image
unknown | problem
stringlengths 14
525
| answer
stringlengths 1
112
| id
int64 0
11k
| choices
null | ground_truth
stringlengths 1
112
|
|---|---|---|---|---|---|
"iVBORw0KGgoAAAANSUhEUgAAAE4AAACACAYAAAClSF/ZAAApLklEQVR4nOV9e3hU5bX+u2fPJTNMMpAQSXiACETKRRHQCEYKcomCEELViiCm1HKaIrXAgbRwVHpEfRR7pIAcBKN4KdWIJRS5KEEUEZR4DmA5CoaQGAiQNCFhkknmuvd+f39M9pc9IQlR0R+h63nmmZl9+/Zee93X+tYnkSQ6MJAqJEkW/zUQEiRIADRNgyRJIAlVVSHLMlRVRVAJoZPdgZoaN2JjO0PTNJhMJng8HkRHRwMAAoEAbDZbq+NKHR1xQBPySEKSpBaPqa+vh9lsRlRUFADAHwghymaBoigwm80Rx547dw4JCQkwmUytjnlVIM4IOvXoUF9fD6fTKf57PB5ERUVh7dq1KCw6gYz0KVBVFU6nEzfffDNsNhtkWcazzz6LUaNGITU1tcVxzC1u7UCgs6ORLY3QqVMnAIDf74eqqoiOjsaRI0fw9NNPo6qqChKBU6dOYf/+/di5cydGjBiBQCCAwYMH49prr219YHZwUKmFv1WVJKlpkfs0wwZNU0iShw8fJgDKssznn3+ehYWFHDhwIGVZZkFBAUnS7/e3OW7rTNzBQGdPXcQRADSDzCOEEgkEArBarZBlGRUVFUhKSsKHH36IwYMH44477sDbb78Nm82GYDDY+oCX8+3//wCd0oxgpDJqF+3mvn37BMUlJSVx27ZtJElFUThq1CjKsswlS5YwGAy2Ou5VhziddTVN44lda7mrSBPI07Qw6/r9fvbr148mk4mSJBEAV6xYQUVRqKoqn3rqKU6ePLnFl6JDh0ecDrpM0qlN5QlOAbirSLsIAYqicHjKLZQAPvzww5w3bx4BcM2aNeFzVbVNaiPJDq9V/YEQbGYZVqsVCggTwwZwzpJ10CZPQZ9kwoRIUW4yASFVASQJPXv2xOLFi+FyufDb3/4Whw8fxiuvvIJAIABVVYXd1xw6POKibBbx2wxAlYgPXskGx94B7bmvWzzH7w8Kg7i6uhoAMG/ePPTu3RsPP/ww4uLi8Nxzz7U98A/ANT86eL31VFWVmqZQLX6Pi9a9T7VoB5GxKFJRGCAlJYUIK1++8847gp1zc3MpyzKXLl3apklyVZgjdnsnmEwmSJKMxes+xJ+y7gRMJkz5yXUXuWAawn6r1+tFlMOCxMRE3H///fjzn/8MksjIyMDGjRtx9OhR+P3+1gf9ISjgxwSfr0Fo0vyXFgoqAsApv19P0mCeqE0aNjk5mQA4c+ZMPvnkk3Q6nXz66adZV1dHkjx58mSb43Z4GadpADTC9/V25GtpIP8LAPB/763Ga2VJCAaDIAkNKuw2BzRNw949H6G2thYAkJaWhoyMDIwZMwZTpkzB+fPnsWLFCvTp0wehUAgWi6XlgX8QMvgxQSPr/+/vxNRsscnj8XB3ziL+9s/vRBxaU+MmSd5111202WwEwN27d4v9GzduZGxsLI8cOUKS9Hq9rQ7b4RG39g+TCEkmpLDNFqLGhVNASZIb2fUlBoNBYZe9lbuJAIThO2jQIJaXl9Pj8ZAk169fz8GDB/Pjjz/+1zCAddAfVv/WEeb3++nz+Th69JgIOehwOOhyuXjixAlxzrPPPssdO3a0Oc5VhLiWqUNHhqIoPH78uECYNcpGa5SN+fn5nDZtGh0OB/Py8oQJUllZ2eZoV4U5EoaWH8VkMoVjcdTwwe73mnZohESgc+fOyM3Nxa233ooFCxagpKQEVVVViI+P/w6jdUDQmsWxNTRtkCQJZadO49XXNoptwWAQiqLh1KlT0DQNO3bswG233YYhQ4bgk08+EVq3Vbi87HLlQTAYpKZp3LBhgwgljRw5kgBosUYRALdu3SqOX7p0Kbt168bNmzf/aykHPcqrQzAYpKqqnDBhAgFw9OifMjc3l1H2TpRlmYMHD2ZSUhKXLVtGj8fDYDDI1atX8y9/+QsbGhpaHafDI05jUwxOB1Vr2hYMBvmPf/yDAGiz2bhixQoGQ2rYc5DAv/71r3zuuecIgNu2bRNexlUfVpIABANBmEwmYeVTU8MJnEY5t3btWjgcDqiqirS0NFSfrwzLMALHjh3DU089BafTifnz58NqtWL8+PEIBAKtew24CpRDKBSCzWaDxWJBIBCAz+eDLMsIhUIwmUwIBAIoKSmBz+fDhAkT0KdPH1RUVKChoQEAIMsy/H4/Zs6ciTfffBOzZs3Cli1b4HQ6ceHChdYH/kH450cEY+inoaFBeAC6u/T0008LI3fPnj0kyZycHAKg3W7nkCFDhM3m8Xj41ltv0eFwcN++fW2O2+ERR0bKI2P8rbS0lHFxcQTA2bNnCy2ZnZ1NAHQ6nezZsydlWRb+qaqqzMnJ4eeff97mmB2eVUkiFAqJ/5Ikwev1AgC2bt0Kt9sNm82G9PR0AGHWJgmLxYJQKIS1a9di8uTJeOCBB/DFF19AVVXcfffdSElJQVVVVavjdnjEKYoihLiqqlBVFTabDbW1tXj77behqiquv/563HzzzQAAi8UCs9kMTdMAAD169MDatWsxYsQIzJw5Ex9//DFiY2MRCATa9B46POIsFoshGS1BURTIsoy8vDz87//+LwBg/Pjx6N69uzhORzAQLo3o3r071q1bh+7duyMtLQ0HDx6EzWYTyG0JOjzigDD7BQKBCJPk3XffRTAYhMvlwoQJEwA01Y+YzWbIsoxAIICHH34YH374ISwWC/Lz8/HXv/4VL774Ir788ss2q5WuCuWgqqoQ/H6/nwUFBbRarZQkiRMmTKDb7Y44du7cucL9SkhIYLdu3fjZZ5+J6xQUFPDo0aOtJnrIq0Cr6uZHTU0NyXD46IknnhBaU4+rqaoqXKjc3FxarVbKsszCwkLOnj2bTqeTeXl54thLQYf3HHR26tKlC4CwQbtr1y7Isowbb7xRsKnJZIKmaSCJXr16IRgMwuFwwO12Y9WqVejXrx8WL14MABgzZgwkSYLVaoXdbm954B+ACH50aGhoYDAYpNvt5ptvvinyCTk5OVRVlYoSdvxVVaXX6+Wnn34qWPWll14iGQ5c5uXlMS4uTth0bcFVgTgdISSZlpZGAIyPj2dJSQmDwSAVRRFREpIsKCigw+EgAMbFxfHo0aP0+/30er3C4d+xY0ebyZoOr1Vra2thMplgt9tx7tw5nDt3DgDwb//2b0hMTITJZBJF0zpbV1ZWwmKxwG63Y8yYMbjzzjuxcuVK2O12ZGdnY/PmzW2zKXB1sCpJ+nw+jh07llarlX379uWJEyfEPqOw9/v9fP7550WGKxgMcu7cubRarRclaK7q+jgyjLSSkhJaLBYC4GuvvUa/3y8eXDdHdHPjySefJACOHDlSBAlmz57NmJgYEQggOzjiLhVQ1B88MzOTDoeDSUlJLCsrE9t1xWC81pIlSwiAMTExzM3NJUlWV1dz8eLFTEpK4vLlyy+Z5briEWcEPbGsa0pd8Kuqyj59+hAAp06dGkFhOhiLBXXE6dpXt9/IcMjJ5XKxsLBQ2IYtQYex4/TApCyHC6BJit979uxBSUkJZFlGRkaGmB2jqqqoVjIer2kaZFlGfHw8pk+fjscffxzXXHMNrr/+ejz00EMYMWIEHA6HsA1bhB+ENC4zGE2J5qCqKjMyMuhwODhkyBCWl5eL7cZvIyxYsIAOh4OpqakkybVr1zI6OlrYdDqlteVBdAiKk2U5os5Nj7+ZTCaUl5fj/fffBwDcf//9SEhIABDOm0ZFRbXqqKuqivr6emiahjlz5qBTp074xS9+gbq6OixcuPCSSekOgThjOEiSJJjNZjGbZu/evWLC2v333w8gzIrNa3dDoZB4ATabDYFAAF9//TU2b96M0aNHY9q0aYiOjkZ2djZsNhseeOCBtm/quzPQjwNGltOFu76turqaEydOpMVi4eTJkyP2NY9s6MqEbFIOkiQxLi5OFBH6/X7u2LGDAFhYWCiKDFuCDuM56E46EA5Ynjt3Dl988QXee+89hEIhzJw5UxwHhGfPAIDP5wMAoRhUVQVJOBwO9OrVCy+99BLmz5+P9evXw2azYdy4cSguLobFYhHzwFqEy0cbPywY5zHotllGRgYBMCEhgUVFReJYnbL046qrqyP2LVu2jJIkccSIESTDygEAN2zYEEHZHTqT31yz6Rpv3bp1dDgclGWZ69ati2BFMtLwNf72eDycNm0aAfCmm26ix+Oh3+/n448/TqvVypUrV7brvq54xJFNwUqyKV86aNAgAuBtt90mEKMoitivI1H/DgQCIooyePBgAmCPHj3o8XhYWVnJUCjErKwsxsTEcPv27SwrK4tAeHPoEIgzhoUUReHRo0cpyzJtNhtfffVVkmF/VVXVCCT7/f6IkLrO7tddd53wHHr37s2TJ08KZbJmzRrecMMNJNu24654xBkR4Xa7WVdXx/nz5xMAY2NjWVNTQ7fb3aJv2rycVb/WDTfcQABMTExkdnY2LRYLX3vtNXFscXGxCIy2Blc84pqbICUlJXS5XATAadOmRQjz5tTW/LfX66XP5+PgwYNptVo5cuRIVldXc/369QTAtWvXitmFl5roe8UjjgxrN/1BXnzxRQKgy+XigQMHIh7Q6JQbkahTYSgUotfrFbOhhw8fLo6ZN28eY2JimJ+fTzIsE9uCDoE4Hc6ePcthw4bRZrMxJSVFbG+JPcmWqU5VVaFYunbtyh07dog43datW5mSkiLYti1zpEMYwIFAAKFQCAUFBTh8+DACgQCWLl0q9uvGLYAI39SYjdfdLK/XK6InNTU1mDFjBt577z2QxJgxY5CZmYnz58/D7XbD4XC0flOXixp+KFBVVVBLeno6AXDYsGGsqalpM5liBKN2ramp4dChQwmAN954I9955x0OGDCA27ZtE2NdKohJdhBW9fv9PH78OGNiYgiAjz32WLvPVVX1Iu04bdo0mkwmjh49miS5fPlyxsXFcfPmze2+7hWPOJ1SFixYQJPJxJiYGB46dChC+LcHdG0ZDAa5dOlSOp1ODho0SFDtpk2b2LVrV86ZM4der7dN45fsAIjTWadXr14EwJ///OckeZGL1RoYlYV+/OOPPy4S0rm5uSIk//HHH7NHjx6cO3fuJcsgrnjlQBI5OTk4ffo0unbtikWLFonQd3tAr1ACwiVhJPH11+Ep5/3798fSpUuRl5cHi8WCG2+8Edu2bYPdbofJZBIFiq3d2BUNR44cYUJCAgHwiSeeINm2mdAaBINB1tTU8OzZs7zuuuvocDj41FNP8W9/+xsTExN54MABcRwZLoNtC654xP3pT38iAPbt25fl5eUiuNgeNiXDPqwOui+bmJhIu93OpUuXUlVVbt68mYmJiWKGjT5GW3LuigidK4oCTdNgNpsFizgcDtTU1GDTpk2QJAk333wzunTpIsoZ2pqDYISoqCgEg0FYrVaYTCaYzWZRpaTPzb/77rthtVoxd+5cFBYWIjs7GwDaFgfflRIuFzR3bXSq0Ku/0ThN8uWXXxbHNA8ZXQqMIXC3281hw4YJJ7+goIANDQ1UVZVvvfUWY2JiuHTpUpIdZIa0saqSDGtTvcXFsGHD+M9//pNkU1JaP6c9YIycNDQ0cMSIEQJxQ4cO5YYNG8R133rrLe7fv/+S14xAnBZS6A+ExCfUvvu6LGB8u5qmcceOHSLTrlOA0YtoLxiRptt+AwYMIAAuW7aMGzduJAC+/vrrEefoVN8aRMg4ySzDRiIY0mCyyDC33DXxsoKe2tNLqvQU4JYtWxAIBCDLMsaNGwdFUUASNpsNJBEMBtvsYdkcJEkSclG/bkJCAh544AE4HA7MmjULxcXF+I//+A/YbDaYTKZvWTytaQwEFIZarxu+rGA0LXQt5na7OXDgQALg5MmTRfTXmCrU5VJ7oHnoffDgwZRlmaNGjWJ9fT1JcteuXXS5XHz22WfbrALQoQ3EaQwJttWosYmVBQtrGgONxwSMmDZs9wfUyNnyLezTWdDn8zEYDDI3N5f2qGi6YhO5e/eHYvxgMEhqGutq6+n1BgzX1u+12X2HNFLTeP78BfHf7XYL2elyubh69WrW1dVRVVXu2bOHI0aMYF5eHr/66qs2X0bbFKdpDEQ8uMaQQJDGUOMDhX/rVGr8Taqhxge46LjwPl8wMk9w9uxZpqXdQViiOWr0aJIa6z31DKmk19sQcX6Dx9N0bfFCGu+38b+nIUBVCyOwurqWnoYGoVVTUlI4cOBATps2TWje48eP8+DBgyQjbcDm0LbLJUmwmIiQ0ji/XSNgksRvFSqCQQWBoAoVDBsOGqHCBLnxMJMsQ9IIDS3vMxFwOJ0icVxQUIDduw8g2mHBb7KyAEjo5OwEswmw26Iiznd06tR07fANQ7YYm55JkEyESZIQCPjhdHYCIYkY3YMPPogtW7agtLQUmZmZCIVCuPbaazF8+HDRvfVbyrhmVKazQEhrmousqgZKMoCqRrKn8Xot7Kv3+KkyrMnKy8s5ceJEAp048a70i+vT2rp2c9ls+K+qqvj/yf4DdDqdjIuLE5QVDAbZuXNnTps2Tfxvd3NRTVEQ0CmrsXOzeIsmQA2pgMmw3SRB1lQo4nUz3OfIJEGGBkW/FgmapDAVtLDPZJVhQjhC++abb+K998ItLiZPmoRoV5f2X/sSoGlhR7++vh6hUAiKomDbtm04d+4cLBYLPvroIzQ0NOA3v/kNFEWBzWaLmJXYKsU12XAtaVSNoeZCXlBAC0ogQgFokTPmW9inaRpVNcTBg28iAN566608eeIEa2vr23ltoyJTqRr+ezx+qtToabzWvk8+Y9euXQmASUlJzMnJIRnWtpWVlUxPT2dubq7I07YG7fQcjErh8oJ+c9u3bxeabtOmTSTb71K1Bbri0U2a/fv302q1EgDnzp3L5ORkTp8+nSSFiVNXV3d5AplaSP3B7DodORkZGbTZbKKE/nIgjQynBMkwRYVCIX788cfiBZ08eZLHjh1jWloaf/7zn4tx2+PStSkeNEVBIKggBOkH8yJkWcbnn3+OvXv3QpZl3HPPPWL2Mi9DG3Z9Uq8eGdEjHj6fDz6fDz179kReXh7cbjemTJkCWZZhsVhQWlrapufQJuJMZjNsVjOsP6DvZTKZsGvXLtTV1cHr9WLOnDnweDxwOByixu37gKqqolMEEI4I612lDx48CKfTCZJ499130aNHD6SlpeHzzz9vu8858P3DSjpZ6+UFJA0Ni9uWE2RTFESWZc6YMYNkWNZomtYudm1uNrQkm3QXze/3s66ujr179xYt0PT8gqqqvHDhAp955hnm5eVd0p373ogLa8SmGXoLpzT1Zmv6TOJJzXgjqkDM1q1bxYyYnJyc7xQW10G3v/S5Dy3VgHzzzTe0Wq202WxctWoVx40bx4ceekjkUvV0YltlrORljcepgtIWTgl3D9Thxd9PIjCJRYxEHhlO+wHg8OHDWV1dLYR5WyX6F43cWHgTbml7sRbTNWtdXR2//PJLOp1OOp1OFhUVsaGhgTNmzOD48eMFko3N+lqD7404nUJ0tlR5ghMmL7joARZOaeyS2rhZTzLHx8cTAP/4xz9G1He0l1VVVWUgEGiRRfV7MCJgz549ghM+++wzwcIZGRnMyMhoF9LIy5AeNJlMgEYoSnj2ccnuPbAO7A8a9AlJ9B0wCe9+fRK662GxWPDWW2+hqqoKqampuPfee4UPaZwR0x4waksgXK6va2W/3x+hnWtra8WSBHl5eaI+JCcnB5qm4a677hIeQ1uew/dGXFRUFGCSYLZYIEkSdu/Zjol33A6T0WmTJCT37Q+YwuvLAEBeXh6WLVsGh8OBRYsW4frrr4fdboemacIcaU/u1Bhw1POnejcIk8mEqKgoWK1W+P1++P1+lJaWivYZ77//Pl5++WVYrVYAwKpVqxAXF4fdu3e33+W6HKDyBCeZImWZqoYbkq39wyTR0JgkZ82aRZvNxsTERBYWFgp5prN+e+WbrgjIiz2N6upqVldX0+Px0OPxsKSkhPPnz6fD4aDT6eTKlSuZmJjIRx55RLC1Hpu7FFwWxOkySS1+j1N+v/7ifm4ndxEAX/ygUGzr2rUrZVlmenr6RXEvHRnteYCWShxIsqKignv37mViYiIdDgfj4+PZt29fUc3ZuXNnfvXVVzx48CBTU1OZlZUVcR+XUk7tRpxqXAtGDV2EHDLcMnvRuvcv2r5wCogp4QbHmqZx5syZwo4y9tvVb7Z5PW9zRdMcqc0Rb5zD2qdPH65fv5579uxhZWUlZ82aRbvdTqvVKtanqa6u4siRI/mbX2fx5MmTVFWV2VNASAaTSv/d+Bzt81VbUPG6FtW/Q4aFJ3ScqsU7w4NlLIo4t1evXnQ4onhXxiSBnOZspqfy9HB6KBSKsBebg7EWWIfp06dz7NixERHmF154QSDjnnvuoaIorKurY0VFBVNTU7l48WJWVlbS6/VywWQw39DyvCj/RSFuLgurnshf0/RmTJHG74sfFEasG6NpGu12e0SSWfc6fD5fq0mY5hRmlIX6izWm9Hw+H++9917ecccd4ry6ujp++umnIjricDg4duxYcXtlZWX83e9+x+PHj1NjESfrXMIirluXL77JdpRA6Ipca1yCriW4Lm0uyLkANGiaCc19Yw0UWvaRRx6Bz++Dw+FA586dcebMGVy4cAF2ux2nT59GbW0t+vXrB5fLJcpPu3XrBk3TUF1dDVmW0a1bNwBAVVUVnE6nSC3qaT0gXFbRvXt3lJWVwefzwW63w2KxwO/3w2q1IjY2Fo8++ijOnDmDu3+WgddeewPdunXDqlWrAI0ofH8t+k8cCwDY/dI6oO9vIDEZWVnJAL7FSnD6w+uHhxcPa1r3j43L1+nfRtC71J84cQK3jx2N6vO1CAZ8SEpKgqZpOHfuHOx2O+rr6wEAPXv2hNVqvWjNQD3KoZsaiqKI2cw66McGAgHs2LEDDQ0NmD17tqhLOXToEPbt2wcAOH36NKKiojBmzBikpKTghRdeEKvG7fzvf8ekR/4sKCf/JJHW1/BQ34U19dWG2nesQt290kvtrVEWyrJMSZKEnwrDHHn943Q6L9qms5nxeFmWxbfNZqMsy6IhC4CIMfTzLBaL6Gjj8/nYr18/Tpx4J8vKylhTc57ZU8CdhWGlk52e3sxdbGe1EgEYaaglq775MYC+DqCE+novVFXF2rVr4HK5cM0112DOnDkIhUJiFjMbs/TV1dX4+uuvBUvu378fN9xwA0wmE4qLi+F0OnHrrbfCYrHgq6++wj/+8Q84HA6x+KJO9TrbhkIhOJ1OBINB0dTlwIEDsFqt2LJlC35yXT/YOzlw5MgRZGdn4/7778fb//Vb/ElahOf6hbNcyZMnI7m5r9BeKlPVUOO3ykXpF6vp1Tu+iihS1mtBdI22cuVKcY6xTsM4K6a5n2jMqOuRjuaKwzil0rhPUZSIclf996effiooNCoqitOmTaPX2+SXvvDCC9z4TBYXrXv/Ii2dnd20ZsQlEef1ekmNrL4Qmar794wmg1bXqvnF4QhJmItV+nwNVBSFRUVF7N+/vzABampqLhnT/zbQUjGO0XQxphnXrFkjZg5u3ryZN9w4mJmZmTx7tlwcs3AyuOtEKOJ62VPA7PW7xP9LIk5RLu7E3Ny1UovC9poxlHTGcCOLFy8WMmf79u2CCtvrVrUFRlmrI7C1qIrX62V2djadTidTU1Pp9/tZWlrKgQMH8t577+WXO9dEyEKjASwh0qa7JOJ0O8l4gyfy13DKH14Uxu/CKWB69rqmc6iIwGBNTQ2TkpIIgEOHDhXXNH5/HzCyr6qqIp6ng7F8LBgMcs6cOZRlmT179hRsfvz4cY4ePZrZ2dkXrSinP5EO+tZLIi4QCtLvN1Kbxp3rFxAwibehU1q4RKOJQt1uNzdu3Ci03/Lly9uJjm8PzV9CcyTq9/Xoo4+K+8nKygqzsUYWFRUxKyuLmZmZLCsrI0l667/n1HI9PN54S1w4BXz/RPh/eEknU5iMm1koqqqKfm59+/ZlcXExycuTL20OxmvqlU/NvY1gMMhHHnlEvPD4+Hjed999EZ7HihUrGqnue+YcxCKIatNKa0bfU+XXnAIw+6Ud4f2G8NCePbvF2509e7Y453LKuObXURSFfr8/IvprdNGys7MpSRKnTp3Kffv2ceTIVA4aNKjFSb21tbXGUUg24eOSgUzRsqJxpbU9ez7Aoonjmw4o+QbbJAnX9kmGJMnCJpNlGe++ux2BQAAxMTHIzMwUp+hVlXrg8fuA3nNJv1dZlsX1PR4PbDYbfD4fqqqqEAgEUF1dDZIoKirCbbfdhjfeeAO33347HnroIXg8Hly4cAFEeGZhTExMk8+Jpl7DBC5txxnbVQSDQS7KaJJp+lKcwCQWGpI1OvTo0UMUP+tQUVEhfl9uljVmyCoqKvjOO+9w2LBhvOGGG5iYmMiRI0dGeBUHDhygqqosLS3lzJkzOWDAANHjXFc6TZV9kXAR4prHxEgyEPKzaPd/t5D2A6WM7MgLNAbu/vKXvwj3pqCgQKTtyKayhIaGhgh7zqjJvF6v+K9rRj0/2hzhzUNKuihIT09nv379uGnTJn700UfMy8vjmDFNy0v169ePJ06cYCgUYk1NDWfOnMn4+HgeOXIkIuZXV1cnXooe+4OqqqysrBTmgzHyaVQI+oNeDJFhch2Mc0v1BzdWfutg7Jiq120YX5rH47koUKmP4/V6I5Dm8/no9XrFOjULFizg6tWrI7yLpUuXMiYmhvHx8UxOTqbL5YrorL9mzRqWlJRc9JTBYFDkWlVVpSkUCiE+Ph7x8fGora2NmLFSXV3dOBHMhPr6OhGF0EDDKkJh3vf5fELWnDlzBl988QUAYNKkScK3lWVZRB8uXLiAUCgkZGgwGITFYhFN3PVrOp1OREVF4cKFC/B6vRFNQvXJasZq8qioKFgsFiiKgm+++QYmkwmxsbFCnno8HtTV1SE5ORnHjh3DwoULcd9996G4uBgAMHfuXMTHx4vO+rW1tfD7/bBYLIiOjm6qQ7n99tsRHR2N4cOHo1u3bvjss8/QpUsX9O7dG7W1tVCUIGRzFI588T+4tldvnD59GsXfnETCNYm45ZZb8MADD+DUqVOQJAkJCQkoKCjA/v37UVZWBgAoKyvDK6+8gkGDBqFz585ITEwMo9tkQm1tLRoaGqAoCnw+H6KiomA2m9GpUyfExsaKY1wuF0wmExwOB2prayHLMk6dOoUePXrAZDIhOjoafr8f0dHRkCQJPp9PTEPSwePxoHPnzujUqROioqJQWloKRVHw+OOPw2azYcyYMTh27BgCgQDi4uLgdDrh9XrhcrmgqqqI6Xm9XjidTkhOp5P19fVwOBxiDpU+3dBut8Pn84mAog5OpxMN9fUiIsLGY53OGAQCPtTV1QEIa09FUURMLTY2FpqmITExEWazGSdPnhQxOKfTCVmWIcsyunbtCqfTCVVVERsbC7PZjMrKSlitVqiqiujoaHzxxRewWq246aabYDabRQ2x2WyGoiiQJAkffPABUlJScM0118BsNsNsNmPbtm0IBoNISEjAvHnzoGkavvzyS+zcuROjRo3CuHHjEAwGoWkaunTpApvNhltuuQWapsHlcsHtdqO8vBzQDVRdWPbv319k1wGI3pN9+/YV24YNG8bExERho9ntdhFxAECTKexVmM1mET+TJEloWf0jy7KIoVksFrGQos1mY7du3UR4GwhPH9LPczqdIjanj2uMvxnvpfl4xvieHsI3nqtP8bTb7XQ6nXQ4HGJsh8PB2NhYxsTEUCLJ3NxcZGVlYdOmTRg7dizcbjd++ctf4ssvv8Tnnx/ENdck4NChQ/j1r3+N8+fPY+fOnRg4cBD+8z//iGeeeQYWiwXLli3DgAED8D//U4B33tkMVVXx+uuvo66uDp988glWrlyJuLg43HfffbDZbDh69Cj+/ve/Y9SoUbj99ttRXV2NyspKfPjhh/D5fMjKyoLH40F+fj5Onz6N6dOnIyEhAVVVVTh//jw++ugj/PSnP0VhYSH8fj+qqqqQkJCAzp07o7a2FoFAADU1NYiPj0fPnj1x7tw5hEIh1NXVwWazIS4uDufOnYOmaVBVFd27d4fT6cSZM2danODrcrkiV4fTownPP/88p0+fTrfbLTTfnDlzOGlSOk+fOUWSPFdxliNGjGDqrcN54cIFqqrKDz/8gPHx8Vy2bJnQbiUlJczMzOTy5cuF6bFq1SomJyfz+PHjVBSFoVCIv/vd79ilSxceO3ZMaKt58+ZxyJAhPHv2LMlwkCA9PZ0PPvhghEZOT0/n/Pnz6fF4uH37djqdTmZnZ9Pn87GqqoqHDx/moEGDOGPGDPp8PtbV1bGgoEAcR4YnEWdmZrJLly4iRnjw4EHed9997NatGwsKCnjw4EEuX75cTCrZsGED9+7dS+j+o9vt5vz58zls2DDxID6fjzNnzmRycjIPHz4sHmTEiBHs06ePMBILCgrYpUsXrly5kj6fj36/nyUlJYyNjeWDDz4ozJgXXniBCQkJPH36tDB/Zs+ezYEDB3L//v3CnEhJSeHUqVNZUVFBVVVZXV3N8ePHc/z48cKEOX78OAcMGMClS5eypqaGe/bsocvlYk5OjnCfSktL2a9ffy5fvlzUvx05coRxcXH85JNPxEt48MFfMCUlJVy+r4WfMTMzkxMnTmQoFKKiKPT5fJwxYwYzMzNJkrDb7fzb3/4mbKZnnnmGqampLCwsFFSQlZXF1NRUlpSUUFHCIaOhQ4fyscceE7bX1q1babVaOXfuXJJhy/vYsWN0OBz81a9+JWyzGTNm0OVysby8XNhsc+bMYUJCgpjeXVpaytTUVI4YMYI1NTX0+/2sqKhgWloaY2JihJ31wQdhat+8eTP9fr8IUq5du1YQw759+wiATz75pHieX/7ylxw0aADLy8sb7cBwcWOvXr145txZYbelpaUxPT09wkhPT0/n2LFjiQ0bNjA+Pp7Hjx8Xgy1YsICJiYncsWMHGxoa2NDQwIkTJ/LOO+/kkSNH6Pf7+c9//pNOp5NPPPGEMDj1rvVLliyh3++n2+1mcXExAXDLli0kw0b0+PHjOWDAAH700UeCiufOnUubzcZt27axoaGB1dXVHDp0KPv37y9a1Pr9fo4ePZopKSmsqakR1N6jRw+uWbOGjfJaIEpvmbFixQrGxsYKFtU0jUuWLGH/gQN45MgR1teHl4vfsGEDBwwYIObjNzR4OG7cON5zzz3iPlU13D4XPp+PS5Ys4YwZMyJcnnvuuYdpaWnif2VlJUePHs1HH31UDL53714CYHp6usi6FxYW0uVyicYDNTU1fPXVV9m9e/eICbQ/+9nPmJiYKGa3KIrCWbNmcdCgQeJllZeXMzU1lUOGDGFZWZlodzZ58mROnTpVhKlWrlxJh8PB1atX0+Px8LHHHiPQNM+VJJ//8wpCAt94440w5YUUzn7oVxw8eLAQG263mw899BCTk5N56NAhwSX9+vVjWlqa8FgqKyvDvqp+gN6lT5cRHo8noqRTZ1Oyyd0pKSnhq6++Sk3T6PF4WF5eztLSUhYVFQlh7vP5+MQTT4jJGLoCys/P56FDh8T1KyoqOHv2bL7++uvi3LKyMk6dOlWcq7tYs2fPFq6SvkJl165dhXzetCm8VvTJkycZDAbp8/m4e/duQQy6PF2wYAEzMjLEfZHhxbmTkpLEtSsrKzly5Ejee++9In/R7oS0Dmwh4Xw1QEvpzbag1Xhca/j8sZH2Ld/rJSH/5d9DksKNlKWM34M4iT/8IUcgrb3jCcQ1P+G7Iui7PGhb5xibvH9XIAAW50OSJPx3UTLIcC9gdcV4mKTrwL69v/098l8ANBZxCmCoCG0Kf734+3Su212kH9huuCIatvzQ8EHOeryLdBQtn924pUlC9U3+CdA7XIH0bYTct1YOHQ2Ik5gqXYefrN+F5359h74RmhRe7j0sCjREivvm/y+GK76b1/eG4hK8C6Bvnz5N2yQYkAaEy+Ebf7Lx/yXg6kccmmKGEduaKz+p2fcl+PCqR5zWtw/SAZSUlACIXPaTxflY/8GJlk+8lLy7XJrrSob8lxYRMDVpT4YLofUK8u8CVz3i9GkGRfkvRkSDjZNVvgv8P21ta5/6tXjBAAAAAElFTkSuQmCC"
|
<image>如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙1.4米,BD长0.55米,则梯子长为()
Choices:
(A) 3.85米
(B) 4.00米
(C) 4.40米
(D) 4.50米
|
4.40米
| 10,800
| null |
4.40米
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAACbCAYAAACkqi+5AAAPTElEQVR4nO2dT2wb1b7Hv2eSlC6QYBEUCyGFNkkbki6QChILIAmJQ7iq1PAuIlcCpCyCRO0ueCUIFl2yw2n63ittKhawqESeBNjhopfQpKIt7QqJIt3YaSHhzyvcG4kFDiwIrT3fu5g/Htvj/+PxcXo+ktt45syZ4/nO+f1+5zfn2KATnRWQrqSwos4kYhECIIJHCpZZNcuEIlEKkkSVEICo9mCF58QXZnBgfBFxLqOPAhQZfYgERkU/xmKreO1wP1prOZESXS6+3QCCQc14kyU6cHS0HyvBI1g+3A8A0AAdALAai0AIATH6SnZtiZixXQiI0ZBRi0JKVr77Hj1Yxjfx7O2fzIQh9oURenrU3qYBxh1yYHwaOuMYWT6LWDyjLh86DMajGAlHwPOnVTeXFCKBPXuGsbcniI31BABAB4F4DOcRxB7ewN7uHquwqbr5RkAAEFheWsjUKATi324gfOSYjx9DUQkkkVhYRNfYOLq6evD9xjoAQGANI/+5glOv7cPiaeKZw30wdziEF8Dawv8hFP8HbkyfQsK06QLAZxsC4/35Nr6GuFDhIUIIUyPDHFu6zB49hf8+/z9ILCxChJ9BHwQs166BGbe9+L2GZ/v68ZejwOKCYS6IBMg9oFE0y8cLZfcbDzMaAcD+rr345vsNxE6EkQ6G0QeBpfNLGAuOmQdo5r9m9EckwPSDAICnR57B0vISACCxsAh07zOdALJ9vNK98QjYZh4AHurpwso701hmEK8f7geRwOKZdMbMW9ij+3iUkdgqSSOPEwqC0VWdM+EQ41ZmRyfTlWV5FHUmFISRuAEYjafIeJQj4QhJMjrzCgWs/cMZHUkjgUMSC7MnsO/YMfSZo/7YiTCWGUSX+A7HjqnArtnJTbZpgBEcrFMznL+5d3wsiNPTz4JdT7tWopARI3Bz0yfPK0dnQrapCEWitinQSYaDI1nmQSEf1apTU65eISm5dt3loUorSQghCpdxbHCWdR6jaDxZ/TdXGvu9Dms415oroDG0A4RVKKcSAhDmOf72/AQ++N95L9qtqBIC0Ip2wozYWfm6Sk291euFEOjo6MDm5mbFjVV4ixCi4iyqVrpI/kmcf1+/fr3SKhQSUJHwuXfVwMAALl265GmDFP5QkfC58cDQ0BA+//xzTxuk8IeKTb2TgYEBXLx40aOmKPykbOHdgofe3l7l55uUsoUvNG5Xfr45qcnUA9l+XiUBm4eahXf2eMsqqBtAfmoWvre3FySz/LxK58pPzcIDwODgIC5fvgxA9fZmwRPhh4aGcOHCBQCqtzcLngg/MDBg93hFc+CJ8L29vQCAtbU1L6pT+IAnwgOq1zcbngmv8vbNhac9XmXwmgfPhHcbzyvkxRPhrbH74OCg6vVNgifCW2N35eebB89MPaD8fDPhqfDWeF75efnx1McDqtc3C576eED5+WbBU1MPqAxes+C58NZ4XuXt5cZz4YFMr1fP5uWlLsJbfl49m5eXuvV4FdnLTV2EV+N5+amL8IDq9bJTN+HVeF5u6trj1bo6eamb8Pv371fr6iSmbsILIZSflxjPhXcmbZSflxfPhXcmbZSfl5e6mXpArZ+XmboKD6jxvKzUXXi1fl5OfO3xav28PNRdeLV+Xk7qLjyg1s/LiC/Cq/Xz8uGL8Goennz4IrxaPy8fvggPqF4vG74Jr/L2cuFrj1cZPHnwTXi1fl4ufBFerZ+XD1+EV+vn5cM3Uw8oPy8Tvgqv5tvLg68+HlC9XhZ89fGA8vOy4KupB1QGTxZ8F16tn5cD34UH1Pp5GWiI8Gr9fONpWI9XkX1jaYjwajzfeBoiPKB6faNpmPBqPN9Ysn4/nmkd6XRmp9aqQStwa1Tzm+VOrl+/jsHBQfX78x5Q8+/HixYNrW0CAoDWVlh0L1Dr5xtLw0y9Wj/fWIoIT+i3dKRu6UjdJgjDFaRu6dB1qwiRNsuk0w5T49ieumUcm9ml2/uGBp7CpUJ+3lnHbUcdrnVn2qrT0e4Us8unVMLIoojwAlqbgIBAi2n+RYuApgnTBeyGngK0XRpadwmINKETAAj9NiHaNLTu0tCiEWn7ghO8DXvfk08+gauXr7ic21mHgAaCerG6rbYC+m1A7DJdlk6krDa2CQgdUNIbFDf1QkBrcQinA9DMbFtbG3S7NxGmLoAO6ELASsqJFscFz9n3UF8vgBas5fp5HdA1YZ5KZOKNYnVbH8i8Aez3rc73hMoSGxSK2bMurqbTMKE6IJxHaAKtuzT7ZQeDxS5uzr7Hn3gCl938PAtUo4TzBFtGphw+MCuFLiBaAP02Ac3Re27fNm4I3a7BMMcaoIHQLZ9PgJpZpcu+J4eezF8/LwBBy7yXWbeiIuxxvHMMr7VptkU3IPRbgNiVEV4IYQR7tv8WaLH2k0hbAZnIxAhw2fftxg08NTSEf/3rn9BvEWjVIAQhiArqJnTL3UCgZRfAou/FjrpZqhnHZyVwCkPoaUBryVyuWhM4TgKBAC5evGjn8BWVUXMCpxBMAzkmwFPU+nn/KSo8U+bYGHXVXa2fbwBFhRet5ni5pb5iqHl4/tOwlK0TtX7ef6QQHlC93m+kEV49n/cXaYRXT+r8RRrh1fp5f5FCeLV+3n+kEF6tn/cfKYS3UH7eP6QSXs239w8phFfr5/1HCuHV+nn/qUB4vXQRD1AZvGowZMx9rkm6TWPSQbIS4f0xDmr9fDVYU0xcOmfe8zUNQohq1Kx/z1fr56uAgLNzkiz6iLsK4c3prnVErZ+vDmc3yb922ZpVab/ra/ZVZF8FosikU53I1UyKqD4XNZ6vnIJOkQBdpk9JKTygen2lOKUNjwoIYb40AU0IzCzEs8qXJXx8YQafxLPvqXp7XzWerw6SeOc8EQoCkdgqSGI1FsH0+AHEHBrmCZ8bSBOreHV8Gmk6Fy4CrIPyJO1IXvX4atCNqdZI4MbyMJ453AcA6O/pyivZmrvBCgat4cDs0TPAaBD7D1gLGoAf//9HgJovUXexc3g5t78Zyf/8Rj9OLCyiNTyGPtMuh199FiPhCMb7rWupA3RB13WSZHQmxEjsYw5jmHHq1B1lvvrqKwYCAZ47d86tiqx6qmViYoJzc3M11dGsFLp21vZkMsmTJ0+ys3MPx8bGuL29bZeJRo4SRrxHAIyuOutKkzRMqzvxKEORKBn/iAgeyTu5rutcX19nZ2cnT548Wd2nK/LBSHJubo4TExOe1b0TWF9fZzgc5n333cepqSl+u7GeXUAnQ8GM2NGZEAHwk7izULqw8OFw2Ojh8ShHwhGjzty7UCc3Nzf58MMP880336z9U+WwtrbGQCDgeb3NyMrKCg8dOsQHHniAkUiEyWQya7+tTDxKjB5xbI9zBDA6sU0B4a27xHpZwueim2YjmUxyYGCAk5OTTKVS1X42VwKBANfW1jyts1nY3t7mu+++y+7ubj7++OOcn58veUx0JpQRWSf11Y8JgJHYala5/OFcIoZlBu0IezUWwb69e9yDCzOYuOeee/DZZ58hmUxifHwcf/75p2dB150Y3f/00094/fXX8eCDD+Lq1auYn5/HF198gYmJiZLHLi+dRnDsMAAdFAmMHvgPAE/ZEb4NSaYtQ5H4OM+fxyKhbDNRIl6bmpriY489lmeKKsVyK7l+vtaAUTaseIkkr1y5whdffJGBQIDHjx/n5uZmeXWQXI1Fsqy0/crR0wLGOdOMhEYosqLANEPB0uY+90OQ5PHjx9nf38+bN2+WLFsKNz+/k8RPpVI8d+4cDx48yP7+fr7//vueu0s3Ckf1RSjnss/NzbGzs5OJRKKaU2TR0dGx4/z8L7/8wrfeeouBQIDPPfccr1y54uv5qxK+XObn5xkIBPjll1/WVM/ExATPnj1LUu7eXk7bVldXOTk5yfb2dk5PT/OHH36o6HivKFP4dNa7UskFJysrKwwEAlxaWqq4cRZzc3N8/vnnqz5eBj788EMODAywu7ubZ8+e5W+//dbQ9kDX9fJsdw1cu3atZJavGM06nk8mk5ydnWVnZyfHxsb46aefNrpJNjB6c7pkwVwqNUu1ZvkCgYAn8YIfWNm19vZ2Tk1NcX19vfRBLtTT9Nfk4yttmJXle+ONNyo+VzPk7Utl1yxkiFOQ24hSbXKWr6b5yWSSg4ODFWf5ZM3bu2XX8q9p44XOpa5RfSG2t7c5Pj7OQ4cO8Y8//ijrmHr7+UrFuXnzJqenpxkIBDg5OVnzyMVvGjL16q677kI0GkUgEMDQ0BC2tray9tMl3Vvr+nm3Op2UO7fg6tWreOmll/Doo49i9+7d+Prrr/Hee+/hkUceqapdDaPBN17BLF+WSzH/bpSfL5Vdk9GUl6LhwpOZLF+p7Fytfr5SgRqdXasnUghPlpfl89LPu1kUi2LZtZ2CNMKT5WX56vl8/qOPPrKza3Nzc/z999/rch4ZkEJ4Z4+7du0aOzo6srJ8zv1e+/nM3LXS2bVm9OWFkE54MpPlm52dzSvr1Xi+0uzaThKdlER4NwrN5avGzztFc2bX3n777fy5aztM4EJIKzxJ/vrrr65z+Ur5eUs86/9q5q7tdKRdOwcA9957L5aWlrLm8gH58/DoSM7QsS78559/zpq79sEHHxSdu8Y7aHGGNMJbFz334u/evdvO8g0ODmJra8teV2eVdWbdhBBVZ9fuqPX4jTQ3lWJl+S5dupTn56udu9YMD1TqQVMJT2ayfO3t7VxbW6s6u3anCFyIphOeNLJ8bW1tPHjwYNHs2p0ubjHyVsvKBF2+wGdrawtnzpzB/fffj5dffhkvvPAC7r77btfj7yifXSFl/vyYn5i/LFhk+4ULFzA8POxno3Yc0kT1AEDjd85yNlp/aIidCEOIFoyMjECMvgJiDeHwjHmsZPev5DRc+Oyv6GrJLyAAJD6GEALvfLcXOtMgifR/jUETfcDeLvNYZdYroeE+vpRcOuN4uv+vGAlHsHzqNXu79tA4IqERiK4eYwOtygq5CoWThgtfir+fOI0VDCN+6pi9zdK4q2sf0GOuArXvICV6OUgY3GUgEhgV/dgXieKd18ZLFVY/K10BUnQPur0hwLVvcAHA3u6e0pXYZl5RDlIIL9zeCEBz+9ZtF/tk2axc42WMEhRuNFx4Iv/pGgBAJ9i3DyMAvtu4Ye7VMzdGImZ/W6MV0OeOClxHCQqDRqUMy0LPfB+P9R0uuq4b3/5Q4JseFOUht/Am8YWZsr6MSVEc57OLfwOQfcMOI3b8FgAAAABJRU5ErkJggg=="
