQS6urqsH37dixbtgwsy963gfbt27fx5ptv4ptvvsGpU6dcFiDku7QQEUpKSqBWq2UTDwEii2jnzp3CG8MvGuONpKQknDp1ChaLBVOnTpXtZFmB5Pr165g0aRJsNhvq6+sd+j4RkSAWfjv/goZl7Yzvv8P/jhw5ArVa3aN3GTJkCCorK5GUlITU1FS309R4O4fzmh4klwY4Hzhx4gTGjRuHF154Afv373fppchX5bOzs4VtvKhkNcBAjMDKbDaTTqdz2FZSUkLFxcUO23pqINu9ezcplUo6fPgwsSzrsL+7Y335uOoLUgTWZWVlpFQqqayszG06f206nc5hPm7c6Z0gJ/y2Jj8/3223C36bp1qEJwE0NDSQUqmkDRs2+GuazwRaRPbXyrIsffDBBxQfH09Go9FhP/sXxblLC/9zflnlgLwkfYeWlhbSarWUkpJC9fX1Lukcx4nmhYj8E1FvPj8YDAZKTEyk7OxsWX7+uVdEWY1a7ONVKhX0ej0+/PBDzJgxA4sXL8b169eFfX1dhikYtT1fPhhbrVbMmzcP8+fPx/bt21FRUSHZJJ2BQJTVqJ3pzcPz9hBmzpwJs9mMhx9+GGPGjMG6detcFiz2RrA/qzhft9VqxerVq5GcnAy1Wo3z58879AfydFyoEZC7LObDGzRoEDZt2oTTp0/DarVCo9EgPz/frwGSgYK/7tbWVixbtgyjRo1CV1cXjEYjCgsLXSYg5cUT6t8Q/bbe37eI7jQJ9IRKpUJxcTHOnz8PlmWhVqsxb948h96S7s4dTA4ePIi5c+ciOTkZgwcPRlNTE7Zt2+axU32oi4fH76vw90b0dmRHbGwstm7diubmZqSnp2PNmjWIi4vD6tWrXeZH8mfcWE8C5F+exsZGvPfeexg2bBg++eQTaLVaXL58GZs2bQqruMcbovdsDBZDhw7FokWLsGjRIphMJuzatQs6nQ42mw3p6enIzMxEenq6208v5EMXXE/pjY2NMBgMwk+hUGDWrFn45Zdf7qtZa+1hKNg+PwDwoiAiXL16FTU1NaiurkZtbS3a2tqQlpaGuLg4jBgxAhMmTEBUVJQwPi4+Ph5r164FABQWFuLSpUvC8OTOzk6cOHECzc3NaGlpwbFjx6BSqZCZmQmtVgutVuuxqPJFqOFCSIqoN2ty3Lx5E2fOnIHJZMK1a9dgMBiEtKamJrS1tTnsr1KpBI/Sv39/TJo0CXFxcdBoNHj66adlMYGC3Ah7EfkKH+CLcd77yQsBISYiMR9OOK0wJDUhdRfFfLudBbRz506hpjh9+nQAEOZ5BEK/QTCQhJSInPH1wbpztvyx/NqwfKcvIsK2bdvAMAzUarWwv7Po+kR1l5AWka/FkTsPxh+rVquFxYV5Ro4cifz8fK99dvqKwruEbDuRv3Achy+++AIA3PZX1mg08htVIVNCKrAWG4ZhHPqE93Fv3Lc+2b6bqf0MJc7/9tEz921xxuPcNsTHT30xj+/ct3eKb5W+dOkSgLueh2EYWCwWVFdXS2Va6BGM7pNyhGVZKikpIQCk1+uF7UeOHJFlP2Y5c18H1sBfM5fYTzzhXN3vo2f+H+Kg1aS7dEBdAAAAAElFTkSuQmCC"
<image>如图,⊙O的半径OC=5cm,直线L⊥OC,垂足为H,且L交⊙O于A,B两点,AB=8cm,则L沿OC所在直线向下平移()cm时与⊙O相切.\frac{ Choices: (A) 1 (B) 2 (C) 3 (D) 4
4
11,029
null
4