|
<image>如图,已知△ABC中,AC=2,BC=4,以AB为边向形外作正方形ABMN,若∠ACB的度数发生变化,连接CN,则CN的最大值是()
Choices:
(A) 4√{2}
(B) 6√{2}
(C) 4+2√{2}
(D) 2+4√{2}
|
4+2√{2}
| 10,801
| null |
4+2√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAARcAAABvCAYAAADG1YTMAAAxz0lEQVR4nO2dfVwUV5b3f9XtGzMmZGdgaZJWjIBBQSE6jowhAQUVo0aMOKhxJ84THcW3xZEkZgTRxCRGUMmISkbX6GxMiPKm4IgKUSJGXjQS7QaiYFTYiOjOYGQNaFed54+miuru6qaBpruV/n4+iXS9nrp176lzzr33XIaICA56JBzHQSaTCb+JCAzDAABqamrw7LPP6ux34KAjOGpOD0ZfcfCKJT4+HiEhIbh9+7YtxHLwmNDL1gI4sB76lgoPb7HU1dVhzpw5eOqpp6BSqeDs7GwDKR08Ljgslx6EWLFwHCf8zTAMjhw5gtGjRyMyMhI5OTkOxeKgyzgslx4Gb6XwioZlWaxevRrZ2dk4fPgwRo8erRN7ceCgsziUSw+DYRhBedy4cQOvvvoqPD09ce7cOcFacSgWB5bA4Rb1QBiGQVZWFgIDA7Fw4UJ8+eWXDjfIgcVxWC49ALGb09LSglWrVqGgoAD/+Mc/4O/vL3mOseCvAwfm4qg9jwHtDVXi99fU1CAwMBA//fQTysrKEBAQYNQF4hWLOPDrwEFHcCiXxwBeQfBKRF/ZyGQy7N+/H0FBQYiJicHf//539O/fH0D7ysNhvTjoLA636DFCHKzlaWlpwbJly3D27FmcPHkSQ4YMEfYRUZeUh8N1cmAKR814jOA4TkexqNVqjBo1CgBw7tw5+Pj46CiDrvYKORSLA1M4ascjjtitETf23bt3IywsDPHx8di1axf69etnC/Ec9GAcbtEjjr710NTUhOjoaFRUVKCoqAienp7gOA5nz55FeXk5GhoacP/+fZSVlQEAysvLcffuXbi4uMDX1xcAMHbsWPTu3RtPP/00/P39ERgYaPXncvDowzhmRT8+lJeXY9asWZg6dSrWrFmDvLw85ObmIi8vD8OHD8f48eMBAAMGDIC3tzcAYNSoUfjFL36B+/fv4/z58wCAK1eu4MaNG5DJZDh27Biqq6sRHh6OqVOnYsqUKUIw2IEDUziUy2PCJ598goSEBEybNg0VFRU4f/48pk2bhqlTp+Lll1+Gq6trp69969Yt5OTk4MiRI8jJycG4ceMQGRmJ+fPno2/fvhZ8CgePEw7lYue01yNz9+5dLFiwAGVlZbh//z7Gjh2L119/HdOnT7d4wJWI8ODBA+Tm5mL37t1QqVR47733MH/+fMd8JAcGOJTLI0xZWRmmTJmCBw8e4De/+Q3ef/99jBkzxmr3LywsRFxcHP71r39h06ZNePnll40e61A+PQ+HcnlEWblyJbZt24Znn30WqampCA0N1dlvqcZsznWOHDmCt99+G//2b/+Gbdu2ISAgoMv3dfAYQA7sBo7jjO5jWZaIiBobG8nf35969+5Nu3btspZoJmXj2bt3LykUCsrIyNDZzsvuoGfhsFzsDDJhKZw5cwbh4eFwcnLC2bNn4enpaWXp2kelUmHGjBmYO3cu1q9fb2txHNgQxyA6O8OYYomLi8P48eMxdOhQXLlyxa4Ui3ggn5+fH7755ht89dVXmDVrFpqammwomQNb4lAuds7t27fxwgsvYOvWrYiOjkZpaald5V4hiflJrq6uOHXqFNzc3PDiiy/i1q1bNpLOgS1xuEV2TGFhIaKiosCyLD788EMsWLDA5PHWnEhoyn0T8/HHH+Pvf/87vvnmG8eYmB6GQ7nYKQkJCdi1axcGDhyIF198EYmJiVa7t67i4MAbuEQEBgzQwU6ohQsXorGxEQcPHrSonA7sG4dysTNu3bqFyMhIPPXUU1Aqlairq0NOTo51hSDoKZA2BSP92zQsyyI0NBTBwcGOIK+FkbIgTVmwNTU1VovXOWIu3UxHMrkdO3YM/v7+iIiIQEREBE6fPo0vvviiG6Uzgr5lQnw14fR+tw/HcZDL5Th48CA+//xzZGRkWEREB1r4HD5ipBQLy7J48803ERoaivr6eqvI5pgV3c3orxWk/+KJCBzHYfXq1Th48CBycnJARJg+fTqKi4vtY5KgoGxker/bh39eV1dX5OTk4MUXX4SPj48wA9tB1zEV+yIiXL16Fb///e/h5eWFixcv4sknn7SOYNYeWONAl2vXrlFgYCBFRkZSY2MjEREFBAQYDESzHW0D4Djhfx1DPABv7969FBwc3GWpHJjHf//3f5NCobDqgEseh3KxIZmZmaRQKCg1NVXYtnfvXgoKCrK6LKwJraG7p+OjbcUjdDUaDQUEBFBmZmaHr+PAfJqammjevHkUEBBAlZWVNpHBoVyshPjr3dzcTDExMeTl5UUXLlzQ2a5QKKi4uNgGElqPvLw88vLyIo1GY2tRHktKS0vJy8uLYmJi6Oeff7aZHI6ArpXg/eKrV69i7NixuHPnDr799ludSX4ffPABgoKCrDqzWQqCCuuGy8EwjPDfsHWXLHJtjuMwadIkDBo0CCkpKRa5poM2Nm/ejFdeeQXJycnYvHkz+vTpYzthbKbWeghiiyUtLU3S/2VZlurr66l///5UXV1tbRF13J6L64YRAIo8IIq1HIg02Nap+4jK4sKFC/Tkk08KcSZr0JEJlOZM1LQ14udpaGigCRMmUHBwMNXX19tQqjYcysWCSFVIjuOoubmZFixYQL6+vqRSqSTPjYuLo6VLl3a3iCbRKpahlKAybIRfzgLBdy1dalVFnWl6+o173rx5tHHjxs6IalGMKRJ7UDDmKMT8/HxSKBS0YcMGK0hkPg63yAKQkcXIAOD777/HyJEjAQDnz5832gWblZWFOXPmdJ+QJiAikDoBUesqMGzdAST4to7IlTq29V/GyH5T6HfDz549G7m5uR0V12LwY5CMdeXaQ3IrU9M5+LErb7zxBrKzs7FmzRorSmYGNlZujy0sywr5TT777DPhKyj1JaquriZ3d3edAKd1c6CwWssEM+lLCZuEo0sUP0zXciHq+pe9ubmZnJ2dDcz47np2fXn5+7AsaxdWSkeorq6mkSNHUlRUlFVdy47gsFy6gaamJrz++utITk5GUVERXnvtNWGwnNSXKDs7G1OmTIFcLhe2WXPBMQ0O4uBBALNmYRZJjChWH0RGJTBs1iz48uYKdf7LTq0WXt++fTFhwgRh4GB7lkRXEV9X/C5++OEHu7BSzIGIhKV5o6OjkZaWBmdnZ7tc09uhXCxMeXk5Ro8eDWdnZxQXFwvzOGQymaTC4DgOhw4dQkREhJUlbUOuroAawDC/oWAYuWiPtsIeXP8uKhCJhIShbY2wk22R9ObCRERE4NChQ2AYRigfazR0/l4JCQkICQkxSAtBdjjlrqmpCX/4wx+QlJSEkydP6sySl6pbNn8GG1pNjx2pqamkUCgoKyvL7HPq6+vJ2dmZmpubDfZZwzXiOCKWDlAkQMPWXdLdR7o9RVrXoWsy8c/EuyGNjY3Uv39/unfvnkgmy7so+tdsaGigl156icLDw6mhocHi97M04rErUnXFHnEoFwvwr3/9i6KiomjkyJF07dq1Dp2bnp5OERERkvusEwfQNnapnqIvZ4HAtCoWC9+V4zhB0QQHB1NeXp6F72B4P/7foqIicnd3t4ueKnNISkoihUJBOTk5wjaO49qtH7aOI/X4iYvUajqaY4qTxPT2srIyzJ07F6+88gr279+vEzeROl6f6upqDBo0SPJ4c87vOlpz2i9BDRV84ecnx7v8TNtZaSAuqlvuyg/OA4Bnn30W169f7/S1zCknfv+mTZuQnJyM9PR0vPDCC52+Z3dDRLhz5w7mzJmDhw8fory8HG5ubsJ+c+qFreNIjpgLDF8CGfFV+eP4/R9//LHOaEixYpG6rhT19fVQKpWSx1urcvDpW3wT1CAiPHz4EMQR6ED3KBZ9BgwYgB9//LHT5/PlZCqoefv2bUyePBlHjx7FxYsXrapYjNUnfcTyf/XVVxgxYgTGjRuHwsJCHcXyqNDjLZeOJNrh+emnnzBv3jw0NjairKxMUA6d4ccff9RZ6N2aqSp59FUYw3Q821xXeOaZZ3DhwoVOW2p8mRkrt5KSEsyaNQt//OMfkZCQAIZhhIZsjbI295kYhgHLsli9ejXS09ORnZ1t86kgXcFhuYggvWTTUl+ckpISDB8+HP7+/jh9+nSXFAsA3LhxA0qlUriX+P62MmutrdyUSiWuX7/e6ec1Je/mzZsRERGBPXv2YP369ZDJZELPlLWfUx9ewfHv/vvvv8fo0aNRW1sr9Do+0lg9ymOnmNMzs3HjRlIoFJSfn2+x+3p4eHQ4CGxJ8vOPk4+PD/k/H0BFRUU2keHChQsUEBBARJYLQjY2NlJERAQFBQXZzVwbfcTPumvXLmHAJZF0fbSnxeXMmQPnUC7UfoVuaGigsLAwCg4Otni3Zd++fQ26Fq1ZiXx8fAjasAsFBgZa7b5i6uvrSaFQWEyxlJaWkoeHB61evZo0Go1dNVT9Z2xsbBR6Gs1psLZWMBqNhuLi4kipVLartB1uEUy7H4WFhUJg7eTJk3B1dbWiZD2LzsZbxGzfvh3Tpk3DJ598gg8//BByuVzS/bGFS8RxnM4zlpSUwN/fH0qlEqWlpWYlzm7Pbe9O6urqEBISApVKBZVK1X6Q2Tr67tFA/6uydu1aGjBgQIfcBfF4CnPw8PCg69evmy+khcnPzycfHx8KCLAPt4hl2U59ne/du0eRkZEUGBhItbW1Ro+z9ZefZ8OGDe262LYepyImNzeXFAoFJScnm31Oj+8t4iFRT8WtW7cQFRUFJycnnD9/vkPWCn8Nc7/C7u7uqK2txcCBAzsutAUIDQ1FZWWlTe7N8z//8z9QKBQADL/M4u5/Y2VaXl6OyMhITJs2DWlpaQZDAsR0l8ViSj4xfN3q3bs3Ll68aLJu2XqcCgA8fPgQb731FnJzc3H48GGMHj0aLMuaLGOeHuEWUav5qG9Ck8is5LsnCwoKEBAQgGnTpuHo0aPd7gZ5eHigrq6uW+9h79TV1cHDw8Ngu7hxGWtou3fvxuTJk5GYmIitW7eaVem7A2PykTauCQA4cuQInn/+eUybNg0nTpywGxebJNwrIkJNTQ0CAwNx8+ZNXLhwQei9MreMe4TlYk6+Do7jsGbNGnzxxRfC+AJrjDlxd3c3qlxsMebFFtTV1XV4kFhTUxOio6NRUVGBoqIiqy301VEYhkFLSwtWr16N3NxcHDp0yG66mPn6JdU+Dhw4gJiYGLz33ns6EyQ7Uid7hHLhMVYodXV1mDVrFhQKBb777jthoXdrNGyFQoG6ujrJl9YTFAugLX/xQML2UKvViIqKQkhIiN2tQa3vHlVVVWHOnDnw8/PDhQsXbLoOlb5sUvWrpaUFy5cvx9mzZ5Gfnw9fX18hEC2euW6OkukZtdcER44cwejRozFv3jxkZWUJisUYUiZkV/Dy8sK1a9d6jCKR4ocffhBiTu3lJdm3bx/CwsIQHx+PlJQUu1IsgK41vHv3bowbNw6xsbHYt2+fzRe4ay+Go1arMWrUKBARzp07J2RNlLJuzKqvFg0pP0JoNBpheY/S0lKbyWEq5UJPgE+58NNPP0nu53tMmpubaf78+RQQECA5HsSeelbu3r0rjF25cuWK5DH2JC9R2yC+tLQ0ne1dkbNHfi5ramrw29/+1iBQZQvc3NwwfPhw5Ofn20wGW5Kbm4uQkBDJrzrHcSAiVFVVYdSoUejVq5dOAi7+GMA+elY4jkNJSQlGjBiBAQMGoLS0FF5eXsJ+0utAsAeampowe/Zs7Ny5E0VFRYiKitKxHrskZ9f03aOHseU9bElSUhItWLDA1mLYhMjISNq1a5fR8Sf8++KHxdsz77//vsWnh1gKqfItLS0lT09PiomJ6ZYF6h4r5SI24fQLs7m5mRYtWkTDhg0zuryHraiuriaFQvHYrkBoTHEYS9DN71u4cKHkciz24FKIZaivr6fg4GAKDQ21elY7/cx+UvukSE5OJoVCQbm5uUaP6Wo5P1ZukbFIeGVlJUaNGgWO41BaWmp0eQ9b4enpiV//+tcoLi62tSjdgrHgX35+PoYPHw43Nzcdl4FflfLhw4coKSkxeF+2cin03QWO43DkyBFhXFR+fr7Vx66YCqxK7bt79y5mzJiB9PR0lJWVYcqUKUbP73I562gq4ojl2v6z/fehY0hp6s8++4zc3Nzs1qzmvw72sCiatZFaFC09Pd2o22ovS4CwLKuz3ndZWZmtRTKLoqIiUiqVFBcXZxUrWcItejQViz737t2j+fPnk7+/P1VWVtpanHbhl3M11rvwOMGyLH377bc6y7mKe+/UarWNJTRNZWUlBQQE0Lx583QSi+tji3lMxmaA83OZTp06ZTVZHkvlolKpyMfHhxYtWvRIdfGuXbuWZs6caWsxrEJYWBht2bKFiIhu3LghLPBlqrHaEj4htn7eFX3sZWIkD7+GdFhYmFnxIEvKb1K5cHouEmegeERulMQ1pN0rc10vY8dJb+dl3blzJw0c4k3pWZmtMunKaA9mtTGam5tJoVBQcXGxrUWxOOJyz8vLIy8vL9JoNMJs25SUlHbPsyV88qnAwECz8q7Yg9ynTp2y6RrS7VguhgpA52+9xi35N+kqHlP7yNhxZlz73r17NO/112ls0O/o6tWrJFYqxp7FHvn0008pKCjI1mJ0GxqNhgICAigzM5NWr15t80GM7cFxHJ0+fZqUSiWtWbPGrFiFrd0hcUInW6XRIDLDLdJVAMYtCOON2Nx9ejJIiit9fllZGXl5D6XYt9+ih8LLlz5WY2dmqxQBAQGUnp5uazG6hb1791JgYCAFBQVRREQENTY22sVX3hhr167tdKzC2s/FsizV1tYKZfvPf/7TqAwdzTvUGRgi/ckyBK51HWCmrUcJYBjwi1Aw/HFgJCYn6Z8v/m1qn+E1oJcwW+raKTt3YOP69/DJnj2YPHmyiWsbu5f9UVJSgoiICBQXF0umIngU4TgOly9fxpgxY9CnTx/ExcVhxYoVdjNSVZ/a2lrMnTsXDQ0NmD59OpycnIR9DL+ukw3Qv7f4d3V1NQ4fPoygoCD89re/RVVVFZycnAzq0Pr1660iqzArmkAgSWUBgGmbUSnKsAGGCCRWQtqtYEDCWjjaQ/ljjO8jiWQ7jDhxkN61f7p7F/P/30I03W1A8blzUCqf0SqkRxwiwpgxY/Duu+9iypQpKC4utvmEt67Az569c+cOxo4di169eiE3N9eqS2Z0NHVFVlYW3njjDbi6uqKurg47d+7Ev//7v+Oll17CwIEDbboGs/69+d/Hjx/H5cuXMXv2bDz99NPCGuRyuRyxsbG2UYiCmWQQozA0oyTdlw4EXdvbxwdlTR3HshoqLimhIb5DKWF9guADGwSf2/ltTxjz0VeuXElTp061a7dBCl5e/rkaGhrI2dmZvL29ha5nWyNeTpbn559/pkWLFtGvfvUrcnFxofT0dKqvr6f6+npKS0sjFxcXmwVHjVFdXS3Z07Zx40by8fEhDw8PSk1NJSLru2lmD/+3l+qdlJRE7u7udOLECVuL0u1oNBoKDw+n2NhYW4vSaU6dOkVOTk7k6+tra1FMolKpaNiwYTRx4kRyd3eXVIL19fXk4uJCZ86csYGEhhibJ1dfX0+urq60YsUKWrRoESkUCpsodbOUC0e2+dqLNe3t27cpPDycgoODhbko4i+PvY0vsBT37t0jHx8fu5po2R78e9uwYQM5OzuTj4+PXY83Sk1NFdINhIaGUmZmptFj9+7dS5GRkVaUzpDm5mZasGCB5LwrIu3I59WrV9PatWtp7dq1tGjRImH0tzWtF5PKRXCVrCWNEYqKisjd3Z3Wrl2rlesRcxPMxdhzXbt2jXx8fOjtt9+2skSdo6GhgUJDQ0mpVJKvry/dvHlTZ7+US2ILGhsbacaMGTRmzBhhYTpnZ2eDwWbi91JdXU0eHh7WFFMHlUpFvr6+tGDBAkmFXVpaSgqFgn766SdBuTQ0NJCLi4vVR6rb3axo/UqXkJBACoVC6K+3h0ppCxobGyk8PJzCw8PtdhQrEdGZM2fI3d2dPDw8aObMmTqy2nr8Bz/Klqhtns1f/vIXIW7Hsiw5OztLuhD8da5du0YeHh5WfRZeZmMJncSMGTNGsHJ55UKkDSeEh4d3v7Ai7E658DQ0NFBwcDCFh4cbHbas/6XXDyQ+Dug/Y0xMDPn6+po1StTafPTRR+Ti4qJjZdojpsauhIWF2Z1bdO/ePbNWZTx16hSNHDlS+C1WLhqNhnx8fOjChQvdLa6AXSqX/Px8UigUBjNmeyJi5cL/vXfvXnJzc6ODBw+afa6pbV1Vxv/85z9p6tSp5O3tTa6urpSenm5119XY/cTPxg8wmzp1qtEPVm5uLimVSmpsbDTIM8MHdC0x6tXcMi8tLSUvLy/JhE5S1xC7SgkJCZSQkKA9ljj6uaVJ2KffSyum9ROtu4/TXkPqeH04TkMscdZRLsYsDH00Gg3Fx8eTUql8LOfXWJLS0lIaOXIkjRw50qaZz0pLS+nXv/41ubq6UlBQkPBltDfrMTMz0+wVA2NjY8nV1ZV+9atf0ZkzZ7qtK7q9RmpOQidjsCxL8fHxhhak5DgT8+XS32MsIsuyrO0sF7H/S9T2VZkxY4bdjIV4FDhw4AB5eXlRWFhYtyhkUxVt6dKl1Lt3b/Lw8NBpANZWLFLWHS8Dn4HwueeeM3AJjD3bvXv3yMXFhby9vYlhGHJ1daWwsDAqLCy0qNzGyomfJBkUFES1tbVmLXErtV/rFsUJ+429yXavbeRM/e3irHg2VS5ipNahtbcvnz2j0Who+/bt5OrqShEREZSZmUkPHjww69yOlnNzczPt27eP3NzcqE+fPpSUlNQZkS2O/seKSLdnRSoIbky5LF26lP7whz8Qy7KUkpJCQ4cOtfgHz1i5SyV06oiLKVZEa9euFdwikwiXZ1v/3979WIPEXSxxxHG68tpUuWg0GoqNjbX7mbGPAhqNhgYPHkzvvPMOBQUFUd++fSkyMpL27dtHDQ0NJpVIe5W3vr6edu3aRRERESSXy8nJyYkmTJhA9+/ft/RjWAzx2JWOKNDi4mKDQWdxcXEUFBTUrWN1OI4TEnyLA81diV2JA7o8LMsSW5FBACjzkulyechdojCAGIYhAJSU3bHc0zZbcfH69et49dVX4e3tjXPnzrW7GJkD06SkpGDIkCH44IMPAGhzpebm5iInJwcrVqzA8OHDMX78eADAgAED4O3tDQAYNWoU+vfvj//7v//DuXPnAABXrlxBbW0tAO2clZqaGkyaNAkuLi5wcXHBf/3Xf2HKlCk2nWNjjLt372L+/Pmor69vd+In6c1nY1kWb7zxBpKTk3Xq43vvvYfFixcjMjIS2dnZFl+P+vbt25gzZw4AGCxOb+mJnRW5WzB8+ptGr03EgmG0z5eTvB1LLrE44deBVNuiiYNWS9DNr0EDABkZGQgMDMSf/vQnpKWlORSLCcxpwHfv3sXGjRvx4YcfCtucnZ3x2muvIS0tDY2Njdi4caNQab///nskJCQgISEBSqUSDMNg0KBBwraamhoAwNNPP42tW7fi6tWrePjwIb799luUlJQISZ2lK2fbwuvWVj6FhYXw8/ODn58fioqKMGDAAKPH8kuUinn33Xfx7LPPIioqStjGP8OOHTvQq1cvnXWTO4N+mRQWFmLEiBEYN25cuwm+21uN0vg9WRCxAAC/V2KhIRXCABADAK3tUhBLJsj4A3ljhp+u3MK/xm7GiGTskJ3TRfjgmo+PT7vLezhiLubzzjvv0Pz5843u72hZpqamUlRUFBFp4xbPPfccLV261OykztZ+dw8ePKA1a9aQUqnsdI7YyspKcnFxoRs3bggBSX2XJD4+njw8POidd97psszWSOgk5RYRsaQhFYWJ3CKpSckXszcRAAJj6A5lbV5MACg6MZPYiiwCZBSdqB0btDQMhImLiciKS4vU1NQgMDAQLS0tKCsra3d5j568dnJHqKurw44dO7Bx40ajx3S0LIODg1FYWCisy/z+++8jJSXFbHfAmu/u+vXreOmll6BWq6FSqRAcHNyp64SHh2PUqFEYMGCAsOA6b9mIV3WcO3cuDh8+jKSkJACds87q6uoQEhIClUoFlUqFF154QdjXWevEJJIiipKnSFigw6e/qbVCVRmIjfBD6LIk4ToRf96JzC2L4ekNhP3nCWRu+RNqfriKpCVhGJ98CeOPX0YFOOu4Rfv370dQUBBiYmLw6aefPtL5SeyN+Ph4LF++HG5ubpL7O1NZlUolmpqa8MEHH6CoqAgzZ87sqpjdwpdffonAwEDMnz8fWVlZJt1rU0rgk08+AcuyRnPMiJVl7969UVBQgJSUFBw4cEBomFLXl9p25MgRjB49GpGRkZIyd4diJkYsD3/9Ntl08isB4MTaaNir0JAK3Pa3kKXmhH0FR6txLf8rpBzfhporV4DLx8BM+hje1Xn4qvWYbg3oNjU1YeXKlfjmm29w8uRJ+Pj4SCaFctA5ysvLkZeXh6qqKqPHdLSyqtVqREVFwcPDA3PmzIGnp6fdvTO+Xp09exb5+fnw9fVtNyGUMflv3bqFuLg4/P73v2/3vnzCJTc3NxQUFCAkJATOzs6YOHGi5PX1g8WxsbHIzc3F4cOHJdcn72hSK3PhpTAWI9PdzkHWqoB4eeTwxZTo8bhaUwmZny9QkYntJ77CR0uS4YMq/OfOAtCyJKya7ousrSkIXTYFQ4ksZ7nofyHVajV+97vfQS6X49tvv8Vzzz1n9AEdtI/4K8j/HRsbi7i4OJNfbI7jzLZe9u/fj7CwMMTHx2P9+vU4fvw4gO5/Z/ryGbMyOI5DeXk5Ro0aBblcjvPnz2PYsGEAOv/FX7p0KRYsWAAXF5d2XRzxfk9PT2RmZmL+/Pm4ceOGSflramowevRo3Lx5ExcuXJBULF15hq5g+G7bZNCXZ7DnUBABmXnHEbpsE96K8AWjViMf47B1WwwAIP9oKiaHhWt7nCwRONLHnNmbDrqGeHmOriLOD8JPy29qaqJ+/frZ1Qxsfji8qYmFHeH06dNCrhnp4Kcu+sewLKuTTkIqkJ2Wlkbu7u7CTGX9ILH+rG1LBsPXrl1L8fHxBtsfcpdoHGN6nIswII59SKTOoNBlSYLsidGhlJR9kYiIMrcspujNWdqT1BkEjCN162A8i6rKpqYmzJ49G6mpqSgqKtLp0nPQNUj0NXz48CHefvttbNq0qctjLmpqajBmzBhoNBqcP38ePj4+AIBf/vKXCAgIQGFhoXBstwQb24GIcPv2bUybNk1Y33jGjBkmz9GX05jcQUFB+Prrr9G3b1+z5dFfj1yhUOj85mlpacHChQvx3nvv4cSJE0IXtr6lID6HDyRbEv37cZWZ6C0bjpMEvDq8NzZnqQAAWVujwUxcLIRiNi+dpJVH3htMzHHkb1sFgAMLNfJ2ApOn+4KgtVQmhE8HAFy6UgPgJHwnLtE+m6Ueory8HM8//zzc3d1RUlICT09P7cOYqJC2qKyPKuJK8vnnn6N///7tNrL2yMjIQFBQEFauXIlPP/3UoJFFREQgJydH+G0Ls/3rr7/GiBEjMHLkSJw+fRpKpbLdc/TlNCV3RxeOJzN6h9RqNUaNGgUAOH/+vNAzKnWuOdezBCzLggNBNvRVYSwSEYtVM/wAcJixcifoeKoQoIndkQ8i0o5Py9sJAGAYOeTwRT7lYxhkIBBSjnGYMUx7kh/fw3Q8FYCFArrbt2/Hhg0bsGPHDoMKb+rFOrqbOwYR4cGDB1i9ejWysrI6HQBsaWnBqlWrUFBQgIKCAiFuoU9ISAj27t3bRalNU1VVhebmZvj7+xsEQBMSErBv3z6kp6frdNfaAv5D2J4y2L17N+Lj45GcnGxguetbEWSFQDkfVuUtXA4EGRjhLwIJAVwpGIZpVTgc9G0RGbT7OBDA6S8DxJmnXEpKStC3b1+DCiAeal1WVmbWV8VB52EYBps3b0ZQUBACAwNNHltQUIBBgwYJFiQPP+3Cx8cHpaWleOKJJyTP5zgOv/nNb9DY2IiqqirBXbI069atw+TJkxEQEABA2+CuXbuGuXPnQqFQQKVS6QSsu6tHpT34e968eRPl5eUICAjQkaWpqQkLFixAdXU1zpw5g8GDB7d7ze5ULILiIl3vQCb0HWn/Mn8VLxNGAhhAZhgYbvctcRyHuLg41NTU6BRGSUkJ/P394ePjg6KiIodisQK3bt3Cli1bTA6Y41m2bBnq6+t1tmVlZSEwMBALFy7E/v37DRSL+KvMDyLjB9RJHddVk/769es4c+aMMK8GAA4cOICxY8caHbtia2u3oKBAmB7By1JWVoaRI0dCoVCgpKTELMXSXbS0tACQXriN32c12qLD0lmmVCoVeXh46PRKJCYmkru7u2SSosc1ebY9sHTpUoqJiWn3uPz8fJ2lPDQaDb355pvk5eXV4TSHe/fupalTp3ZUVLOIjY0Vel/u3btnMqM9UfdOKzCnt2jJkiXk7Oys0xaMJXSyxfQVU2kuWZa1eppLwS3irRKxdUJESE5OxvLlyyGXy3Hnzh388Y9/RGNjIy5cuCA5KpTsbMDV40JNTQ2+/PJLVFRUCNuMlXVqaipiYmIAaIeaz5o1C0qlEmVlZXjqqadM3kf/muHh4Vi2bBlYlrXobOC7d+/is88+w8WLF1FeXo45c+YgODgY58+fN9p7YwurRez6FBcXY8yYMZDL5UJI4M6dOygtLTWYJGlNWfl3FhwcjD59+mD37t0GEyy3bt2KQYMGCe6ntQQzSmNjI7m4uFBjYyN9/fXXpFQqO5R42TH50HJERESYlVO4traWXFxcqLm5mfLy8sjNzY1SUlI6fD+xBerr60snT57s8DVMXffjjz+mBQsWCF/+jIwMyeO7cxyImPYsl8bGRnJycqLVq1fT6dOnDRI62QslJSWkUCjo3r17lJCQQGvXrqXbt2/bZGkRiYXo29i0aRNu3LgBd3d3pKSkIC0tzWBimK0CbD2JM2fOYPbs2aiurm53TEZ8fDyam5vRu3dvfP755zh48KDREaHm8s477wCATkqHrsCyLLy9vTFw4ECwLIsvvvhCiNkVFhaiX79+Vl1LGgASEhIAGF+k/aOPPkJGRgaeeOIJVFRU4IsvvkBISIgVJTSOfhv8j//4DyiVSvTp0weANlbXq1cvpKSkALCed9GLF45hGIOuwOTkZAwcOBBPPPEELl26BBcXF5SVleH+/fuoq6vDa6+9BplMpiOsQ9lYnlWrVmHDhg3tKhaWZbFnzx4oFAo8/fTT+O6779CvXz8UFhaiubkZVVVVWLFiRYcrVkhICP7yl79YTLns2bMHP/zwA+RyOZ555hmMGzcO1dXVALQD21xcXJCVlQXAPtxslmXx17/+FQMHDoRcLsd3330nLFJfXV0NJycnqytDMeL2RkRISkqCn58f5s6di5aWFhw6dEhn/pl4smV3lm0vfeF49uzZg5s3b8LJyQn9+vWDQqEAy7Lw8fGBm5sb/Pz88Nprr+mc41AslodXDK+//rqwTVzO4gryt7/9DT/++COcnJzQp08fIb4SFBQEuVyOyZMnd6oyhYWFITIyEvX19TojUjsDx3F48sknsWLFCrzyyivo1asXlEqlQZc5j60VC6BtC3y59u3bF8OGDcP//u//wtnZGQEBAXBycsLRo0dtLSYAbXm5ubkhNjYWe/fuxc8//4x169ZJzj/r7rLVcYuIWKxb9y6IASrVFaitrcXAQQPwS6f+cHV1hZOTk+hUw0E13QExANMqoW73mtT9rSOTtfn555/xi1/8QhhZaaxSVFRo39mQIUMgl8sxcODALt+bL/PPP/8cI0aMgJ+fn8E+QAbIWIAzVlll0L4b3etyIOHdmiULtWVP03nPjBxozbSmLxvDyIUsbDzSZdgmo3AuAZAxUKvVqK2txYABA9C/f388+eSTrYrb8LmsjbGUDxzHITExEXK5HLGxsUbPN+YGWkQ2atUufFHzvqd2rxxAC9DaqSRu3Nq/WXR3YyZiAZkcMhjer62ySdM2GvFxR9vYpMY2WAUZgSEZODzUzobl2noeiRhINUC+4ZvbOBlGrp32wmgAjjH80MgYMCTTq596ZSGhhMQfL+FarXWsbZ/hR8vwPNsi9bxVVVXo168fBg8ebHSqTTcrF5Y4MAaNkABwxEHOyATBtKa4qPBFyXy7C/4e+l8b7VePAxg5GECnUvUE+PJgW98RD8dpIJNZNk1PZ3xzQxdZW284sJARWj9cHbieaNi6QUMH/3EU100SrCMZMdDNhkQGI0o5jgMj020FSycy2HFCtEEGgAuBmgq0c2vsIB5kz8i0w3RbTavWjUQEEAmVViaTiSqKTMhG1d2KBQCoVQbeUuLvLQMDplWx8PsNztX7Sj0O6CvRFZPkQjCeYRjI5b2x+ZDaovc01oB4Nw3QNn6+vIn055kAfKOXQd6qWDiYa7WILVCO075XjmvLigZhxLBuPQbpzX9plY2TGd5XJjO0cbcfJyyZwOCQSqN9VpaQGC2HLxOKChu7Q48CMq1V0lpQotgGwxAuHUpClko/kQ8LmfHc35YXUHQvhpEbdXOISOdf/vjHBannA/gGACRlq0BEuJi9CbERfshUm58kypx7S11L3MPIK3utfNqmzHGcUKeyNi/WfgwYBszExWBRiejozWbdnyFAdTgJDMOgV69emLAiudUNapND53h+GyNSxmhz1RgyTL7FSdRpllOhEtF4xbetHsXuyMeSCaewYvnWDszL6T7064NN3GIjyGQymTBzkmnV8BwegsNl/DlCu76JYYOVGWzvRhGFLyLHafT2cchOXiLkwZCFL34szVTxMhj6FgELNapOjMfLrwwFAAz31va6MGS5UaLG8oyIFY44iTXvqspkMqAyEwwjR8oPXq1LXBBoazh6MX6Al3lzcJjKLMSc0MYUOFUmClJisSwpW9dNFpWRbn1tDc7qPI/coDtWsN5FiqYyNw8yL0/wH1/+qs96haLg+yuwA91iqFjtqP7LgLYyItKanzL0RvKyv0I2cSK8/KT8SvOmn1sCbaXRmtH6sQQWlTh+eTBYtrXSHvsEhMfPHTKlJCoO/QPMspfxXOs7WhozE+OXJmKGn6zb34+4O1wmk7VZvq3bOFJjgu9MhC7bhIKU2DZ5fCOQGB0KL6/2Z1oTEbK+Z1qTFQEYFoGszYux8/iJNiup9f76LiP/9FINTkcZitBaNtp9eXl5mDxpkhCU5o/0bF1Q7lGnu/MpydqM2LaCztyyGOzECaDjLZBLqme+sne/3ymO9ehTmX0UE5b8WTebF9rcIfsxELuP6upqFGyPhZzR9haFbWFRkKLterTWV0y4D6O7LXvrNuQz4/DXbSsN5PH09IK3GcoFDGOQI8jTczAADmAYcFSJiTIZGGY8KhnCpuWhYJjxUIHDpcOJYBi5QQyqLdjM6cRi2m4pBws1ju4kTJ4+tFXutjpWXX0Foc89WgrGmFvbncgYcDpxDFJnIJ+bjFhPDicm+AhRcSlsHdPYueMtvDpcrk3PJ1J0LNSYwDCQMeNRAQ5JS8LAMGFQE4tLhxK1eVEOXbKd4B2AiAwsMfH7yD/2N2ReZMGSBlmbF+PV4XJkXrKe5SYO6orRkAo7V32C6E3LMVRivEDEqlSdWIYxxGfyd6m+ehXREydpXS/GF3mkwrgJQ/H91qWgCUsRhpO4knUIfz4BZG3+E2qqdVdHELtEMlEsRnwjmboKzLKXMUzUgUFEYKsy8daOAkwOC29XdntCyvrtDuUirguytt4fbeNcvvMkdsROB8MwgnY2JoQt/DsOJFSy7ce1JnGi92UwjBzZau0eOdoq3OXkZWAmLUcYCnA5+zBW5suQuWUxaq5UPxKWjTZoqt8IWxVpRSZ2YBFm+MkggxyvrFyCMAD5xw5bUUBp5dKr8jLyAQz28pYMlvK50MyF725moca2ozLsiOWtGQ4Vh/4BHy/CCXYi3vYC8jEO2wvykb/tTZzISwVaU0ULFrqgUMTlygefOYABso/nY8hgDwDQUUArVswEJi7Gqum+PcM07iA6OYa1/2jHB2Rtjcb27du1Fdp3JvhKbFAJWn9yVipcsUnHEAeGX98WWk0Zu/0rZGxehO2fbBWOU2cfwbAhDI5z4VjlzSIf45BScAz521ahIE+b45N5FLoT9cuYAP61ZR07gcWTJgm7ZJVXkA/A03uItaQDA+0wBZaMl6Wxj5BZAxxFcRwA+HjZdmw79ledqxw/fhw7rwA7Ymcg69hxACexdPE2sFDj8gkICaSF+zEAOBJZhdr6r/1syaAhFXb8ORUTJrzaVs/UB8EwDHZgEejYTl2hHBig7SnkUWe0LRHAEV06lEhLkrIMprzrYIO8UByJlj0Qy6POIExYJGxLWhJGmLCIiLTLHwDapRT018l95Gh9ZI7jaMkE/jm0zzWeAYEZR5eIfzbbPSNLagoFhDWExe+KUx2gpGwVsR2oQBzHUeaWxZSYdUlnu4ZUNB6M8D4To0NpSes9vzu0SVsHJG7TtkkrBf/7YvYmYrSOEUGr2ohhGAJAm7JNr2/uQPc9a5WLOoMw8U9E1FrUXOt6JImi9WFsmGCOJY44TqNTGcXicBwnrK1CREJDy6x4QBruISVGhwqKU3UokRC2qPU8az1B19DPYSIsEi7819oQWt8hJ3FOdyEuQp33w2kEpc4vZM4Sp5W9Vel3hO+yPqLFSW318WL2Jvoo65K27oZqn1tDKhqHcVRBHLHEad+7uA4bewapj5UeUorQkXXRdBlg0+LxQiU9pNIW8qKJbRWXb7BibJUEiuM47X+tX2TxgyUtCaNM1UPtD3UGYeJiIiJ6QCoKRaiwUFPispcoevMh6wpuQTScYdmzpE2iZOvKLlUv9BWhVH1qj4zNi3SVKQNC6zsVfwQvZm+iccs3CectmQBBufGytVd3OSKdBFBiC0fY5lAqZmEyE50+HKcRGri1Ed+TZVkidVZrJdP+t/mQWruPOMpMWiSqcIlCheZIusLZO5Lug5FXoLXypPMhWx1OJIPIneucXFLKoR1FIVgk0tnidOQwQyTxdR6VumMtpMrj/wMXJ20rwVNcOQAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是温州某公园的一个圆形雕塑,在某一时刻,太阳照射下它的影子AB的长为5m,此时,身高为1.5m的小芳的影长为2m,则这个圆形雕塑的半径为()
Choices:
(A) \frac{15}{4}π
(B) \frac{4}{15}π
(C) \frac{2}{3}π
(D) \frac{3}{2}π
|
\frac{3}{2}π
| 10,802
| null |
\frac{3}{2}π
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAAB6CAYAAABwWUfkAAAVOklEQVR4nO2dbWxT59nH/ycZTVUyma3Z8LRMCbMNLkbDCDSChmpWHB5azDCCFj4wiUrVKHGqhS6PoFpaVjUfus0ZqZTQTExtqvGBqgQnChpucbUwwmDLpETPnBeaBKUKm0JZqSmpmoz4/J8Pjo+P7WPHTo7tY5qfhPC5z9uVc93Xdd/X/SqIJAWEEQEUSEf9HQ0YNr4IpyVyxSL5SUFYhQwdSieIAdQ4a3Mg0iKZoCDRiRPVb0KorMRKS3Q6ScXfi2gbSdECIopr/50LrHwC4kURhNxtixCEyLH89yLapkBuk4IgAAPtuMhK/MIk4MPKlYg26AKQwdBPAqEyfZF8oAAx7rf6pA/Nv3ACAOwrDXE3CELh7A8R8mrcItqmQO5+2xteQHNzMwRBgGDZjViLJSkrlwsWXXceEamMDbTjIrZKyvS3u7FyhSlcHQcQcu2CICxWwvKQrwEABtoh1HjBD1oAhHQ7PDoCwAQoGO2iJech7io7EdItPX6RFMmqSkhpdpebck6fPs3bt2+TJEVR5CL5gUDG+2GSkouWW+/k5CT2798Pr9eLTZs2wel0YseOHTCbzVnLmIvMj1AZzaiiGAIExMbMAHDp0iVMTk7iiy++QE3NixgaGsKPf/xjmEwmHDlyBFeuXFmwQAr5bhE1IMlUHfDMzAyNRiO7uroov6+np4e1tbU0m80sKSnhwYMH2dbWxsnJSXX9zyLzBpGfwagTyuVvkK2trbTZbAkfODIywsbGRtpsNgqCQIfDwZaWFt68eVMdiReZF4g1Z5HxSg4fiaIYZ9XJCAQCPH36NPft28fi4mJarVbW19ezt7dXFeEXSR1BFEWmGi5xtnL2zjvv4O2330ZXV1c6RQT+9Kc/obOzE16vF8FgEDt27MBPfvITPPXUU/MseBZJmfnkDrlVzzfE8vv9rK+v57p167h06VLu27ePf/zjH6XQLZNoJSyMliOY8Do1mFPRYWFiP85cZXXs/ckYHx9nS0sLHQ4HCwsLuXnzZjY2NnJkZGTOex8oRDKicHUVPy+LJtWxaiWmpqZ49uxZHjx4kCUlJTSbzaytrWVPT49q78gJYurRTSZQbDBJlXfeeQetra3485//vJCiI2mT6pUrV9DW1obOzk4EAgE4HA7pX1FR0YKerSUIWWvz7EFU2oJfsADSqYGT0W5cFMW0PUE4dNu8eTMLCwu5e/dunjp1ihMTEyk/Qyvlc6bL5FgWpGgyVFZv2bJFDVnS4vbt22xtbeWePXtYVFQkhW5+vz/rsqRLonpPJpW/YEWHrbq7u1sNeebN+fPneejQIZaWlrKsrIwul4s+ny+nMsVyzn1Y6ixC5WGK7KfL1ZCVdy9I0eEc2dTURKfTOed1apDKs3p7e1lXV0eLxcLi4mLu27ePp0+fZiAQyInrDg54CCHSEyiSZL+HAFjl9mRFhgVbNBmqKX/nO9/RZIvX+Pg4f//733Pnzp2hble7nU1NTRwbG8vK+0X20w5wW5U77py7yk53e3aKGlUUTZKNjY1JrVoL3Lt3j2fOnOGBAweo0+losVhUDt3iy1hPQxWBrexXCK48DVWhMQBZQDVFT01NUa/Xa9KqE9HV1cWamhoajUbq9Xo+99xz9Hg8nJmZUeX5YWtO7p5jM0fkWM0soJqiyfyw6jCxZfXg4CDdbjfXr1/PoqIiOp1Onjp1irdu3Up4z5zMlsO/9fxz3nKphaqKzkerlhP+yBMTE2xtbeXevXtZVFTE9evX0+12c3BwMOE9iswq2t3+f/OSQ01UVTSpPate6EebmZmhx+Phc889R71eT6PRmDB0i+/e7ecTQgLX3e+ZrYgpjQNQv71bdUXLrVo7rVBzk6qsPT09Uuim0+l44MABnjlzhvfu3WPiyli0Vfvb3bNxdGJFqv3tVFc0qT2rlqPmBxwbG2NTUxPt9tBIWofDERe6iaIYUiwSj6yVro35X00W1KmRiOnpaZSXl+PChQuwWq2J2tjzpsMhlljZSeLzzz/H+fPn4fV60dnZidLSUuzevRt79uxJ+A2ySUYUDQBvvPEGurq64PF4MvH4nJJKJv3www/R3t6Ozs5OaTTN9u3bsXPnThQWFmb8/bFkTNFhq/b5fLBYLHPfkCd8/PHH6OvrQ29vL0ZHRzE+Po5gMIju7u64a202GwDg61//OqampjA2Nobx8XHs3LkTZ86cWZDC01W26oqWC1BfX4/R0VG8/fbbar4i6/T19aGtrQ0ejwe3bt3Chg0bsHHjRqxYsQLl5eUQBAGPP/543H2XLl0CAAwPD+PmzZv461//ir/97W9YtmwZfvazn8HpdEYZgfzbKSlyQcVdBsp9iUAgwJKSkrwZEiSvqPl8PrpcrqjesHR76BJV/Hw+X1RPW01NTcrPnm9lMqOKJsnjx4/z4MGDJLXU6Z+Ys2fP0mg00mKxZKV/W97TZrFYeP78+fxoMIklEAjwW9/6FkdHRzP9qgVx+fJlVlRUSB87F7z33ns0Go202Wz8+9//ruqzM65oMtqqtcbg4CAdDgdLS0vZ2toadz7bXkgURTY1NVGv13Pv3r2qdadmRdFaK6vDM05qa2up0+nodrs5NTUlncuFPLHcu3eP9fX11Ol0PHbs2IKeRWaowUSJ48ePY3x8HG+99VZGns8Ua6ScbdxwOBzQ6/X4wx/+AJ1OlxGZ1OA///kPfvrTnwIA3nvvPRQXF895j+K3mE8OnA+ZtOpUrDB8jd/vp9FoTMtKcs3MzAyrq6tpsVjm/f2ypmgyUlbnqvbt9Xqp1+t59uzZnLx/obS2tlKv189rIGZWFZ3Lsrq5uZmlpaWanPGRKOMrpXd3d1Ov1ytWHJPdl1VFk7mpgTc2NtJqtaY10F/LjI2N0Ww2J1V2LFlTdDiXZduqvV4vy8rKODExkVaRofXGnbGxMZaWlqbsxjOuaKUPdvToUf785z/P2PPDDAwMsKSkRJPuWol0M1dXVxf1en1KsXbWXTcZGpOl0+ky6kpv375No9GYtxWvVDl16hQtFsvsCJfEZCWOpkJcd+TIEQDAiRMnVH9fMBjE1q1bsWXLFvzqV79S/fla48iRIxgZGUFnZ2fCa7LWYBLLrVu3sGrVKly/fh3Lly9X9dnV1dX417/+pTjoQSnT5TvBYBDbt29HRUUFXnvtNeWLMu5bklBTU8OamhpVn9nb20u9Xs+7d++q+lytMzExkbSSm5PKWJhMlNUOh4ONjY1pyfGg8Morr/DAgQOK53Jq0aSyVc9XKV1dXSwrK5M6KL5qBAKBhBMocq5oNa3aarWm1YjwIHLixAnFRYRyrmgyYtULca/vvvsurVarilLlJ+GFCbxeb1S6JhSdqlUnyggzMzM0GAxxf9xXlXCml88KTbgdUjZZvnw5nn32Wfz6179Oel2isMjn82HZsmXYtm1bJsTLCyiLkp955hlMTk7iH//4h5SmCUUDwLFjx/DWW2/h1q1bUhpTDPE9Hg+efvrpBy4+TofYv33v3r1ob2+XjjWj6OXLl2P//v148803pbRk+3fI0zs6OrBr166My5hPOJ1OSdEkc9tgEsvIyAhLSkoYCARSvufq1as0m80ZlCp/0ev10pxuzVg0ABgMBjgcjrTavzs6OuB0OjMnVB6za9cudHR0hA5ynOniSNeqV61axWvXrmVYqvzE6/Vy48aNJLM4CjQdnn32WZSVlc3Z83Tjxg1s3rwZ//73v7MjWJ4RDAbx6KOP4vr169GVsemp/0r/cskvf/lLNDc34+7du0mvu3z5Mn70ox9lSar8o7CwEJs2bcLVq1ejFV308ENR/2cDJYdiNBpTKqtHRkY0NSVXg84RZrMZo6OjuQ+vEsW+dXV1c1r10NAQTCZTpkRLGy3G8UajEUNDQ8kVHevKlVx7IlefrBhIpYgwGAzY8ZQDv2s4EXdd+N7RkRtRFh0rpzztq8qaNWvw0UcfJVd0rCuP/X966r8oevghFD38UJzyw+npnJO7vump/+LlV+pw8s1mfP7559I5+f13PvsUSx8pltLl5+W/v8rK1ul0uHfvXnquW/4R5WlqfchY1xeOq5tPNim6xUAggGXLlgGIz4Qks1rX0Crf/OY3cefOnbkVPZdFyK1TTTi7vXGysnpychJLly5VvD8X5aXP58Njjz2GdevWqbJ9oxo88sgj+OKLLyKKXqhVqu0ew3tVGwwGbH3CjtbW1rhrgsEgCgpyXp+UeOGFFzA0NIS+vj7U1tbmWhwAwJIlS3D//v34OFrJMsNWHXsunB57Tp6ezjl5ZpFfd+ylo3j99dcxPT0dlf7QkiIseehrUfeG/ycZVzfIDvEZL5dB1/3797FkyZLUm0CnvpxWuYEuPZxOJ994442oNJ1Op9hUmquBgB9e9NFsNtNqtc45VSZbMo6NjbGsrCy1ESa5VjIZGcY7PR2RpaysLGsr6SciWl1BpUQFsrdDTm9vL61Wa/LeKy00h4ZZu3YtKioqovqrv/GNb+Czzz6Luo5Zbp0SIHfNBVJif0eDVM8QBAGV1Q2yuwpCi4JmQda7d+9Cp9PNHUdnokY9HwRBwPHjx6WyGgi1+vj9/rjrsqpsxmxCRqDBVYk1zgvopwiSCLIfaK6NUraAzEQGsX+73++HyWTKfRNoOlitVlRUVKClpQVAqB13ZGQk7rqshlazrwp/4IbqStQOm0D6sHr2ZAFXo7HdDV/zBQxG3SyqL07M3z4yMgKz2ZxfigYQZdVGoxEDAwO5FglA6AP3dzSg9qQPnhPNMScjPxlVB8/s5yeJoaEhGAyG/FO03Ko3b96My5cv51okSXUnm2uxtdoNpyXeowyP3gBACFkqVUhCFEVcvXoVmzZt0t4Ik1QI18CnpqZoNpu1McJEDO2I0+CRLykZqYW7tsUvyJ7pEMvr9bKiooKkxsaMJYIk5OVZuAbe0tISP9oxR3BgED4A3zetjjvn72xA8wcFcB1+MSo903UJj8cTGU+X0SyVQcJW/Ze//CX3o0DFyEYp4Z3pItsmhCzd7vpNVHo20Owo0HSwWq2wWq24ceMGAoEAhoaGAERbNbNg4WQovhKwGk8+b0dtc6giJgDAQDsKBAvgcuNi0/9G0rNAeF1ws9ksCZo3xJZpXV1dNBqNPHToEF9//fUcSTXLrGhVlZFNUgBkbUvCWF566aWo1RE1OQo0HbZs2YL169fj0qVLUXONcocI5bBJlq7qVu/KmEwmnD59Ghs3bgQSSJRXvPrqq+jo6EAgEMD777+f9ffHW4ly7xUpa7ETIumZ4N1330VxcTE2bNggEyIPeL5SiHKHALi1+jfSeZvNxsOHD2tsfnTMDnVZeuvMzAxNJpM0hThc3OWFosnQXsuRGHUgahfXcFm9du3ar/yKB42NjdKKB/I6Td4o2lVpj9qD2V1lj2qAsNlsPHr06OIaJgnWMMmPMnqgHc00YTUEqVy7MezDyhUG6ZJXX30VbW1tWLNmjdTp8SBDhTr0iRMnYLfblXfOy3q2mweehqqoHVvdVXYCT7B/thwMuyibzcbXXnuNer0+auSJKIoP/PJTOV9nbKGIDMWmgiCrkFUejpyXKTBcVrtcLu7evTvxM/NY6Uqyz8zM0G63s66uLuF9mnfdwkA7TuIwRFGEKIY68vnBych5WXuxzWbDd7/7Xaxfvx537txJOBtTi1NnUkVJ9traWjz88MOJl4cEtO+6/e1ubq36reI5Jbvs6uqiyWTiJ5988pVZ3XfNmjVzru6reUVXVabfjFhRUUGPx8PBwcG8Wq87XTS/XrcysgYGkWS/J0mbsfIoynD55fF4pMYTr9fL8vLyhCvwx6blS/mtuRX4M0FIFcmHzFqtVno8HpJz76mRL8oNo+k9NeYmqNqeF6IoRlk1STY1NWl2l5x06O7u5vLly9NuAdSAomdj4UTp87Q2URSjrJpc3Pcqj0nuvmOtmgztZGcymaS+Wi26bblMoigyGAzS5XItaCc7bcTR8+6vK0g6iiQ8Xkq+VKLFYkFPTw+6u7vxzDPPRE2y1wryWPnTTz/Fjh07cOPGDVy7dg0GgyHJnUlQJw+qyAIMTMk6layaZMLdZrXCfHebDRP7LXKu6KSuU5RfN5PsdFJiy2r5O+faPzoX5O3+0dlEjPuhYNUKOaS7uzurO8IrZfCzZ89KO8KrHR3kvaIT1dZjsVqtPHfu3Bz3Rj726tWrWV9fT7/fr3CVevT29rKuro4WiyWjmSzvFR2LkosnQ1a9du3alJ/j8/nocrlYWlrKsrIyulyueYU1iZ79/PPPS8+uqamRnp2pKCDvR4EmJzzyMvT/t7/9bezfvx979uyRrigrK0N5eXnUXYzZBK2vrw9tbW04d+4cPvnkE2zYsAEVFRUoLy+X7rXZbHFvv3TpEgBgeHgYN2/exJUrV9DT04MVK1Zg7969cDqdWVv58AFXdITp6Wm8/PLLuH//Pnp7e6X069evY2JiQjquqKhAUVERgNBE+7Vr10rnHnvsMQDA6OgohoeH8eWXX2JiYgLBYBDd3d1x73z88cchCAK+973vwWAw4Ic//CF+8IMfoLS0NFN/ZkIeeEVHWWcK46nDVggAExMTGBwclCbX9/X1IRAIAAhlnGvXrknX6vV6rFq1Sjpet24ddDqdZvbG/FquBVAT1zYBJy9Gjgsg4Dft/8QvdqXuHpVccCp8/PHHGBsbk47lmSC2KMgJGSn5s0hs5aWqMjLRzd/ulnVxprdAzEIrRVprWtVGE+gCkFsKMYDrF7fiyV2hqasWk7y5sEB2XXrPnQvXNiFqYRpBEFBQUImBnK4wFk3eK1rOQMcFCK4npbVDXDW7Ya/6XdwKBGo70eb3iapKwOMXIc4ubemuEmARNKTsXLsUVZj1kp6GKgqCQCHFmYxquVeR/dxa6VIsRmJXOcgVD4ZFz5roRe9JnPtnECIJT0MVdq8pQHt/yKKoEFyoVUEa6LgAYeWK0PNkr/m+yQ7fR6OqvGOhPBiKhgjMDgt2WkKzOXa96IIdwEVvaDugkFLVX+4JALwfePGkfTsAgLJIzmBYCUiZKTPvTpUHRNEF8Hgvoup/QntTCgCEgY9Ca4oYTQDEWUNT/88l/PC+CWx3zq5dMus5BACjox/Bbvq+JCMgxq3HkjVyXXaoRWhYcOh3eN0QYKs0MS9j4U6/h5XVDdKhKEsHIqFersl7RYdjZQHR86fl03YySWheWEdMajC0xMW2Q0wev2dv8de8V3RWEWMP+2mHwHP9sjFe/nOEkL2MliqLip4nCT2Jhtx1GFEU+f9btjigT+8/TQAAAABJRU5ErkJggg=="
|
<image>如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()
Choices:
(A) 1.5
(B) 2
(C) 2.5
(D) 3
|
2.5
| 10,803
| null |
2.5
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAAB1CAYAAACGYelhAAAYPklEQVR4nO2df0xb57nHvwfapbshcSM5iqWeXm/DBDemG63XrlusAjem8TbWuhoRTHNVR0LiNm5vzA1dmIZErsYkppKUaQljo1G93UzNVG5N2vTWCY5iJKTSGYlc1QYSTAqBCbdEKo1p42j2ee4fxgf/trGPsfnxkfhxznnf9zznvM/7vM/747wvQ0SEDY7hGQbdA5FnD8BJA9gHJhci5Q0FuRZgLThziXCkGjA7OHBEICJ0HmGgYKoxhg2v/wnZFApAzBiuw4Dn9oEv78fODOBI9RUcfflUTmXLNZtCAcYufABm7zfBMAxCC/y3StSw3pjKnWB5wKZQAMtlC36o1gAAaNkEEIDi4r0AE7QJXE5kyzUbXgEIDlj+AGi0+5ZPBEwAA2Bq6gbUJd9aDlmwfJmwmZRhwysAM+YCY/jhircfLPFj/WjutkJTrQkPzzDYBK+FZ8M/ab9lACXfkPHHgeznYDA+DzzTiGPPPZIg9iawBLTO4Tgu5CDiGjnpAEDvOFcucI53CAwI1S+ld48NBkO0MTuCnBdOokzbDAaIaul39jtw7DnFqtIjouXqYWOxYRUACGYaIVFNl07GbiRl2NAKAARK/8bIquywsZ1Aisz8TeDUrZKNrQARRX9mZnbTtfOTcV+uBRAWDkGd/uKLL3Dt2jVMTNzApQELbkxcx8TEBB5//HHMz89jbm4uLCbLsiguLgYA3H///di/fz9YlkVJSQmUSiW2b98OhmE2VP0PbCAfYG5uDleuXIHVasXVq1fhdruhUqkgkUjw4Ycf4tatWygpKUFNTQ3q6+vx5JNPhsWfmZnB9PQ0AGBpaQl2ux03b97ErVu3MDQ0BJZlUVVVBbVaDbVajT179uTgKYVnXShArFJHRLh+/TrOnj2L/v5+fPnll3j66adRVVWFyspKlJaWAgBGRkagVqvR3d2NwsJCmM1mvP/++ygtLcXPfvYzaLVavuQnuq/T6YTNZuN/xGIxamtrodfr48ZfF6xxv0NKJOp4WVhYoJ6eHlIqlcSyLDU3N9P4+HjMsKOjoyQSiejcuXNh530+H5nNZmpoaCCxWExyuZxaWlpodHQ0JRmIiBwOBxmNRtqzZw+pVCrq7e2lzz//fNXPQ1xU/1XM8LFT8CeUMRXyUgFi4Xa7yWg0UlFREel0Orp48WLC8OPj47Rnzx7q7e1NmvbQ0BAZDAaSSqUklUrJYDCQzWZLWba+vj6qq6sjkUhELS0ttLCwkHLcUFLtcRSyXzLvFWB2dpYaGxtJJBLRq6++SvPz80njTE9Pk0Qioa6urlXfb3R0lFpbW0kul5NYLKaGhgbq7+8nn8+XNO7c3BwZDAYSiUTU1NREbrc77Hq6XcqxYgXS2sAWwOPxUEtLC4nFYmpra+NLVbKXOD09TVKplH7zm99kLIPL5aLOzk5SKpW0fft2qquro3PnzpHH40kYz+1287KfOHGCvF5vajfkwv/2dx4hBPqyCNUvEUdOeuml16LDZ0BeKoDZbCaJREKNjY2rMqdut5vkcjm1trZGXeM4LqHyJFOs2dlZ6unpIY1GQwBIq9VSb29vVCmPlEen05FUKiWLxRI7kD9koCoog9NMAEht6FwJt3zuSKc5oZyrJa8UYHZ2ltRqNZWXl9Pw8PCq4i4uLpJcLqejR49mR7iIe5lMJqqtraVt27aRSqWiM2fO0PT0NB8mVKFsNhvJ5XL68Y9/nFShOXKSGkx45i9z0vAMdfY7hHsQyhMF4DiO7HY7SSQSam9vX3X8xcVFKi8vp4aGhixIlxiv10t9fX2k0+lIJBKRQqGg9vZ2cjjCM8rn81FraytJpdKoa6GYTx4h4N/IGcMgmU8eIbMzuS+yGrKuAKk4PiaTicRicXwzmSAtj8dDKpWKdDpd2jJmSqhcFouFGhsbiWVZkslkZDQayW6389fffvttEovF1NfXF50OOUmdBTOfiJxaAJ/PRwaDgWQyWcxSkUx5vF4vVVRUUG1tbUpe+lpjt9vJaDSSTCbjfRqLxUJ2u50eeughamlpCY/g/B8CsGLm12AeSs4UYHFxkTQaDalUKlpcXEwaPlIZvF4vaTQa0mg0eZn5kYyPj1N7ezspFAoSiURUW1tLxcXF9NOf/nSlVbHs6CWv5zNv/gXJiQI4HA4qKSmhxsbGlDIvMvN9Ph8dOnSI1Go138RaT9O2pqen6ZVXXqEf/OAHBIB27txJN27ciFsFcBxH5DQL7gAS5UABLBYLiUQiOn36dNpp1NXVkUqlimqPJ2vq5Rq3200dHR3EsizV1NTQvXv36PZnC1RfX08ikYhsNhuZTx4hJsIKOPo7w+YwrtueQIfDQTt37kzq7CXixRdfpPLycrpz546AkmUPjuNoeHiYdDodicViOnr0aFhzMZibZrOZxGIxuVyuQIYvdwAxTKBJGK7Y/tCoGbFmCrCwsEDFxcUZlXyj0UgKhSLKZ8jHUu/1eslkMlF5eTkpFArq7e1NXF1xxPsIYZYtoncwbvw0WRMF8Pl8pFaryWAwpJ1GS0sLyeXyhD1v+cDMzAwdO3aMJBIJ6XQ6GhoaSjHDAqVap9ORVqsNuxI19V1AfV8TBTAajaRWq9P21tva2kgqldLs7KzAkgmHxWIhrVZLLMtSe3t72orq9Xrpqaeeora2NmEFjIMgCpBIw00mE8lksrSHSLu6uohl2fB6M09YXFykrq4ukkqlVFFRQefPn191GpHvjuM4mp2dJZZlyWw2xwy3bqqA4eFh2r17d9wJG8kepKenhyQSSdz42SSRbA6Hg59M0tDQQOPj4+kP9caJZ7fbSSwW8x1k2fJzsqYAQS1erccffFCTyUQikShhv3m2iPeyz507RyqVimQyGf3+97+P24ElVGb19fWRVCpN23qmQtYU4MCBA9TR0bHqeBzHUV9fH4lEorApWtkmXqa53W5qa2sjiURCtbW1ZLVa16TVEbxHa2sr1dbWJpQxE7KiAOfPnyelUkn//Oc/44aJ9zAXL14kkUhEQ0NDScNmE5vNRnV1dbR79246fvx4zhxQr9dLcrk8o76TRAiuAB6Ph1iWDRsBiyRehgZ7Ca1Wa0r3Ekoxgul4PB564403SC6Xk1KpJJPJRH6/cP3u6WK1Wkkul5PX6xW8MAiuAM3NzdTY2Bh2LhWhh4aGSCQSZU3TE+FyuchgMJBYLCa9Xp9QeXNFXV1dWnMlkiGoAkxNTZFYLE46uhepEHa7nUQiUcwx8nRJZfqX2WwmjUZDUqmUOjs7s+psZYrb7SaxWExutzv/moFBgfR6/ao7MOLN3c8WCwsL1NHRQVKplDQaDd/Wzsfu5EiamprIaDQKmqZgFiCooaGlP9lLHR8fJ4lEEnfuvpCZYrfbSa/X0+7du8lgMJDL5RIs7bUi9B0L9W4EUwCj0UjHjx9POXyiuftCdKpwHEc+n49MJhMplUqSy+XU29tLHo8na71q2SQoZ2Njo6DdxIIowMLCAolEopT7v4Nz9yOdGqEyY3Z2lp+Xr9PpUvrKZ70ogsvlIrFYnPTbhFQRRAG6urro8OHDKYWNNXc/05cfjG+xWKi2tpb27NlDbW1taQ3IrAdF0Gq1ZDKZBElLEAUoLy+PWcoiX2Zw7r6Qjszi4iKdPn2aZDIZqVSqNXMmcwXHcfTOO+9QRUWFIOllrACjo6MklUqThos1dz+T0jY+Ph42IJOLMYNc4fP5SCwWCzJCWpDJ4gAE4C9/+Qv0en3CcEtLS6ipqUFZWRl6e3v586Hf/FOcZQoiz//tb39DZWUlfvKTn6CsrAwulwu9vb1QKBQJ09lIFBYWQqfT4c0338w8sUiN8Kcy3SQkCMuyCYdr7969m/HcfbfbTe3t7cSyLGm12pz0FuaaSGs5PDxMcrk843TjVgEc/yuU8H7x8fHrJJFI4pryVOfux4s/NDTET6Zsbm5OavLWgwMnFD6fj4qKijKeIhexShjHm1CG/xVKQdiqm4ODV1FRURFz0SS/3w+dTgefz4f+/n4UFhbyaVOImaaI5V/u3buHN954A2VlZTAYDFCr1Zibm8Nrr70GqVSa0JptpMWbklFYWAiVSgWbzRbzOqVYFRZEHvIvMV78kISvXh1EVVVVzBv+/Oc/h9vthtlsxrZt2wCsZFBoRgX/n5mZQVNTE1iWxeDgIM6ePYtr167hxRdf5OPHFocSHm9kKisrcfXq1ZjXUi4MqzEXkQY23nQtvV5P5eXlKXVWvP/++1RTU0Msy1JHR0deD8jkGx9++GHGfgCvALFW3f74Qie987E/+joFevPEYnFUgvHm7oeysLBAnZ2dJJVKSa1WCzoKuNnYtm1bSt9WxiOgADG/Uwh8p2Z2RM9aJQpMUojsjEg2d390dJT0ej2JxWJqbGyMGpBZj330uaa8vDyj+QsBHyBGdfH6y2fAVFejVMGE1auB1beBiYkJlJSU8OdPnDiBt956CwMDA2GLKPr9fvz1r3/F97//fRw6dAhPPfUUPvnkE/T09EStrxfLN8gGFNNPWJ/Lx8pkMly/fj1wkIL7E/nsYUvFBlfW7j/5CqhaDeq+AULkIo0FICK4XC7I5XIAwO9+9zucPXuWX1ETCKzc+ac//Qm9vb14+umn0dHRgYqKinSfU1AiO6DWc+tBLpdjcnJZAdJ4jLBWAAMAY/0YwAEcK2FgVRdjH0WnyjAMJiYmIJfL8cc//hEdHR0YGBiAVCrFlStXUF9fjyeeeAJEhL///e84f/58HmR+7BK+kvnrc91suXwvnM7xlMISoi1r1FO/3G3FmWNacAwHdUlpbK0iwO12Y3R0FMePH8e7776LwcFBlJSUoLW1Fc8++yzm5ubw61//Gg8//HCelLCC6CZjzHAc1lN1wLL/ioWFhZAzAdkNzzAoKAg064M/py44oxMIdQjMJ/99ZV26yGXKlgm6ZhKJhL7+L0V06NAhfjLlWs7j3yKA3W4npVK5ciLEdz5SvbLOQPCT80infsUCON/FVZ8G/rt++O/64ejvxN5vFkcXE/Ljo48+gtvtRtH2r2P//v0YHx/Hm2++ie985ztJNZZi9AbmCueFk4HSUcDAPLYsT8if3EuYnKKiInz55ZcAluVlAA4EP5y4PnAAP3xuHwAOcpksZvz7iAjM+AUwTZdBl7vBeTkUPFCAyambAIqjqgCGKcT/Wj5AYWEhGhoa8Pnnn+P06dPZfMaMIQZgghlLfjBMIQDgvf/+L34PgGb9M/i/H+0PiVWA9VAV3LlzB0tLSwBWsqoADJwXLCH7JTL4jyYtDhhOQauI8AFOvfwMGMXzgPUP6HcSQIH64/lj3ehufh7VL5+MuilDgebd1772QFpCr3XpZyjwE/BnV4ze956q5mX53pP7I2Llf+YDwLZt2+DxeKLOu1w3YT3TzNf/1a9zsJ5uik4gsk7x3/WH/R/8CR77vvKR/66fglFDr0emk861VMIlOh8pk/+uP8GCCrF7OddieTahWFxcJJFIxB8Hn+VI9Up9H1h8MnAc+WgJ2z4FDxRE/WUYBgUPFKCoqAh3bt9BwQMFKHigAJx3pcQEq5HVXgslNFy886HxQ/8G4wT/j7oHb4AC4cbePcWXlAKGQfUr0VYvX/F4PNixY8fKCYYBxvrRjZd4c/9s0xGoAQxYLkQ16lbV+A19uUVFRfjqq6/Aebm4mSgUkUqQKExoWP7/yKcOOe48okaZ9gM4KTAU7icncKY5ZtWXjywtLaGoqIg/ZhDYLvdlzUH+XMH4JKwAviUriYqf9M3GK6VFRUVYWloKK43rAS7Etz9pqMarrr0gusxvLs1gH7r6O2E98wHG1kE7wOP5Etu3bw/zqy5d6saBg88CAAhjqFY8D+AAfvTsvqimDd8VHFq6k0FEvAKkE3+1CJl2wXJGOy+cRHO3FWbHZfAmYbkvnJj8z/ggX30VsAAMw8Dx7kl8+7lmEICespD3Vf0S6HJ3zPhhYwHxXnTQCgSvMQwDiUSCfyz8A9/2fpsPExk+9DiVa6H3CA2XSvy4PsC2gqjzANB9phlqQ2dYs4iYgCq4XJ9EvYN8ZW5uDrt37wYAlD17DBwdSxCaA6ggrArk38hqzbhcLofL5YobL1HVEO9arONU40ee4/9notMhjGHSCmiqNWHpBt+L9VI31HwbOr+ZnJzkZ0QHqzcif0iI0Oq7IMofSinHY1kGmUwGh8OxaoFzDgHM2A0MEFAs2xd12XnhJM5cBgwv/WcOhFs9TqeTH5YPVG8c39GF5bOJSHg1kYf/yCOPYHJyclXC5oTI6pwBsK8U1QCmXGMRQcdg1EZXDfmMy+Xi90gMsEpfKVlHQ7yZOfGmhK0XOo+owxZgjrlPzzpAmClhaZKrNfzSJVKZj1SvjHwibKQs9+sCpYIQk0IzaltVVlZicHAwkyTWlMh5CWcuEyhQCMARhZj99dGnYbPZMp5ok7ECxJuXnk8QUdKx3fVR44czOLjyXUYklOKAW0abR09MTKCqqgrz8/PpJpE7aKXdH/MyBbrV8xW/348HH3wQLpcro53MM7IAcrkc9913HyYmJjJJZu0hAAwHBuGGIVgdAPmX+ZHldGRkBCzLZryNfVoKECpMbW0t3nrrrYyEWCuI/0sITvhgsNJxEhwRDA2bL0T6L+fPn0ddXV3m6WZSBQDAtWvXoNVqMT09nbEwW6SG3++HRCLByMhI0g9mk5Gxu1teXo5du3atq9bAeue9996DQqHIOPMBgdo7er0eJpNJiKS2SIE///nPOHz4sCBpZVwFAMDt27f5T5QydUq2SMzU1BT/eV3oRJB0EcQCiMViHD58GF1dXUIkt0UCXnvtNRgMBkEyHxDIAgCBcenHHnsMLpcLIpFIiCS3iODTTz9FaWkpZmZmBHvHgvV5siyLmpoanDp1Sqgkt4jgt7/9LQ4fPixoARPMAgAr9dOWFRCeTz/9FGVlZXA4HLyfRQJ82SyoAhARfvGLX8Dj8aCnpyfsfH58ILp+qa+vx6OPPopf/epXwiac0VhiDDweD0kkkrS2jNkiNlarlWQyGb/1rJBkddOodNYG3CKcbG8aJejANy3XJnV1ddi1axc6Ozvjht2qEhITfJft7e0oKyvDwYMHk8RI/0ZZ4datW2ltHLnFCvE2juQ4Lv92DIklUKZbx24GUt06NltkfffwTDeP3uikunl0thC0GRiPpqYmOBwOWCwWFBYWJo+wibl37x4qKytx8OBBnDhxIuv3WxMF8Pv90Gg0KC0tzfvVRHLNCy+8gKWlJZjN5rW5YbZNTNDELSwskEwmo9OnT2f7lnlLMp+nvb2dFAoFv8byWvhIWVeAUD7++OOUt4fdbA6i2WwmsVhMLpdrTZ99TRWAaGWD6ESWYLNlfkdHB+3cuZOuXr265vdecwUgInI4HCSTychgMIT1Fm62jPd6vaTX60mhUNDk5GROZMjJJzAKhQIjIyOYmprCgQMH8MUXXwDYXL2Dt2/fxv79+7G0tITh4WHI4qzjl21y9g2USCTCxYsXUVZWBqVSCafTGbWVzEaEiDAyMoLHHnsM1dXVePvttwWb3ZOuQDnHZDKRRCLZsN3GoVVbX18fSSSSvNkkIy8UgOM4stvtJJFIqL29Pa83jkhXHp/PR62trSSVSvNqk8u8+AyWYRh897vfhd1uh81mw+OPP46PPvqIv5ZPpCPP4OAgysrKMDo6ipGREX5Jl7wg1xoYC7PZTBKJhBobG+OOIeSbZYjF/Pw86XQ6kkqleVu95YUFiESr1WJychK7du3CI488ghMnTuD27dv8dcrzKWafffYZfvnLX+LRRx/lv5fI2nh+puRaA5MxOztLjY2N9OCDD9KxY8dofn4+1yLFZXZ2lgwGA4lEIjp69GjU5ln5aLXy0gKEwrIsenp6MDExAb/fj5KSErzwwgu4dOlSrkXj6e/vR319PcrKyrBjxw64XC68/vrrUV9J5aXVyrUGxiJWSQkdVOrp6SGlUkksy1JLS0tO1ilyOBxkNBpJIpGQSqWi3t7euIs15WPJD7Imw8HZYmJiAmfPnkV/fz+WlpZQUVGBqqoqVFRU8DuaCYXD4cDg4CBsNhtsNhvEYjFqa2uh1+ujtr9bT6xrBQhlbm4OV65cgdVqhc1mw/z8PFQqFR5++GEUFxfjiSeewI4dO0BE+MY3vhH1afXMzAy/xsHS0hLsdjtu3ryJW7du8dvhVVVVQa1WQ61Wr8uPYCmG87xhFCCSO3fuYHR0FBMTE5ifnw/bZXtqagpzc3Nh4VmW5Uvy/fffj/379+Ohhx7C3r17oVQqc9tdm0U2rAJskRp53wrYIrtsKcAm5/8BXCKrhRmOZDcAAAAASUVORK5CYII="
|
<image>如图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=25°,则∠D的度数为()
Choices:
(A) 85°
(B) 105°
(C) 115°
(D) 130°
|
115°
| 10,804
| null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAAB0CAYAAADKDNPCAAAbZ0lEQVR4nO2dZ1hU19qG76F3UQQEg2IFWxS7ggUVBSxENBgT1NhS9cQvVaNRE40xKmknMSbEHisogqJiI4JgQUUUEUVUREG69DYz6/uh10nOURPRgZmBff/iYmbv9czm4Z2913rfd8mEEAIJCS1GR90CJCSeF8nEElqPZGIJrUcysYTWI5lYQuuRTCyh9UgmltB6JBM3RIRA+ZfVAaVSu5cK9NQtQKLuUZZkE34wgsTUTPR19TAy1qOkXEmvoWMZ7OKIrkzdCmuGFIkbIDrGFtgbFvDt0oV8symKlu1f4Nye7xg/bhLHknPULa/GSCZuiOgZY2ligIGBIa7jpjB6uCftbJpw/9Y57uQUq1tdjZFM3CCRc3j/Qe5X6OHm4kjMzo1E31by6ier8OrWXN3iaox0T9wAUeQmcfTEBWSNWnLv9C5Wno3FaeRsln0yAxtTdaurOVIkboAkn4km7spt3F6dzfv/msXLw5zZ99tK1odEo9DCiQrJxA2Q8+fiuF1qjKdHf6yb2dG5qxP3M68R/sdJihXqVldzJBM3MPJunSJ0zyFkL/Snf6dmZCSf4dvlv1JpZIv3kP6YaeENphZIFsgry5DrGGGkr6tuMVpNeXk5u0IiyFCYM7CHA9G7N5F9+QSXipuxfM23vOnrqg2GeASZpld2ZCQdYX3YeUZNfo+u9obqlqP13Mm8R3VVJTpKBWXl5cgVAoumzWhp11Td0p4Zjf7Hq8hJYdlHH3KgqB2jpxv892tCkJWdjampKU3NzNSkULsoqKhAz9iI5nbN0LJFub9FY++Jq0tyORa6ge0HEjAzb4K5yZ+XvbC0lLCAAEK8vdkxfTqXEhLUqFQ7uHE7jZ3vvMMOd3c2zZ9PVl6euiWpDI2MxKLyPnEXzmPi4IyTtSHVBiYY6D94rVKp5MiWLcjmz2daVRUZ58+z++ZdQsZ9jrGOOUJUQ72KM8+LDsJAgfzASkYdCqUN8MeFC0QYGTF+7lxM9PXVLfC50TwTy++zN3gndw1a0cfBjOKKaozQgYd37iVyOXdOn2Z4VRUWgAVQERfLkrhdQHOgHMnEf8UYdO4zS3mQrg9/0wfYeO4s+eXlkolrg+TY48SeS8bcrowD8Re5XqzE1dwak4e3xI309Wk7bBjng4KwLi7mNmDlPZqIj+fQ2MQCpVKuVv2agkwmw9RUn/z8alb+EMPBYCeiuUhX4CTgOGQI1qZauDz3GDTGxIqqcq4m/EFiroK3PllMUzMd0i/tZtXy9SgUCnQeBlc9mYyhfn4crqxkbUgIFq1aMWbOe7RybKXeD6CBZGaW8v33h/gjIplenu9wwSmVndGn2XHekNUthmKoW0+mLIWGkHohRowdO15s+eOyEEKIqsI74pdFM4Whvr5wGuAjTqQWPHJMhRBCXrcytYY9e66I9u1XCiOjueKD9/eLe/cqhFIIcSq5QFi3CBAjhm8SxcXV6papEjQmEptYt2TMWD862FsCUFlWhk3nIaxd64YwMMZSt+qRY6RZ40fJz6/gm29iCQg4ioODBYGBr+Hv3/k/r/dxsmTGa1346qvjnDhxC0/PtmpUqxo0frFD4umJi8tgwYIIDh1K4qWXuvLll5507PjoIkZCQhaenr/RvXtLQkJexcBAY2danwrtVi8BgFIJ69dfYOzYjURGprJokRebNvk91sAAL75og69vV44dSyE29nYdq1U9kom1nOzsMt57by/Tpm2ncWMTgoMnsXjxEMzNDZ54jEwmY8qU7hgb67JmTZzWF4pKJtZioqNvM27cRn76KYqJE3sSFjaFMWOcnurY3r3t8fTsyMGDVzh58m4tK61dJBNrIRUVCgICTuLru55r17L54YfxrFs3llatLGt0nlmzelNVpWTjxvNaHY0lE2sZKSn5vPlmCB9+GEK7djaEhExj1qw+GBnVfM63Vy8HPD3bs3t3AvHx92pBbd0gmViLCAu7ypgxm9iy5RyzZw8kOHgS/fs7PPP59PVlvPtuX/LyKtm27aIKldYtkom1gPv3K/n882P4+m6msLCCdete4fvvR2Fv//wpqH36ODB6tBNbt57l8uVcFaiteyQTazjx8dn4+29j8eL9DB/envDw15k8uSsyFeU4mZnpM21aL/LySgkKSkAbVw2kxQ4NRamE7dsvMX9+OHfuFPHZZx7Mnt2Pxo2NVD5WSUkVvr5bSEzMITp6Jm3aNFb5GLWJFIk1kHv3Snn//f3MmLEVY2MDgoKmsHChe60YGMDMzAB//55kZRWwY4f23RtLkVjDiI29zfvv7+fs2ZtMnNiDhQs9aNeu9iNjYWEl3t4bycoq5cSJmTRrpj0lX1Ik1hDKy+X88MMpRo1aT0pKFitWvMTatePrxMAAjRoZ4u/vQlpaDps3a1e5lxSJNYAbN+6zcOERtmw5Tf/+rVm61At3d8c615GfX4a7+zoAjh2bjpWVcZ1reBakSKxmIiKu4+u7gS1b4nj33YHs2OGvFgMDNGliwrRpPUlMzGDHjstq0fAsSJFYTZSUVLFqVSzff38MU1NDlizxxt+/K/r66o0rGRkluLn9ip2dKaGhk2naVPOjsRSJ1UBiYjavvbaDJUvC6dGjFfv2TWfqVBe1GxjA3t6Mt9/uRWxsGocOXVe3nKdC/VetAaFUwu+/X2T06A1ERl7lo4+Gs3PnK3Tr1kzd0v4LX98u2Ns34rffTlNY+GhFjaYhmbiOyM4uY968CCZN2oqxsS6bN09i+XIPmjTRvK/r1q0teeONXkRG3uD48ZvqlvOPSCauA06cSGfChC2sWHEYP79uhIRMxcfn6fJ+1YFMBi+//CLNm5uxevVJSks1uw2CZOJaRC4X/PxzHGPHbiQuLv3h3O84nJyaqFvaP+LsbMWECS4cPpxCTEyauuX8LZKJa4lbtwp5660QZs8Oxs7Okr17p/LRR26YmWlHxx0dHRn+/i7Y2pqwZs0Z5HLNncSSTFwLHDqUiq/vRjZvPs2MGf3Zt28S7u7a19zFxaUZnp6dOHQomZgYzS0olUysQgoLq1i+PBpf3w1kZxfz88+vsHq1Dy1aNFK3tGfm7bd7Y2CgR2DgOTR1SUEysYq4fDmXyZODmDcvjH79HNm1ayrTprmgo+VXuFcve4YNc2b//kROndLMglItv8SaQVBQEj4+GwgLS+Tjjz3Yvv01+vSxV7cslfHuuz0pLZWzefMFdUt5LJKJn4OcnHI++SQCf//fAcGOHf4sXz4cK6vayftVF337tsDLy4nQ0ATi47PULecRJBM/I3FxGfj5/c6KFUd46aUuhIVNxc+vk8rKhjQJQ0NdZs7sTXZ2Gdu3X9C48n4pAaiGVFcrWbs2nqVLD1BcXMXHH3vwf//XDxMTjenNWCuUlcnx89tKfHwGR47MpEMHK3VL+g9SJK4BGRnFvPVWGO++uwN7+0YEB7/O/PkD6r2BAUxM9JgypScZGUVs335BowpKpUj8lBw+fIP58/cTF5fOjBl9WbzYg+bNtaeERxUUFVXh47OZa9fyOXXqDRwcNGPqUIrE/0BJSTXLl0fj47OJtLT7rF49jtWrfRqcgQEsLAyYMqUnmZkFbNmiOSVMUiT+G65ezeezzyIICjqPq2t7Vqzw/LPjjlCQmniWhOuZgBIhQE9Pl8rSYvQbv4Crmys2WrLEXBNyc8sZOXIjeXnlxMa+gY2N+vf9kCLxE9i1Kxlf33WEhCTwwQfDCA5+9X9aRsmgIpfNq+Ywzvd1jlxMB+DW2cN8vewXUnM1Pw/3WWja1Jhp03qRlpbL9u2J6pbzgDrfYEHDyc0tF/PnHxZmZp+Kli2/Frt2XRYKxRPeXHhTvDHQRpg7+4iE7Ae/yr+XKg7vPyGyCurHfhiPIyenVHTo8J3o1u1HkZ1dqm45QorEf+HB3O9WvvoqAnd3Z/bunYqvb8cnLh3fTIzlQGw2rsOGYGNQzJHdu0jMNWKYlys2jervjEXTpia88UZvLl3KYO/ea+qWI91OAA979Mbj6bmes2dvsWTJKH7/fQJdulj/zVHVnI06TLpcD1n+DdYsmcPKDRE0sXm4xUA9XPT4KxMmdMHOrjHr15