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABoCAYAAADcm/8NAAAY9klEQVR4nO1df2yT17l+PihDt0tluBjhtg7mNs4wBNRAQM0gbYLqrukVUzMtW+iUEkelBCnSJUhpCSu9obtpYzqk5o9MpEPbwhUloTdSkIZEepUK04UQZHZDtaQmIylJHIpp6BqW0Lqd/T33D8df/Nuf7c+OWXkkcL7z8z3nPe97fr3nHIEkkUSQhCAIMfsplUcscQPTUYq+oDwxhvbKVfhFa4CHYEaP+Aq2YoE3IKB89t7Uk4fQlSZG8FMqj9jjBqajJMN9ZUuADj/7/XW0mXbi5LgIkiCJ3sY6FAhHcGG2fpLBcCAFTPcW1v9X+WyTrLBiztPPj4ENSMRC4TOM4TlszZwL98Sr13HStB8Fb1/0RksKUibpgiDMFT4JpUmGGk4kT6nLAGYlVvTxXQBePI+6NZlY6cOCBcIq6FYDsNkxDleyBB0PJCndYPj2Tyngz507d3DlyhVcvXoVN2/ehMVikfrokZERTExM+IXXarXQ6/UgiUWLFmHr1q3QarXIzs5GXl4eMjIyEqTIv5++9NEv0fiUKyiU9t8qgSERwIKkjSmEZA/kwsNTMKUwMTGBDz/8EN3d3bBYLLh58yYKCgqQmZmJrKwsbN68WWLcqlWroNPp/OKPjY1hdHQUADAzMwOr1YqRkRHY7Xb09PRAq9WiqKgIzzzzDIxGI1asWCGLrlBjMZEX8PbCHjzp3o+tgn+Yi4cFbBF6wFd/CHBBcgSE9zBsNhtra2up1+up0WhYVlbGlpYW2mw2xfMaGBhgc3MzS0tLqVaraTAY+Nprr3F4eDgorCiKPl/u4MTG32fF4T8Fu4+1swJgY69LOcJDIPlMny3/2KkKzjZ8wtTGMbGHZnNvzMlNTk7y3XffZV5eHjMzM1lbWxuSyf4VH4KsKP7R4g4MDHDfvn3UaDQsKCjgsWPHODU1JSv+2KkKmtrH6Z6tHFEUKXKUJ02zdeNtKPGTGBHJZ/q4p/XicM9cGeynWAHQ1D4eNbooihRFkQ6HgzU1NczIyGB5eTnPnDkTExkiQzBaDPnnLBPko6Ojg2VlZVSpVKyrq+Pk5GSYkG6KvMBGVPDkuEhJC4yf9NRRxck5hicRCjA9mEhR+r3AxlmG+7qTZO9h8K0L/4iaut1u5549e6hSqVhbW0uHw5E4yYH0JiD1vrDb7ayurqZKpWJNTU0Qre6LjXPaLuBfY+9sXYjK0hQKikl6KOnwqPRG9oRoGONth2dbe2hMT0+zrq6OarWa9fX1EaRHJn2yHWX4RYHD4WBdXR2XL1/O+vrX6XQ640sordV7COI8Ui7IUuGBOH36NDUaDauqqhJn9qzEJE9uwsPhcLC8/BfU6XTs6uoiSfb19QUHFJlSAhNnejhix2MfidrtdhqNRj7++OPs6+tLnooL1UiTqE4tFgtXrlxJlUrFtWvX8ssvv5RDUtKQ+EQ5zDySftN/MYKfB5cvX8bmzZtRVFSE/v5+PPHEE8lbZQtI1jNPDs5LiQWMy5f/D2+++SYWQMDTTz+NmZkZ3LhxA4F1Ivhl5u+nOJRuRYGDuJDqfbydbb1z/fzevXupVqslFag8TZ7pkCAIwYMo3ymSghgeHmZpaSk1Gg2bm5vpcnk0XkdHB9VqNTs6OqJoFzdFMTnzdeWnbOLcj3du7qvi3b1vEaY2joouulzf0mQyEQB1Oh07Ojpiy0qmShbp9jB+Z4Xf4NHd+5Y0s/DOQhJV8w6Hg1VVVVyyZAkbGho4PT0dQAtptVqp1WpZV1cXhe7kIOnzdPcFs79kzVby1NQUi4v/ndnZ2SwoKGBnZyc3btxIg8HA9vZ2knIZEF5KRR9/kRdonpVqkRd4sn2MFC+wrX0sfNIB06fAX19MTU2xrq5OxlzdA4fDwby8PJaWlgY1jHB5KIV5WYYdGBigXq/n7t27mZWVRYvFIvl1dXUxPz+fOp2Ora2tEdMJrJiIyrL3LamrGW3fGTDAjNBwolT+119/TbPZTJVKxd27d/vNzaPFdTqdLC8vZ05OTsjl3GQhJUz3LfoHZ7uoUqnY3NzM1tbfs7Cw0D/sbEVZLBYWFhZSp9Px6NGjUp8YNa8QDcFN0X8ZGBU8OR4pveh9vMvlYnNzMzUaDUtLSxNimrfR+Db+ZCKlkj4wMECVSsWuri46nU7q9T+IWtC+vj4WFxfz0UcfZXNzs99CR8g5eMg1g1G2VZh4clykW7zO9yrf4p8CBkmxaI329nbqdDoajUZardaI9EeCb56dnZ1cvnx5SiQ+6Uz3FmxycpLZWXo2NzeTJJuamrh9+3bZ6VitVpaUlFCj0bCpqSlkPxiWhrE2mkzt0ij9Qtt7ITc1ou2OdXV1MTc3l3l5eezu7padfxA9YdR+Q0MDc3JyYipbPEiJpLtcLhqNRlZXV5Mknc5vqdFo2N//sRRG7sClv7+fZWVlVKvVNJvNMirILe1q+ULkKNvMwdM1fzI8fn19fSwsLKTBYIh5hiEX3vKXl5ezpKQkKXl4kRKm1/zHXhqNRqlfbmpqilqwSI1AFEXabDaWl5dTpVKxvr4+5Lamd8uyzbST743NMdc7b4+2RGyz2fj8889Tq9Xy2LFjMY2o5YT17iD6wul0Mj8/n/X19bLzihVJZ/ofjrdSr9fz1uTnJD2F8kh5f8R4civ4+tgoTSYTMzIyeODAAb+pkrv3rRA7Wgt8BnPBeYj0LAebTCaq1f/KI0eOxL9hEifsdju1Wi07OzuTkn5Smd7X10e1Wu1n5GA2m5Oivux2O6uqqsJua8rB5OQka2pqqFKpePDgQd65c0dxOuXCarVSrVZzYGBA8bSTxnRva/VdWp2amqJarU7qCNVut0uMq66upt1ujxpnenqa9fX1Upxbt24ljb5Y0NHRQZ1Ol/BOYyCSxnSj0Uiz2eznVl9fT5PJlKws/eBwOFhbW0uVSsWqqiqOjo4GhXG5XGxqaqJarWZZWVnIMPONgwcPsrS0NMg9kRU7RZgeSEB7ezvz8vL8FlS8Un7t2rWw8ZSGKIqcnJyUlkdNJhOvX79Okjxx4gS1Wi23b9+eFBUaK8LVhdPppMFg8NOYidab4pI+PT1NrVYbtGiRSikPhampKdbX1zMjI4MqlYobN25kT8+sGZdPJSa7IcpB4Ki+u7ubBoOBTqdTEfoUZ3ptbS2rqqr83BwOR9L78miVYbFYmJ+fz7Vr186OzNUsLS2NOotIF5SVlbGhoUGRtBRl+vDwMNVqddCcuaamhjU1NUpmJRv9/f187rnnqNVqeeLECcnd6XSyqamJGo2GJSUloc2Y0ghewYllQyccFGW6yWQKWlRwOBxUqVSKEBsJgWmOjo5KK3dNTU1hN2ycTidbWlqYmZnJZ599VlL56QilhEexgZy3JSop5fE0DofDwerqaqrV6pBGDOHSd7lcPHbsGHU6HZ966il2d3enRf/ui3B1HCsUk/SampogSxCvlN+8eTNq/EQreGpqigcPHqRarWZtbW1Cc9vWVs8qYn5+vjRq9h1czWdj2LNnT8JLtIowfXJyMkiFk+TLL7/M2tpa6TtcZSVSiU6nU9qP3rVrl6zFGLn5t7e302AwMDc3N64l0WQ0Du+4KZGdOEWY3tTURJPJ5FdIL3FKL2X65tHS0kKNRsPnn39eWuqVu9ERCzo7O5mbm8ucnBzJlGs+UVJSEtWqKBIUYXpubi4tFotfZZpMJh46dEj6VrLVd3R0UK/Xs7CwMOKoW2nNcubMGebn59NgMMRsyqUkOjs7gyyOYkHCTO/v76dOp/NzCzd1SxTd3d3My8tjXl4eu7q6gq1dZJxUDbWdGSu6urokU67W1lbZplxKweVyUa1Wx71snDDTa2pqggYWFRUViu4HW61WGo1G6vX6mIwYZJtIx9kILBYLi4uLqdVq2dLSQpfLlbJBXqh6l4uEma7Vav22Tvv7+6nRaPykPJpBRDh88sknkolUS0tLTHFjCZMo+vr6uH37dsmUKxX77319fVyzZk1ccRNius1m44oVK/zcSkpK2NTUlEiytNvt3LVrF1UqFc1mc1Alptv82Yv+/n6pkcoz5QoNOeVzuVzMyMgIazcQKQ1ZTA+XQEtLC8vKyqRvr5SHsliVQ8zk5KS0HVpXV6f4mCBZCCyTzWaTVgMbGhpiLofcRl1cXBzXbELWAcZwBwnPnTuHbdu2Sd9vvPEG6urqsHjxYu85OVkX8s3MzODNN9/EmjVrMD09jaGhITQ2NkKlUs3L/XCxIrBMBoMB7e3tuHjxIoaHh6HT6fD666/jiy++iJiOt6y+N1gG+vli27ZtOHfuXOwEx9xMfKDRaKT+PJSUR4PvgYFIRgzpqs59EYnG0dFRqbs6cOCAYrdp9PX10WAwxBwvbqaPjo5y+fLl0ndhYSGPHj0qK64oijxx4gR1Oh2Li4uDtjeVmFalI7x2fEuWLInbji8QixcvDuo+otVd3Ezv7u6WFggsFgv1er2s+eqZM2eYk5PD/Pz8lB3jmQ9EqnjfS5OqqqriWjr2Ijc3l1arNSYhiZvpzc3N3LVrF0mPlLe2tka0QOnp6WFBQQENBkPSTHvnC/FqpUBTrngWW0pLS/3sBOTQE/dNFMPDwzAYDDh//jxu3LiB8vJyCIIQNBgZHBzEj3/8Y+zYsQM7d+6EzWZDSUlJXHkyTQd18d6YsWzZMjQ2NkqDvccffxyVlZW4evWq7DQMBgOuXbsWGz3BbSLciU3vOW8PiouLeebMGUnKA1uZ3W5neXl5RCOGf8Z+O16IosipqSmazWYuX76cZWVlsgw2T5w4wdKf/0xGDnN8XRDYJhjivlZ6r+sWKd2N4nA4MHJtGLdv30Z5ebkU9vPPP8e+ffuwbt066PV6XL9+HXv37sXChQuD0p2Pm5vTFYIgQKVSYf/+/fj000+xadMmGI1G/OQnP8HHH3/sF5Y+Gi/zUS0mb30ecD+O6POX18eHr+GbXmRJ1Ov1XLNmjdQ/e40YvCdMlDbQ/y7Ca8en1WpZXFwcckfRarVy48aNstLz8jOI6X6HdXvbgs57ibP/qVQqrlubQ6fTySNHjlCtVrO8vFwaid6LqjtdaXa73WxpaaFWq6XRaPSb9dhsNr+5eqgyiAG/CPKRPj13mJ4KOtjp6RsEQWBVVVVaHRiIBV5b8tzc3LQ2hgxEa2srdTodCwoK2NXVNXt8bGXIsO4wVysIFMm5lwfm9H6vuQLvDq3By79/BQWCf3+8Y8cOnDp1CitX6fAj4zN49NFHE+nOkgqGuSj/N7/5DW7fvg3Ac8H/Sy+9lGrSghCO1lD4y1/+go8++giLFi3C3/72N9TV1eHQoUOy0lowd2feAum2vPH3TfhTYRXWHBeCIpKEwWAAAFRWmPDII4/EUq6UI90Hi5EeDoqE9evXo7q6GkVFRX7unnPYY2h7aQEEQfD7Z77ong3kg7uub3h39D3+V/tw0JUdgcjIyOD09F2S8RkrzHf/ea+q90B4TwcHwnvxQmOvx7DDc1bfcyb/Ad+3JP5l4U389/tExSuPQbBfBgMelvHtAjIyMvD13RlkZDwou4XG26qTgaeffho2m21eaVACMzMzeOihh6TvOXbewNhxM578gwABAgTtY6jA7KKPb+sYO1VBLH4g6KK/UNDr9Sm9+yzVmG9NJBdWq5V5eXn+jqLPbZgiSdrZbprj55wY20/hpPgG7t69C5Jw976Fct3D+Mr9Lb5yfwsA0t9fub9FRkYG/v73v/v5+8I3bCx+csJFcvf193XzhXixcbafW+j5fftCUJj51kRycffu3eCXpARgwj4E7C+AsECAIByE+CsRfHUrAK+utp9C5X8CL+zIhHc1Z8I+hAewCADw4MLvSb8k8eDC70Gj0eD6Zzfw4MLv4cGF3/Or3K/c30rusfj5wjdcOHff+L6/3jievx/wy+PiYQELtyxED90g3XCLPWjcXxCS8fcCJibGsXz5cj83Ygy9Zym97jh2CvjFykq0zb5KtuDiYQGCbgdaW8+i1y6AmEBbpQBd2XEcf0GH779zUUrsK/e3+P4DHqsYg8GATz8dliWxiSKQ8ZHC+Ib1NNI5ie0zC9hytQ1jrJXeM10gbMWrvW8BdR/NPXd5D+Gvfx1GTk6On5tg78MHKJZed8z8+W404jj+t3cMALDgh/sJugmyFS9kChCwEi/8gRBFEaIogrWFIZmq1+sxODjoJ3XpCK+aFi824ocHduLkr8oCBqdSyCCX9NzT88cnn3yC7OxsP7fxi2eB4gKsnO29BbsdVwH8QOtZT5l1De77ovVpBoMBw8PD0ncypT3RtIlxnPrtL4HDu/FCZnC5JuxDITl8L/Tqw8PDWL16tfRNjKL3LPGjLY8AAkBchHnlDhxHI57a4n0FchZ3Xd/wruubsKNEr593TDs6Osply5aFjed1j8Uv1Lfc+IFufn//4zx/tfgBvhnwtIhIz3z2vUoE3ft+r2Dx4sX88o7HXCrsvXkBDxnItpwJVfm+hpFpjfF2VsAU8rJAT0XtjPhyVLqir6+Pq1evjnl6KctyxndE7IvCwkKcP38+cR2VZDAzEwa0Ymwi4C0Z9OLtLSHUPoGkv6MSJ+izl26xWFBUVBTz9DIi06ONzIuKisLaXTONTJsEbEGhGTjw2//BuJeZE+/DJGzFgcM9EF/ZEhgBKXhlPC74MthisfidO5CNRNSLzWajRqNJJIkUwT33lqnfRf8R1GKaa/tQx5rkqnnFDzD+cyF9B3WXLl2K66ADqcC7bKWlpWhvb080maQi/o4m/VQ8Z7vNtrY2lJWVxZWGQEbufBlhM54kPv74Y5SUlEgPzqcdCBBhyhDqRXsJ/kYl6QS32w2NRoM///nPWLlyZczxEyqVIAjIzc3F0qVL03sUH250O+scqtWHsgpOF/zxj39ETk5OXAwHZDBdznTAZDLh+PHjcRGQdAjRV9ZC+afzatzx48dRWVkZd/yo6j0aSOKLL