+hoKBCrVoavInv3Clmzpx9vP76Npo3N2fbtkl8+ukgLCyevF0AgLwokwN7wrFo3ZsZb83Ao183+g5wp43V3x9XX7CzM+Odd3px4sTNfy4oFeJ/VvmUVFVXq0xLg56diIy8xbx5+zl9+ibTpvVlwYKhT91t/c6ZzXTvM5kOkxazb9MizKmmpBwMZRVUykwxM6z/8SElpQB391/p3NmanTv9n/yPX1VEzNEwDsUkUVEpaNzMjibmBuRk3qbarD0zp71C8+foM1f/r/RjKCuTs2pVDH5+G0hKyuHHH1/mp59eemoDK5UKDm7bTo5OI1zdh2IulMir5Vw7FcpP64O4r9klaSqjTRtLpkzpzuHD1/njj1tPfqOeES1b2ZGwdxMrVq1GYdOBvn370cJSxqmLl8grf744Wn+fPp7AjRsFzJsXwe7d5+nXrw1Ll3oxcGCLGp3jj4gQ1ofHY9WsCVlJx9m4MYW0xBOEHD2H99vLsTVpGLFBR0fGxIkubN58lsDA0wwf3ubx2y7oGNDUwhKlTIFdv7HM9PfARibH1nwKPX0MsW/yfFl/DeZ2QggID7/Gxx/vJS0tl5kzB7BggfszdbhJSblOfmERZkZ6lJeVUVGtAAGGppY4deiIhVE9f6r7H2bP3s+PP8YQfmQK3kPbP/Y9J3cs46VX5tN11ncse70/CadP09Z9AoM6/N3D89PRICJxXl4Fq1bFsHLlMVq1siAw8FVefbXLM5+vXTvt30pWlUyZ6sKW0LP8+mMc3q3bP3DVX9eFKnM5fvgo2fpWtDQuYPualZzLbs6G6c9vYGgAJj537h4LFhzk4MFERo16ka++8qJzZ9VcPIkH9OjejIVDhtN4qwUiB2SNAEdgNuAMxZk3iToei22vl3n/X7MxzTxFZLoutqranFu9ay21h0IhxIYN8cLBYbkwMlogPvvsqCgoqKj1cfOLi8XO4GDx+5Yt4k52dq2PpxGcEUK4CvGLbqyY3nyZCJ6xW+QOLhTCXQiRKUTSiZ9FU13ElCVbxYPFT4WoqCoTT1oIrSn1MhJnZZWydGkka9acwMnJll9+mYyXV7taH7e4spTQjz7CaPNmDIVgn6cnQ1Z+h7WVLRqVgKsihEygVynD5BtDbhllkOQ8F9fUaKr2m7Jv1FRGX1+OXkABQfc3kKswo0NrexRKgY6ODob6qmvfVe9MHBl5m/nz9xEXd5Nx43qxbJkHrVvXTbf1o/uPYrz2V/yqlciAA7t345fQCJ2mg5HJy+pEQ10i162ibYUVC1LHEGC6Gr/CKEZXAhkl7DywgXPegyk/kMkFC+jt2p27Vy5xO78XbZqaqFRHvTFxRYWCwMA4Fi6MwMAAAgLGMXNmT4yNa/cjlpfLiYvLIPzQLfZsi2DmQwMDKIBGVsYYWBogFIpa1aEOlLoyzMsM0dOVYWxiSNn9P1/TMQKqjOjXwg+3XydjZAUlhRWYmqs+PbVeTLGlphawdOkxNmw4hZtba5YtG8mAATWb+60p16/nExGRyt69lzlz5hbFxToMG+HIgMZxdAjbQFV5JcVTpjB08VJsmljXUxMLZGUyzOfoczc3m4Mt5mIRvpXLdyspHDyTTyu+w3qoCSytXR1ab+KwsGt8/PF+rl27x6xZbnz6qTvNmtVOonZRUSWRkTfZs+cKUVHXuXu3EBubJkyY4IyPT2c6d2mOUq+S8zHRVFdW0X3gQGwbaUYJT61yHpgNeY0LOWkdyeGDdxlUOBzfIe1gNVC78UR7TXz/fiXffXeC5cuPY2ZmTECAF/7+XdHVVe1CQ2mpnOvXc9m79wpBQVe4efMeBgYGuLm1Yfz4jgwd2oZmzczqZal+jYgHAkFkQ3aGgsCTsdh+bsyMhT1rPaFPK02ckJDN/PkHCA9PZMSITixZMoJevexUOsaNG/eJjU0jOPgiERG3MDKqxtm5OV5eTowZ46xx3d01AiVQBHk55bw0fQM37hRzKuptHF4wr9Vhtc7EO3cmMnduOFlZRcyd68GsWX1VttNmUVElp07dJTw8mYiIJK5eLcDJqTGDBjkxapQTAwe2pFEjVc3Q128C153n7Td28fXX3nzwgWutjqU1Js7MLOXrr4+zZk0Ubdva8OWXI1XWbf3ixSz2708hIuIKZ8+mU16uw8iRjvj4vIibmyPt22t+U2xNo6CgAg+PdRQXVxEdPbNWC0q1YootJiadDz4I5/TpVCZO7MHnn4947p02s7NLiYy8SXBwEidPppKbW4ajozVz5gxg9OhOdOjQFHPzhpHgXhs0bmzE5Mk9+fDDUIKCknj33V61NpZGR+KKCjmBgWf54ovDVFYqWLjQg9mz+2Jo+Jh0v6egqKiKy5ezCA1NYteuZO7dy8XMzJTBg9vg59eJgQNbac0umtpATk4Zbm6/YmlpyIEDU2nynCmXT0JjI3FaWhGLFkWwceMZ+vdvw9Klns+80+aVK3kcP36DPXsucezYbczNZbz4ogNvvdULb+92dFBBOqDEo1hbmzB9eg/mzj1ASEgy06d3q5VxNDISh4dfZ+HCcM6fz+DNN91YuNAde/uaddzJzS0jOvo2Bw8mERGRQlpaEV26WDFkSEdGjnTCze0FjI3rX3MTTSM9vQhX10DatbNk1y5/LC1V/2CsUZG4pKSKgICTfPvtUczMDFm3biL+/i8+9U6bcrng/PkHZeQREckkJmagq2uAt3cbli3rQr9+LWjVqgEsPmgQDg4WzJzZnS++OERExHUmTOik8jE0JhJfvpzDggUHCQu7yKBBzgQEjMTF5Z/nYoWAu3eLOHIklZ07L3Pu3E0KC6txcmrGxImdGDHCGWdnq1rPoZB4Mlev5jNs2K9062bHtm2vqnwHKbX/ZRUKQXBwEnPnhpObW8gnn3jw4YcD//EhID+/gvj4DMLCLhMScpWCgiKsrCzw8urCyy93ZNCgVlqz3VZ9x8mpCRMndmflyuOcOHELT0/VpsWqNRLfu1dGQEAUq1Ydp337pixf7s3YsR2e+H6lUnDpUg6RkSmEhCQSFXUXa2tdunVzxMenI97ebWnVqm7SLiVqxoUL2Xh6BtK3b0t27HgVQxW2NFCbiU+evMPcuQeIirqGr68LS5eOeGL38bt3S4iKSmPfvstERqaQmVlGz562jBjRCQ+PdvTpY4+Rkdq/VCT+BiFg1qxwfvvtNIcOTWPQIEeVnbvOTaxQwLp1Z1m06AAFBdUsWTKcN97o/UjjjaoqJadPp7Nnz1WOHLnClSvZGBmZ4uvbFm/vTri6tmyQPYK1mZMn7+LtvZZhw5wJCvJT2XnrNHzdulXEl18eZdOmU3Tu7MDmzSMZOvTPnTblckF6eiHh4ckEBV0hKekO5eUKunSxZ+XKkXh5OdOypaVKv4ok6o4+fewZM6YzoaGJnDp1h759X1DJeessEh8+nMr774dz7dodXn+9P59/7vGfvN+srDLOnEknNPQye/akUFVVjJ2dFcOGtefllzvSo0dzaQm4nhAVlYaX1zomTHDht9980NF5/kTNWo/ExcVV/PTTab74IgJraxMCA19j8uSuKBSCM2cyOHQohT17LnLuXBb29kYMGNAaH5+ODB3aGgcHi9qWJ1HH9O/vgKdnB/btu0x8fF969Hj+lNZajcTJybnMmxfBnj2XGD++C0uWeGFjY0JY2FVCQi4RE3ODvLwq3Nzs8fR88JDWo4edyhPbJTSLo0dv4OGxnjlz+rNqlddzbx1cayYODk7iiy+OcONGAW++2YehQ9sSHZ3G3r0XuXo1FysrC8aOdWbMmE706GGPjY1qK2AlNJeyMjnjx2/lwoU7HDnyFh07Pl+qq0pMLAcqlUpMdXTIz68kIOAE//53DBUVcnr3dkRHR0ZqagalpQpcXByYOLEzQ4a0xdHREj09Keo2RPaHX2PUmG18MH8oixb1x0z32cPxU5m45H4e5Qodmlg1RhdAKEH2YNC8khKObdlCya1U9J37s213FfvDLgIyLCxMsLU15IUXLHF3b8PYsc507mz7zGIl6g9yJbzkG8i1qBD+NbUzAyZP5MWuLs9Uj/e3Jr5/5yqhO0K5U62LibEhQimjVfsODHDrR9NGxhSWlbF32TJMli3DUQj2yyxYLLxR0AlQ4OLSDB8fZwYPbkWjRkbI5UqUSiUKhXjYEEcj0jYk6hqZHmXyYi4GLKJt6DZsgAudO9Nr/Xp69OxZ89M9ycQJEYHM/ewnlM0H8q/3XsPOXIe9G1YSV9Ken77/nJYWusQnJ3Ny8GDeyXqw83oe0BtnbuAHVGJhYUTTpkZUViqorJSjVCrrYzcniZqiY4y8OpmA4k3MfGiIeCBm3jxmLVtW49M9doot/uAvvDLpPYTTBIJ+WU7Xhw9dDk0+Ivp6JWYmDyorzM3MUDg6cicrC1vgOjDGdwD2riMRiirk1dXI5QqEQCppl/gPunpG5BU0o2znHxTcTsMMyNDTw8rhQYOKhNj97IuIpKBchpmZKQamVvRz98S9+xNa6v5vh8HK/BQxpb+NQN9efL8v4ZEOhAqlUiiUf/4cFREhArp1E9/a2Ig1k/zFncyM5+hvKNFQkCuV4uDWLSKgXTvxra2tWP/eeyL3fqEQQojivFQxe2QLgY6hmPPNTvHbwveEo0M7sWRrlJA/5lyPmPhKxGrRGIRjv1dFQs7TbSiYcu+eiElKEnllZc/1wSQaFgohxOX0dHEqOVkUV//Fa8ocMcujrbCw6yaiMoRQ3o4WA9pZCIMWQ8Xpu49u/vjI7cTdG1cpADq3b4uD1dMt6LW1taWtrTTrIFEzdICOLzyaP5Fz7ihHLmbRbtAketiBrNwOezt7qqLiuXIjn972Jo+c57+wad4CQ0CmK+OvW09UlOVzMz0bufRgJlHL/HH4COm5pQz1HoYJQHkZVVWVINNHT+/RwPqIiZ3d/Zjj14/4A3vYHBpHaWkp6VfPsWdfBNlFVQ1zzzCJuqM0naPHT1Nq6ox77wfNcTKuXyMl9RZG7XrSydHykUMesbW+2Qt8/usWmgf8RGzIRgqut8bM3AKXfgNwcbJHBUlHEhJP5N61c5y8mEw3z7m4drACKtm5aS2J+SbMX/EBXZo9Wrb22Jtew0atmP3FKqoqy6mqlqNrYIyxgVQ5IVG7lNzPZtvv67iYWc2krp0pvHuLw3sDWbsrnhmf/Zu5/u48rm2OxlQ7S0icjTlCwKoV5JQInLu70tzamMysPFwHjGTMqEEYP+FeVjKxhMaQm1dASWkZZiaGlBUVUFIlsGvZlsZPcu9DJBNLaD3SZIOE1iOZWELrkUwsofVIJpbQeiQTS2g9/w/Usx29uDl2kQAAAABJRU5ErkJggg=="
|
<image>如下图,AB∥EF∥CD,∠ABC=46°,∠BCE=20°,则∠CEF=()
Choices:
(A) 144°
(B) 154°
(C) 164°
(D) 160°
|
154°
| 10,805
| null |
154°
|
"iVBORw0KGgoAAAANSUhEUgAAAKEAAAB7CAIAAACTlneoAAAt7klEQVR4nO19aXAV15X/vbf312/Tk56edgkESEiAFiQwYMAsNjhMcGwT45ngSohnKrNmyjN/z4dJnJmUPyTjqRnHTuzYmZQTT9U4NsZLHBtvibeYzcQgSwIBlhASaF/f1nv3/X84UvuB9GSLCCQIv3qlavXr1337nnvOPfdsFzuOgyYDxnjS8w6ik1+PJr8e0cmvv44rBjLbDbiOy47rNL72wab7gqaRsTSNrE4nqtOcvo4rh+t8fO0jLR+nQzr+TqejXcesY9qyerrXp9W3r+NK4bqsvvbBXiRj6TgYhkkkErIsY4xt2zYMg1Lq8Xgsy2QYBmOMEaaIGoYh8IKmaxzHYYwJJgihaCzKcZxH8uiGLvIC3BDu7zgOxphhmNTHIYQwxtASy7LgK7dhcJB6E/d6jPF05c3lRro565LlItzwj5kKyRTPFgQBIWTbNsZYkiSWZUdHRzmWI5gkk0lFVTDCAi+ommqaJsZYURTLthBCAX/AI3ngt7Ztm6ZpmqbjOIQQlmVTCTzpW13HzCKtrFZVFVgTY0wIQQjxPO/1ek3LRAh5Za9hGEBRy7ISicSJEyc6OzsNwxgZHUEIDQwOGKYBHM+yLM/zLDs29+u6HovF4Nil63UCXz5gEJ7u/66sNk1TEAT4qru7u6+vLzMzMyMjo2+gPxQKZQQzKKJDQ0NZmVmWbXV0dNx3330+n+/WW28Nh8NbbtkCd9MNnSDMMAylFB7EcZz7IDSZrLZt+7PGpYip67L6kpuUVq8WRdE0x6be/fv3v//++6tWrVq5cmVjc9PZs2dvv/32kuISjLFlWyzDiqJYWlrqOA6l9IMPPmhtbQ0GgzfccEN+fj4vCHBD27Y1TbMsSxAEEAypZHMpfclvch3pMNXayTRNYLtz584NDg7m5eUVFha+9OuXf/Ob32RnZ5cUlwSDQaBKVlZWRUWF4zhf/vKX16xZc/bs2ePHj+/Zs8eyrE0bNhYUFBQUFDAMI8syQkhRlEQikZWV5T4IpTCr24Dr9J4ppKWxYRgwg46MjHR2dmZkZFRWVqqqquv6vHnzcnJyKKIMYRBCqqZKolRVVfXLX/4yGAzeeuut8+fNv+mmmw4cOHD8+PF33nknLy+voKAgJycnLy8vHA57PB6PxwNMn/pESul1ul4OpKUxwzBA45aWliNHjuTl5fX19X300UeiKN59992bNm4yTMM0TdkjG4YhiVJZWRnDMJZl+X1+y7bi8bgkSXV1daPDI9Fo9OTJk4cOHYpEIrW1tWVlZV6v9yLGvU7gyweW4gvdDBikJCYI66bBsmxXT7dNnfUbbhoYGmw901a+qKykqNi2LMeyHcvGCAX9gWQyGfQH5hWXvLHv9RtXr1EU5Z577onH4xUVFWc7O7Zu3fov//IvDQ0N7e3tb7z15m9ee3XHjh15eXmyLEuihBAyLdOyLJ7nCSEMGVP1KaJAeLCU4QlnHOrYjk3I3DLj4BR1Es2ExvTHIy0fj0ZHg4GgYRoNDQ35+fnr16+vqKg4fvz4T3/6U13XCwsLvV4vy7KWZbEsK4oiQuiOO+5obGzkef4HP/jB0aNH33jjjY0bN37jm7v/67/+a+vWrWvXrl21alV3d3dbW9tbb70VjUarq6vXrFmTE8nhWI5SqmkawzC2bcseGSGEETZMQ1VVhmFAwwcdDYIaGIbhOZ4wxKGTxzhch4u0NA4EAgih9vb2hoaGysrK4uJiy7JGR0fPnz8/NDRkmiZCiOM4wzDAuNHT05Ofn5+dnb1nz57e3l6/308p5TiuoqJCEARJkhiGcRwnOzt7/rz5WVlZyWSysbHxP/7jP0Kh0Lp161auXCl7ZNuxRUHUdE3XdUmSBF4QeAGNDzhomGVblmU5jmM7NigE1zE1sJ2GDzDCwyPDL7/88p49e/7sz/5s8+bNTU1Nb731VklR8Zo1a1asWCHLsmmahBCMsWEYwMoHDx58/vnnb7vtNkmScnNzu7q67rp755YtWx5//HGwj46OjoYyQgihaCxqGEZPT09zc3NrayvGuGwcoiBCGxLJhGmaXq+XYzmHOq6URgg51AGtzbWazREQhCeV1XNxfYwQYhgmFArt3LmztrY2GAzatv2lL31pzarVgUBAFEXgYNDLoEGDg4MZGRmEEEVR1q9fjxB66KGHznV27ty507ZtXdf9Pn8gEBgeGfb7/QF/ACGUmZlZUlIyODjY3t5++vTpvXv3hsPh+fPnL126tLio2Ct70fi8a5ommEdYlhV4gWByXVB/QaTl43g87vf5FVUhhABjtZ9tn1cyT1NVSZIQQo7jOI4DRhKYIxVF8Xq9jz32WDQavffee3/yk5+8+OKL3/3eA3fvvFvVVEqpawCBeZdSSghhGRYhZJhGLBZLJBKvvPJKMpkkhBQXF9fU1JSWlrIMa5gGz/EUUZgjGIZxpfRcI/Mc5OO0NB4aGgqFQgQTMDszhBkZHckIZsSiUUEQXDOnC0VRwCj95ptvvvDCC36//6mnnqqrq3v8iZ+aplleVo4QiifirpELSGs7tuutAhim0d/ff+LEiaampoGBgUgkUl9fv3TpUoyxKIo8xyOEHOqAe4oQMtf06quJxhjhWDwmy/LIyEhWZhZCyDANjDHPcuBKIoTwPA8XA1OyLGsYhm3bu3fvfu655374wx9u2bJlz97n29vbH3zwwfz8fNCZNV0DxcqlkOM4tm3D/CoIAsdyCKHhkeGmpqaWlpahoSHLstatW5eXl1dcXAxCBQQDx3HX5+PPRVoag1ScCHZcSF707FgsFggE+vv7MzMzv/71r//f//3ftm3beJ7/8MB+wzBeeOGFdevWsQxr2ZZpmpIopZOxlmWBJgWMrht6T0/P4OBgY2Pj4OCgKIq1tbVLly71+XymacKYcBzHFd22Y9u27U4B4OFGCDEM87kcn6rTofHl+Ode7CqDMJVwzLTDpybFlaCx66u/CMy4XL3o2TArQz/u37//+9///p133rl8+fJARjAej1dWVkK/J5IJuBJs15M0CGPLsoBOYC3XNE3TNJZlT5w40djY2N/fz/N8UVFRTU3NooWLTMsEvlc11TAMSZJAnquaCvogfIsQcgMZ0vYFvBHCaDz8dAoagzriDibLtjDGDGFompyE6eJK0Dht/sT4W0+kcV9fXyQS0XXdtu0f/vCHmZmZ//iP/2hTh2CSVJLJZDI7nK1qqiiKmqYJ4/6oi0AwgRUwQohlWfZCtkgkEz09PR0dHV1dXSMjI7qu19fXl5eX5+XmudcYpjE6OpodzobrHcfx+/yarmmaFgwEp9bRXO6cmonR+FhkGAaUCd3QQfZcTTRO+4bO5M+GdzZNU5IkTdM++OCDZ5999r//+79t6oQyQpZtUUo5lrNsi2EY0zTdkIGLb+84sOZ2mwH9nlSSYP8CDA0PNTY2njhxIhaLFRYWFhUVZWZmhkKh7OxskNuDQ4OhUAjkOUzhiWTCK3vT0XjsQRNc6ek6l+CxlZvrcYdOYPDM6IBzkca2bbMsq2kaLJ1jsdj999+/e/futevWgZKFEFJURZIk27ZZhp2ir93JlSIK0zNCiOM427YVRbEsy+/3A38Dmx44cODIkSOO4yxcuLC8vDw/P9/n8zmOA8tr3dChkYZhcBznBilM+r4umVPJNun1tm1zLGdapqqqLMtCbFM8Efd6Jp+Dpou5SONYLCZJEs/z8Xjc5/PF4/EnnnhC1/XvfPe7Pb09Xq/X6/VGo9FgIGjZ1hTqj7uOAksWQohhGIywO++CVsWyLKUUXF4IIUVV2tvbf//73586dSoSiVRXV8+fPz8jIyMYDLrrcoYwpmWm08MhTGUiH0/dVIqorusMw7htIzMUazxH52PbthmGiUajgUBA07TGxsYnn3zyOw98d17JPDBiwJXglARDykQAjYHAEEoGE2QimZAkCVjcsi0gM/ybSCYopT6vDyF0pv3MsWPH2tvbOY6zLKumpqa+vl4URVfzSic/3JinVKfnFDR2ZTXBxLTMRCLBsqzP67ua5uNLoLGu6wghy7JAfY1Go3//93+/cfOmv/rLvxoeGQ4Gg6B8wbQ6hayGWdClLqhgIO1tx0bj62mMMfg5OI7DCMOUD2xqWdaZM2f27dvnOE5paalpmllZWcuXLw/4A1PQGE0mq6eg8Wh0lGEYn9c3NDzU1tYmCMKiRYtEfnJdcrqYQRoTTNGkH4LwpB+K0eQfhChGvCBwAq9oKstxhGW23Lr1008/VVQllBGCEUAIATqlwxh1MaaUOtRxqAPGFtux3R/CsoplWZfMY/YyQoA2DMMsXLjwn+77J8uy/vM///PunTsfeOCBn/3sZ2//9u1oNAprM8uyQGbAAaUUIoXB7sYQBtydlmXBChtkPsGEYAKWc57noevb29sfeeSRlpYWSZTS9s80P5gh8EEEI/JZt18KjS/lR5MB3AYoZeAHg8GKigpd15uamhBCGGNN1+Ar3dBn6rlp22PbsXgsEomUl5cjhHw+X1FR0blz5x5++OF9+/adP38eGEXTNBh8HMsJvMBzvGmasXgsFo9hjL2yl+d4URBhNBiGoRs62DqSStIjebyyt3+g/913321tbQVv7BzEzBhlUIpshznSoQ7BpLKyMhAIHDp0aOWKlaIgxhNxWZYJJiad3Ig2g+A5nuf4Xbt2VVRU7N27t6ysbOddO7u6u/r7+1taWp544glBENavX19TUwNB47qui6LIMizP8YQQNwTYsi1N03ie5zleEARQAD2SB4RKV3eXqqqmacqynJubCwu2y/1q08WM0ZhjObdfGIbRNM0jeWSPvHjx4vfff394ZDiUEXItBukWx1NguhPSaHSU4zjZI2dkZCTi8b6+PoRQJBLJzMxctmzZ2rVrP/nkk+bm5sOHD0cikbKysrq6OsMwTGzyPM8yLMuwuqEnEolgIMiyLCiMGGNYKcGau6+/7/z58yUlJV6v17btcDiclZk11/xgaAZpjBDCeGyFw3GcaZpwXF1d/fbbbx89enTt2rUMwximcWUc+xA3oqgKy7KiJPl8PoooxlgQBIxwYUFhfn6+pmknT548ePDgK6+8cuDAgcWLF9fU1OTk5EB8mSRKAi841LFt2zANCHpBCBFCHMeJJ+JNTU1NTU3RaPTs2bOjo6OqqoKgutyvNl3MJI0R6C/j/ijLsiC6o7KysrGxsbKyMjcn1zAN27ah76Z15+nysaIqHskDVAGH2MDAQDgcjsfj4L0WRdEjeWpragsKCuLx+B/+8Ie2tjYIXquvr1+0aJFhGtFoNJwVBu8WSClRFBnCJJVkR0dHbm5uVlaWIAiiKObn54dCIa/XO9fyNtBMzsfUAfYFL9Bnox6Tm2666emnn+7v78/NyZ3aKzCDUFXVI3mCgaBhGIZh8DwfDAYxwn6fHyGk6ZphjC3Zs7KyssPZBQUFiqJ0dHQ0NDQ899xzgiBUVVUtW7bM7/dzHDemgRPLsqzB0cHW1tb333//jjvuqKyojCfiIyMjfX193d3doYxQ2loas4cZozFYlQVegKS3VEKWl5cPDg4ODAxQRMFdY5jGJUzJ00JmKBMhlEgmhoeHDV0XBIHjuFg8xnGcJEqgPaFxqxnP8RAfmBHMqKio6OvrO336dEtLy8GDB6urq/Py8sBqBgZLURR1Xd+yZYvf70cI6bq+YsUKyAXRdM31qc8dXOC7TnVup/0B+cyO0drW6jiO3+8fGRkpKCjo7OwsLi6Ox+MQ9NPf3x8Oh0Fffeyxx2RZvu+++zo7O2VZhkeAMOd5HpLeGIYBU6gkSaDdYIw9Hg9CSFVV8FO5BoFUu2Nq3pT7FSHEMIwf/OAHBw8ePHr0aCQSKSgo+Ld/+7fVq1djjFmWBbMJpIPwHA9rP3BIg5FyYGBgaGiora3t2LFjiURix44dS5Ys0TQtGAwmk0kYo/hCoBQXhet2ROOGd9fWZjs2hEkRTHRDh9hT8EOD8IMzrW2tmZmZAwMDCxYssCxLVdWAP3AJ9c4+o/HEg0lh2hZCiOf4ru6uPXv2tLW1wXC2LCszMxNePh6Px+PxSCSSTCZzcnJCodDx48ePHTtWU1OzZMmS7u5uuJXrQHR9zxzHUUrBzKlpGsbYPYaXd+E2Mjc31427TvUiqKqalZXV0NAAZo1gMBiNRpctW+amT7IsC5YQjuMkSdJ1HWwjCCzkGENoSm5u7rlz51599dVEIrF06dLKysrS0lJd13Vdn0hgt8FgnAFLjmma4IWEed1xHIgdhjNg943FYl6vd8GCBX6fXzd00zSbmprOnz9/yy23nD59+vTp0zfffHN2OHtkdCRjPAb5i2PaApPneEg7DofD69evr62tlWVZ13VN0/Lz8wcGBoBOuq7n5OT09fVBhN6yZcu8Xm9PT8+aNWtOnToliiIkzsCruvTmOC4ej0OwGHQisK+u62BgoRcCIeQGCcEs4JIfBn5JSQnGOBAIMAzT3d199uxZn88HfAzCw80B6O7uxuOFDEBzlCRJFEUYr9u3bzcMY9++fZ2dnWvXru3u7oahiS4UKsCI8K/7XrquG4YB/TBmlbPH+JhhGK/XqyiKYRilpaVer9fv88OsUVxc3NHRMTo6aprmmTNn4PV9Pt906XUpNIYe15Hu8Xhqa2rhjBuiVV5WnkgmWJYVBdGhzvz580Gv0Q2dEPLSSy9lZWXNmzfPlVouKKJgnXYj412LPxq3qKRe7PIxSe+vhVbF4jGPx2MYhkfymJYJKx8IJUsNTIvH4zzPgwfTMAzgPJZlJVGKxqIBf6D9bHtzc3MkEvn617/u9/kTyQS60JgMfy8SJ/AI8JDCQ8Fo6v7L87xt2/F4HGOcmZlpmAbY3RiGWbRokc/nk2U5MzPT6/X29fdFsiOXIKunTWPbsUHQUUohcA6OEXAAaymKcubMGYZhPB4Pxhi0VtM0IdPit7/97V1fvQsICdrZmO5j2xhjlmGZC+PFJh4jhDD6bDIGoeJeNs5TGCFkmqYoiKBIJ80kksbiftxHsMw4L47r2/CtG/3pOE4imQj4A83Hm3/3u9/deOONq1atQghBNEtqw9wDGHNgBYO2uF4WaBgdF0ZgGE8kE36/PxgMwqiCMSdJ0lNPPVVVVRXKCA0NDY2OjoK8mS6xxl5zuj+wLEsYd614JI/LYbF4zO/zDwwORKPRV155paOj49577x0cHBwcHNyxY0d2ONsre0tKSk6fPg396NDPclNdPwRCCAiPLlQLLuimC2Wje82YqpXC1hAFxrIsx3KGYURjUV3XQ6HQ2HhiL6h3Y1om+CTcW8FzvbL3WMOxN998MxqNrly5siC/ACGkGzqbPjYPzCagRY6Z9lKGKL4wNhACGTDGMLCIQJLJJKQCNTc3h0Ihn8+nKEpPT095ebmma5fg15o2jVmWtR1b13VQjiiliqag8akinBUeGhpqb29nGKampubTTz995plnotHo/fffzzJsZWXlK6+8cvTY0aqqKjqenQY97vY7x3KpS0zX5ZdOJjvoszmYUooIctmF5/mxaZ7lwllh9ydAP7ihy9Mcy8GjL3pib1/vyy+/nJeXt2PHjkAg4I5pwzTQZOA5Ho9XUHHdoy7vpjYAGqzrOtgSMMYeyYPRmK5w5513Hj58eGhoqKioaNWqVSDYBUG4hOX3tP1OEIsDUxf44KBMk23bSSWJEGprazt//vyyZcsyghnz5s3jef7NN99UFMWhzpIlSwRB2L9/v+M4LMOCzIeoWODj1Jd3h/pFej5FFLJjLNuCShUsw7IsmxpPTxFVFCXgD/i8PjCgGqbhSogx+YkoRdS0TN3QTctUNdW9APS1pJJUNfXFF19ECNXU1CwoXRDOChNM4ok4IQR8HjzHcxcCyAkaFqzBYIVG8Ng7EkLAQQlneJ7nWE72yLCwth0bokokSfrSrV+64YYbgoHg5s2b582bh9AlFrQjqTqq2wUXzX+pYDChjsNgwjEsdRzqOCxhqOOYuuH1yLFo9P1332Mw2bxxUywa5RjW7/dnZWV1dHTYti1JUnl5eXd3d39/v2mZDGGAaUDt5FgumUxSx0EOxRTBAUGYwQT+hQ98C+cZTODsRMEuSRJ8xY6DYRiHOmC1dg3mbs0hSZQcx9E0jSGMruuyR5Y98jPPPDM0MHjL5ptrq2swQoauI0r9Xh+8stueiz7ggEcOhW8ZTHiWc1sO593fQn9Cl1LHIQjDzSVBpI4j8gJ1HJ7lRF4Y65NLoPEl/GbyGxGCEBoYGPjoo48ikUg4HA4EAr29vcePHw+Hw5mZmeCgraurs227v79/LADKtgkmruEzXUDdDAIjfBE3wJiA4FxJlGzH9vv80Vj00R8/GovF7rzzztraWrdhMGHPQaP0FJgxGoOeOTg42Nvbu23btqKiIoTQ4cOHTdOsrq7OysoCSVi2qEwQhIaGBjdwFSHEEMayLIroFaAxYGyaTAHDMAF/QNVUhjCarj333HOKomzcuLGyshJsbbBCBQk31xJwpsZMJoR1dXUdOnQoFovl5eVRSg8dOnTo0KHbbrtt06ZNEF8BcSCLFy9uamrq7+9HEFHr2DAJYYTTBZHNOFy1LtX0iBAihMTisddee+38+fPbt2+vWlZl23YymYzFYrZtz8H0qi+CmaSxpmmJRKKqqooQ0tra2tvbW11d/c1vfnNB6QKEEEx7sXhsw4YNyWTyxIkTtmNzLKeqqmEYYM9Kl2Q1gwBVC02IoAYaC7ywd+/e5ubmr371q3l5eRBNBoZ0URTBfgIWksvdzhlEWtaZ7pRDCNE07fjx46qqLl682LKseDxeVFTE8Twa9+bajg1ZkP/+/X/3+Xy7d+8OZYSisSjLsuDkUFRFGi8i8AUx3TC2Sd8LVkrDI8Ovvvpqa2vr1q1bV69aHYvHCCE+2QumKxgErkF7tqbkKdThdJgxB18ikRAEoba21nUJhMNhQghFKKkkQcSpqgrL6Pr6+l//+td9fX2BQIDjOJ7nYRV0BRxzF8XYugfxRPzIkSP79++//fbbV69aDfZLNK7zI4Sg7itoDH+iOhcoJhhjkL2wWh0eHjYtk+d5iI7WdV3ghXgiXlNTMzAwMDw8rOs6xE+ZpmmYxhTGo5kCMGWqoAZN++DBg2+88cbWrVvXrVunG7rf7zctE/REd/XlqoSqql7uds4g0tIYp8EU9wKniiAI0B2O4wSDwTFnC3Uc6mRkZDjUkWU5JyfnxhtvfPrpp8HJClYCN5FiRpBqTkk1MAm80NPTw7Ecy7ADAwMYYVVT33v/vV/84hcbNmzYtm2bJEmmaWKEoaIUy7KuR8sZBywiLisuslt8kf5Ph1krtFBTU9PT0/Phhx8ihCilHMcZpnEFghpHRkeKi4oHhwYt28qJ5CiqcvLkyR/96EcbNmxYsGABz/EYXVBC/XK35wpg1mi8fPnycDjc0NCAELJt2yN5rkxlj4xghkPHYlcQQidOnPje975XX1+/ZcsWsBdCygXo3pfGN3MNs0Zjj8dzyy239Pb2xhNxkIQsw14BvrEdm2BimmY4K/xp66ePP/54eXn53/7t3xYXFYuiaDs2RCDZtn0lbTKXFbNGY1VVV61ade7cucbGRlEUNV2zbOsK2EAURTFMQ/bIrW2tTzzxRElJyXe+8x2v1wshVxABAutg27avjU1tZo3GPM9nZWVRSj/++GOCCcuyuq5PjA+ZcXi9XsuyPm399KGHHrIs69vf/nYwEITALjSuQn9WQn3uBdJeAmaNxoIg8Dy/YcOG5ubmznOd4B+8As9VVVXTtCeffDIzM/Ov//qvYXaACDLwcrolGmfR0DGzmDUaQ5Xbbdu2dXR0fPTRRwghhmGmTludEei6/tBDD+Xn5993332Lyxd7PJ6kknSDhyDEzrIshjBTRIpdXZh+jMA082jTAUIMwuHwtm3bmpub0Xj0wbTzdC9cOLrLSoywaZqGYTCEgQOCSW9v7z/8wz8UFRVt3749O5wN1btgpeQ6lERR5HkeFvQz+L6ziFkbqvF4nCIqiVJ1dfXw8PDJUyehhMpM3V83dEophIeOjIyIgqgb+tNPPw3VI4qKihzqqKrq9Xrhq5l67hzEbOpc4GVauXKlx+NpbGxE6QtUXAIwxqIgjoyOJBKJ3JzckdGR119/PZlMbt68ubKykmM5N1ASXSu2jnSYNRrLHhlyPgVeqKioaGxs1HRtBtUusIxSSv0+P0X0+eefP3Xq1K5du5YuXcrzPIRzS6JkWqZlW+I0nV1XF2ZZrTBN07KtZcuWnTp16siRIzNbVz6eiEMi4Y9//ONjx45t2LChbFHZWFk8fUw4z8HKuTOOWXs9wzREUZQ9sq7rCxYskCTp448/nsH7m5YJFXf+93//t7u7e8eOHSvqVySSCduxWYaFrA6IG4TEshl89FzDbA7hsQ1fMPbK3o0bN3Z2dvYP9M/UzYE79+3bd/LkybvuumvTxk0IIajTAxekRu1cG3bpdJg1GrMsa5hGLB6DTl+/fn0sFjt27NhM3Z8hzOtvvN7c3HzTTTfV1tQmlWT/QH9WZhbLsolkQtM1CJpXNVU39Jl1a841pKUxTYOZerC7mSMkc/r9/vz8/A8++ICOl8HCGEejUcdxwIWQ7j4YYciahKh0hozVqf7Vs786efLkhg0bNm3ahBBiGCYYDFJECSGyLAuCAIFdsBqewmZ5CX70uYZZ42MoLAHbKhumIcvykiVL+vr6zp49Syk1TAMj7PP5IDJkCrUIUrOhamYsHkMIUUqPHz/e0tJSWVl58803swwL5jNImr1S7zeHMGs0JphARgwYpERBXLlyZTKZ/OSTTziOA70XCAy5DlPcBygHmWSqpra0tLz44os33njjmjVrIDsSyhAAx1+xF5w7mDUaU0TH4m0tEw6KCosKCws//vhjSinIUlVTKaJT+/hi8ZgoiMMjw4ODgxnBjMOHD//kJz+pqqq65eZbZI+sauro6KgkSRhh3dCvQIzOHMSs0dg0TVgN67rOMizMiGvWrGlubu7q6oKYG8i3n7rEpiiKhmmEMkLZ4ewP93/49ttv19XV3f6V2yFen2XZzMxMhjCGaViWdW34g6eLWaMxmC3dDHHIOFqxYgV4lOEkFDNmCJO6uflF4LmxBNR333v34YcfXrRo0b3fvFc3dE3T0PhmEqBqzcGKO1cGs2mvpoiyDCtJkm7oMD3n5OSsWbOmsbFxaHjIoQ5DxryNU2Sg9PX3eSTPG2++8eijj27fvv1rX/sa1EyBrSOgEKaiKJDwqajKFXzFuYLZ1LkURUEIMYSB8DlIedq8eXNfX9/AwEA8HkfjRscpbJyR7Mhvf/fbl156ae3atffccw/LsMPDw17Za5jG4OAgpVQSJSjbgxCCAlt/apjJ+OppwaGOmyKcnZ0NZfoc6lRVVQmC8Nprr0FQ/lgGimMTTFRVBXYfGRmB1TBC6Oixoz//+c+rq6u//e1vw5lgMAiPCAaDGI/VLncXwenW/enisaf9YgRP+vlc//flW3/POXM8y7A333xze3s7pdTdKheUJo/HMzwyzDKsx+MBT/M777zz8MMPV1VVrV69OplMNnzS0NHZIYnSaHQUTVaQ5U8TVyKEarpYt27dM888c+zYsdraWjB7IWGMvUIZoaSSlCSJYHLo8KHXXnutrKzM7/ffc889kUjEsqyBgYHHH3/8xhtvvKh6C/y9NmLwpos5x8eKqnhlb1FR0UsvvYQQgnKmUMDF3VibYNLwScNTTz3l8Xj+/M///JFHHnEc5+mnn373nXd9Pt9N69dHo9HZMjpO1wZ8uW3GaA7SGNLFVq9e3dbWdu7cOcifgGhnlmX7+vt4jj/RcuKRRx4pKir6i7/4C57n77jjjvr6eo/H8/obrx87duzev/zLjGDGVWpbvhyYczSGVWxVVdXChQsPHDiAIIKTMJRSQkgkO9LU3PSjH/0oGAzu2rWrsqKysKBw586dy5cvv+eee77yla/cd999//Oz/1E1dbZcCHOQj+fcfAx13HNycurr6z/88MO7776bUgrFeGCvv71792KM/+7v/q6kuAQhdL7rfEVFBaU0FArFYrF9+/bt2LFjee3yP82pd1LMOT4mmAwND3Esl5ubOzg4ePr0aSilBnbNBx98sK+v74EHHlhQukDTtVg8VpBfIPACbMH3rW99KzMzc8eOHYlkYmL9nj9ZpKUx6KW2bUPOOEg88ObiCTsSEkygiC2chyRdOl79kFIKpUENw4ACoVCyCXRmd0slNF79FmoN1NbWlpWV/fKXvzRNE+o+Pfjgg7Zt/+u//mtBfoGiKlALkyK694W9n3zySVlZWTgcPnr0qGmamqZBKRlnAtLJRnphhS/QAKCW6aRwZwG3oJrjOLquQ3mvJ598srW1lVLKEAZjnEgk0vXzFVgfp5XVUN6ZEAK2CF3XHceRJMlBn9E19frPQinwWOlAjMc4CWzOEx+Bx4s8p/6LEDJNMx6PezyeBQsWvPjii11dXQUFBY8//vj8+fPr6+sLCwvBjZhIJgghiqLs3Lmzrq7uwIEDUAMY9tZO915TuKLphEJudMq9+BBCuqGrqsowjCzLkHdpO/bAwEBXV5eiKFBC1zCMz92T97IiLY2BqC4jUkrBMZdKvFTATpnw5mP8jTAa3+EepRSB/ewm4wPWrfUL/8oeGbbm2LhxIwRkdXV1GYaxbt26BaULKKIEE9hd0XZsURTvv//+Z599duvWrU1NTffee++jjzw6xQun1slNhTvaJn27iYDSvQIvQKEBjDGUEfXK3lAo5PF4GIYReMEwDfCOzCLS0hg2mhsZGfnDH/7Q29sbCASgYDdmSCr/Qa1Yx3GgDrhbt5IQAuUL3dog7g57Ln+4eWNusXKWZTs7OxcsWKAoiizLUFP6rbfe4jjulltu0TTt5KmTqqpKkiQIAiQKj4yMfOtb3yotLe3t7d29e/eGDRuGR4bb2try8vImfS+v1zvpeSh7Ty6EOygnArZLhcIYhmEoiiJJklf2wrBLJBJNTU2SJHm9XrfB06fOzCAtjZPJJMdx/f39HR0dnZ2dXq8XCnkDjd0pGXJ2YbqdlMaJRMLtO5xSxRvKNU+ksaZpzc3Nuq7LsmyaptfrPXToUElJyZEjR959912oDT86OuruhF5aWtra2irLsmEY3d3dv/jFLxKJxBQph+n2a3Wznr7gvMhxXDQapZR6PB6YthctWrR8+fLc3FzbtgcHB/v6+qLRaDwehw0XpkOUGUZaGsN4X7hwYWFhoTsZezweRRsraeMqJsDHgiC48eigfMG/oG6k9hf0PpRCcqnuXsOybH9/PyEkMzNzdHSUZdmf//zn+fn5t912G2wnwrJsLBaDzRiGh4cFQVi6dGlFRUVDQwPDMCBO3IJLE5GuJE8sFkPj48/9i9LP3yzLgrvM6/UahqFpWlZWVkZGBs/xqq3KslxbW1u3vG7/gf3Nzc0lJSX5+fmfS4zLhLQ0ppSqqgo6F9Tqh/MQHTcRlm2latF0fH9b2IMn7VPGtxhI/RckG1RyFgShsLCwpaXF7/fnRHJUTdU0bdHCRXB9JBJxd0HecNMGOAk7rUw3zXW6KRpQd8DdXVDV1LFi6KYBfQXuL9gzamBgYBZpnFbJNE3T4/GIogjDmed5nucNwwBvIKxMbMd2TQ14vDIzVLTmOI7neLfelu3YUO7KtEzbsUHJhO12TMuEmzjUgT1LE4nE8PDwqdOnzp8/b9v2kiVLBgcHT548iVK2o3WoMzA4IPBju5OfO38OIWSYhqqpAi8oqkLSAJT8iR+3xrVlW9BCCM513ELEF37c4k6KqpiWKYkSEJhlWUmSVFU9e/asQx1RFAsLCxctWnR5yTglpl2G1Jmm/QinuRyYHlwOsHSWZbmvr+/wkY84joMa+3v27MnOzt69e/djjz0WiUR2fW1Xb19vRkYGzJ0sw8YTcXd+xV/Mk/i5ZkKc4qeaov3p7kMIOX78+JkzZ/x+P4hxv99fXFw8cX8qNF4tfer7X9SeS8Cs2TIxxpCZAiXtOY47ceLECy+8cLaz42/+5m+W1y5HCFVUVESjUUVRamtrn3322S9/+cuBQAB2s4DtK9IpULOLefPmhcNhdwsp4Gw6WdzBzNql02GW7dUQOG2aJsdxe/fuffbZZ//5/v9XUVFhmAYh5NZbb9V1PZQRCgaD3d3dn3zyyerVq+GHrkJ0xcohf0Houg4aDEIIgkrR+ELrC0qaGcdsxmWKogh2FU3T2tvb33nnnZycnHXr1kmiBJqqV/aCXbO0tLS2tvb3v/99Mpl0qGOYBqj9qTkyX5AnLrft0G2SpmnJZNI0TVh3XCSlryRms+aLeyzLck9PT3d398aNG2EfcIwxxN0NDw9TRD0ez6ZNmxoaGkZHRyHYDzJc5mDqMAw+27ahtAioopIkzWKi86z1EUylhmGAQIPaK4ZhhDJCDnUgjJLneJ/PBzks8+fPt2373LlzCMpHIwq+CveGX5A/Ljcfw0vB7MNxHCEEHC2pfPynIqtB5+I4Doxc2dnZ9fX1p0+fbm1rVVWV5/lYPBZPxA3DsB1b9sjBYLC6uvrw4cOKqvi8PjA9zlbjp4C7Mae7exV4JtAsCWo0u/7jZDKJMYYExoULF27fvh0h9Ktf/erjjz9ubm4+deoUy7IZwQxN0yzb8sreurq6I0eOnDlzBiEE+mq6jbRmEWR8M06asmFnqh/sypN52nsNTLcEFUnjw8EYm6ZpmibsM4EQGh0dHR4ePnGyJRAIRCKRSCQCghrqlCKEOI77xje+sWrVql27dvm8Plg+uVtqu7Od69VO99xJz7v98Eeuj2cK18L62PUnumdkWWZZNjsnAi4pt6yhWx+cYFJXVwcJymiCJZmmxMFfRypmc+0EeWYYY5jDOI7zer2yR5ZECSIO3LxFNz1848aNvb2958+fd6jD8/wVqL14DWA264GAIxJjDP4roKKma5quGabh+piBO1mWdaizePHizMzM9957T9d1nuPnmgFkbmI29Wrk7tPGMLDGgBVU6g6JCCHY3J3neAjCveGGGz788MPh4eHZavlVh1mjMYQVmKZJKQW6AkPDbh5wgbv9N9SDB81r5cqVmqadOHECootmq/1XEWavVsS49psa/QMC2XbG4g5c3Wos9o9hEEJ5eXm1tbWHDh0aGRmZ2bp81ypmcz4GzwzoXMCyQEVCCMdysLswwzCWZUEdPOBmhmFWrFjR0tICCcrX8bmYNo1hc98v/kmH1BhsCOwCnp64QzBLGJ7lbMsSON62LOTQ6mVV8WjsN79+hTpOMp7gWY5jWNu0qO0QhGFT4YnbEk/rQ+3xjY3T9cNlxnTpMgXmXC5MOowF1hBCCPH5fKtWrWptbU0kEh6PB9bQbuCj40xV6+kL4lpaal81OgshxDX9eDyebdu2DQ8Pd3d3C4IAyRygkRmG8ccU4brYyHVNUPqqoTHP8/Y4EELLli0rKSk5evQoGp/aDcMATS1dFO3UMnDit9cGgdFVRGOEkGmahBDwuhNC6urq9u/f39XVhRASBIHjOIyxKIoQg3FpcCl9zRAYXUU0Bh0NtDOEkGEY5eXliqK0t7eDgg2zNVwMnsfp6jIXiegZ131mC1cNjSGyAo13PSEkOzt769atsiyDiIbVF0LIDQWfFiYSeObaPsuYsX3M0z4gTWddwv1hAa3rOpg5NU0TRRGyicAoxvM8sPsUJW6nfu5EbevKhE5ORDpf5yVg2vHV13HV4aqR1ddxybhO42sf/x8cvQR2CNB49gAAAABJRU5ErkJggg=="
|
<image>如图,直线a∥b,∠1=30°,∠2=40°,且AD=AC,则∠3的度数是()
Choices:
(A) 70°
(B) 40°
(C) 45°
(D) 35°
|
40°
| 10,806
| null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAAB1CAYAAACPikkbAAAVRElEQVR4nO2df0xT57/H30eMXTJn+WYu1Ds2nHOuG7uxC39IQhNZaGdx5IpXdtErRrw6wZZFzFjCHzr1Tr9h1zowkw0v26wbbhBxrU5n/YoRI2YoibpIge3rjzJmApElGJrcsrTnc/+AczxtT3+f/hD6StD2nOc8z9Nz3uf58Xk+53MYIiKkSDqICAzDeGwbHBxEVlZWwDTRMkvS3FJIhveFPn/+PJYuXYqBgQG/aaQgJYgkhmu8r169itLSUrS1tUGpVMa0zJQgkhiGYXDr1i288847+Oqrr7BixQqP/bHo7VOCSGIGBgaQn5+PQ4cOYc2aNT4CSHUZM4i7d+/irbfewv79+7Fx40YAsRGANylBJCGDg4MoKChAdXU1DAZDTLoGfzCpaWdyMTIygvz8fJSUlODjjz/mt8diiilGShAJQniBuc+PHj1CXl4etFot6uvrE1KvlCCSBIfDAbVajTfffBNHjx5NWD1SgkgCHA4HCgsL8fzzz6O1tTWhdUkJIkFw3cTExARWr14NmUyG9vZ2pKWlJbReKUEkELfbjZKSEjidTpw6dQpz5sxJdJUwO9EVmMmsX78eo6OjsFqtSSEGICWIhPHee+/h119/xZUrV/D0008nujo8KUEkgB07dqCrqwvd3d2YO3duoqvjQUoQQZDaILRnzx6cOXMGXV1dkMvlkuUrFSlBBIFhCEBkguDExP3/6aefwmQy4fLly8jIyJC2ohKREkRQZnm2EmHogzuGYRg0NjbiwIEDuHTpkofXU7KRmnYGwfP6s+DXA8MQxrFjx7B9+3Z0d3fH3MElWlKCiDEnT57E5s2b0dnZCZVKlejqBCW1/B0B/u4g73vLarVi8+bNOHv27BMhBiAliIjw11MIZyOXL1/G2rVr0dbWhry8vPhUTAJSggiC7dRBWGxibQILQNyv8dq1a1i1ahVMJpOPH2TSQzMeN7EsO/mR9dzDko00AJl7Wd/D/HDz5k2Sy+XU2toaNC1fbhKRaiEw63FT79UX1Fc1gtFqsSRb5DACuFaCY2BgAIWFhTAajSgtLQ1acjw8oMIlJQjvFn/qu+VTA0irAXuB9TlkMhlBePoGBweh1WpRW1uLLVu2xKaucSAlCJ6pC88A6LPgAmnxwSsMLmqX4DWRIYTw7n7w4AGWL1+OzZs3Y/v27fGpboxICUKk1a76vAONHxQDBGiWvDxpfvZKw30fGRmBRqPBunXrsGfPntjWNQ6kBMExNZyyfGpAY2MjGIbBrH/9d367t24YAI8ePcKKFSuQmZn5RHcTQlKC4BB0FUQEIsJt8wEsWfSSxziD++hwOLBs2TL8+eefSE9PR25uLhYuXIhNmzbhm2++wR9//JGIXxE1KUFMwfZbwFT/A40fFPMX/Z9374EYAMxjITAAJiYmUFRUhDfeeAMsy6K+vh4PHz6ExWKBSqWC2WzGa6+9hldeeQWVlZVoa2vD8PBwXB+4iZgET3sTDsuyZNRrCJPXnLc56LWgKR2QxmDk07tcLtLpdKTT6cjtdtPOnTtp586donn39PRQXV0d6XQ6kslklJ2dTQaDgcxmM42NjcXl94VLanHLCwrgEON2u7F27Vo8fPgQ1n+cx1NzZBgcHEReXh4GBweDekxfvXoVnZ2duHDhAi5fvgyVSgWNRoP8/HxoNBrIZLJY/CQf/P5GQqqF8AfL//OY8vJyys3NpfHxcY/tRUVF1N7eHnYZHR0dtHPnTsrNzSUAlJubS7W1tdTR0UEulyvyygdArwXfGj7+KyDb1I9NCSJEDAYDqVSqqabe7bHParWSRqMJeHwwM7XT6SSr1Uo1NTWUk5NDAGj58uW0e/du6urqirb6Hui1QnO8e6rLnBRFShBeiK1r1NTUkFKppOHhYb/HZWVlUX9/v2T1GBsbI7PZTNXV1ZSdnU1paWmk0+morq6Ouru7I86XJRtptQaf7Xrt5FgpJQi/TLYCu3fvpoULF4qKQXjX19XVkcHge6KjQZj/w4cPqbW1lbZu3UpKpZLmzp1LRUVF1NDQQDdv3gw5z16LkR8kc/nzA2vttpQgAtHQ0ECZmZlkt9uDNvmjo6OUkZFBTqczorLCXfkcGhqilpYWKi8vp6ysLEpPT6eSkhI6fPgw9ff3k91uFz3OqNeQ0dLrs918UJ8SRCCam5tJoVD4dAOBLltZWRk1NzdLVodAIvHeZ7fbqbm5mcrKyuhvf/sbAaCVK1d6DE5ZslEB8xb1iXSLB6sKUl2GP1pbW0kul4fVFBMRdXV1UU5OTmwqFSIdHR0kl8upubmZCgoKqKmp6fF17zV72FR4bGYCQEZLb0oQ3pjNZpLL5REP3LKzs+natWsxd34Ry7+rq4vkcjmdPXuWiIh0Oh1ZrVY+vfmgnvRGs89xei0I2m1ENMOmncEuktVqJblcTpcuXYq4jKamJtqyZUvEx0dKd3c3yeVyD3uIUqnkuzxR76+ploETA9EME0Qgrl69SnK5nL+jImV8fJzmz58fV9P0zZs3KT093cdtTyaT0f9NOKnXYuTN8NwfAxCDWfwAk5PJjBBEsJbhxo0bPndXNPlv3bqVjEaRvjoGcGI4evSoRz2Gh4dJoVCQtxGNw98ZmRGCCERvby/J5XIymUyS5qlUKiXLzx/9/f2kUChEZzbd3d2Um5sbNA/eRD+lkBktCO6ENjU1SZKf8A5Vq9V04cIFSfIVg6t7Q0ODT9lEkzOl0tLSsPOdEf4QJLKg+/vvv0On06GmpgYVFRWSlCNcQayqqsKRI0eizlOs7oODg9DpdPjwww95H07v1Uu73Y6XXnopaF4++6OW6hPI8PAwLV68mD766KOYleF0OkmhUNDQ0FDAdMI7O5Spqt1up6ysLNq9e3fAdBUVFRG1fDOihRDy6NEj5Ofno6ioCHv37o1ZOTKZDOXl5Th27JjfNOTllxDsOY2RkRHodDps2LBB1KGXBC3A4OAgFi5cGHa9Z1QLMT4+TiqVKm52Au5udrlcYbcE3gwPD5NSqaTq6uqQ8hHaIMJhWgpC7ESNj4+TWq2m0tLSuD5Cp9PpIp7OcoyNjVF2draHGIgCC+Kpp56KaKFt2glC7CQ5nU7S6XS0evXqmHki+ePMmTOk0+kiPn5sbIxUKhVt2rQp5GMe2yDCZ1qNIUjEV5DzgwSA77//Pu6RYnU6Hfr7+3H37t2wjx0fH4dOp4NKpcLXX38d8nF2uz2y8QOmmRu+2KBs7dq1GB0dxYkTJ+LmxCokLS0N27ZtQ1NTE7+NQvBrdjgcWLlyJTIzM/Hll1/67A+Uh91ujziO1bQShDebNm3C/fv3ce7cuYTGgywvL4fJZILT6QQQfDbBxb9WKBRobW0VbdUC5SFmgwiVaSuIHTt2oKenBxcvXvQQQyh3p9RkZGSgoKAAbW1tQdNOTEyguLgYs2fPRktLS9AuTuz33L9/P9VlCNm1axfOnTuHixcv+gQHTVRMhvfff9+j2xCDC4bOMAwsFktIXZzY74nYBgFMPztEXV0dZWVlifoUJjpii1KppJ6eHtF9LpeL1qxZQ2q1OmK/TGE5kXqATytBNDY2kkKhoDt37iS6KqI0NjbS5s2bRfeVlpaSWq32eQgoEmQyWcSimjaCMJlMJJfLfZ1ivVqFRLYSY2NjpFAofJxnysvLSaVSeYgh0npGY4Mg8rJDuGmC/3uSOHnyJLZv347Ozk6fSLHefWwi4zrJ5XKsWrUKLS0t/LbKykrcunULly5d8hj8RlrPaGwQAHzHEC42uv4r3nB+kFI/7hYrenp6eOeZ6upqUiqV9PDhQ8nyj9QPguOJDn7e0dHBvySdCw5KcXq/Zah41ycnJwfp6elYu3YtfvnlF3R2dmL+/PmSlcfZICI9DwEFIew60hiZz3dhGu67v2ND3SfExTr5HyVM56YJ/Pzzz/jPsv/Ad999xwcHddOERz25z4HKiDViXdaCBQvw448/4t69e5K/JsFut0OlUkV8UwS0Q3An0t//3Mn2Fotwezj7hLhpArNnPSUqptu/9KNoZTE+P/y/WFFYwG8X5i/8nExjov379+PGjRsxe61StGOIsAxTYnebVINQmorrRCKWN65MIsJvv/0GrVaLQ4cOoaSkxCeNsH7xbBnE6u3NoUOH0NjYiMuXL2Pjxo2iaxTREs06BoDQBpXcNu99/gaggdL52+c9zRLL226304sL/4V3LA2Ud6Ay4w3LstTQ0ODxrOidO3d45xkpicYGQSSwQ/i76IH2hXoBohWEi3XS0NAQZWVl0d/r/jtgOi6fZBKEyWSi+fPn+9hIdDodnTlzxmMby7IJs0EQeQki0IkL1Br4E1G4+8S+u1gn7z5WW1vr93jvbf4+xwvuoppMJpo3b57og8Nms9nHeSYaw1moz2IEImRLZaLuMs5jqKqqKiHlRwJ3Udvb2wM+Re5yueiFF17wG8shXKK1QRCF6DEVy6kbBRiMORwOFBQUQKVS4bPPPotJ+bGAYRj+1UqB3qaTlpaGioqKoKugoSK0QURMILUEavZjjdPpJLVaTSUlJXEvO1rCsZ5y/X60K5xERJWVlVE/hRbUDsH9xRPOSSQ9PR2tra1xLTtazp8/72M9DURGRgbUajXa29ujLjvqdQwg+fwhXC4XlZSUkEajkeSuiSdcwI5wQwp0dHSIDgbDHWBG4wfBkXSCKCsro7y8PEn8AuIJJ4ZIn8FQKpXU2+sbDCwcorVBECWZICoqKgTBQcVJtNeTGNx7tk6ePBlxHvX19VRRURHx8VLYIIiSRBAsy/LBQUdHRxNdnbDgxBBtfImxsTE+8kwkopfCBkGUJA/q7N27FydOnEBnZyeeffbZRFcnZAYGBvh1lY0bN0aVl1wuR3FxMVpbWyNaqYx6DYMjaklFSX19PR8cNBSSpcvwDtgRLSzL0vXr1yk7Ozui4+vq6nhLrjDPcEmoIJqammjBggWSxoiOB3a7nRQKBR06dEjyvHNyciLy/oo0HoQ3CRNES0sLyeXyqEfW8YZ7xH/fvn0xyb+5uTmo+VnszhfGpIyGhAjixIkTJJfL/T6jkKwMDw+HFL0lHLwv7sTEBCkUiqB+lt7HSWGDIEqAIJ40p1gObsW1pqYm5mXV1NRQXV2dz/ZAYwIpbBBEcRCE8EdEaslLNI8ePfKJ3hJL+vr6/DrPiIlCKhsEURxbiOvXr0dlyUsU3PJ7vMMVazSakG8cqWwQRHGyQ9hsNmi1WjQ2NmLNmjXe0954VCEiHA4H8vPzsXTpUjQ3N8e17MrKShw+fDiktJLZIBCHp78HBgag0WjwySefYP369T77k+kZCiEOhwOFhYV49dVXYTKZ4l5+cXExbt++jcHBwYDpiAh2ux2LFi2SpNyYCoILsCllcNBYQ0SYmJjAypUroVAocPz48bi0Yt5lpKWlYcOGDQGdZ2jqYZz79+9L1kJEPYbwN/KNxRQtGkK12nEByoqKinzCCcaboaEhyszM9HwrTgxtEEQSjCEYhvFR9+joKPLz8/Huu++KBticEmK0RYcMhfhYm9vtRnFxMQCgvb0daWlpce/ShOclMzMTubm5QZ1npBxDSDbL4JTLjcqjWcqNJf7ueM4xZ/ny5X7n8/FuLViWJavVSmq1OmA6qWwQRBJPO7ngoOvXr5cyW8kIJAYueksyOeZw9V28eLFfE7+UNggiCaedwshpgeI7JxJ/zf+WLVvw4MGDhEer84arb2VlJb744gvRNJL4UQqQRBAulwslJSWYPXs2vv3227gHB40EmuqrN23ahFu3bsFqtSaFGEhkbLVlyxacPHkSDofDZ5+k4wdIJIh169ZhbGws5MhpyQDDMHzows7OTp9odYlCrBWTy+XQaDQ4fvy4z75oYlKKEbUguOCgP/30E2QyWdIamrzZsWMHzp8/Lxq6MBmpqqoStUlEE5NSjKgEIQwO+swzz0hVp5iza9cuWK1WXLp0SfKAHbFi2bJlSEtLw7Vr1zy2RxWTUoxIR6O1tbWkVCppZGREshFuPNi9e7ffOJbJzpEjR6isrMxjm1R+EBwRCWLfvn2UlZUV9PVByYbRaKQXX3wxKYOahsL4+LiP84xMJqOJiQnJyghbEFzgiyftDmtoaHgi/Te9MRgM/DtBORuEPzHH3MnWZDLRc8895/ekJuNdxrIsNTc3k0KhoL6+vkRXJypYlqX+/n5avHgxEUnrB8ERsiCCxTpIVrgIt+HWOxnFzbF8+XLq6uqSJB6ENwxR8FUmm82GnJwclJWVITMzkzeeJNsU03uhra+vD6dPn0Z5eTkUCoVHGrFFOW8oxEWxWCJWh7/++gtz5szB1atX4XQ6ceXKlaDHhErQwKUsCNnZ2dDr9Zg3bx6A5BMCC8IsMABLAAMwBPQN9OP06dPYsGEDLwbgsSUwFFEkw+8Uq8OcOXMAwG+4AY9jCAAT5LMQYXNR+bbnG+QBTL49PnlbT1G493n78+xO5u4gXIL+EjeXQvyl8N74jCH0WtDBUzZiiajX8ikBIHOvd7GhZR5fPOv0pE2JpcJ8UE8AiGEYgnYbsWQjvd4Y8vECSyULQh8GOgqg+7fXwADIXvwyADFzZlI8IwwAMLzNgGEYMEza1P+Tfy/8198TXbW4QFNdHttvAcMwaLy3CCwR3CwLatBgFpMNLHoZ3h2j345SqI5ei5E0hv/hvxs0II3BmPRNrF471YpNVbP31IEnot5SwZKNNJi8Vp7biYx6zWS3T6F1lRA2tVxzw/35dhXJB0s20rxdxX82Gn8glmx08KA5sRWLI5PXrYBsIiMK84EKv9dRbKtHC6HXgsy2SYdOs7HKRxTJeMf1WoykN5qJZVn6wbiNjGZboqsUV7jWQW80T34PcomCXUHwKWxmgnYbv8PtUZCbT5ZskjAfrPRq1Sa3C+sZTbjgpMdmJmAW3y1EyyxuLmqxXoB+xdv82GJW32/oALBo8SsA+GRgwEowFAoDAhCgzAvWJph7WRARDFoNlmRPDZcE9gVuoDl9mTw/RBRgtAh+X6Ak/HThgvVzaHWrwM02tNmrARSgcNXrPodQPB+/YzyqOcWUQPos+BzbUJw9ebEX6Qrx+pR0p7cAHkOvL4EGwL07/5z8zcKf3WeB0dL7+DtvlApw/XotRh9jFACCptKrMUk+24P5oJ7vO4UYDIbp20WI8INx22Mj4hS9FqPHEIDDuyv1Rnxxy83673eT5Ty7WdJrQae8RtDbNBAVyXTn9inPG3tyChr+TTy5uMXbtVmEYnSiBC/62E4dxBvFNX7XIsy9LN+NzBi4ayhYoxBbrgh27f4fxXXFmJE2/+kAAAAASUVORK5CYII="
|
<image>如图,△ABC,AB=8,AC=5,BC=7,AD是△ABC外角平分线,CD⊥AD于D,E是BC的中点,则DE=()
Choices:
(A) 7
(B) 6.5
(C) 6
(D) 5.5
|
6.5
| 10,807
| null |
6.5
|
"iVBORw0KGgoAAAANSUhEUgAAAM4AAABkCAYAAADOmA9MAAAVo0lEQVR4nO2dT2zbVp7Hv1TqCYpiIjs9LNptIzvAdmpJrmSgM3tKJN8CFFgrG9EuAtSx77trpUWBHqYilfZaO5ktdm+x3KLbSHZsp4fFXGrJxWCB5mA7tuQWKCrZOWz3MLYcFEXaqcXfHihSpET9s0iRsvkBDEvkI/WTHn/v93vv997vMQIRMQAAAUQMGIYBARCPiccBB2zMplw/AJBZ4BCL3cJiFgAGwSaTSNAHGGM+xwJr15fROMoK4ihVigAQKYvUvppqn7LRGwcYhkDIgPMyGOJ3MJbYBhFBoCSu7bBwjG/D4zZbztOBrBUL4wwcDgcY5kzpPwOH1w3vWBIZEETLUwFTfcjGOAg74IaGcIvex3Y2CdbjBQAw8ILlYgjDC7fHrpROICsOmyDcCxPgiWKbBJBAKCajGNwZx9BQDBlbS0yFiJCJjeODzO/AJ3h4K+qDgRtubgysXU+dgUoItE1RD8jNb5MSIROlQVQfJyqW/mw6gVQ/YO81eYVdN0ZS7sBkF7CYdYMNVzjJHhasB9jJZitUzgGQ3QntFIRvsZMFXvV6GhUs4bD7oAYiP/mZxUXseMIIl3xkUgwQUC3rb3sFHYPJbiMDwFFDGQilOmNQVhi7fgzDAQCEDBYXduBmWdl3loY9CTv4JgO4PcqWTmOgwMZQyOOBF1qWX2RxYUGsM3UswcYgRIujdNMqWjRmYQGLGET42qB8jOy4TseQLL8DY0gmw8DCm/CO3SuNdAK0kwQ/zoLYsHhBSWnIbtyMhYhISIYJnihtk6DqABW/uUdhgDxsou3OlCAIjQvZNGQ7GaWwW/TMGIahwXCUkhnlb2sPCnQCRqBt4r1DWGS3keW8AARks98gu8iD5xfB8NJxwOfzYWtrCz09PXA4HOjp6dFTgWX38LRR67s/ffoUL774Ih4/flw6UnsWx2n+/cxA2ZVU8Du42TfBcTzGFF2b77//Hn6/H++88w6+/PJL/OUv/4PXXvPi0qVLuHTpEt54442OCX6SkB565cN/eHgIr9eL5557Dh9//CdcvXqt4iIAqi6NPTWqkzBE1NKgZSQSAQDMzs6CYRik02mkUimsra1hbW0NgUAAwWAQIyMjuHz58rFawdPaeiq/N8dx2N3dxdTUFEKhEPL5PPr6+lR9f3scwDyY8iRPNbUe3kKhgP6LA9hc38BA/0BVzUmK9ODBAzx69EilSIFAwJhvccIoFAoYGBjAxsYGBgYGEIlEsPt4DytLy+qCtuaYBkMCUas/vtQazs/PoZ57UCgUkE6nsba2hnQ6jd3dXYyMjCAYDCIQCMDv97cl/EklGo1ib28P8/PzAES3ze/3Ix6PIxgMal4jN3S2MnWEmhZHSaX1kVrEVCqF4eHhhuWlY4eHh0in07Iy7e7uqqyRUpEkD/K0uWyV1kbqu6TTaUxOTmJjYwN9fX2KK+y+jRm03MeRiMfjiMfjSKfTx/7wfD6PtbU1uY90eHiIq1evIhgM4vLly6UHR6SVfk839ZEqZS1b8/mqslL/8vbt2x2SzqYWx1YcAOjv769yH9p5aCVFkqwSANm1q1Skk0ihUMDFixexvr6u+V0LhQKGh4cRj8cRCAS6pnE4kbQTBFpaWiK/39/OLeqSy+VoZmaGRkdHyel0ksvlosnJSVpeXqaDgwPDPtcsotEoTUxM1C2TSqXI5XKdyO/fTbRlcQAgGAxicnISk5OTOqlybTY3N7G6uoqvvvoK6XQaAwMD8kBDIBCo8P3VkMXdt+q+TW1CoRD6+/ttl81M2tU8qQVsFj2n3mxsbNDMzAwFg0ECQH6/n6anp2l5eflY8pg5LagZayNxcHBATqeTUqmUsULZ1KRtxSEiCgQCNDMzo8et2iKVSlE0GqVAIEAAKBAIEMdxlE6nzRatLpIi5HK5pq9ZWlqyXTYTadtVA8RO/fDwsBzd7iRUxwVLp9NYXV3FF198URWMPe6sBiPgOA57e3uIx+MtXRcKheDz+RCLxYwRzKYmuigOANy4cQP9/f26VmI9pWj1+spg7N7enhw/CgaDeO2118prkDrYH9Lq2zT7+dK16XRajoF1UvbTjG6Kk8/nMTIyglQq1RXDxlaZ1cBxHJ48eXLsjv7y8jJu3bqFjY0NfQWzqYtuigOID0E+n8cnn3yi1y07RjPB2FZb80blJRd3d3cXvb29x5a90mWzrY7x6Ko4rQypWp1KRQLqB2OP87Dq5d5quWw2xqKr4gCi1dna2sLy8rLlWr5G8tQ7n8/nsbKyIitTX18fRkZGMDo6WhVDauZ7a1mbdn6vmZkZfPrpp7LLZrXf/qShu+IA2lNxThqbm5uyNWo1GAtUWxs9HnTp8+1Rtg6g17i2Mnh49+5dCgQCet26bZoJbEplWgmCKstKwVgphuT3+ykSiWgGY3O5HDmdTt1jMNJ9NzY2dL2vTTWGWBwA8Pv94DgOV69eNeL2lqfeyti7d+/qPnQvMTs7iwcPHrQ1a92mMW0rDlW4GNJ7af3I7u5uuzJ2HOk7VH63dqhcGXvhwgVcv34dV65c0T0YGwwGMTo6ips3b+p2T5sKjDRngUCA5ubmVMdOZJqoFr/S5uYmjYyM0NmzZ+mFF16gc+fOUSgUotnZ2ZbcrFq/ZS6XI5fLRfl8vjXBbJrGMFcNgGx11tfXcf78+RM70tPU99JY0pzP5zE1NYV8Po9QKCRb6maDsfU+9/bt21hZWbFdNqMwWjMnJiYoGo0a/TGmUqvlT7Bi4kDAQWBKr91hSsgJBIskCAKlUikKBALkcrloaWmJcrkczc3N0VtvvUUul4ucTidNTk5SPB5vaSKoVSbfnkQMVxyjRpCsizqTZoJFKUuquFVH+X21sqVSKfL5fBQIBFRLBiRFmpiYIJfLJS/oa6RIGxsbLc+6tmkOwxWHiGh6epqmp6c78VHmIlS+rd5zSEiGCRgkLlM7VW08HieXy1WlQBJaK2OnpqY0V8ZyHGep0MBJQVfFqeWyHGe9yUlAyETJDbdKSbZ4NwHXKNHEiMLc3JxsXRpZlo8++khWJL/fTzdv3pQVyefz2S6bznTE4hC1tsLxpPAo5iZ4RTeNiGgreY0GARrkMk3f4+DggKLRKJ07d66hAklUBmNfeeUVOnv2LH322WfH/CY2lXRMcSSrc5Kj2kqLW6RNinpAg54wDaI8MMAlM1WWuZkh+kKhQNFolHp7e4njuJb6jNLgw/PPP99VK2OtTMcUh0h0PSR/+6TEc8rfo6jOX6DhpknltF83x8HBAU1MTJDT6WxZgXw+Hy0tLclLzH0+X0NFsn49mbOtSUcVh4jI5XKdiiQTW7FXa46e6UEul6OJiQnq7e2leDxORI0fcmmUTalsBwcHtLS0RNPT0+Tz+cjpdFIoFKLbt2/r6h0YrYCN7i5/vk5idFxxjM7FZgVq7eBdSbHFWtR6+PL5vBwDkhSo3vXRaJRCoVDNMvv7+7S0tESRSMRQRdKTcrxM46/UeJV/ulZ/dW06rjhE2lNxThLKilMrT3tuWj2kfsyFCxfqWvRCoSAHWpuhMoZ03GCs0STY6q3st3h33carHQUyRXFSqRT19/eb8dEGYZ3tA6U8d7ViQFIZp9NJ+/v7Ld//uMFYI5EsfDgp1kMxyROfFEhIhuVjatqvL1MUh+g0TAepti6CIHSssy3FgAKBAG1ubladn56eruuyNYsUjA2FQqo0xSsrKx2bLSIOxIQpQQIVaZt4T1gVJzPiFzdNcXK5HPX29nb9VBytShGVo9qXbvS+5c9uQgnn5uZk90ppEfb39w0ZqJFiSMpgrLSgT1nX+jUgxVJQWaNfo1W8WwcHlExMTBDHcWaKoAs166JOJXVymFcKolYqkDKBu17yVN5Ha2Vsq2mK635exUCMkInqskt6I0xVHGndiJZvbP34Qfcg/ZSiAv2RXC6XHAOanv7Xjs4jXF1d1UxTfFzLVxkvO6J7xPFbOkqsjamKQ3Q6p+KYjRQDcjqd9N5779HLL79sWmytlWAsEVVb8QVWM15mdMNr6EK2ZqiVAhY4fdsYGoZiEZ1yPV0+nwfP81i+v4Ses7/Bn//83/jtb51gCGi4v6WOSMvUf/zxRzx8+BAPHz7E119/jR9++AG//8c/4A+v/x5erxfXr19XfSdiMuC9Q1hkt5HlvJ0TGAalh2oFIgLP89ja2sLS0pLua/1tqvcIJQBQ/Mabm5u4dOkSAOCll16qe60eKOtXqm8tisUifvrpJzx9+hSHh4dYXV1VpRxTPiNuvsPKY6g906CWCT0tU3HMpJ7zsr+/T+fOnaPV1VWxrIX6mNIqWXEg47DqnDZFMjK+pmpO6Ihw9Ev5ryjor6i1LAnP8+A4Tv8PtJHJLrwP1usG42DAMAw8YzwWshlwYQ7/e74P8Xgck5OTKBSemGLxScPyEMRnJhgMIhQKIRaTnhFBPqd9MwcM3Y27SpUEgX79WaCiCQ2O3+9veiqITfMItE3ve0vLGha2SA7IZqLikgd5qkqR/ik0atkcEQcHB409E+F4ySVbxVKK0+q2iDaNEWibOG/tPAdbvLs0LUVUJuW6KWs4a2p3S7V5cAMBjZS/ri0rSm7b30gMyR5VuHCkcO2OVGZM5fKpDHCdc8FgEC6XS9yZTFnub4pyNa6XZBVIIfdRHRlPCTuxccQyg+ASHLyV+akAuD1j8LgBya3p6+vD3NwcpqamNEqbgfoRLbtssap0W5UYKn+1miosTum1UnOPflW8/qV87khhpZSvhV8F+lV5TZ1zRNIE0H+gv/7fgVyu+ItAR8UG15dkleWV3v+ifm+NVrQzCJSlqEd0xVp1X0ZHreOyVcrclMtmMPV7TwyDM2eAotRSC1RuAAQCKVp3AkBUOs4AUp+NOQOgWLIM9c6JSizuP3PpEv794z/BUSrn+A2DM47G10tllS2No0f93tzB985CyGAnC7g9HvXw7wILhjkDhmFK/8NIqv0CzM3N4c6dO9jc3DRBcjWVAwB9feWBjMPDQ1Nkqqk48sP5DAOmKLpAggA4lFecYfDM2fLfGelcvYezzjnpB+K5P+I/7/wHCoVCS9fb1KM8RMqwCRTpc4QBgP0vbFMSY6h+ODmOw9TUVM07komtkOSy8TxvjgCS6ZHdHkHh3ijP/Vx2lySOKo4JCndKdqGK1a5arXPlGwkU+Zd3KfJv083fu3JQo9H7E0I910uaAKk5JaVufrfysUAgUNNlMzvWY6bLplacn2s/XEda/YNi+RpV/0HR36hUwnrnlIp48NcD+jtnP333bb6pex9VyNHo/WlAEAR5yNnDJmTlEQShbkZRJVbfc0c1ytZBmp45UNSyDAYirY+3J4C2SnVWHSGboGuewXL+agzSoCdMfFJjwEBDj6RlAVbFjEyxTSmO8Ks5Ls5pyMWmB6q0VESkUp526k1xrZkrdhutnDXDZaurOLL71mFro+Qk5mLrRuqtnapFJ+urWZdNr+Xrps+OboaBgQHMzc2d6M14uwGrb5MYiUQAiHsDGU7bqtcBauVisy1Q57FykpVOumxdoThEJz8XW7dg9T13pNRjRo+ydYWrBkC1GS/ZK0RNheM4rK2tnW6XzVC11BkruwmnDSvvuSNlKzXSZesaiwOIa+SHh4eRz+fR19dntjinms3NTQSDQVVdkIWWvEseysbGhuaz0q6sXaU4AHDjxg309/eL08ptTIXjODx69AgrKytmi6KJoS6bYbbMAARBoFwuRxcuXLBs5/S0Ie25YxZmBUa7zuIAYku3u7uL+fl5zfNkIZfhpKPlslkJyWVbX1/H+fPndbtvVyqOlIttfX0dFy9eNFucUw/Hcdja2sLy8rLquFUasEgkAoZhMDs7q99NdbdhHaLWBkl2ULTzSC6RXvmg9cYIl61rFYfIzsVmJaQ9d8zYfaKZxlLv5Qdd6apJxONxzM/PI5VKmS2KDUSXaG9vr8plswrSKNvs7Gz7LqQu6mciPp9PdhFsN81czE6i0aj+9ZSv6xXHzsVmLcxakamFVmYfveTraldNIhgMYnJyEpOTk2aLcjpRboEAIBJ5G4CA27O3y8dLZSqKmkIkEgER4c6dO8cXqC216whFDRNcJ7ujAtt16yCKn1rpElXWgBXqpDWXTTtxe1dYHKoZDyhvQ/Hmm2/iyZMnuHLlCoD620fYGEW5Pr777jt8/vnnePfdd/Hss8+qSon77wggYkyL80jybW0+wt+/LG5tkhxjML6gXT6cLGKBLedGe6YTQraHAIZxVCsPAVAcf/vtt/Hhhx9id3fXLEFPMQ4o87YBQE9PD4aGhvD48S7Onn1Ws4yZ9PT04PXXX8eRUJSPjSUJYB0Yd9wDJcYAALSTRGyMB9wVN9DJ+nUOgahICeJKm6XamE/z7pexe9Y0Q72cA1IeOjEJPdE9XkyfleGjdE9Qy23gBiL6QAp3i1Davs4zjhoW1cYEmne3DN6zpgnEtL+V8oqWkMksYDEbBssyoCyHD7IeeAjwcDGMM2q5La84yi/JQEA2FsN9B+BxV9pOc1Oy2tSmW+pl+/4idrCIccYBh/cWyOOu2ShYXnGUUDaG+24WYdJOIW2FCYU2wL0xRm7ZGQcDh8MBN8shI9ea2MJ3Wp0kBVYpMgGAA4QMFhd24Oa3QUTY4t141eNWCKnun1lAcdQC1foxBSQxtuDB+yzwTdYNz6AFRLfR5M0kIcEOAuw9kEAQsgl4Fm9haCwpP6hA5+M5yh0bygdL/7P3sZh1gw2LnozH88/wvkoKIa3mqlV0szR/TALu39oBx7Ngsllk4Ybb2x3m/7Qh1koW2Z1vEGZZAADjHkPppfnRz0pKj1FmMYkdTxhhjyigI/wBYt4zoAUW7ILGaKCBAxi6scW7CXCU8h6DgGuUODWp07sPIRMlN8KUIIGKtE2JmLvGzgjmjrBJCPSIoh6QWzVSm6F7/GDNZ806cRxpSgYVwTBn5MPCDocldwZEYktQXGDxDD9YNaxuYw4kx9fKwc/M4iJ2sCOPRHn4BLaJ1dhK0XyHBwAcjE98kR0Cw4svGZSMEcthrJStXrVhWScF1KZkBjV8yczC+xhPesCxjFxucXG7vOuVjfnIdSHWm1DqZIeTRRARhEwU4McxHsuaJ2MDSJzsXPoryS29T44D0PAwO2AJG1PD6wJAwO+I21ZskiS5a0zYdtcsiJCJ0qsVdZNgJfeaiKho7HbQx6EZeSrKWMNVq2FASBo+BMDAi1iGEFPaTCtMtbVRkVlcxLfhKFi5brLI7gDweOAGAXBYr85qylN2PyvLWMBVa4wos9qlIwBgrDP3yQZyLORaOCxOskUGiTEWt7JAmNPeLt4SVA7Qyu8dNYuIs6MrWm6CAEapU/Z5+3wT5+X4iNyzBuAOg+N58KwHNbGI/M2eB7o0PZSNjdl0hatmY2M1bMWxsTkG/w+uCQ/8jjJ+pgAAAABJRU5ErkJggg=="
|
<image>如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GEF=120°,则\frac{PG}{PC}=()
Choices:
(A) √{2}
(B) √{3}
(C) \frac{√{2}}{2}
(D) \frac{√{3}}{3}
|
√{3}
| 10,808
| null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAG8AAAB0CAYAAACL1Gw4AAAZ6klEQVR4nO2dfXBU5b3Hv2c3lpaC68umu9INiWSBhU1Lukp5MSYgERmBGRnQWBtoGHobazol1FhopUx75UJQ6rTTWLniTLCoRA3pC1jjNFw2CDZubPWWxQTzQshGCWGuBDfTRNhzvvePzTk5+76b7CYb4DOTgX2ec57znPN7fr/n97yD4wBJkihJEkny7GuFBOD9K3qFZ8Vj3PHMCYqU/O4h/YKuOjRIckgRgiBA6Hod3xMEpHf8AKIoQpIk8D+1+IU2Fx+npUEDASSV+wQBgDB2+R4Vxrr0REKSPJR4gjsA4ul6v0jy3XJw57tXFM28lkh6zRMELVyv/zd+jp04/sRCr3ZJgxomAMaMHZhq0kIQrnY1C0QgVbYmCSHeRblwFz6u6kRlQVrQayQQAoSr3kr6k/ya53KhWQBmTr0NwcqZBEKjCE5Swq4Fkl54EATIsghqGiWqhKoBAWgUHZRGIYNjR9ILjyYTLABOd54DKfpGul7D6+9xSKgEKKkFlvSvNyKS/u0ELMR3X1uHfQ9PxdPvDYWLDTsg/FLCgvne36TobRpoVNopBZrPeFbxkjS2mp30DouM2LADNyzcOvTxdx0Df3p30GtJjtj7jEcaiSbphSdJEjQafwMhYchoDP1fdl6CoRZGPAQTPF+jS9KbTY1GE1jXQaMyWd7/EwAkEaS390Vt0vyFFYvgQpnGsRYcMA6EJ0kSBEELD3wFKH88CYRG49U3QRBAQQONRuOjgSPRslBCGuv6DhgHZjOciTty5AgaGxsxZ84cdHZ24tNPP0V9fb0S39bWhq6uLp970tLSMG3aNABASkoK7rrrLqSlpcFsNuPOO+/EpEmT4pK30SDpheePy+XCkf+x469vHsLBgwcHNVOAyWTCvHnzsHbtWuh0OgBARkYG0tPTfeqns2fPoqOjAwDQ19cHh8OB9vZ2uFwuHD9+HCaTCYsXL0Z+fj7y8/NhMBiC5mOsBSdnIqm5QolNTU0sK/sJzWYzjUYjV65cydtvv535+Ut59OhR3n///Zw0aRINBgN1Oh03bNjAo0ePkhSjfo7cse10OllRUcE1a9ZQr9fTYrFw69atbGlp8bleFKNPO1GMuvDC9f7LcaIosqenh3v27KHNZqPJZOLjjz/OpqYm1tTU0Gg0sqKiIuBeSfIK+ic/+QnT09M5ZcoUbty4kSdPnhx2fp1OJ0tLS2k0GpmTk8MXXniBvb29w04vGJFGROR4/+tGVXjRlNbu7m6WlpZy0qRJLCws5KFDh0iSAwMDLC4upsVi4QcffBDV89555x0WFxfz1ltv5YwZM/jUU0+xvb094CNEO5x08OBBFhQUUKfTcfPmzezp6YnqvliIZWgracymy+VicXExdTody8rK2N3drcQ1NTUxOzubRUVF/Pzzz4eVfk1NDR955BFOmDCB8+bN4/PPPz/sj+9yuVhSUkKdTsdNmzb55HU0Sbjw/LXN/7fb7eaWLVuo1+u5bdu2gA9aWVlJo9HIl19+OS75cbvd3L9/P5cvX04AXL58Offv38/+/v6Y0+ru7vbJ+8DAgE+8WosSUUeOuvDUYXL9VVxcHCA0t9vNwsJCZmdns7W1NWKaw6Gnp4fPP/88bTYbJ0yYwEceeYQ1NTUxp3Pu3DkWFhYyPT2dtbW1w8qLLOjc3NyhOTqDf8eOHQt6z5iYzc7OTubn5/Nb3/oWGxoaAuIdDgfNZjM3btwYUJoTRXt7O5966inOnDmTer2excXFIT+aP6IoUhRF2u12WiwWrlixIqAwqp2xYKi1NDc3l/X13ikf9fX1BMD29vaAe0ZdeA6Hg0ajkdu3bw8a/9vf/pZGo5FvvvmmEpZItzyYg+B0Orlx40ZOmTKFGRkZ3Lx5M5uamkI6E7LwSNLj8XDr1q2cOnUqnU7nsPKkbsG1tbURANva2gKvG1bqw2Tfvn3U6/VBTUtPTw9XrFjBnJwculyuEQss1glJoa6vq6vjhg0bqNPpaLVa+cwzz9DlckVMr7q6mnq9nm+88UZM+aivr2dZWZnyOzc31+e3GpAMmPNIxv7y4fB4PCwpKaHZbA5aGo8fP06TycRt27bF7ZnxRJIkXr58ma+//joLCgqo1WqZl5fHvXv38rPPPgt5n8PhoMlk4pYtW6J+VmVlpU99F0zjZHw0b6gx6AnxEsHDw3Hp0iUuW7aMOTk5QRu327Zto9FopN1ujzntseKzzz5jZWUllyxZQgBcvXo1Dxw4wP7+/gCL0d3dTZvNxjVr1tDtdkdUitzcXEVgsiBDCRDk4NxIlWBCJS9raLQ9Ak6nk2azmcXFxfR4fAXf3d3NvLw8Llu2LCGN3dGiu7ubv/vd7zhnzhxOnDiR69at41//+lefawYGBlhYWEir1RrgOatpbW1lbm4uyaFvCICVlZVBr1c0b0gwHp9/h0ttbS11Ol1ANxZJHj58mEajkb/+9a9D3p8MfYeRUBdiSZLY0tLCJ598kpmZmTQYDCwpKaHD4VCuKy8vp06nC2llKisrfQTV3t5OAIrn6Q9i+UjB6sZgjXCn00mdTse33nrLJ+7KlSssKytjZmYmHQ6HT1wkV3qsGK7j43A4WFJSQoPBwMzMTG7bto0tLS2sqamhXq8PqoGyyRRFkZIkKfVeKOCfwWj7/UKF9/T00Gw2B2hcW1sbbTYbCwoKourYHY/T10Pl+dChQ1y3bh0nTpzIOXPmcMWKFZwxYwbdbjdJ8tixYwENc0EQePfdd4d9DsJ14YjvHmDV2eg/osfjYX5+PktKSnzCq6qqaDQauXfv3qjTuhrp7+/ngQMHuHr1agKgXq/nq6++Ouz0FM0TKSn/kqTEd/lfWMtXzkZvxkpLS5mfn684J263m9///vdptVqjarAmm8lMBPI77ty5k1qtluvXrx92WkMGVfL9eMd3rOXa9Tt5jME7W/0dmsrKSprNZsVzdDqdtFqtLC4u9un0Va+1uxoYzvts3LiRVquVx44do8lk4sGDBwOuEcVgHoYvvrXh4ILEzqp13HXiBHcKO/gOrwRNWE1DQwP1ej2bm5tJknv27KHRaGRVVVVMLzWeiab55Ha7uXz5ct53331K497h8H67YJbpSgTxBboynVXcWdVOdlaxqKiKHQFNBtHH63S5XDSZTKytrWVvby/XrFnD+fPn88yZM2EffK3R1dVFq9XKkpISXrniqxDV1dVMT0/nhQsXYkrTOytncAoS0YFXX5XwnQKT9/esNKSrJtmQ3mUc6ml169evx49+9CPodDrMmTMHGRkZOH78OKZOnRpqzgzodZRGOv0mKaHffC6SaGxsxB133IFHH30UFRUVSElJUeI/cXVh9erVWLt2LX74wx/G/DCFs6+t87qqwqDLumtoSCSYWaiqqqLNZuOOHTtoNBpZV1cXVYm5muq8SBw4cIAGgyGg18Wff/7zn5w5y8K333476rSVjmnRVcVdVWeUCPHd/2JRVWfIG91uN2+77TbOnTuXeXl5AV1c14LnGAq5cG7bto2ZmZnhJ0CpyrFllpXTp0+PegxTAwBC52vY8AvgoQdNiqp3uU5D0IiQlyrSV1tRVlaG3t5ezJ07F3a7HampqT4mIxmmg48VX3zxBR5++GHU1dWhsbERWVlZoS9WTf38/OJn+OY3v4ndu3cD8C6uCcu75bJs1vKVTokSz/DVIhDQ+JlOkaLorWhbW1up1+t55MgRms1mrlixQunuUQ9M+pdEOf5qNps9PT202Wxct24dL1++HNO9Ho+H3d3d1Ov1UU1qinkwVhRFFhUVKWNvHo+Hu3fvpl6vZ1lZ2YjnNCazuY1U6E6ePMkpU6bwmWeeGVH6paWlLC0tjfjsiMLzv0kuGf5C6unpYUlJCfV6fdCRhKuJYB/y0KFDNBgMrKmpGbFlCfWN/YlZ80pLS7lly5agGZRHFPLz82m1WqP2Psc7zz77LKdMmRL1ZOBoKC4uDjqzQG2ZYhJeT08PdTpdRHssiiIPHz4cUB/6PzxYWKLnOsaTy5cvc8OGDbTZbDx37lxc05b9inCj7zG5hAcOHMCqVavCrpwBvJ7m8uXL0dzcjEWLFmH+/Pl44okncOnSpaBeqDpMvfImmT3Wixcv4t5770Vvby9OnDgBo9EYl3TlzovMzEzk5OTg4MGDoVcjRSoBaqlnZ2cPrr6JDbk+TE1NHdf1ofwtWlpamJmZyZ///OdxSzMYNTU1zMvLIxncCkVtNj/44AOmp6ePKHNOp5P33ntv2Pow2U3l0aNHaTAYuH///rin7S9Ij8fD1NRUdnR0jEx4paWlYafmReNhyW28w4cPc/r06VyxYkXYqW3Jxt69e2kwGPj3v/89qutH6nWKoshNmzaF/O5RC89kMrGpqWlEmVEz0vah/2y0RCOPwY32aElDQwMtFgvJQKsUlfCamppoNBrjnzN668PHHnuMt956a8j6cDR6ZIL1DJH0GYOT55yMJh6Ph5MmTQrq4UflztntduTl5cXFm/InNTUVzz33HOrr6/GnP/0JWVlZOHLkiM81gjC0ESr9hlzigbxm3d+77erqwvz585GRkYHa2lqfzQYSkY9gaLVa5OTkwG63Bz43kuRFUWRBQQH37NkzrJITqkSH4s033wzaPpTTSiRqDXc4HDQYDPz973+f0GdGQhRFlpeXs7i4WAlTZo9Fk4DRaBxRfRfso4czhXJ9mJqa6lMfjlaHtjwG97e//W1UnhcOURR96j01EYXX0dFBvV6fkIypCSYYuT4M1j5MlBbKY3ByYU2GERBRFDlhwoQApy6i8Orq6piXlzfqS67UqPtLjxw5MuL0gtHf38+CggIuXLgw7MqfsSI7OztglnlEh6W5uRnTp09XKnMOs6IO1sXjvz9YKKxWK95++23s2rULxcXFWLlyJc6cOTOsfATjwoULuOuuuzBhwgTY7XbcfPPNcUs7XpjNZpw+fdonLKLw2traMHPmTOV3PHf9CdWnGepadX/pvHnzlP7SkeB0OpGdnY3vfOc7eOmll3DDDTcoccMtqInAYrGgpaXFJyyi8JqamjBr1qyEZSpWtFotHn/8cXz00Ufo7++H2WzGc889N6y0Dh8+jPz8fFRUVKCsrCwgfsy3p1JhsVjw0UcfKb8lSYrcVMjOzg4Yp4rV/U8k0fSXBiMRY3CJxG63K53UMhGFZzabwy4IHGtkxyXU+KE/iRyDSyQOh4M2m80nLKLZ7Ovri2kbw0TAMHWPHBdq/FB9TaLG4BKJ7NTdeOON+Pe//+0T5yM8ShI8nqE/kckhvHCeqtrpUdeHAwMDMJvN+PGPf4zZs2dj9uzZsFqtEEUR1dXV+PKXvzxq+R8J8vt99atfRV9fn29kgH5KEq9cESkONqP8L0mGRmu0nDx5khMnTlQWLGo0GhYUFER1b7K8p5yP3t5e6nQ6n7iY5xkIgpAU6wwYhRuflZXls2Zi1qxZqKqqiir9ZPE0w+UjjPAI0SNB/7Wv42Kv21t0B80qhcHbyCEzK/n0dqvML30PhwkXF811g+GiSCVcGsyrxyNBovx/DzwiUVFRAWvWtzB37gI89/xe78EZET5YMuJ2uzF58mSfsJQQ1wIQoNUCX5mgxcAX/4aAyYMT3zXQCgBAiCKgTdFAACF6CEkQoBEIUSQ0Wg00AkBRgigCKVph8J5QcWrU1xGSh5AoQBsubS3gEQlJzhMFeEQiL+8enDz5TwgU4RE1oDA+j9Vzu90Bvkd4sykI+NJXJuPzS96KUiNoIMgfmgCVEs+h9Qz0LjOStV3QCEOlPVycGgIUhMHDSQRoUgYLTBT3C1oA9K6xACVotAKkhh0QJuhw0y16TPySAOHpd8ad9rndbkycONEnLITwhj7Q5IlfRp/bDYmEJPme9gJBQEqKRvkLUKCREK15k64EBAmCFhI0gKDB358WkLJAwDtfXETv/11A3xcnsGNzLjRPvxPkvIbkpb+/XzGbcn2vCI+iBI8Y+LmMxlR0d38KSSSoUZ1RJwACiaFbCHIwHISorgNlUxUuLgCqjgIKnTY1GgiKECQIELxCkSQ07E5F/ulX0CH9FDlIGbx/IZ54dzuw+TiOC57IXy1JcLlcSE1NBTDkxKh6huF1BkRCox0SksViQWtrKwQIvloHAVqt4BW6R4LHA0VCWq0ASIMOhwjvb0SK85pgkfBqdJRpp6SkAIIGouitjyWRgKCBp2E37t/xAF78xcOYOhhPEqLHA8WsJP+ZIAotLS2YPXu2T5jisAgaDVKCvIvZbMaHH/4vBA0AUvXiGDSbQfQmVHjYOAHalOGlTQJarUalwmfxxotb4N56DN+93ftS2hQBGlGCoNWis/M0AMu4Ouvy1KlTWLVqlU9YxKJnsVjQ0noGEISANkc0ba3RQJ0vkiA+Qec+YOfdC3yuowB42IF33voDsGshFkrjR/Pa2towY8YMnzZ2mKaCtx7MyMjEx03/8jOZXpKlIQtA0ToKgMblQrNQiPtMWiVaniHGhldRuG8tXunMhSbYSyUpTU1NmDFjhk93YNiiJ2g1yMzMAAUNmpubE57B4eB/PqxAgGlTYeHL6OzyOjKEt49Q4gnsWvAksOs/8Eja+BHce++9h9tvv105ZkcmKruRl5enzBtMNpRtRRQPVIKABVhUDvzshdfRCQ8EAFLXG1ivycGT5fXKoYnJYvYjYbfbkZubGxAelfAWL14cILxk6N8EVALQeJsIguA1lfM3n8HL+C7ShRsgCAK0aYdwX6cEcfPQaZdJZfb9UBcsu92Oe+65JyA8qlO8mpubsXjxYpw7dy4B2Ywf6pMrCQmCX9mUhasWcrJBv9PBRFHETTfdhNbWVmVdpHxNVJpnsViQkpKStPWejHpnJnknIDWywJJVcECgNXj//fdhMpl8FrQGNtIjsGbNGhw4cED5LYpi0phOQG1OBgdpB1tx3jwG5jMZazt/IyhJEqqqqvDQQw8FjY9oNmUX+8MPP8QDDzyAjo6O5Dj4bxClCYChNrqvWVQfDjx+kCQJJGE0GvGPf/wj6F5uEd9KbldkZ2fj5ptvRn19fdIIDhjKn29/udosjh/BqS2ZRqPBX/7yF1itVkVw/noW05sVFRVh3759QRO6zvBRRgn8lpj94Q9/wPr165Xf6qPCgRjPjL1w4QKmT5+O06dPh9wR4jrxobW1FQsWLMCZM2dCTgCLSfNSU1Oxfv16/OY3v7mueQlm9+7deOyxxxTBBfveMZ/W3NXVhezsbLS1tQV011wnPpw/fx4zZ87E2bNnodPpfE6bVhNzbW4ymbBy5Uo8++yzccnodbyodai8vBxFRUWKcoTaTGhY56S3tbVh/vz5aG1tva59ceb8+fPIysqC0+mEwWAI2yyLKLxQNz/xxBNwu93Ys2dPfHJ9jSObxoKCAnzjG9/A1q1bI9803Jm8brebRqMxYLXmdYZPXV0dzWYzBwYGolqFNaKTK+UNwkd7Q5vxRLhp82oBDQwM0GKxxHRg8Ii6Hx566CHccsstyp7I1wkk7HR1lSOyfft2ZGVl4b777lPCIvYdD7f0yGFdXV3KoRjXGR7yoRg9PT0xWbGozWa4TUzl42jiuTfZtYLD4Qh5HE0k4nZa8759+3wOgiKTZ5lUsuC/HNzlcnHKlCmsqakJuC4ahtXOC8WmTZvgdDpRW1sLrVabVENHycbAwAAWL16MpUuX4le/+hUA7xipVusdEQnVq6ImrsITRRHLli3DzJkzUVFREa9kr0rWrl2Lvr4+/PGPf/QJj6nAx8kiKIQ6djQY16pZ3b59O61WKz///PMRpTNi4QWzz/KBv/4eaKhd3K9GQr1fuAN/YyXumicT7qhtmatRgOHeqby8nDfeeGPIo7ZjJS7CC5Vh+ZD7kpKSa7oXZmBggEVFRbRarWxpaSEZn4IblwkeoSpYq9WK999/H21tbViyZMmI9wkbj1y4cAELFy6E2+1GQ0MDzGYzgPhM+E347BydTofDhw/DarXizjvvxKlTpxL9yKShsbERNpsNS5cuRXV1dfz3sxmx7sbASy+9RKPRyNra2quyvlNTXV1Ng8HA6urqhD0jYcIL1UvgcDhoNBq5ffv2q1KAHo+HW7duZXp6evgTK+NAwsxmqN6BuXPnorGxEXa7HTabDe+9917cnunfC89RniRVX1+PrKwsfPjhh5FPrIwHCS0aEaipqeFtt93GH/zgBzx//nxAvL/2JmKbyGBtz1if093dzcLCQqanp4/q6MqoTCfm4PHa/qxatQoff/wxbrnlFmRlZeGXv/wlLly4oMT7a28sp3oFe14wQu22G+l+kjh//jx+9rOfISsrC9OmTcPp06d9xuMSzmiVkkj1m8vl4qOPPkqdTseysjJ2d3eH1YBQ6cWrHg33bJfLxZKSEup0OpaWlkZ1vmsiGBOzGe4Dd3d3c9OmTZw8eTILCwv51ltvRZ1uonfframpYUFBAXU6Hbds2eIz/DUWO/+OaZ0Xjp6eHu7Zs4c2m40mk4lbtmwZk8Fep9PJ0tJSGo1G5uTkcO/evbx06VLE+0bDk47rkNBwCDZuRb9hkebmZrz44ov485//jL6+PuTl5WHRokVYtGhRwA4J4dIJh3ztqVOncPToUdTX18Nut0Ov1+PBBx/E9773PWRmZkb9XrE8e7iMufBCEerlu7q6cOTIEdTV1cFut+PcuXPIyclBWloapk2bhm9/+9tKT0ZGRgbS09N97j9z5gw6OzsBeDdja2xsRHt7O1wuF44fP46vf/3ruOeee7BkyRIsXboUX/va1wB4C5kQZC+asSRphRctFy9exL/+9S80Nzfj008/RX19vRLX1taGTz75xMdzNJlMigbdcMMNWLhwIdLS0jB9+nTccccdY74lcyyMe+Fdy4yfZaPXCeC68MYx/w+7TIqGQWyS7gAAAABJRU5ErkJggg=="
|
<image>如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()
Choices:
(A) 192°
(B) 120°
(C) 132°
(D) l50
|
132°
| 10,809
| null |
132°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAABjCAYAAABjYhnGAAALd0lEQVR4nO3dbVATdx4H8F+4zmzMREEjGI2cchOVB+9MXAU5bAvtSYEBebhzsAEqtFZ0ynh02hf2xU3Y6Yt6M73rw2EVBwsUQ+GcIzwVaJxK7myOol0SezQ8mCm0sJpKY4HSwHY6yb2oqZQai7DsZnf/n3duMPmG+bL7203+iYQgCECQ5RbEdQBEHFDREFagoiGsQEVDWIGKhrACFQ1hBSoawgpUNIQVqGgIK1DREFagoiGsQEVDWIGKhrACFQ1hBW+LhmGU3NJi+QuFYXKusyC/jLdFG7vUUWyCtWoVTU9znQX5ZQ9xHWAxvEMt6U12b0549JpGrrMIBYZRcnP52abOMXj87lb8swJ9+l51UNDNpd4/7/ZoHo9jfetAJJ4VLUElYxBNq6YTS45kpWyED/C8sgyCICQ6nPywtu36SSbun3dFc7TZj0Snq88CAISFrh3kOo+QzMzMrBwPeuIz/LdSMwDAGkX4J0zdN68OneOWyhcM5GgZkGQZAACeBxkAAJcuXSK8Xu+vgoKCvuc0IM989913Urlc7kxISHgdAEDisOO3IuMHVTQ97XF1a5tNcCTl+JaDTDwWb4rmcXVruyF7kiAUEgyj5OZTHedA4aUAJHD79m319PT0uk2bNn3IdU6++Pbbb9f29/f/MTU1tdS3bWiAPDBKkk/pTfAqbEz54MjJ53CmTrZ4UTSPq1v7thFOpD634RmgaQAA8ErCJsNWgxMAICkp6eW6ujpjUlJSGZc5+cLhcKR0dXXpi4uL41etWjUC8MPsOzj+BH3kZNJKFU1PD7boa86WQ9ORksQsJsrGixmNeLOzd3R0fNfMzMxKj6tbe+rE2ZH3vyCfrSXe/l+3y6NVKBQDUql0gqKoPVxnDXQWi6W0u7v7z3l5eam+kgH4DptbBn2l2hqJX4Cx8YiZmZmVTDwuL/ZoBEFIfvyHIv7mYSJ+7fyf0Wg0Nb29vYdUKtVHrIbjCQzDpPX19acxDJsoKChI/eltlNz8n1sFMdmKkwA/7N3aDOQbgOs+ZOLSBgCARCgLiDEMk+r1+psEQaynaXqW6zyBxO12hzQ0NBi1Wm2NRqOpnn97pV7/1SiA4icbcd07xP5th5jKwIs92kLQND0bFRXV1NPTc/Bev0yxoihK09zcXJWZmXnM397+MEH87AjBNF7MaAul0WhqrFYrY3+FfGe327NMJtNr+fn52VyPFIIqWkREhHliYmLz1NTUZq6zcM1isZTabLZDubm52XOHfq4IqmgAALt27aro6ekp5joHVzAMk164cOHdycnJTTqdLlsmk01wnQlAgEXDcbzaZrMVcp2DC263W3nmzJmOqKio5rS0tOe5zjOX4Iomk8mcSqXS5nA4UrjOwiaKojQGg8GYnJz80vbt2+u5zjOf4IoGAKDVakV1UmC327Pa29tP5+bmPsn10O+PIIuG43jTyMhIotvtDuE6y3K7fPnyCZvNdqikpCQpEIZ+fwRZNJqmZ2NiYuqtVmsh11mWi2/on52dDdbpdNmBfpFakEUDANixY0fNtWvXBHn4dLvdyvLy8q6oqKjmffv2vcR1noUQbNFUKpUN4IchmdskzKIoSlNdXd2RlpZ2LBCHfn8EWzQA4e3V+vr6Dra3t58uLCxM9f0h8YWgi6bVausHBwezMAyTcp1lqbq6usr6+/szS0pKkmQymZPrPA9K0EWTyWTOdevW2axWK2+vqfmGfgCAAwcOPBnoQ78/gi4aAEBsbGwFSZK8fElqampqs2/o5/u7hwVfNLVa3el0OjVut1vJdZYHQVHUnoaGhnf5NvT7I/iiAQBoNJpqkiQLuc6xUH19fQdNJtMreXl52Xwb+v0RRdF27txZY7PZeHH2efHixVf6+/szjx49msrHod8fURSND4tXMAyT1tXVGaVS6SSfh35/RFE0AIDdu3dXXLlyJSBPCnxDv0ajqXn44YcZ+QiCQCOaosXFxdX39/cH3DU1iqL2nD9/3piWlnYsOjq6ies8y0U0RZu7eIXrLD42m63QZDK9UlhYmCSUod8f0RQNILAWr7S3t782PDz86J2hf4LrPMtNVEWLiIgwT09PK10uVyRXGdxud0hdXZ0xODj48+zs7CKhDf3+iKpoAHdXtHPx2FNTU5sbGhqMGo2mxvcJPmIhuqJxtXhleHg48fz588bk5OTnhTz0+yOYleoLNXfxilqt7mTjMa9evXp0YGAgs7CwMEkM89i9iG6PBsDu4pX29vbXnE7njsOHDwfMGksuiLJoOI43jY2N7VnOF9rdbndIbW1tR3Bw8OcZGRnHxDL0+yPKotE0Pbtt27Ymq9W6LNfUpqamNhsMho74+Pg3xDb0+yPKogEs39u8fUN/Tk5OEVszIB+I7mTAZ+7iFaauyl+9evVoX19frpiHfn9EWzSAu3s1JorW2tp6GgCgqKgoacnBBEi0h04AZhavuN3ukKqqqi6lUnktIyPjGJP5hETURZPJZM6NGzd+RJJk1mL+v8vlijQYDB2JiYnE7t27zzAcT1BEXTSAxV9TGx4eTmxsbKzKyckpioiIMC9DNEERfdEWs3jFYrGUms1mfV5eXqpCoRhYznxCIfqiASx88QqGYdLW1tbTk5OTm4qKitCZ5QNARQOAuLi4io8//vi+b/N2u90hlZWVRqVSeS3QPk2RD1DRAGDVqlUjISEhI8PDw4n3ut3lckVWV1d37d27969o6F8cVLQ7tFrtPZfkORyOlMbGxqr8/PxsNPQvHiraHfdavOLve5OQB4eKdsfcxSsYhkmNRmPV5OTkpoKCAlG8p3+5ifolqPliY2Mr2tra/mG1Wg/5+94kZHEW9aVjdrs9q6GhwbgMeRCGxMXFvR5IZ8eC+XY7JLChGQ1hBZrReAbDKLm5/GxT5xg8fndruCvl+NP74hVBVu6S3R8jRZv/5MOTS158JrR7sBUyYP9WSRsTj8GGwRZ9TR0JT83fjueVZQTK86Bp1XTcMwUFtwhzc9jxp4vjFUFW71BLetmbb1+EAC7bkovmHWpJP2EgW8OTS14kng39AwDAuKXyhTJD2BsFeu9eAMkv3UXA2LafOKQDPQxGll3Yv1XShmGU3Hyq4xwovFRAPY+vx5Xj4THDuzasuA40DZKt+9t0uP69Osv10ngGvzWYSUua0Tyubu05A1mN55VlHE4I/Ztv+8bHUiuScUX1ihUrvll6RPZ4PI71A+TODdFqL+kZ6H7EfGP9lq1RUf8KXQ0B9YF4roFPH4Mo9RUVTU/7tq1RhH8CX95WURgm5zKbP0sq2nVLZ+korntv/mGFplXTCfsTXp77i+ADicOOjyf/vjNmxc1vPrKM54euBqciIeGfTH2BPRMwjJI7+iE2JlJxae72267R38G6NVSg/s4XXTSPx7F+kIS9eOTWC0wG4tLQAHlg1FT+6okTZ7953xP6m0DcI8/c+GLLpxADv96w4rpvG4ZR8ttfgipcseYTLrPdz+L3aF+PK29B+PehCi/FYB7O+A6bBXr9Bv3xlJ3h69ZcC8S9g2vg08fCHtlTOzfb2KWO4s4xPCIxXlHHZbb7WXzRVoc6w2D0oXGXRMVgHs5IHHa8F4+8oQ4KugmrQ51RirU93qGW9JYhbzrX2Xw8Hsf6/5pCU6LVXtK3bbBFX1NugpdSjqf/KZAO8fMt+qwzKEh9Mz45/K1yw7nq0Dmn1RhGybveIv8eVpSuD+QnPheGUXLzv8lS/NGM1wHuPLfI7uvn3vRWJOq9mYFyxkkQtTcAAHqJ3hs/bsR17xDEtrWchVqgJb8ENW6pfKHcNPrq3S2Bf/Fwvkq9/qtRAMXPbsB17xABermAb9BrnQgr0GudCCtQ0RBWoKIhrEBFQ1iBioawAhUNYQUqGsIKVDSEFahoCCtQ0RBWoKIhrEBFQ1iBioawAhUNYQUqGsKK/wPkJo28kp3Y9AAAAABJRU5ErkJggg=="
|
<image>如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()
Choices:
(A) 40°
(B) 50°
(C) 70°
(D) 80°
|
70°
| 10,810
| null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAACxCAYAAAALdqmTAAAbE0lEQVR4nO2df1Ab55nHv4twSce4a8dK2MbqwdnCFoa2uNhjt6YljkXiTJ2GtHbtP/AFZtIhRU4qJ8oVd5wxPpOJk0BMrtih57YmHWbqmfgi+eJcyBk3Ys6tycAUehFGLlKKCxQY06kdyBgHaZ/7Q6zQj9VPJO1K6DPDDNp9d99Xet7v8/5+X4aICCkMAWDcn3gAGe5PAxeaMKR+DhWFjP+DKUZG6CDJjbcJF74u4Rr0FYZEJ0cyUt7QAr5u6+TBU2DKy7G+0PMqD08Hl0rObskYmsGC4Uyv60DlWvCXePC+4RhG9P9kJ+UN7alJhmGAayZconI8n8/gcvl6FHk59wwQOT0e9M0GyUvKGxo+7vfg6U6cer4CAKBdv84vOMMo5v/hQZRWdNLg6X5NTc/g1KlTYBgGTOET8FUsEXmUyxlgmHQZnXxcM+ESdrqNaTE1Yv0/53v5doZhwDCMl7FThUypE5AQrpnA6DtA/9MKwGXbIbsNQD4IBManEZZKlTA3lOI01moJLtuS0cIT8US15XBf0+oa/Z7heV6ClMYXhiiFGoshIKKgag11P5lJnUIoGDTfFSoYMUDTKVWNDCwRQxPj0xXKAOF89VRydUvC0IKRiQhvvfUW3nvvvQAhvbtAU0nfqV9GewxfOZ1ObCjQQPXAGpjNZrEgKUvqK9rDgi0tLfhyDoexsTF0df2vWJCUJfUVPc/du3eRl5eHd999FwMDAzh79qyXqlOd1Fc0XGXzyy+/jG3btmHz5s2orKycV3WX1ElLHBK13xPKrVu3SKlU0uDgoLszpK2tjcrKyqRNWAJJKUWT16DEAvX19di9ezc0Go27rRxM1WLvSHokzmgxIViX5cTEBLEsSyMjI373lpKqU0LRwXq06urqUF1dDZVK5afUQKr2DZcSSJ3T4onNZiOlUkk3b94MGGapqDolFE3zCiQfJRoMBuh0OiiVyoDPLpkauNQ5LV709fURx3E0PT0dMMxSqoGnhKLF0Ov1qKurQ3Z2dsAw4dTAUwapc1o8MJvNpFaraXZ2NuxnUl3VKWnokpISamtrC3jfszkm/O9wOEitVpPZbI57+qQg5Vy3yWTC7OwsKisrwwovuG+FQgGDwYDm5uY4pk5CpM5pscThcJBGoyGj0UhE/h0pPM+7/8SYnZ0ljuOor68vzilNPCml6Pb2dqxcuRIVFRUA/DtShOm8gTpYsrKyUFdXh2PHjsU7qYlH6pwWK2ZnZ0mlUvmVsZHO6ExVVaeMoltbW1FUVISysjKv65FO+EtZVUud02KBMAwZKxX6qjoV5nknraLJo9vz5MmT2LlzJ4qLi2PyTl9Vp8Q0YIkz2qIZHx8nlmXJZrO5r0WqQLHwd+7cSamyOunnjB06dAh37txBa2vrot9FPis13njjDZjNZhiNxkW/W2qS2tB2ux0lJSW4fv06cnJyYvpuIsLnn3+OvLw8vP/++4suFqRG9ob2VZkn1dXV4DgOL7/8ctziSBlVS1VmLJa+vj5SKpV069atmL1TrKxOlXZ10tS6ycfxHDt2DAaDASzLxiwOMVUHaldTgImIskXijBYV3d3dxHFcRMOQiyEVVJ00ivbkpz/9Kerr65GVlZWQ+LKysvDCCy+gqakpIfHFBalzWrgI5WdHRwep1WpyOBwJjV/offNsrycTSaNoofysq6tDQ0MDFApFQuNnWRY6nQ4NDQ0JjTdmSJ3TIuG3v/0tff3rX5cs/mRWtezb0QJOpxMbNmzAqVOn8Mgjj0iWjvr6ety4cQNnz56VLA1RIXVOC5fW1lZZTN5LVlUnhaKFtc0mkwlbt25N6O5BYnElo6olN3Q4RnvllVfQ3d0tm27I27dvQ61Wo7u7G2vXrgUg/6FMyQ0NiBtbuCb8qGazGYWFhQHekHiSTdWyMHQwDh8+jImJCcl/UN/M6KnqdevWBQwnF2Rt6MnJSWzYsAF//OMf3S5SThw9ehR//etfJc+E4SBrQz/99NP44he/iJMnT0qdFFFu376N/Px8XL161UvVckS2ho7npIJYEqyslpMbl9zQgX6MAwcOYN26daivr098oiJAKKuvXr0KtVotdXICIrmhBTwN3t/fj/LycthstpiON8eL+vp6TExMxGTeWryQjaE9+d73voedO3fiJz/5idRJCQuh0ijnYkY2hhYU3dXVhcrKSthstoSNN8eCQ4cOAYBsK46y6+suLS0NurZZrkxOThLLsjQxMSF1UkSR1Xi0yWTC1NRU2Gub5cT999+P6upqnDhxQuqkiCN1ThNwOBxUXFzsXtucjAib18lR1bJRdHt7OxQKhXttczKSk5OD6upqvPLKK1InxR+pcxqRa5ZlquwfIldVy0LRra2tyMvL81vbnIzItayWvHk1PT2N9evXp8T6JgE5tqslV3RTUxNKS0uT3sieehHKajmpOuGKJo+uzqmpKRQUFPiN6aYCwVQt/OSJHPCQzHUTEZ577jnMzMzgzJkzUiQh7siptywhhiaRESo5lmOxRviOVqsVHMf53Rf7XeKFZIqurq6GUqnEa6+9JkX0CePQoUPIzMyU/HtKYmi73Y5vfvObsNls+NKXvpTo6BPK8PAwtmzZIvmQqyS1boPBAL1enxRGXqwO8vLysHv3bsnL6YQrur+/H48++iiGh4fxhS98IaoyKtZlW7zLSrvdjm3btkmq6oQb+sEHH8TevXtRW1sbMyPfvn0b/f39sFqtGB8f9zqhzm63Y3R01Cu8SqVyN+eWLVuG7du3Q6VSIT8/HyUlJUE3c4+W6upq5ObmSjY1KqGGNpvN+NGPfgSr1bqoZa+jo6O4fPkyOjs7YTabMT4+jtLSUqhUKqjVamzZssVtrLy8POTm5no9f+PGDQwPDwMAZmZm0NPTA7vdjpGREVy5cgUqlQo7duyAVqtFeXk57r///qjTKiC5qhPTpe6iuLiY2tvbiSiyTd94nqfBwUEyGAykVquJ4zjat28ftba2ktVqjXk6LRYLtbS00J49e0ipVJJGo6EjR44semFdVVUVHT16NDaJjJCEGdpoNFJxcXFEz9y8eZNaW1uppKSEVCoVGQwGGhwcjFMKA2OxWEiv1xPHcVRaWkpnzpwJuBtSsAwsHM8Uy52UwiXuhuZ5nhwOB+Xn53tNKgh1+pxer6fs7GyqrKykixcvxjV9wT778vbbb9P+/ftp5cqVVFdXF/RMLTGkUnVCFB3uwSQjIyNUU1NDLMuSwWCQfEw3mNFHRkZIp9MRy7Kk1+vDTqtUqo67oYWtm4JNKpienqa6ujpSKpV09OhRt0qSYfvkiYkJr7SLbYnl+z2kUHVcDC18MZ7nqbm5mSoqKgKGNRqNxHEc1dTUROwG5cT4+DhVVlZSbm4udXR0EJH37+CJzWaj1atXJ1TVcVX0P/7xD2JZVnQjtpGREdJqtVRcXEzd3d3xTEZCMZvNpNFoaPfu3UEzbqJVHVdDHz16lKqqqvyu9/T0EMdx1NDQEM/oJcPhcNCRI0coNzeXLBaLaJhEl9VxM7QwSc637dnW1kZKpdLt3lKZ8+fPk1KppPPnz4ver6qqouPHjyckLXEztF6vJ71eT0QLTSydTkdqtZoGBga8wiZDpStaenp6SKVSUV1dnd89i8WSsD1NY2powWA2m81ryuutW7do165dVFpaKklngZTwPE8TExNUUlJCe/fu9Tv9tqKigpqbm+Oejrgo2rOi8fHHH5NaraaampqE798pJ2ZnZ6myspI2btzoVZwJxx/Pzs7G1bO5De0k/0gi7TXied5rw/SOjg5iWZZaWlpilNzk58SJE8SyrFe/QriqDm4jJ5EzsH38FF1bDgK8/xpN4jVHMYREWywWYll2SVS6IsVoNHrtPuip6pDwRMam2gX7lP+YeBqk2tpG122eF8kOXoZ2zv+5jC0Y12JqJABkHPB3u74Kv3LlCuXk5NDY2Bip1eq0koNw/PhxKiwsdJfZYqr286ADRgJAWl2j37XaRqOogQW8FM075+junIW0Kx6lP805aI4ncgy84zK0Rfw1nokpKyujX//616TVakmn04XxdZc2lZWV7l7DYKp2qXSAyn2NPE9jrTak1/WeM5aRiaH3PgDzZDmKFApkMsCz+u9Dq2tERaH4bBBhtsd7772HsbEx9Pf3A3CdLpMmOL/85S8xMTGB+vp6FBcXY+vWrfjFL37hF45hGFx4/RQuYSfeaHnO7/66deuxTr0RQWeQeNvdScamg7R8xb10zzJ4KNkZMncWFxfTs88+S2q1WrTrL5XbyuEg9v15nqeRkRFSqVRkNBqpr6+PcnJy6M6dO97haIC08+55/oL/u0LEL1IZW07v/MlBTp6ndxqfpeUrlPSf/+eq7/FOJ30+56Q54a08T3NzTvrNb9pJo1lPSqXSNTFg/vrnc076fM6nchDsXjjhRK8vXHN63nfw3uEd8slsnobv6emh1atXk8ViEa+Bz5fDkVSKfTOWt6EHjATtMzQ35yQnT8Tz16h8xQrSNZmEx2nO/WO5fsA5h4Nyc9fSl9f8E/13R4f7ulDT5x2eP3Cwe17J9AjHk9OduYI87zbovPFFPwfJWHEmlEc7f/485ebmUldXl39ZbYnc0L5kzLtvAIDp/cuo3fXQQtkweB3muWXIWzu/URoByGDc//MA3nzzPzA7O4dnn3kG5Q8/AhBAYCBM1GQyGDDkejToPa/yBCCGmY+KQUZmBjKZ8J5XKBgwAT8TpFokHGrG6w9+8AMcOHAAP//5z7Ft2zavPcuocD20AD6xDfn/VtdMaLowAJc1grCQ5VzNKuPHTpqb48k5Xy6AeZg+nnO5cqfD24VOf3aHWJaljRs3LvR68byIq11QVcB7nviGC3Td592eag/5WYbMzs6SRqOh06dP+6na9LqOANCrHqq2mBoJ5T/2fkmA7wcioo8vNNKye5S0/J57CMuW0/Lly2nZfGOcSKRsnn9j/fGXaMXyLOrp6SEinngP9zrnXHCpvq5b/J7nq+fDLVg09LtTwNBERJ2dnaTRaOixxx7zK6s/vvC6V0eWq6kVuqJM5HHUAvE8HLzrFYrMjAUPTQSGARwOIEMBZMy7oNu3b+PLa9bi+xW7cbbtLAAGmZnzbpIIDifNuxmP60HvERwOAhSCmybMOQVHFerdrmcXrgHOoJ+93bvc2L9/P1auXInLly/Dar0GhWIZgAAb2IMHiBEpGnh4rbgiCqfpw5PTyXu5hZqaGsrKylpyo1GJYGJigpRKJX3rW9+it856b64X3FLOgLbMALkqChSklkI8AIaBIIPJyUmcPXsWBw8eBMuyyXUYp0zx/A1zcnJQWVmJBx54AMdf+jc4nU5XGAgm4N2fvckAwzDgxbpOguUP3jFfNvuo+ckD/5JWc4zxVaKg6tLSUmr7zVs+oT3K5TDrHF5rryiMVYV2ux2FhYWora1FU1OTbDYeT0Wefvpp3L17F1euXAm5Xi2k7SLNeRUVFZSVlSX55PqlgN1uX1D1IjfCjWghfH9/Py5duoS9e/fGZIVhGm/Ip66zdu1alJaW4tvf/jYaGhrcZXU0RGTouro6sCyLp556KuoI0wRGzPU++eST+MMf/oA1a9agvb09+peHK32z2Uxf+cpXKDc3d1EuJE1kOBwOUiqVdO7cuUWdmx22ouvq6lBQUICqqqroc1UaPyhA01S4rlAoUFlZicHBQahUquhVHU5uENY2P/DAA5KsT17qdHd3k0ajIbPZ7FZ1pOP7IRXtdDpx5MgRPPXUU+B5HhqNJroclSZqNm/ejNHRUWg0GndZHWmzNqSh29vbsWrVKmRmZuI73/lO1IlNExoK4MYVCgVKS0thNptx7NixqGrgQQ199+5dNDQ0oKGhAR9++CEeeuihYMHTLJJgKn3wwQfx4YcfoqysLLoaeDC/3tzcTLt37yYiIo7j3OXzUp//JQVCOU3kGsosLCyM6PmAhv7000+J4zjq6+uj4eFhUiqVi0tpmqjheZ54nvcaXxAOmgk06dCXgK67qakJWq0WxcXFsNlssjqke6nBMK7x5oKCAgwNDQFwHWl87NixgAes+5JBIhWAqakpnD592r3LndVqRX5+vtfL0iQetVqN69evA4D7NCGTyQQg9GbvGWI3XnrpJfzwhz90b6Nos9m8mlXpEStp0Gg0bkUDC6oGQtvEz3WPjo7i7NmzePHFF925xGq1ptvPMkCj0WBgYMD92VfVQGBv62foF198Ec888wxycnLcuWRiYgJr1qyJYZLTRINKpcLNmze9rnmqGgjiuoV/iAhWqxUXL16EwWDwCjQzM4MVK1bEMs0xx5WPQ8xthtj0m+Rh+fLlmJmZ8bompmox3IZmGAaHDx92D0V6uoCZmZm4bG0cS1z52NdB+Rs+mWsX2dnZ+Oyzz/yu19fX49ixY0Erye5fpre3F93d3dDpdAC8XcDMzAyWL18eyzTHAW+jur5yBogIv/vd71BQUIBNmzbh97//vet+ErYcsrOz/RQNAI8//rhrxeWFC4EfFhrUZWVldObMGdEGOyKfcZQweJ4POUFOo9G4J71v27YtMQmLA7du3SKWZUXvhdo9OQMALl++jLGxMfdYMyVRbmc8piGHn+rQZXmyEbKsJnJ1pwXa9IyIKDs722/bpGRCWOayadMmunLlitTJiRphLXUgBFWLdYHCbDaH3DCd47iUm/WZjMMyg4OD7oGNQBQXF9M777zjdz2jrKwMly5dCuoWAlUC5MrAhSZ3/zDDMHj4mdf9wiRj7TucSvHRo0fx6quv+l3PAAClUhn04ezsbExPTy8iiYmjSVeOoor3MUA8iAg8DYBankf5wSYAyVX/8OWzzz4L2cx97LHHMDU15d5LRiCsyYEcx2FsbCzqBCYCIkKTrhyGoXwQdWLjvGYZbESzqRGdp97HNVDIdWZyZnR0FPfdd1/QMAqFAlevXvU7pjkznAg0Gg1sNlvUCYwvrhr0tf86iRfevAyjpSPkE8k6KDM0NBTWcLGYhw5L0Wq1GhaLRaZKyACQgdOnDNhZ+xoqNrrWJ3mm9M/2TyRJWayxWCxew8ViBLJRWIYWhsfkqgTCNfz5EvBw+S73Nc+Udnachlb3qNudJyt2ux3r1693fxYzakAbhVOtHx4epvvuuy/CxkACmd+e6Z0B/0aTe4tLr50Pw9sOQm7cc889YS1VjmgqkSe5ublQKBSwWq3RZMS4QkSgja5de2xD19zXAJfS9RUG7DzYiMc3ej4lySG7i+Kjjz5CXl5eWMcdik4lCjeisrIydHV1RZa6BMAwDEAF2FWrxb+eOrVw7ZoJGUwhoGtE578/L9tiJ1zMZjPKysqif0G4bqO1tZX27dsXiadJCJ5OyncLajFXLmeCTaPetWsXnTt3Lup3h33arNVqxY4dO/C3v/0t6dWRbDidTqxcuRI2mw05OTlRvSNs163RaJCZmemehZgmcfT29kKlUkVtZCDCWsmePXtw7ty5qCOLP3yA/+VLIIfqef3cuXPYt2/fouKJ6KDwvr4+PPHEExgeHg5rY5tEIWzL5JWmhb2akhqn0wmO49Db2+t34HkkRKToTZs2YdWqVejq6pKNkYEFe3qlST7JWxTvvvsuCgsLF2VkIIoGZVVVFdra2hYVaexJDjcdCjHn2tbWhurq6kW/OyLXDQB///vfsW7dOly/fn1RlYOY43bVPGh+b8xk996ffPIJtm7dir/85S+LnoUblqI988K9996L6upqNDc3LyrimOO2aIbbhSezkQHg1VdfhU6ni8lU64gVDbjGRb/xjW9gaGgorC65NJEzOTmJDRs24MaNGzH5jaPq9FWpVPjud7+LkydPLjoBacQ5ceIEqqurYyaksBXt25yy2+3Ytm0bbDZbWtWLQKyZOjk5iaKiIlgslpjVg6I2NAC88MILmJ6exptvvimr5lays3//fnzta1/Dz372s9i9NOpeciKanp4mjuPmj1pIEws6OztJrVbH/EzpRa+1OXfuHJWUlJDTmZyD+XJCODwl3INbI9k0aNEj8Pv27cOqVavw2muvxcLBLGkaGhpQVFSERx55JKzwERWX0eY+T4SlIukjhAMT7gFnYsc9xoKYLZPs7u5eOLIwTUh8jyxUKpVksUR/Ul0oYroetq2tLX0IaQDCOYQ0nkTVMxaMQ4cOwWKxoKOjAxkZGelmVxDu3r2LHTt24OGHH3Zv9RUvYm5op9OJXbt2YcOGDWhpaYnlq1OOAwcOYGZmBkaj0es6xWOsPx5u4ubNm6RWq6mlpSUer08Jjh8/ToWFhTQ9PZ2QYi1ue1ZYLBZiWTZdExfBaDSSUqkkm82WsDjjujnJBx98QCzLppXtwYkTJ4hlWTKbzQmNN+670FgsFlKr1aTT6aI6IiBVmJ2dpaqqKiosLEyokgXivjalsLAQvb29sNvt2LlzJz799NN4Ryk7pqamsH37dszMzKC7u9u9x2oiScgiJJZlcfHiRRQVFWHz5s1e+1kCyb0LQSh6e3uxadMmlJeX4+2335ZuY75Eu5C2tjbiOG5JVNLOnz9PHMf57fgkRfElyU5xPT09xHEcNTQ0SBF93HE4HHTkyBHKzc2Na7dmJEiyfnTz5s3o6emB2WzGpk2b8NFHH0mRjLjQ1dWFoqIi9Pf3o7e3Vz4nF0id04xGI3EcRzU1NXEbuUkE4+PjVFlZSbm5ue5iSU4tDMlXhFdUVGBoaAirVq1CQUEB6uvrMTU1BSA5KmmTk5M4fPgwvvrVr7rnuwvjyWI7IEn2nSTOaF6MjIxQTU0NsSxLBoNB1rsVjoyMkE6nI5ZlSa/X+6VVTmomkoGiPVGpVGhtbcX169fhcDigVqtx4MABfPDBBwlLA4VQnMlkwv79+1FUVIQVK1bAZrPh5MmTfrM1ZTdqJ3VOC8bNmzeptbWVSkpKSKVSUV1dndfEhkhUsxiFDQwMkF6vJ47jqLS0lM6cORNw0xiplRwo/pgPU8YLq9WKX/3qVzCZTJiZmUFZWRl27NiBsrKyiA92oRDDgAMDAzCbzTCbzejq6sLq1auxZ88eVFVVSdKrFQuSxtACRISxsTFcvnwZnZ2dMJvNGB8fR2lpKVQqFdRqNbZs2YIVK1aAiJCXl+e35PTGjRsYHh4G4NpItaenB3a7HSMjI7hy5QpUKhV27NgBrVYLrVYrOok+VGYJN0w8EIs36Qwtxu3bt9Hf3w+r1Yrx8XGYzWb3PbvdjtHRUa/wKpXKrcxly5Zh+/btUKlUyM/PR0lJiezPD4mGlDB0mtDIqtadJn6kDb1E+H82uM8VdmubHQAAAABJRU5ErkJggg=="