76AXq/H0NAQVqxYkUhy9xEFIyMjyM/Px/Xr14O3VGUiYR0mCALUajUqKyvR1NSUaHL3EQW//vWvUV1dHTfDAQUk3YuJiQls2LABw8PDUKlUSiR5HwG4desWVq9ejbGxsYTqWLHRilarxfbt2/HOO+8oleR9BMBsNqOysjJhoVJM0oG5/ubatWtYsmSJUsneBzxnB9evX4+BgYGEx02KMh0AXnnlFUxPT6OlpUXJZL/z2LFjB9avX4/XXnst8cQSXg8MwPT0NDUaDS9fvqx00t9ZdHd3MysrS7H76ZLyWlOoh3t8ca+YF883RFEM+XBPolB02YmzPUVZWRmWLl2KI0eOhAx3r5gXzzcEQUBDQwPWrVuHZ599VrmEFWs+AQj1GN99xIa0f4wv1Dm1UM9u3kd0iKJ47z276dsAWltbmZWVdf9miijwrbNkP7CryJSNUc5V19TUYHBwEF1dXSHvnrmPOXzzzTcoKipCcXEx6uvrk5KH4vP0UHC73SguLsbq1avR3Nyc7Ozuabz44ouYnp7G6dOnk5dJUvRHCExOTlKv17O5uZnk/WlbKDQ0NDAnJyfkleFK1ldKmO4leGBggCqV6js1opf7EEFnZyeXLVuWkuPfKZN0L7q6uqhSqdjc3Hxf2mfhfWIsVXflppzppEfi9Xo9q6urv9Ordk6nkyaTiWvXrk3pBQ/zYgiWk5ODy5cvY2RkBEajEXfu3AkK88++anf79m1s3boVMzMzuHTpErKyslKW97xZ/6lUKpw5cwY5OTnYtGkTBgcH54uUlMNqtWLDhg145pln8P777ydkBRMXUqZTIqC1tZUajeY7McDr6OigRqOJ6akxpZEWTCc9F+ZoNBrFHoZPN7jdbh48eJA6nW7eb9ecV+Nu+qwLbdq0CVarFefOncOGDRtw6dKleaRMWZw/fx45OTm4cuUKrFZr0HUhKce8Nrkw6OzspEajYVVVVVqs2cc7k3A4HCwvL6dOp+PZs2cVpip+pOUxjpKSEly7dg1Lly7FmjVrcOjQIdy+fRv0dEcppyfUk1mRcOvWLRw4cADr1q1DVlYWhoaGUFxcnEwSY8M8N7qosNvt3LNnD1UqFWtraxV73ioZsNvtrK6u5pIlS7h3794gWtPlFaq0lHRfaLVaHD16FENDQ3C5XMjOzsaLL76IDz74AED8lx944/nGD0xLbtqnT5/Gjh07sG7dOjz00EO4du0a3nnnnSCrVe/FvPOOeW1ys4il9U9OTrKlpYV5eXnUarWsq6ubFyONwcFB7tu3jw8//DALCgp47Ngx2Y8KzzdSsrWaLFy9ehW/+93vcPr0aczMzKCwsBDbtm1DYWGhdD25UhgcHITFYpH+qdVq/PSnP0VlZaWs1TTGcJd7spGWTPetILmVNTExgQ8//BDd3d2wWCz47LPP8OSTTyIzMxNZWVnYvHmztPK1atUq6HQ6v/hjY2PSGfuZmRlYrVaMjIzAbrejp6cHWq0W27Ztg9FohNFojOvAQWBZ5qshpCXTlcCdO3dw5coV2Gw2OBwOWCwWyW9kZAQTExN+4TMzM/HYY48BABYtWoStW7dCq9UiOzsbeXl5qV8qTSL+H1LWuG8EeViGAAAAAElFTkSuQmCC"
<image>如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为() Choices: (A) 2.2 (B) 2.5 (C) 2 (D) 1.8
2.2
11,030
null
2.2