|
<image>如图,AB、AC是◎o的两条切线,切点为B、C且∠BAC=50°,D是圆上一动点(不与B、C重合),则∠BDC的度数为()
Choices:
(A) 130°
(B) 65°
(C) 50°或130°
(D) 65°或115°
|
65°或115°
| 10,811
| null |
65°或115°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAAB1CAYAAAC27fhAAAAMnUlEQVR4nO2d327bvBnGH8oFvnQ3sSXxgm5ALyJA05PEBnoNH5qcbQhQpfeQFCgabAf2LfQszXZiB9hu4vtyYDlX0abAYr87SKhQNEmRsv5QMn+AkViSRUp8+L7kS4piREQIrM10OsX29jZ2d3ebzoqXRE1noCscHBwY9xetz12xA0FoFhARlstl+r/M2dkZBoOB0ZoxxgAgPQ//mwdjLP1tm2HBdZohImNBj8dj7Ozs4ODgYC3ro0oniiIQUSr0KGqvXXjRdAZ8Jk9kSZIAALa3tzEYDNZKS0yH/y9a0jaLDAiu0xqVtRqNRjg+PgYAvHr1yuoc/Dw618kYyxynE5it6/WFIDRLZMs2Ho9xcXEBxhj6/b7xt1w0YnuLC0jeZ+t+22bhguvUYCpw7jL5MdPpFPP5XHu8yf3KgpPz0IWOABCEpkVVwESE+XyO09NTXF1dpdtNIstLwyTorogMAEABa+I4JgAEgGazGRERDQaDdFscx1bn4cerWC6XhfO3zm+rJoQ3akSMpemsVRErRk+dB9VvfQmLBKHVhMpN6twz4CYQVUfCt2INQstBtD6iMHQWREaMiQHPQVi+jQvK9nwqVL8VxSemp0tjnfRtCELLQS4A/l38S0Qr1kcUmPz7IumuQ5H0yyYILQdbFyYKgzGW+V0d4lLlU2fpXPJUFkFoJSIXqunWqkRQRGiywIq49KrdJhCEVgjZfcrjlGK7SPdbXxAH7qskCE3CxdLo2mF8m2+iMlG1S20+wOIx/KbrQhPifpkoilojMkBfMZbLZSniCxbNEZMVk3Fto/nAcrlEr9fLFZdrIDhYNAnT9B2x/WUjMtMxvohMtlhRFGGxWOTmz3W0IQyqC+hqqcpNukzp8RkxBKMLSAfXWTHyjXaxQnxEQTU05Is1kzF1emSZuF5HEJoCVU12FYepI9FGoihaa1ZvaKMh2y5TxcHWsUByzW/bFGzgeUzW5j7oKlXnhFbEevBQhO0MiyK0+SETm+lN8rEy7bvqHFyFwQW2WCwqExkRodfrpd/bZtV4fnlFFGeg2NIpobkWoGn2RRWIU4XE774j3hseDrFpe2aaH5vQGZDbSTbd9nWtmercXekYANlrsQnedsqi6RAfcZMb+yor6Gv4wRdEqwbYtTs3QmjA8xwx2aLoJixWgc8xNBfkIK/NeiKdE5p8sTYP5hYJyG4ycgCad3RMlq1zQhOHiFQxseVyqRSj6VyBLLb3JTOGWlVmmoILTDe9JYoi7XimTBUN9zz36VtnQayUOteYN18P6Fivc51B4LKtV16Ptm0TI20wNVFaZ9F0YQOx8OQ2hAnboZUyUU0B7zqtE5o8bpg3NplXmGLE3pTWpuJSaVVTjTitERof2OUwxqxmgubRVHupLW7TpdKaftsaoTHGVga/iwohbwpPne01mbaNg8roKlBrhAY8CyOvMPIKNi+cUbYl06UnBzyBds7usMGrq9IVsBx0LTpVpWj6ZWB6mkglrrZbNplawxvO039LsjCqdKtuH8lBYpOl6tJgO0e+plotmqvI1mmHFU23ClRrYnRNWCr4NRJRPRbNxZKV3U5qwprxdF3oulWrxaLJBWsTdM3DtlCqauCXQdfaYSZqdZ3ilGCOafDbhKsFyBuLawKfK0HZNDrW2ZS7aNJ16poRRefi+0ztrlOVgSZF1qQl0zUjmrau62BTqZyFto44yojql4FPVkMeG2yj4GzynCs0l0KxnRoTWKXr9yVXaC6hAV2Du4td97IROwZttGp5WLlOWSQ23XJf3GTAD6yEJtewvIFfW4HVLUCfLYVYebtk1Xhv2tmimQTk4ia7dDPXoc1rcthCRO4WLa8dZmPFmpg+7Ss6gXWtIjr3OuUb4NoO4xMYN2n4xcSm3IfCvc51e5N1u4rMMwWOv3Xtabtgug/rWDXfOmDWpS1GsNvUm+Q5FCsIwU1sputs6h5Mp9O0LBhj+PjxY2a/d26XHMBjubXwE3mQh+IfGf6CWrlsbF9MWzcAaMWiDYfDTE1hjOHs7IyL0ssPnyYt///8eV5kj//ven6+UJ9NHopiY4XOzs5we3u7ks5kMsHFxUX6fZ18VIJKgXEc02QyyShyNBoRkb+vU7bJFxhondwvFotMero0UZE1m0wmBDy/Zlu1z0cgW7T7hx/4ubjH77Pf8ObNm3R7HMeYzWYAPPT9T+TlK50LB2CJRyvnithwL2sWSN45SLBMX758QRzH2N3dXdk/n8/XzkuVZIT28sUfMJ/PwR6yHvX29hb9ft/rDoDK5TPGAAJu8bR06FPWIzAwpn9C3cR4PE5DNMPhEADSpgXg7rJMx5PQ6yQiXF9f4+3bt5lj+P7r62vEceyUdq3IZu6f43+kbpLoueEpuglf3edgMMi4lTiOiTGWfgfLXq7LVcxms5UGN98m3i+i8lynKn2T20ySxOGK6gMArQjt6N1heqHRL4yO3h3S/cMPIiL68b/vdP/wI/1ORCvf5e2u+2yO020/ene4kqejd4epOHjhFakossg4cnuWiIgxVnpPk+dBTotv//Dhg/M11QXkNlqSJNzKgYiw+LnE169fsdV7CeDRtQLAL9EWAODn4h5bvZfY6r3Ez8V9eh5xu8s+EfE43Xbx9/+e/At7e3vpfn7sX/p/xe+z3zLncG1bjcdjAMD5+XlmOxGh3+9je3t7ZXsZyOeJ4xiXl5fp9yRJwBhDHMeZHqePZF46dnd3h729Pe3BYiGK26pGTlPFfyb/xZu3bzLHbvVeot/vp0Ijslu2XObk5ASj0Ug5/HZ8fJw5t8i68/Dk852fn6dtUc5sNst0DnyD34OMRbu8vMSvv/6aOdBkdfh+leWpm4uLC+zv7wPIWoLZbKasPLZjjLw3t7Oz4zwUVVRkpt9dXV1l4nc+i4yzXC4fhZYkCXpbEb59+4bXr1+nLtSFKi1b3rmTJMn0uHgtms/n+PTpUxqqKVLw8m/yzlGW27Sl7vSKEEXRo+vc3d3F9+/fAajdFLdq8j7R2skuSxSH7T4xDZdz39zc4E9//mPmHIwx/P3D33B0dIT9/X38XNynbUt+8TZwi8Etm2i5kiTB3d1dJuaYGVN1FIG8spAKlftuBbY9h7weYpNA6vbzUMBgMFAe68poNFrp8U0mE+X5eRq2H8ZYppdaBF/DTUTP99vqynwVGY8fqT6qMACnSIHKaZkGsF2EJn5s8FlUMuI1GZ9U17m4tlP1U1ldmUNWFKLnxaD5NXVq+XdbfBXaYrHo1LMD4n1+kXNsoCa6Xt+7U30cIOrWgx8+0uiKjwE1XbdmwAYLLVi16lC1gTdWaBx+Q1Qv16rD0shp1Jl2nWxkr1PV/S4TF0vZxdu/0RZNvPCur9zTJKLINq4z4OsSDF20ZiLiPd8IoZnWhiWijXhzSR2YmiIbIbQ8mnpn5yaxMUJzEVLeK3UCq+R1rMLdfELsGFQlsq6+V4AxhsXC/JxsEJqGKsTQNYGJ5FXOIDQBsa1WVZuta2KzjUUGoQnwm+ZjKMRHTCLb2ICtC2WLTXeuNlk3Oa+6wKzqfV9AEJqxRprE5hJn0xVImyynajlZ1T7eVgsWTcJ2FSKZdXumbQmflBW4bsfVNgQRodcrtuqQ6lw223xDrhB5jwSmzwgE1+mG6ELLqN06l+MzonjymhS6fUFoT5isy2KxSNdEo6dlRF0Qg5ltEZdIGVOqgtCesFl5kd9w1/ZVW9pjOmSRFRFcu+9ATYg9qXWWFG3bjBCdJSty/Rs5w7YMTK5ELIi23t6yZx8Hi+aIGBPTLVXV9gCtzWIzrgShOSJbK/E7D8KqArRtoaphuCA0B3SxMNtOgo89TnHISKwkZVu00EazwLaG+9g2o6eVIXWVoK45csGiWWD70gkiSmNmeY3punqgOksrWjAeG5TzVKb4gkUrgKuF8+EWy6GZuvMUhFYDKpda53MJPrj0sGxVDejGN+tao427xiZHKIJFa5CyloxXvd/g4eHBq6Evf3LSYobDIaIoyrzsbDqd5v6ON8TFj3gO2498jqatlwq/ctNSrq6ucHh4iMlkAiLCZDLBwcHByqsNbayVSnx5nzYQXGdJiOGMJEnQ7/e1r8+p8gEY+dy+PGwTLFoJTKfTzJtbTk9PV17gKlJFwetmtvogMiBYtFIYj8c4OTlJv9tYMl8sTV0Ei1YC19fXmM1mICKMRiP0+33l+7Ra+WqdkghCc0R2AFxQ3IK9f/8eAHBzc1NvxjwnCM0R2RLd3Nzg6Ogo/S6+djHwTGijrclwOMTnz59Ti+bT+KYP8LZosGgFmU6niKLHd5z2+/10lsRgMAgiE+AV7/+xQcvg46WTagAAAABJRU5ErkJggg=="
|
<image>如图,⊙O的半径为1,PA切⊙O于点A,连接OA,OP交⊙O于点D,且∠APO=30°,弦AB⊥OP于点C,则图中阴影部分面积等于()
Choices:
(A) \frac{π}{6}
(B) \frac{π}{3}
(C) \frac{π}{2}
(D) \frac{√{3}}{2}π
|
\frac{π}{6}
| 10,812
| null |
\frac{π}{6}
|
"iVBORw0KGgoAAAANSUhEUgAAAOMAAAB2CAYAAAA6JSS8AAAZ6UlEQVR4nO2df2wT5/3H32EFzMoaT6BxpagcKz9cROFSOnJJ2uYy6OrANMxKh8OPxdkfwZE22dGEcLpNhonJoE6yo0l1AQnD2s5JpZFQadh8pX3tfKXGqaItDmPENOli2ko+plIbfb+VDR083z/CmThxEv+8Ozv3kqzEd767d5x7P5/nee7zPE8FIYRAQUFBchZILUBBQWECxYxS4jmMioqK5OuwZ2LbYY/UwhSkQDGjJIyhs64CFTuBy4SAPHzpeitQsfMaNq6TWp+CFChmFJ0xdNatgxkOjJLTaJy0p/H0ZbRiE9avlUycgoQ8JrWA+cZYZzPM/bVwjJow3XPrsNGhSzGowvyhQulNFZOHUXHTZZDTiuUUUlGqqaIyiuv9QK3SKFRIg2JGMRn7GNek1qAgWxQzisna9dgEoP/6aNrdns5OjImrSEFGKGYUlUacvtwKnNmJus7Jtpt41NG7Pl2njsJ8QTFjEdm8eTNef/11xGKxRxsbT4OMOgDzukkP/JuBCwRKn878RjFjkTh//jy2bt2KXbt2oaamBl6v99HOtSZ8OOlhPyEfwqSExHmP8mijCPA8j4aGBgQCAajVavA8j5aWFlAUBZvNBoqipJaoIEOUyFgE2traYLPZoFarAQAURcHj8aC+vh4NDQ04f/68pPoU5IlixgLT1dUFlUoFnU43bZ/BYEAgEEBfXx8aGxvB87z4AhVki1JNLSA8z6OxsREej2fOqqjX60V7ezuOHj0Kg8EgjkAFWaNExgIimCuTNqFWq01Gybq6Oly9elUEhQpyRjFjgfB6vYjFYtDr9Rkfo1arYbfb8dlnn+G1117DyZMni6hQQe4oZiwAsVgM7e3tcLlcWR/b0dGBN954A//4xz9w584d1NTUIBQKFUGlguwhCnljMBiIy+XK+jifz0c4jkvZFggECMMwxGazFUidQqmgRMY86erqwsWLF8GybFbHJRIJtLW1TYumLMsiEAgko+TAwEAh5SrIGalLg1ImHo8TjUZDLl68mHU0s1gsc34+EAgQlmWJxWIh8Xg8X7kKMkeJjHnQ0dGBw4cPY8+ePcloVlVVNWc0CwaD8Hq9sFgss35OiJKVlZVKlJwPSF0alCpC1JrK0NDQrNEsHo8TlmXJ0NBQVtcbGRlRomSZo0TGHJipvQcADMPMGs1OnjyJV199FQzDZHVNjUaTct6UxHOFskDJwMmBjo4OVFZWzlnNDIVCaGlpAcdxsFqtCIfDaGpqQiAQgEqlyvn6oVAI7e3toCgKdrs9mQOrUNqUjBljsRiCwWDyPc/zyedxHMclt6tUqqx7NrMhGAyira0NPp8vY0OdPHkS3d3duH//Ps6cOVMwfefPn8epU6dgt9uh1WoLcs5SIxgMJseLTv4dSL0Xin1fFAJZmnFgYAB+vx8fffQRYrEY/H4/1Gp1StWOoihs2LABANDX15fcnkgkMDAwAIqioNFooNFoUF1dDY7jQNN0XroSiQQaGhrgdDqzrmYODg7i4sWLsNlseWmYyuThWeUcJYX7IBgMoq+vL1kYMwyT/JsZhkFlZWXymLt37yabCcJ9QdM0aJoGy7LYsmULOI6TzZA2WZiR53n09vbiypUr8Hq9YBgGHMehuroaarU6JfJlc85QKIRQKISPPvoIfr8fKpUKHMdh9+7dOUWSY8eOpfyUE0KUtFqtWaXkyZmBgQF0d3fD7/cjHA6D47gUA2k0mqzPGQ6HEQ6HMTAwgOHh4WRBn899UTCk6zsixO12E51ORyiKIkajkfT09BS1p3BkZIQ4nU6i1WoJRVHEbDaTkZGRjI9lGEbWPZmRSITo9Xqi1WpJJBKRWk5OjI+PE5vNRmiaJizLErvdnnXPc7ZMvS8sFkvG90UhEd2M0WiUWK1WolariV6vJz09PWJLIIRM3Lh2u51oNBrCMMycOliWJYFAQBxxeeLxeIhGo8kpRU8qhoaGiE6nIzRNE4vFQsbHxyXREYlEiM1mIxqNhnAcR3w+n2jXFs2MkUiEmM1mQtM0sVqtJBqNinXpORFuhJlMabPZiMViEV9YHkSjUWIwGGQfJX0+H9FqtRkViGIj5A6zLCuKNlHMKJQ0drtdViacimDKyVFwfHycaDQaWVdPZ0OIknJLPI9EIkSn0xGO44jH45FazqwEAgGi0+mIVqstavW1qGYMBAJEo9EQi8UiaxNORciuMZvNpLa2VtSqSjGIRqPEYrEQlmUlaQtNRSic5RYJ58Lj8RCGYYjVai1K4Vw0M5rNZtn883Nl165dZMGCBeTs2bNSSykIUg/PikQihGGYkiucJxOPx4nVaiUsyxa8XVtwM0ajUcJxHLHb7YU+tahEIhGyatUq0tzcTB5//HGyb98+qSUVhHg8LkmUHBoaIgzDFL1nVCyEv6eQtaaCmlFIZi71ah0hhNTX15ODBw+SY8eOEYvFQiiKIqtXry7ZEn0qQpQUI/Hc7XYTlmVl3ZGUC9FolGi1WuJ0OgtyvoIlinu9XrS0tMDlcuX0kF5OnDt3Dnfv3sXatRPTfKtUKhiNRixfvhwrV64si8mjxBqedezYMVy6dAk+n082mS6FQq1Wo6enB8PDw2hra0MikcjrfAXJwHE4HLhy5QrcbnfJp2PxPI8XX3wRe/bswdKlS6ftv3btGjweD9599920c6OWIlMT2vNJYhdIJBJoamrCli1bZJmxVGjefvttXLp0KS8P5BUZhS/85s2b8Hg8JW9EADh8+DCqqqrSGhEANm3ahNdeew0HDhzAW2+9JbK64jB1eFa+UTIcDqOhoQHNzc3zwogAYDQacfToUTQ0NCAcDud0jrwiY0tLC6qrq2E0GnM9hax477334HA48MMf/nDOz8ZiMZw9exZOpxOHDh0SQZ04CFFSo9HklHieTzJ9OSAMk+vp6cm6Wp5zZHQ4HFCr1WVjxFgshjfeeCPj9q5arcbPfvYzGI1GXL58ubjiRESIkvX19TkNYm5qasLRo0fnpREBgKZp2O12NDU1Zd2GzCkyer1edHZ2wuPxZHuobNHr9fj666+xefPmrI4bHR3FxYsXMTIygtWrVxdJnTRkOzxLzqNaxOb8+fPo6+vLai7drCNjOBxGR0cH3G53tofKFq/Xi3/+859ZGxEA1q1bh5qaGmzdujXv3jS5MXn1rLmiZG9vL4aHhxUjPsRgMECtVsPhcGR8TFaRMRaLobGxES6XK6exZHIkkUhgzZo1OHjw4IydNpnwpz/9CU888QQGBwcLqE4+CFESAFwuV0p7KJfZD+YLjY2NMJlMGY2TzCoyNjU1wWq1lo0RgYm1FLdt25aXEQFg//79+Ne//oVf/OIXBVImL4QoaTKZUtaY5HkebW1tcLvdihHT4Ha7cfz48YyWbMg4Mra3t2P16tUwm8356pMNfr8fbW1tBRsZn0gk8Pvf/x4+nw8vvvhiQc4pR4S1RXiex5dffolTp06VfKJHMQmFQhlNRJZRZBwYGMDAwEBZGTGRSODw4cPYsWNHwc6pUqmwfft27Nq1q2DnlCNqtRoulwt37tzB8PAwrl+/LrUkWaPRaNDc3IyOjo5ZPzenGROJBNrb2+F0OgsmTg786le/Ak3TWL58eUHPW1NTgyVLlpTVs8d0XL16FYODg2htbYXb7cbWrVuV1bNmwWw2JyfUmok5zehwOMBxXFk9NxoYGMAHH3yA2traopz/Jz/5Cbq7u/Hxxx8X5fxyYO/evdi0aROWLVuGHTt24Pnnn8euXbtw4sQJqaXJFqfTiba2thn3z9pm5HkeNTU1GBkZKZvGeSKRwLZt21BXV1fUxOXu7m4sWrRo1pKwVOnu7kZzczOOHDmCxx57LLn9P//5D/r7+/Hll1/C7XaXVUdfodizZw+am5vT5jXPGhlPnToFk8lUNkYEgN/+9rdYsWJF0UcQ7N69G9euXSuLER5TMZlM+N73vpdiRAB47LHH8PLLL+OFF17Azp07ceLEibJ79povVqsVx48fT7tvRjMKc5mWS7obMPE87M9//rMoM0urVCqsX78eP/3pT4t+LTF55513EIvFZu34WrVqFQ4cOACfz4fnn39eWT1rEgzDgKZp9Pb2Tts3YzXV4XDg5s2bsNvtxdYnGs8++6yoM0jHYjH84Q9/wCeffFI2qXIrV67EmjVr8IMf/CCjz3/xxRfwer340Y9+hN/97ndlVcvKlWAwiJaWFgwNDaVsTxsZE4kEOjs7cfToUVHEicGJEyewcuVKUQe4qtVqPPXUU2htbRXtmsVkcHAQ//73v/H9738/42OWL1+OgwcP4vr162AYRomSmIiOFEVNSy9Ma0Zhiv1yGZkdCoVw7ty5ovWezsaOHTvw17/+VfTrFoPf/OY3eOqpp6a1FTOBZVm88sorOHToEH7+85+nLFAzH9m3bx+6u7tTtqU144ULF9Dc3CyKKDFoamrC9u3bc7qJ8uXpp5/GokWLymIgss/nQ01NTc7HC1Hy5s2bqKqqmtdrTOr1evT29qZ0cE0zI8/zCAaDZbPE2FtvvYUlS5Zg1apVkml45plnSj5p4o9//CMqKirw7LPP5n2uF154AXv37sWRI0fQ1NQ0L6OkSqWCTqdDV1dXcts0M3q9XnAcVxYN7XA4DJvNhu3bt0uq46WXXir5lLE333wT69atK9j5li5dir179+LevXtgGGZeRsmpVdVpZuzr60N9fb2oooqFwWAAx3GSVE8ns2LFCixcuBDvvPOOpDry4caNG9iyZUvBz7t582a8/vrrOHLkCH784x+D5/mCX0OucByHgYGBZFV1mhn9fn9ZZOBPnW5Rar7zne/g3XfflVpGTly9ehX3798vaGScjBAlFy5ciOrqapw7d64o15EbKpUqpYc5xYzjox9j8TcW4OmVT0oirlDwPI9jx47JqlD57ne/i7///e9Sy8iJCxcupKwIXCw2btyI/fv34+zZs2hoaJgXUbK+vh5+vx/AFDP2fdiPl156CQsWLZZCV8EwGAyoq6uTVbt38+bNuH37ttQycuLKlStYuXKlKNdSqVTQarVYtWoVtm3bVvZRkuM49PX1AZhixuHhYTz33HOSiCoU7733Hm7fvi27JOVly5ahoqKiJHNVw+EwnnnmGVGvuXbtWhw4cABnz55FbW1t2Q7PYhgmOZggxYyhUAgbNmxIvn9w727yle795G1TSffZTPZl8rmZtkc++xTHjh3D9vqX8Q3yAACSP+XAN7/5TXzwwQdSy8iar776CuvXrxf9ukKU3LBhQ9kOzxJm3IvFYtPNOPlLF6qrM/18cO8uFixajAWLFk8zqLA9m32Tmfy5mbZPPv7BvbswmUyo3vo8lnzrCQATRrxfsUA2hnziiSfwt7/9TWoZWTE4OIgFCxbkPUdQPtA0jf3798Pn86GqqqrsoqRGo0EoFHpkxkQiAZ7nZ01oFowwddtcES5fMmnD/td/+/DJJ59g3bMbk9vuVxRsXZ+CsGzZspK7kQYHB7F4sfR9COmGZ5ULNE0jHA4/MiPP82lzUWeLXsL+dBFMTGKxGIxGI1555RXJNGTC0qVLcefOHallZMWnn36KRYsWSS0jyeThWRs3biyLxPMNGzakRkb+88/ySgwvZnSc69xtbW3YunWrpFWpTKisrMRXX30ltYys+OKLL7Bw4UKpZaQgRMn6+nocOnQIv/zlL8tiEHPSjHfv3sW3lqjSRjghOk7dJ2yfum/y9mz2TTZdpuf+n/4AgsEgqp7bBCC1w2am36ViyZIl+Prrr6WWkRW3b9+WRTU1HRRFlcXwLIqicOvWrUdmjP7v/+HxSnXWJ5qpijpb9XWmfenez3b8vQcELS0t0Gq1uF+xIPkCMOPvUvLtb38b9+7dk1pGVkSjUdlFxqlMHp5VilFSpVIhkUggmbQZi8VmXNgkXVSUA/v27UMikSiZJONEIoEHDx6goaFBaikZEwwGUVFRkXaaCLmxdOlSdHV1obu7G59//rnUcrImaUbBnZMpdi9pvpw5cwYjIyNSy8gYnudhNpthtVqllpIxwjT+BoNBUh3ZQNO01BJyImlGiqKm5QLKMRpOZsWKFVixYoXUMjImHA5jyZIlssqZnQshb7KUNJcq0jek8sKDzs4xqUVkTDgcLrlSm6Zp3Lx5U2oZZU04HMbq1asfmVF48Fg6jKGzbifel1qGgkKBSJoxXZtRzox1NsPcD2xaL4/xipkwU2KFnEnXfJETnsMVqKiY8qrrROnUl4Bbt26BoqhHZqQoColEojTmIxnrxJv4NRziT/aWF8PDw0UZLV9MhLxJudJ4mmDUUQu0XgYhBIRcRmu/GesOl84S96FQCBqNJrXNKPcvfgIPDjcDR0zA9f5abCzO4POiUKptRp7nZVxrGsNf3u9Hq67x4ftG6EpsmtqSNaPncC90H5qwduxjXMMmlFAtNfmllxqy7k8Y+wve72+F4MWxzjrsPFMLx5HG2Y+TCUJtlKIopMzUtGHDBty4cUMqXXMy8UX3A2fOPNxSWkVgqZtRjtrH/vI++tGPnRUT90StYxSElE4JPfmeSImMLMvKN79vrBNv4sLDdgEBudwK1G5EqdRSg8EgNBqNrKYCyZRXX30VV65ckVpGGh5WUS8/vCdGHYB5HepK6HHX5AngppkxGAzKr30w1om6ZuCI6VGJN/bxNQkFZU8pz7rHcVzy4b+smFJFxVoTft0K9JvfRKl036RMjUqmwHEc8fl8UzdLCgAC1BLHKCGEjBJHLR5uAwFayWWpBWaATqcjPT09UsvIGbVaTaLRqNQyUhh11BK0Tv7vP7w3ah1kVDJV2TH5e51mRqvVSqxWq8iSyh853szZIL/CZMJ4k714uXWigG4thdKZEDI0NEQYhkm+n5YOp9frp62Oo5AfXq8XLMvOOCqmFEi3apKUVFSsg7kfOLPz0cP+nWdq4RglOF0aHano7u7Gvn37ku/TLpZaVVUFl8sFhmHE1Fa2tLS0oL6+vqRGPkwlkUjgySefRCQSKclOKDmyZs0a+Hy+5LPntInizc3NuHDhgpi6ypZEIoHe3l7o9XqppeRFulWTFHLH7/eDpumUJJC0ZtTr9cqXXiC6urqg0+nKIpoohXThSLcGalozUhQFlmVLYnS33Ons7ITJZJJaRkHgOA6xWCw5A7ZCbvA8D7/fP622NON4RqvViuPHjxddWDnT29sLmqbLqu2t3Bf5c+rUKZhMpmm1pRnNyDAMaJpWomMelNty7ACg0+kQDAblm6sqc2KxGLq6umA0Gqftm3Wkv1IK5o5ww+p0OqmlFByTyYTOzk6pZZQk58+fh16vT9+HMNeDSb1eT9xudxEffZYnLMuSQCAgtYyiEI/HCcuyZGhoSGopJUUkEiEajWbG5I85zRiJRAhN0yQejxdaW9nidDqJ0WiUWkZRCQQChGVZqWWUFHMFtjknpKIoCiaTCR0dHcWI2mUHz/M4ffp0SU3HmAssy0Kj0SSnclSYHa/Xi1gsNvvz5kxdXc7VrkJiMBiIy+WSWoYozFXtUpggGo0ShmHI+Pj4rJ/LeKpGt9uN9vZ2WU9OJDVvv/02VCpVSae9ZQNFUXA6nWhqapLfsDsZ0dLSAqvVOueUKxmbkaZp2Gw2tLS0KF98Gvx+Py5dugS73S61FFHhOA67d+9Ge3u71FJkSUdHB6qrqzPqVc9qEmPli09POBxGe3s73G53WaS9ZYvRaIRKpYLD4ZBaiqzo6upCOByGxWLJ7IBc6sBms5nY7fZcDi07lG7+R2i1WuLxeKSWIQsCgQDhOC6rpxA5mZEQec4IIAXyG3QrHdFolLAsS0ZGRqSWIimRSISwLDtnh81UcjZjpj1E5YzFYiE2m01qGbJifHycMAwzb3tY4/E44TgupycPOZuREEJGRkYIwzDzsopmNpuJwWCQWoYs8fl88zJCRqNRwnFczlX1vMxIyKOQPF9S5qLRKNHpdEqbeQ5GRkYIy7LzpikjzGeTz7P4vM1IyERo1uv1xGw2F+J0smV8fJywLKu0ETNEiBTlXnD19PTk1EacSkHWZ1SpVHC73Vi9ejX27NlTGovnZInf78eePXvgcrnKciRGMVCr1fD5fLh582bZPp8+efIkLly4kDKXTc4Upmx4RKFKCTlht9sJx3HztlOiELhcLsJxHIlEIlJLKQhCbdBisRTsnAU3IyGPOnacTmcxTi8akUhkXlS/xSIQCBCGYUq+mi/8HYXuJymKGQmZaC8YjcaSfSBus9mIRqOZNx1TYhGJRIhOpyNarbbkak/RaJQYDIai9RQXzYwCQiliNptLoorS09NDGIYhFotFqZYWEY/HQzQaDbFarbL/nuPxOLHb7YSm6aKOyCm6GQXsdjuhKIoYDAZZloiCCXU6XUlG8lIkHo8Tq9VKKIqSZWEdjUZT9BW70BDNjAIul4vQNE30er3kbYdIJEKcTifRaDSKCSVkcuQxGAyS57cGAgFiNBoJTdOiRm7RzSjgdruJTqcjFEURo9EomhGi0ei0a8+3TBG5Eo/HicvlIlqtltA0TSwWi2j3xcjISLKfgGVZ4nQ6Ra8+p11rQ0x4nkdvby9Onz6NcDgMjuNQX18PjuMKMt9oLBaD3+9HX18f/H4/wuEwtFot9u3bpzwvlDHhcBhdXV3o7u4Gz/PJ+0Kr1eb/PO/h+YX7wuv1Qq1WQ6fTobm5WbIVmiU342SmGkdY7ZeiqOSCksL7dASDQcRiMdy6dQuhUCg583WhDa4gLsIM3IJxhCXNhZnvFy9eDGBirt/JK30lEomUlbj7+vqSM6LTNJ1i8JnuKTGRlRnTEQqFkv8MALhx48aMU38wDIPKykpQFAWNRjPtn6NQPgj3xcDAQDKzZ3h4OCX7S6VSobq6Ovme4zio1WrZFsj/Dzjmvfm63hXiAAAAAElFTkSuQmCC"
|
<image>如图,在△ABC中,∠C=90°,分别以A、B为圆心,2为半径画圆,则图中阴影部分的面积和为()
Choices:
(A) 3π
(B) 2π
(C) π
(D) \frac{2π}{3}
|
π
| 10,813
| null |
π
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAABxCAYAAAAwLkaIAAARhklEQVR4nO2dfUxTVx/Hvxfc9IloZ1akyy4CtoYyyDMNuJGJ1Ma6mSiZy3S6DAdsJrhgIkuoc3MOlphJRONMWGKyF0pcNhdxbBlLNJNQCs6X1sgfdNQHWmRloUz/UKkZRsrv+UPv3W17W2+hr8gnaaDnnnvv6f2e3zm/e14ZIiJECSICwzAhHxNy+/Zt9PT0wGazYWRkBEajkT9mt9sxPDzsFZ9lWahUKhARnnzySbz00ktgWRbLli1Dfn4+UlJSwvabpP6G6cBEU7CpMDw8jPb2drS3t6OjowMjIyMoKipCeno6lEolVq5ciQULFoCIkJmZiYyMDAD/PryhoSFcv34dAOB2u2E2m2G32+F0OtHd3Q2WZaHVaqHT6aDT6ZCWluZ1f+7xRFoIqURNsFByn81mwzfffIMff/wRd+/ehUajgVarhUajQXZ2dlgfntVqhdFo5D9yuRybN29GeXk5lEpl2O4TNihOuHHjBh0/fpzy8/OJZVmqqamhvr6+qKejt7eXqqurSaFQUFFREX355Zd069atqKcjEDEXbHR0lKqrqyklJYVKS0upra0tovebnJyUHLelpYW2bt1KMpmM9u7dSzdu3IjYvaQSE8EmJyfJ6XRSZWUlyWQyqqmpodHR0Wn/wEg8ICIip9NJVVVVJJPJqLq6mlwuV0TuI4WoCjY5OUljY2O0d+9eksvlVFtbG3KujRRSxHa5XHzaP/nkExofH49CyryJqmCtra2kUCiosrJyykJJebBTtTSp57lcLiotLaWMjAw6c+ZM2NMRjKgI5nQ6SafT0fLly+nChQvRuGVUMBqNpFaraePGjVErKZLC6G2KhlssFqxcuRJr1qzB1atXUVhYGK5bxhyNRoPe3l4sX74cBQUFsFqtkb9pJHODwWCg1NTUoMXGTKGlpYXkcjm1tLRE9D4REez+/ftUVVVFKpWKrFYrEUXOg4s2wX6H2WwmlmVp7969ks6ZyjMJa0sHEeHOnTvYtm0b3G432traIJPJwnX5hGB0dBQbNmxAVlYWmpqapt1W6UvY6jAA+OOPP1BQUICMjAwYjUYsXLgwnJePKwLl87S0NJw/fx7z5s1DYWEh7HZ72G8cFs6cOUMymYwaGxvDdcmEp76+nmQyGRmNxrBdMyyC9fb2kkwmeyyci0AEqo9aW1tJLpfTwMBA0HhSmbZgN27cIJVKNWtZQThw4ADl5ubSnTt3/I4JBZQi5rScDo/Hg/Xr1yM7OxuNjY3hLKlnHNu3b4fb7UZra+u0rjMtp6OmpgYAcOzYsWkl4nHgq6++gsvlQl1d3fQuNFUzNxgMpFKp6O+//57qJR47nE4nsSxLra2tRDS1+mxKgl28eJHkcjnZbLapnP5YYzabSS6XU29v7yPjigkasmBcLjl79qykG8ziT0tLC2VmZk6pwThkp2PdunXQ6XT44IMPplcWP+bs378fNpsNp06dCu3EUNQ9efIk5efn08TERMg5YxZvxsfHSa1Wh9yfJlmwsbExYlmWzGbz1FI4ix+//fYbqdVq+ueffySfI9mt//TTT7FhwwYUFBSEav2zBECn0+H555/HkSNHpJ8kRdWBgQGSy+VxNdxrpuByuUgul3sN7AnmvCX5iOf1l+PAgQOoqqqa0a3vsWLx4sUoLS1FfX09HxZsoCzzULiAkUZHR5GXl4eBgYHHrm8rWoTyjJOA4IrW19djx44ds2JFkLS0NLz++us4evToI+MGfQ+7efMmVCoVrl275jdJYJbwYrfbUVhYiMHBwaC91EG9xO+++w6vvfbarFhRQKlUoqioCKdPnw4aL6hgBoMB5eXl4UxXTAlSmMQFZWVlaGpqChonYJHY09ODV199FUNDQxFJXCQJ5kTFMx6PBwqFAhaLhZ/n5ktAC2tubkZFRUXEEhdJElEsAEhKSkJpaWlwKwv0gsayrN/8rERqjTeZTASA/+j1+lgnSRIXL14ktVod8LiXYJwgfX19pFAoIpuyCKLX6wmAVwZLFNEmJiYoJSUl4JSmpIdWBuDfoqSzsxMajUZohZEpAyLAnj17cPnyZb96rLOzEw0NDTFMmTSSk5NRVFTkNdleiOiLc0dHB7RaLf89UeqErq4uNDQ0oKmpyS+TJcpvAB5Msujo6BA9Jup0+FpYvMOJs3//fuj1emRlZYFhGC/RHA5HrJIXMlqtFp2dneIHfcvI69evk1wuJ6LEcjKIHtRTJpNJ9JhGo0mIOoxj7ty5or0jfhY2MDCA3NxcAIlRjNBDKxocHATwYCEVX7q6utDZ2Yn33nsvYerjnJwc9Pf3+4X7CdbX14dly5ZFJVHhgMtUWVlZAOC3Eg4AFBcXexWViQDXhutLEj1w7fkAh8MBtVodzbSFjZqaGuzfv5//Pjg4CIZhoNfrcejQoYSxLgBQq9XiFsYwjFeu6+vrS1jBOLed+01Lly6Fw+HAoUOH+PB4h8tUarUavb29fsfn+Aa4XC48++yzkU9ZhAj0/gIkRhsjlz6WZXHz5k2/4351mNvtxoIFCyKfsggSqOiLd7GEzJ8/H2632y9cVLBwT/OMNmLCJFL9BQApKSm4e/euX7ioYPPnz49KosIJJ0h7eztycnKwYsUKnD9/nj+eSNZFREhJSRG1MK9BOESEpKSkhMuNwL/1U05ODmw2GwCgsLAQFy5ciHHKpsadO3ewZMkS3Lp1yyvcqy0xkXKhL4mcdjECGY1fkRjIFBOFxsZGyOVyKBQKHD58ONbJmTJjY2Oizp+fW89VdonqeKxduxZVVVUAgFWrVsU4NVMnkPM34yxsphDI+RMVbGxsLCqJmiUwgUo5P8EUCgX++uuvqCRqlsAMDw8jNTXVL9xPMLVajYGBgagkahZxiAj9/f18N5cQP8FUKpVoo+Ms0YNhGFitVtFuLlELE2vWnyW6DAwMIDs72y/cS7BxeJC+bCms9v8BSLz2t5kCEQXsSPYSbB6SsWTJEsyZINhsthnXepAoXL58GVlZWaJTvERHTWk0msCjdmaJOEajMeCoNVHBtFotOjo6MA4P/wHg910Y5otYXCnHpMQLFg4AnieS4HkiySsskTAajV7jQoWIznEuLi5GZ2cn5iEZAAL+HYcH85CMeUj2E5ELD+WYEGG8QOHC84V/k+9PesVNJNE8Hg+6u7uxZs0a0eNegnF1Vk5ODubMmcN3U3BwD8A3LNIPxPeeweII4wr/TxQHymKxgGXZgJMoA0432rx5M06ePPnIHCrM7fHK+vXrkZSUxA/O8R14FE+cPHkSb7zxRsDjvGC+opSVlcFgMEi+USStbLrXPnPmDDQaDRwOB7hhfXq9Pu5Em5iYwLfffot33nknYBxeMCLCPzTBW8ry5cvx1FNP8XUZVxwKixYu3LeoFIaHckwoTKjX9q3LfP/HvCf4waYAcOjQIRQXF2PPnj3BnmFUaWtrQ25ubsDZl4BAsP8wc/Afxrt7rKKiws/KfCcZBCoOgxWVgY6JfZd6vm9Y8v1J/n9z1+944b8r/K7z4osv4vLly37hsULKrNegk9LfeusttLa24s+/R7weTrwVJY/il19+QUlJiV+4WONqrLDb7eju7sbmzZuDxgsqWIp8EcoqdyT8AswNDQ1YvXq1X7jVasULL7wQgxR5Q0RoaGhAVVXVo0esEQWfVuR0OhNuYbDa2lqqra0lIiKHwyE6zWhwcJAAUGdnZ5RT54/L5SKZTCbpGYvOwCRBHcWyLDZu3ChpWZ14xGQyiRZ95eXl0Gg0KC4ujkGqvKmvr0dFRYW05aGk5IBEW35PaGEAyOFw8MccDgcBII1GE5vE+SC2/F4gJicnpS1wqVQqUV5enlDr/A4NDfElx9KlS71mtJhMpqCTJqLJ7t27UV1dLWl5KIZhgjsdXV1d/MzG2tpa/Pzzz7BYLPxxitPmHoZhkJGRwb8k+37EHJBoIXxm7e3tuHLlCr9hgxSCrubGMAwcDgf/wvnDDz+goaEBGzZsiBvXngTDzLk0cdYTqAFVeF40Ed7T4/Hg+PHjWL9+PU6cOOEVb82aNX7dWyaTCatXrw5sYXv27IFGo/FqHdi6dSsWLVqE33//PW4E49KRlBTariSxSL/wniaTCYsXL4ZSqfSLx/WHmUwmEBFMJhOKi4sflHZilZvBYOCX/vGF22ggnrae8n0tETod8UhLSwtlZGQE3WhA+Oy5V5DBwUF/p0M4G1+s15NlWbS0tKC0tNSv+yVWxIu1S8FisWDnzp349ddfIZfLReN0dXVBr9fz9V15eTn0ej0yMzP9TYh7yXQ4HFRTUxMwB3Cb5cTLTudC4tXCfDfLCYTBYPBa2Mxut/PHvCysubkZhw8f5t3fYDm3rKwMGzduxJtvvgmPJ3F6dGPFvXv3sGXLFrz77rvYtGlT0LhNTU2w2+0gIhgMBiiVSr7k4wXjlkiYnJzkK7rnnnsuqOvOTefZvXt3GH7SzIWIsGPHDigUCtH9w4TPmBNm6dKlAB4YBvDASQEeCjY4OIiKigq8/fbb/IkOh8OrZ9ZXOCJCcnIyvv/+e5w9exZffPFFuH7fjOOzzz7D1atX/dx3Dl/vUdjF4isguLUFIWjC0Wg0IS0MyW1aKrZFVSyIdR0m9FqFm5ZKWbtLo9F4NaVxOvDfw5XIeNoWOJqCBRNBbFvgQPF9V1DlPr5tnn4zMKfKK6+8gvPnz2PTpk3o6+vDsWPHkJwcvwNzwoWwOKOHLRn37t3Dzp07YTabceXKFf7lmIK0rqxevdprK5VA8R7ZPEAhtBfm5ubCYrHAbrdj7dq1uH37tuRzExnuGTEMg5s3b2LVqlVwu924dOmSV0uG1PfFYPEeKVioL6ULFy5EW1sb8vLyUFBQMOOnLgmtwWKxYMWKFVi3bh1OnToVkfVOprUtsBgMwyA5ORmNjY34+OOPsW7dOpw9exZA/LbuTwdOrNOnT6OkpASff/45Dh48GLH7ha0OE8LlurKyMuTm5qKkpAS7du3Cvn37InG7mOLxeFBXV4cTJ07g3LlzER/YEzYLE1qPsBgtKCiA2WyG0WjEihUrcOnSpXDdMuZ0dnYiLy8PPT09sFgs0RmFNQ2PNmRaW1tJoVBQZWVlRNsgw+3W+7riLpeLSktLKSMjI+rvnhGxsEBs2rQJ/f39WLRoEXJyclBXVye6JmC8wZUYo6Oj+PDDD5GXlwelUolr167h5ZdfjmpawiaYVG8yJSUFBw8exNWrV+FyuaBSqaDX6zE6OhqupISd4eFh7Nq1C9nZ2RgfH0dvby/q6uowd+7cgOdIycBTIexeolRYlsXx48dx7do1TExMQKVSYfv27bxHGQ/89NNP2LZtG/Ly8rBgwQL09/fj6NGjkgfMRIKYCcaRlpaGo0ePwuFwoKioCPv27UN6ejo++ugjvoM0UrlVCHcPq9WK999/H8888wyOHDkCnU6HoaEhHDx4EKmpqTF/NYmIWz8VUlNTUVlZicrKSthsNnz99dcoKSmB2+2GRqOBVquFRqNBdna236Cb6WC1WmE0GvnP008/jS1btqC7u1t0vEWse7eDjpqKB4aHh9He3o5z587BaDRiZGQERUVFSE9Ph1KpxMqVK/k1mTIzM5GRkcH3OdXV1eHPP//kuyjcbjfMZjPsdjucTie6u7vBsiy0Wi10Oh10Ol3cbx8ZV4JJsZrbt2+jp6cHNpsNIyMjXgNC7XY7hoeHvaZEsSzLW8qcOXOwatUqpKenY9myZcjPz0+4ZQbjSrBIEq4iNNbE3OmIFjNBLCDOBYuF8cd7gRPXgk3FKpqbm/mxKNxQ7VDmMce7Jca1YKHAjfqyWq38pIempiYwDIPc3Ny4txzJRLXlMgJwDbMIMGBIr9fzm8Al2gZ2YiS8hTEMg+bmZgDgdzESkpuby28CF+/FnRRmhFvPMAwMBgM/6HImk/AW5jfQcoaT8II9biS8YNyEQ+G2v1wpf/36dXR1dcUkXREjxk5PWOCm5wi3BDaZTHGzUkA4mRGCEf071JlhGMlzAhKR/wO/zJ5EDh8EVgAAAABJRU5ErkJggg=="
|
<image>如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则DC的长为()
Choices:
(A) 2
(B) 5
(C) 3
(D) 1
|
1
| 10,814
| null |
1
|
"iVBORw0KGgoAAAANSUhEUgAAAKIAAABWCAYAAABM8U0UAAAWqklEQVR4nO2da1AUZ5fH/88Q10R8xaRMJalYhcpoRCBFKlImSxJRGITEvOpqSnKriJJVGX0ZBHL7gubDlm4G1ATQvGqJpcm6tRIGlxGUi5jAVlKSFIkzA3IxGOMmbJKCwWSja2bOfujppqen535jzPyqlJ7unp6nu/99znPOc2lGRIQIRZ3NUNMCMMZARGAACJkw0jksIgWIASzchYziFiKCItyF8Ifqc4RCFfDJJQuICFYiaAsZklg2TIyiIpwkcJbOKvzl/vHrOUMSYUK02n0iGHAZaqxOmpBcSXULClVtKNpWGerCRZGB91SAQvgLKETrI80iEgBJcU0NZ8EWzHXYdd78LLT2D4WmXFFcwpi8XxKvjyyLKHM+zefOIkeVM7HCZusTEpShKVMU75BGI6LPkSNEEQSAYEJTjRW5qxZNrLeJdWhoEFkLEsJTuCj2iMXHAF2lGowx7t+KQhBM2KauiAAhkt0fAJxxZKZ+MHUuFolMJQMA42mU1rTbW8oo4YNxdUCYdGCMofrKPBAR929fNhSKJNC8hAgQok1nTKxEAnTNLVgw19HqqYtXAarNKFmVFJryRXEP64UqaQ2y1Fq0VJVMrF+0GtqtKsxTzgco4rCQlYyUBVC9wTqx2ljPeeysLeErWhRZ6isKCcgkI1llt9UbrBRxQjQ0vMcJTuafVmcId/H+lFitjgITttmMRqG2nl8hy11hMNTeQwCBwBhD0l9LQVQq2cEKkCLajBIm+FQMETmka5ipH20AcpTzbSvkjxEZQmQAk5yB/Ukr0PVfXWhpaYECTMjhR/Ef8XXmm1LlBCfH3Llz8VpanEd3Y9IHK85OgrsQXEvL+JgZeXl5+N9ff8OoeZz7HpMEOFF8Qiw4XoBiYcphNpuxa9cuKJVK0KIFyAJwZXDAcUfjaVQ0GIWDRzwbNmwgtVpNvb29FBcXR83NzeEu0h2Jq7ogEdHo6ChptVqaPn06xcfH082bN4nIYgtWQO/VXxKqiAadlqDaKnw3IoTo7PStRNR4+j8pPj6exsfHiYioubmZZsyYERVjCOnt7aWCggKaNWsW5ebmikRIRGQhstqEJwoss9Rau2NEgBAtTreMmsdo9uzZ1NHRYbe+ubmZZs6Io+bmc8Eu3J+aU6dOUVZWFsXHx1NVVRVdu3aNZs+eTZ2dnV4fixFFbn/EjRs3Ytq0aaiqqnLYdvbsWaxfvx5HjhzB2rVrHbaThxXuOxlfroHZbMbhw4dRVVWFhQsXYtu2bbh48SIA4OrVq5g5cyb27t3rdVkiI2qWQa/Xo729HQaDQXb7ihUroNfr8dxzzwGAgxijIvRchESEy5cvo6KiAjqdDmvXrkVrayuOHz8uiDAtLQ0fffSR0/vhjkkfNcthNpuxZcsWHDt2DNOnT3e6X3p6OvR6PTZt2oS6uroQlnDyIydCOedYV1eH7Oxs5OTkIDU1FYODg3jwwQdx/PhxYZ/i4mJs2bIFtbW1mDp1qm/liUTXnJ+fj2nTpqG6utqj/bu6uvDcc885ddNR7OHd7wcffIDExEQ79wsA5eXl2LVrl/DZH5fME3FCPHPmDAoLC2EwGFxaQym8GPfv34/XXnstiCWMXPr6+uzcb1lZmZ3lkyMtLQ0ajQYGg8FnawhEmGs2m83YvHmzW5csR3p6Ojo6OlBUVITa2trgFDBCqaurg0qlcul+5ZC6ZH9sWkRYRL5inZ+fj9jYWNkoWbyfK3p6epCRkfGnt4zu3K8nuHPJ3gREEWERGWPQ6/U4f/48du/e7fTJc3fSRITU1FTBMh4+fDgYxZ3U9PX1oaCgAEqlEgMDA2hra8OZM2dw8eJFlJeXe3yctLQ0dHZ2Yvfu3bLbvU0NRYRFNJvNSE5OxokTJ7B06VKvvuvsgnz99dfIycnBW2+9haKiIq++Gw78LUtdXR0+/PBD9Pf3o6ysDC+//DL27dvn07GKi4uRnJyMkydPIj093ecyiQm7ED25wFKXHCiB9PX1YdmyZS7FGMkEwv3KEYgoWUrYE9ruBMW7ZHGiNFBW6pFHHsH58+exbNkyALhjxCiNftva2uySz/6QlpaGEydOwGg0BqCkE0zqOqKniWtfYYxh4cKFQt1zz549Af+NUCKNfgcGBpxGv97UB3n4KPnYsWN+pWrkCLtrdoVclBwotyw9ztDQEDIzM5Gfn+/TTQoXwXK/cgTDJfNMWosojpLFBMotS4+TkJCACxcu4OjRo9i5c2dAfiMQiO2EeLmvrw+vv/66XfS7ZMkSj0Toy4PmLkr2l0lpEf2Jkv3l6tWrWLp0KTZs2DCpBMlTV1eHgwcPYmBgAGVlZXjllVeCYqHEaDQapKSkBDRKljIphegscR2qdMrVq1eRlZWFlStXBv0me0Io3a8cwXTJPCFzzYLerY66Fz8Ler0eHR0dsi4gVDm9+Ph4dHZ2orm5GcXFxX4dy5/n3B/364zy8nK3rlm83ZVLDqQNC4JFtILTN/+XQ86a8T/Nrw+nS5Yrz8jICDIyMpCTkxNSy8i73/7+frzxxhshcb9yyCWug+WVgu6aCfJDWaU3HbB3yeFo1ZD7TV6MmZmZTtu4/Tk+j9lsxqFDh1BVVRUy9yvtziUlFC6Zx28hcheXwFs/XwWk1+uhVqu97t4VLMTnMTIyIuTmjh496vE5erKfL12vQkGgund5it91RO5CK+w+Oyrb6rBGzPj4OLZu3Rq0xLW3SAX0wAMPoKOjAz09PcjPz/f4QXO1n1zXqwMHDtiJMFT5TOnvBKLHtbcExjWL/K8zV+x8g/MoebJhNpuRkZEhWEZfvn/48GG8//77WLRoEdRqNbq7u926yGAj/f3vvvsOcXFxIa2XBiZqtglMnc2g4CdhZKLl7EKQkzkbnCWuJyNxcXGCZXz11VdhtUrm9HbyTEuj3/b2dixZsgTd3d0A4JMIA2ktr1y5gmXLlmH58uUYHR3F6dOnQ34/AtrpofocAdkMqr1WYYJ1Y0MFNC2ObooAjNvakk+cODEpXLIn8GJcuXIl1q9fj5MnTyImJgaA4zlKu15ptVrs3bsX8+bNc/kbnlhIV9sLCgowNMTNIf7999+jv78fCoUCw8PD+PbbbwEAw8PDuHr1KgDgyJEjSEhIgMViwVdffYW8vLyQuWSegEbNBBNU2TVoPVcFggmVFZexo+QRVFZcRknJmokdrQQo3Pe4dvo7kyCi/vXXX5Gbm4sHH3wQJ0+ehEKhAGPMo+Szt654+/btQu+jH3/8Eb29vWCM4YcffkBfXx8A4Pr16xgcHAQAzJo1C0lJ3ESl999/v7D80EMPYeHChQC4ei+/zGFFfv4mzJx5H/burQDAv8eGS8UxFgMiCwDugXuv/lJAJ0MNqEU0NTThkRVZAICGigOwKreAYRFKShYJVUQiAlMwNJ5x7N4lxVnuMZAi9PR40n2mT5+OpqYm5ObmIi8vD++++y4qKyvtul4lJCSAiByE+Ntvvwldz0ZHR9HT0wOAC9q++uorAMAvv/wiXJuKigo8/vjjAID77rsPjz76KIgIiYmJePHFFwHYi8/T8574AOjPNKGrqwvfGC4Jq+U8HMEEFfubbe5y+1yxPwQ0WNFVqvFPpQeEk6w3WO3egcLvO2YeQ0pKStgS13bF8VPYH3/8MdRqNX7//XcUFBRg+fLl+OabbwBwgrt48SIYY7hx4wa+/PJLAEBMTAyeeuopAMA999yDJUuWgIgQGxsrLE+fPh2LFy/2/wTdQYB53Czb41rs4QCgsrISO3bswLZt2wIeWAbUNatFT8+2bBXU51qQKGydmEwznFGyp8K7cOGCsHz+/HkAgMViwWeffQaLxYLr168L9S2As1QAkJycLFi7KVOm4OmnnwYR4a677gpahwFXODtf8fr8/HyZxLUVxob9qBmci+qS1YBRB9WBIfs5sAOI/66Z97kmHWqwFdU2CzgvJ1ckQgDgRCjX49rl4QPkir/44gvcvHkTANDZ2Ynbt28D4MY788udnZ2wWLh60BNPPCFU2J988klMnToVo6OjiI2NRVdXF5555hmcPXsW8+dzM6HeunULq1evBgC8/fbbspX9cFQrhPcUSmdytX3W65vQ2dkpuR+cyx0YGkRN6Q7U2CboLdTWB6zsDuUMTMsKg65SjRZrFqpL19htF5vx8TEzklKScfyjE8h4ZimsIOHFWNLjuaOnpwdmsxkA0N3djRs3bgAAvvzyS2H5888/x61btwAAqampiIuLA8C1GsTGxgrLfMT++OOPQ6vVCr9RXl4OxphD9PvKK68IxxIjFqNOpxPG+joTQzDw5nf4tv1//7eT+MenbNbaZliIgL+tYFheacGaJAV0e9UYSigM2tsa7IV4W6TJKd5dNLWkUsuvw4oGVJf8FXxU5qwt2Wg04ueffwYAGAwG/PTTT8J6flksvoULF+KBBx4AwLnDWbNmAQBSUlKE5cceewyVlb69k6+4uNgh+uUndHLFrVu3sG7dOoyNjaGpqcmjtFS4RgvKu2QbJh1YcQuouRrEAFNDBQaUOxzr/AHC0SLeJq9EaDpdiaRVzusN9QbC6iSgvr4e+fn5UKlW4H9+HgEjLtE7MjICxhgSEhLw8MMPAwDmz59vtzx79mwhSjxw4IDXJ+lNumT9+vV20W9ZWRkSErx7i5XFYkFeXh5GRkZw5syZkOVIvRG0Xq+HRqOB8ZIBU6b+g8OE7LqK7WhBJlc/hBVEE1MWu2ol8xW/hegJvAvIzMzEsmXLMGfOHADAnDlzfGoqk8PfZrKUlBSHcb8zZ8502M/YUIGUNWVCZsDhJTY2ODG+hB9//G+PLaOUYFlK/n646nEt5+GCiWshSl21jOum/7NyF0sqXtG++f+8EbGxsYLLnGKLkd555x3s+pd3nRZuiiiWuo0/PFp/G38I2/ll8T5iPHO/E7mySrUKJTWES9SKZAKImZDNkgAnYvzjjz/w0ksv4dq1a2hubpatVzojmO7alUs2NlQgefUb4Duq6IwE0esOJQQzjyi1iK4+e7Cs1+tRWlSCiz3d0Gq1DsJwJhTxemfL4s9ScboSY15enkPXK+ful7vYFWoVSvsTQC0HJzYRYDxdgeTVTTBYzyGJOd4Ui8WCgoIC9PT0oKOjA3FxcWGdQUKv16OoqAhGo9Ehshc8LlkAFiPywIETnDO8O7qc275N9pZSBD8u+dChQ3bRqLc4s2hy+4j3lX4vJSUFXV1dduN+Dx48KCvCiedTAWNDBUprWlG/7wDsurSJLoVd/UlETEwMjh49itTUVGRkZMBsNodNhOJx4nLpJaFULMb+sxOZBLJPtXshSl2y3PYpMq4Z3OivVatWCclhaY+RUPS3Ky4uxl/+8hfU1tbi8OHD0Gg0GB4ehlqtlq0D8ojFUlNdiiy11lZfsr9kg4PDki/KH08qxnCg0Wiwbt06mXqhZ72IHPYN4AM1cVVdic0TJN+X6961a9cuvPPOO3afPWGKi7y7+Hji5RdeeAHXr1+HUqnE4OAg2tra0NTU5FEKxm4sMUzobwFyVDmyN+jc2Spk2V7X6+4K8mJMT0/HyMiI23IEEr1e72Jcsv3D5dpiizpBB6Zo3LGEOiIvJGcRs7NoWuZ7ZrMZaamLceTIEXz66acOLtJdsCHdz5Pv8+uSkpJQ/fcafP/tNWg0GuS9+iLips1wfW6uMOnAktbItptzFftS+TZ1F2g0Gpw9exYdHR1CLjSYjI2NOR2X7L6+KtfsEPhgyvOWFS/SOnxbMh8lBxtfk8+eQOAi4xydwa5VgV/PRczFcFfLkd64UIrRZeJ6kuBZsOJGhJ6OS5bDn3piXl6e4H75cb+eul9PYViEFVszUSqeON70CWLs0jbuL6PUeuzbtw85OTnIyMjw2027siWuXPJkmlvBtUX0oMlP/KSLxyXzPVaCQUpKisO4X29ydL6gzlagpoVsnSqBeuMfWL0oxufj8detrKwMp06dQkdHB+Lj4736rjvkEteTafJRMQHtBiZ2yb60dLj6TnFxscO430BaPmeIb1wQWrYAADt37kRtbS0uXLgQUDFGgkvm8SqPKNWs1CWLo2RXInTmjuW+I3a/3ka/gUB8s/klX59cZ8/8zp07sWHDBixdulQYR+JNueRwHSVPPgJiEcfHx5GcnIzjx48HzCXz7lc869WMGTNk3x8cPrxvcXBVZt4y8sMMfMWTtuTJhtdClLuQnkbJ7tw1H/2Kx/2uXLlyEgjOP7wp/549e7Bv3z60t7cjMTHR/RdkiCSXzON1D23pBRX3uHbXjOdMhHzbr1KpxNq1a9He3m5nEXwRYbDEK3R0hef1RW86xr755pu4++67sXz5cpw/f14y0s49vEv29eWM4cIriyi9mP5GydKuV3z06+6mTYbhpBzB6wywf/9+7NmzB21tbU4to7P7wbvkSPIkftURpS7Zk0hZmnzevn07nn32WV+LcEezf/9+7N69G01NTUhNTXW7fyS6ZB6fB0/JuWRnIiwvLxfe98u739bWViiVSl9//o6HiFBUVITY2FhkZGSgo6NDEKOcpYtUl8zjk0UcHx9HUlKSRy5ZLvoNdvL5TuPYsWMoKiqyE6OYSIySpfgkRHdRcriSz3cyrsQo55IjqX4IACAPsVqtRETU2NhI8fHxdOPGDSovL6fy8nKyWq1UXl5Ovb29VFBQQLNmzaLNmzfT4OCgp4d3+J0ojtTW1lJcXBx1dnYK6xobG0mpVNLNmzfDWDL/8coiOouSA+1+KdKe5hBSV1eHTZs2Qa/XIzk5OeJdsoA3qt2wYQOp1WoiIhobGyOtVktz5syhnJwcamxsDPxjEkWWU6dOUVxcHD377LOk0WjCXZyA4LFFbGxsxPPPP4+NGzeip6cHfX19SExMRHp6Ou69916H/fkkbhTXkI/Wv7u7G01NTTAYDLJ5Rl+PGy7s0zcEELOC8ROzY6L1YHh4GPPmzUNd3X8gPf1pZGdnY+rUKQjFwJo7GW/m4xZf08WLF6OgoEA+2U2heydNoHBpEYkIYEwQY1tbG5ZnZgalK1QUDwhWP7RJACdEmRPkRUggsAh8wv4U2N03aXOjZJqQSQ5XcruycsMFGWMwNVTgtFH6ygpue9T1hhYS/hNh6y3OrZZWkRQRI0IAUDgKiq8fmqBZXQZepdJTiqSTvBNgtv/U2RNvbWCMgSkYKhuMkH2XTQTZCoWz9+Pt3VYNpsrCgiTpCSoc9o0SAmyXuvocoVAFaHUGEBEMukqUrk6GzihjGCLIVnAWUaQnftJNUmXB2gJYIYrWJLqLWsUQIsxoYsLllkyssE2mnjR/bliLFSgUjE2MTAMAmHRoIRVK5jO0qZRIhqjCG9Vd+LDdH1NDE5g6F8lgICig1qxBlvpfQzZ9XLBQSCu522pabZMzAlkLpOMmXL9TL0pwIFF0PDB0Ba3VpWCMIUbBzWHYUlUmCNUaSRVDEXYTmegq1aiuruYqwUlrAEjrgSF7z3gUEeIaUEtzDeoNVhARPtEWYk2yAjojCUJVgEVUkMIz0YRic8lEBCLCN7r3sGBugusu+yEqZBQbJh1qsFlww6t2qJEFoKW5QdiFy/9G1r0hIlsTX68OTHMOdK5G2Dg09C0Arge1s4R+ZNdKIg9dcwsKV+QIn5mpH60AcpTzJ9YxBi7EjBzvxRgDtIUqAqc1qjdwfQELVYxsDxVlqbVCDwm+r2C0z2B4KFTZ7pGVyEpGygIIyCQTWYm/I5F6b3wePGVrAYwSZIgIptOVdvNaCzNOqLbavJhMc16EtUv/P91G8GTKB0WVAAAAAElFTkSuQmCC"
|
<image>如图所示,EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于点E、F,若平行四边形ABCD的面积为12,则△AOE与△BOF的面积之和等于()
Choices:
(A) 2
(B) 3
(C) 4
(D) 无法判断
|
无法判断
| 10,815
| null |
无法判断
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAABtCAYAAAC2qhOIAAATIklEQVR4nO2dXWgbV5vH/3LiVKEXEX3bRulFLdikUdtcTJr33Shy2ahdsh47FCtdCHYpWO6FrLAsli/SdSCQFgpqKYvGF4vsUHBMLxzCZi1fRGPz7iKHfWMptGAbvLEbqUhZ2LUCS+XQFimxpWcv7JH1MZL1MTP6/IHAmtGcOZb+85znPOec56iIiNCihQK0VbsCLZqHlthaKEZLbC0UoyU2JQjyGBvqhEqlgkrViaGxIMAPYYivdsWUpSU2uQmOofNED+7gOgJEIHqAqxiAqmcV75yoduWU5WC1K9DQBMfQecIOcAE8GD6eOnx8+Dqsd9x463j+SxuRhhKb3+/H+vo6wuEwVlZWsLm5iYWFhX2vMxgM0Gg0OHv2LLRaLfR6PUwmU8X14b+1Y9HIITCcraoTeOfUO2gywwZVPcfZ1tfXsbCwgPn5eSwsLECv10Ov16OjowMMw0Cj0RQlGr/fj83NTfj9fjx9+hTr6+vw+/0wmUzo6uqCyWQCwzAl1o7HkKoHq1lWrZmpO7FFIhG43W5MTEwgHo9nCEKj0Uh2n3g8niHkeDyOgYEB9PX1QafT7V/AbhN6ykOY6JasWvUN1Qler5fMZjNptVqy2Wy0tLSk6P3X1tZodHSUdDodsSxLMzMzhS8IcGSEkbiAItWrC2pebDMzM2QymchkMu3/AysEz/NkNptJr9fT5ORknk95yAqQUURtAY+HmlGDNSs2n89HBoOBzGYzeb3ealdHlLW1NbJYLKTT6UQfBI8VBBiJ8wjSCpCH45rW2tWc2KLRKNlsNjIYDOTz+apdnaIIhUJkNpuJZVkKhUJpZwLk4axkBAgAwWhtWqEREdVUB8HtduPatWsYHh6GzWardnVKZm5uDiMjI/jkk0/Q3t4Og8EgSQilUagZsX3xxRdYWVmBy+WCVqutdnXKJh6P49SpU/j555/x0ksvIRKJSNpLrmeqPlwVj8fR398PAJiZmalroQGAWq3GRx99BAB4/vw5vvvuuyrXqHaoqmULh8Po7+/H8PAw+vr6qlUNWVCpVHj99deRSCRw8uRJ3L17t+4fpEqpmmXz+/24dOkSXC5XwwktHA5Dp9Ph2rVr6O3txS+//IIzZ87g1q1b1a5adalGr8TlcpHJZKJoNFqN28uOELaJxWKk0+koHA7Txx9/TGfOnCGWZWljY6PaVawKilu28fFxPHz4EDzPN6zjLFg2tVqN4eFhcByHu3fv4sKFC/jDH/6ADz74oCmtnKJiW1hYwOzsLFwuF9RqtZK3VpRIJJLyz2w2G9xuNyKRCBwOBxKJBK5evYr79++jv78fm5ub1a2sgigmtnA4jJGREUxPTze00ADgyZMn6OjoAICUdfvmm28AAJOTk/j+++8xNDSE3t5enDt3DnNzc9WsrnIo0VbHYjEyGAyKD55Xi76+Ppqenk69F3w3wVfb2Nggg8FAoVCINjY2iGVZslgsDevDCigiNrPZXDOD6EogNtTmdDrJbren3i8tLaU6EUREk5OTpNfried5ReuqJLKL7caNG3Tjxg25b1NTaLXanB5ntnUj2pnRYjabU+8b3crJKrbsL7NZyOedZFs3IvGHsVGtnGxi29jYIIZhmi6mFAqFSKfTiZ4Ts25ERAzD5PizgpWz2+2pprbeka03KszeaLYhGiHGJkZ2z1RgcnISg4ODGce0Wi14nkdHRwfOnTsHv98vV5WVQw4FCxH0ZmR6epr6+vryns9n3Ww2G7lcLtFr1tbWyGAw0OjoaF1bOVks25UrV+ByueQouuYpZNmAHevmcDgwMjKScdzhcGBsbAyRSCTnGr1eD5/PhyNHjtS1lZNcbG63Gzqdroylb43B06dPcfTo0YKf6evrw/r6OpaXl1PHNBoNBgYGMDY2lve60dFRTE9PY2RkBNeuXUM8Hpeq2sogtakUc3abiWJjimI99Y2NDdLpdEU1lQ6HgxiGqZup80QS90abNdSRTikPm9hn7XY7OZ3Ooq4XfDmHw1FaJauEpGIzmUw1uxJKKcQCuvnIZ920Wm1J9xwdHSWDwUBra2slXac0komtnC+p0YjFYqRWq0u6Rsy6sSxbckDX5/MRwzA1beUk6yDcunULFotFquLqkvSpRcVy48YNfPnllxnHBgYGMDU1VVI5BoMBPp8Pz549w7lz57C+vl7S9YoglWr1en3Nm3GBgMdKRuPuWk4Yych5JCnX6/WSyWQq+bps6xaLxUir1ZY9PlqrVk4Sy7a8vAy1Wg29Xi9FcTISxFinCie+Aq5PEYgIFLiOU/YedI4FKy59vxhbPrKtm1qtBsuycLvdZdWjVq2cJGKbm5sDy7JSFCUr/NAJ2MEh8GAC3UIWq+PduMoZsXjnHiqVWznNKACYzWaEw+GMuFtXVxfm5+fLrosQPHY6nejv76+JaeiSiG1+fh5dXV1SFCUf/BB6bhrBTQ1DNFva4iMEKrxF+gzdUsm2bizLSjKDV7By9+/fR3d3t+gIhWJU2g7HYjHSaDQ1PmYXIM4IglXcN/NYQTByFWcWKqcXmU627yZ1gJzn+X0yL8lLxZbN7/eDYZjaXlcQvIc7i4DVLJaVL4jHq4Dx8kVxi1cC5TajAtnWzWQyFZWmtVhYlq2qlatYbMvLy3UyDmoUz87Nfwv7ohGXL1aeirTcDoJAtu928uRJ/PTTTxXXKx2NRoPJyUkMDw8rvqSwYrFV4qcoyyIeZTtlQR5DPTdh5KZQadrbeDyOeDxe8VpYp9OZmhGi1+tl60lWxcpV2g5X6qcoheCXCXn5Ah6OjAAZ8/hxpbK2tkZ6vV6SsoTBfKVGZQRfrpzfcSfhYZ5X1ndbsdjqJ5gbIM5q3PsijNa0jJCVU25AV4ylpSViGIaIiNRqtSKdr2g0WvZiG48VlP3MBjhjTorXisUmgXFsCCYnJ8lisUhWnmDddDpdVjZLeSl9sU2AOKOVUlrzcMR5iMhjzRFgS2wSIfWSRcG6VSPda0lLCgNcmiuSJbwsSugg8BjLGtKptKvfSDx9+lTS74JhGOh0Ovz222+Kz8gVFtucP39+3/QQwXt3sHizZ3cTuBOwo8DONcWq3WPNTbP++eef0+HDh+tmtijP82QymSQPavI8T6+88goNDg5KWu7MzAy1t7fThx9+WLWguWDlLly4QO+//37Wdxcgzpi210OGlculKLEFOCtZrcaMNjgUCuXvhbReDfvKnK/nISvSm00PcQXSoe8vtsCOwyfW4zh//jypVCp68803a246ixgOh4MAkM1mk7Rcp9NJAOjixYuSluv1eunQoUP02muvVT0dg+h357HmHQIUYx+xeYizeijHXO4irP6OxWJ1MzVZDqLRKGk0GiIqHHcqJ6RXu1Ptd8abS/mfCnYQ+KHHeKvALl86nQ7hcDhnOsvXX39dqNiGI72j1D1B8FgBq2d3vhwRiALgjHmGy+qUTtUJ2BeBmz2dKHYqYH6x8UPouWlHj9DLWDy172astTppT24yx0SDeLxqhTDmz4+NIYjjuHj5clmb2VY63ioXD1IP0oOih/rExRYcw9Djq3tPZoCD0SjepdVqtRnjas1o5TJCQMF7uHPKjG4ACI7hq0dv4TiA48PDKGcnyM3NzYbJPZwhNkpu4ScPB9s//xX+5R/eRIJ2TwQeYTFPAfkGi5vJyoXD4dRkhIy40wk7Kmk7hXy7e2Lbmda+E9Pae3UO8RXPMlaEbCcO7e308pFO4h7vvM90eHOjw4USogjU6gIMqbBYLLvxp8yOVIAzltUpEMiXoCcjMhDIv9VkrZHTjNLzGDb/z4t/3G2HuyfSHd2JnKago6MDT548KSjodCt3+vTpuk2Mko89vyqARxm+7WWIztcsudx0gni8mtbZON4NsxVYzJk/VYPkyC+5TVtbLyiRTND21nPa2npOW9vblCSiZOIFbW09p+3k3mf/beZf6eO/N9NWIplVxu61W1uUdoaWln6kzr8x0ui1f6Jff/0141xuPTLvn79soa5Z9U4kMj+fSFTwXOYnNfMlT9wpwJW39ePo6GhuaxDgyJiawh4gD2cUbXFqkQJiE/5OF0uCtlM/WIK2t7fpl2iUNJpXaFu4hhJpfxMlE+k/8t45h8NB7/3pPfrL4gORaqWXkaTEtiDwAmWnRLVbX+G9INSc/0U6dqYBrYrEnQIU4Kxlr28Qi7EFOGNG7M7I1c+uzIXFRrvWLPWDbqVZta2UxfjTX79HP/74w8655JaIJRIEkHlube2/dqxcdpK75Ja4FSpYdma9930vEUJA11hgiKccf0p8IZHIWGSd+GtEeYO6KqhUu3+1HYAqmUCSCElSoU2V9rG2gzh48BD+9sO/w5///O84IJwrtNFf2jn9yZNY+I/74knuiCBaSm1sj5pC8Kv24k65rwdlzDkXX0gUwCNcRmq5xPFhXLdCkjWvSpASGyVfYDuZ3HmjylAU2tqAZGILpDqA1BlVG1TJbSRob0Et0e5xJJFICqIgoK1t57o853KT3D0HKIHUx5Dcv+wqIdc0q9nZWfT29mYe5N1YlWAVWLVIs2wqILmN7UQSbW0HMn5AVdsBqNCWadXQhgMH2kCJF/jjH9/D//zvf2PjaWT3+AEguYXt7RfYTqpwoK0t7Rrxc3r9W/jLf+5aOeP7+PGHH0CJFzuf205ip0L5rk8ikUgAICQT26B930uHXBF+t9sNs9mcdiSIsa9W91aBBYPghzrRcxOwXs+z8LrWKK61TVBiH2enlCR2+1FPCYtFe4wVIraeQdQnlHgdhdwUNVOXksmspjWXctI85SM7YXEtbyQmRzM6NTWFgYGBjGOiPuGDCQx314VN26GQEpMJIT5VXBdOjpVWa2trNb3FjtRTgOojnUV5FLRsqrZDOHjwEA62FeeCDw0NYWJiQpKHQECv1xc9H74aSO2zjY+Pw2Kx1HY6izJREUkXS4jH43j77bfh8/lk6aFFIhEMDg5Cq9XC6XTWxGyIw4cPIxqNSiaOY8eOYWlpqSEXEkm6D0K+7XKkopRVP0oQiUSg0WgkE5rb7YbBYGhIoQEotjdaPPm2y5GaWtguMX3luhQ0+h4Sku/wIrd1E6gFKyelvzY+Pg6DwVAnGaHKRC4VK/mUVsvKuVwuSVZqNct2mbJtASm2raFcZFu527dvK3JfqdKFNct2mbKJjWEYmEwmcBwn1y1ysFgs8Hq9mJ2dVSTnmBTN6MLCAsLhcHPsISG36axW/jYl8sdWGtANhULEMExNBqvlQHaxRaNRYhhG0bRP6fe2WCzEsqws/lAl6ayi0WjTLepWJN+VMLBerSdYLitXbsMQi8XIbDbXRcZOKVEsuRrP88SyrFK3y0FqK1dJCtJiVqQ1IrJ1ELJhWRZdXV0521UrhdRZssvtHHAcB7VaDZvNVtH96xHFxAYAdrsd8Xgc4+PjSt42A6myZJcztWhubg7z8/NwOp1l3bPuUdqUxmIx6uvro9HRUaVvnYPgy5XTpDmdTrLb7UV/3uVyEcuyDTl1qFgUtWzAznDW9PQ0jhw5gkuXLqVSDFQDwcqtrKyUnCKilIDulStXsLKyAp7nG3LqUNFUU+kzMzNkMpmqEhbJptQUEX19fTQ9PV3wM0K692bsDIhR9VTfwsyJWsjLW0pSw/2yeIdCITIYDE0X3ihE1cVGtGMB5EisXC7FWLlCAV2v10sMwzRVwLYYakJsRDtWRYiD1UKzup+VE/NAotEo2Ww2MplMTTMEVQo1IzYBoYfocDhqoucmZuWEXMLpCDujtPyz/CjeG90PlmWxtLSUSq9169YtxTedSEcsqWF6jM3tduP06dO4f/8+vF5vUwZri6baai9EKBQii8VCOp2OnE5n1S2dz+ejd999l15++WVqb2+nN954g8xmc0NP5ZaSmrNs6eh0OkxOTsLn8+HJkyc4duwYBgcHJd1duBTUajVeffVV/P7779ja2sKnn36KmZmZxp7KLSGSLuWTm3g8jtu3b2NqagrhcBhmsxldXV1gWVa2e/r9fszOzsLtdkOtVuOzzz6D3+9HMpmE0+ls+Nm1UlJXYksnHA7D7XZjfn4ec3NzYFkWZ8+ehcFggEajgcFgKLnM5eVlbG5uYmFhASsrK5ibmwPDMOjt7YXZbIZer5fhP2ke6lZs2czNzcHv9+Phw4fY3NyE3++HVqvNEIher8fRo0fx7Nmz1D7swI5ww+EwGIaBRqPB+fPnwTAMWJZt7uEliWkYsYkRiUQyxjuFnqRGo8nws3Q6XYVrCYIY69zZ8SQdo5XD9avDqKfcL7JSvb5Jo+Eha0YK0gBxVvF0/s1KTfdG64/0FKTHMTzhgRU38VWxmzs1OC2xSQXvxs1Tb2VlgKyjPQoUoCU2ieDdN2HNt8PG6uO6SLAsNy2xSQIP902ryG4uQTxeBZBj8ZqTltikIPgYq1Zz7q57wXu4s4j8Fq/JaIlNAoL37ojsvhfE2IAdi0YOV1taA9ASmwTw+NaOvZTxCCLIj2Go8wTs4BB4UCdp4xWgoYO6SqASyaJuNBpx6voUJlrR3AwOVrsC9U7rWS2eVjPaQjFaYmuhGP8PmgDOdSKBJYsAAAAASUVORK5CYII="
|
<image>如图,⊙O中,直径AB与弦CD相交于点E,连接BC,AD,过点C的切线与AB的延长线交于点F,若∠D=65°,则∠F的度数等于()
Choices:
(A) 30°
(B) 35°
(C) 40°
(D) 45°
|
40°
| 10,816
| null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAAJcAAABuCAYAAAAqAoGoAAAYVUlEQVR4nO1dYXAT55l+1jRJk3HPmUEM4lDrgAURFbkoQ1NE4sSklo1p4DCpp+YmauMfaV3sds49uBtnml4zU344RaT0Qohz/hG3hamZGiR6vViALpCpffWd27hpZEskduIcpFHqtJjYJA6Yfe6HvPKutJJW1kqyjJ4Zxmj3+759d79n3+/b93u/9xVIEgXcsGiuFnD4DCAAkIjg8vixZ4c17baL0m6hgHlDeq9z9X6TxKHTRFMVsN/jB0n4PS7srV0Pz1D6MhXIlUMIgqD4m0moEVkQBJBDOH+mElt3fB4AYF1Tpts1C+RaBFDTfMpjIhCHyIH/6IHQvBWfR/h40z/uhKPZhVqrEK6XBoTCnCv3IDkv7aWtngigKFx2lkCQVfE804ydew7PTrqKcOL1a9i5Xh+dU9BcCwDzHRa11SuaKysAjKpyxnsYbr8IioT7wLfwyF1LIvOtdLVOQXNlCdFapq+vD6FQCK+//jpee+01XLp0CQAwNjaGd955R1HXbDZj5cqVAIBly5bBarXCZrNhxYoV2LhxYwpCQKG1MOyB0HIaPH149vQwqgUr1rrceG5P7XxuU4FPpd1CAUlx/fp1+Hw++Hw+nD17Fn6/H3a7HUajERaLBU6nEwaDAQBgMplQVlamIGMwGMT7778PAAiFQggEAjh69CjGx8fxm9/8Bl/84hexefNmOBwOVFZWxhdEIpZIoEiAx3sGTVtqIA2dGArAJwA15jX63DgLSAhRFOdVdmJigp2dnaypqeGSJUu4ZcsWulwuDg4O6i7jwMAA29ra6HA4CIC1tbU8cuQIJycnGS29XMamKtDtD/++ziE6AAKVHIqpNT8UyKUzurq6WF9fz+LiYjqdTrrd7qzL0N3dnVAGv8dFhAdJ5b+q3brKUSCXTnjxxRdZWlrK8vJydnZ2cnJyMqPX06JRJyYm2NHRwQ0bNnDt2rVsamrS1jZJUZxJSWuroUCuNNHZ2cnPfe5zrKio4Llz5zJ2Ha0dHV0uEAiwsbGRt956KwGwrKyMXV1dUZWiW7k+f0FlKJBrnujr66PNZss4qaKhVWO1t7fTZrNx3bp1/OpXv8oVK1YwEAjQ6/XSbrfTbrdzYOD3GZW1QK4UMT4+zoaGBhqNRnZ3d+daHAW8Xi+dTicNBgMff/xxDgwM8Ac/+AEtFgsvXLigKNvZ2UmDwcDm5mZOTExkRJ4CuTRCFEV6vV4aDAa2traGv8TSnJPogbGxMX7ve9+jyWSiw+HgkSNHOD09TVEU2djYSLvdzsuXL1Mx1M2KPTExwZaWFhoMBvb29uouW4FcGnHw4EGaTCYODAxEjomiOG9TRTqYnp5mZ2cnKyoqaDKZ+OSTT3JsbExxvq6ujtu2beOHU4k/LESSvb29NBqN7Ojo0FXOArmSYHp6mg0NDdywYUPM0KIHojsyUcf29/fz8ccf5+23306n00mv1xtTZnJykhUVFXQ6nZyZmdEsx+joKK1WK5ubm1OqlwgFciXA+Pg4y8vL6XQ6OT09nRMZQqEQDx48SIvFQpvNxvb29rhzpFAoRJvNxr1795LUpoHkZSYnJ1lbW8uamhpN87Bk7RfIRfWHNDg4SJPJxLa2tqxcLxrd3d2sq6uLTLoDgUDC8iMjIzSbzXS5XGnL19raSrPZnPSayVAglwq6u7tpNBpVhx29oEawQCDAlpYWGo1G1tbWxtqj4kB6EY4cOaKbfMePH0/7GRTIFYXu7m6WlpbS7/dn5XpyK7rZbObTTz/NUCikKJNI0507d45Go5G//vWvdZdtYGCAJpNp3gQrkEuGV199lQaDIe3hQAt8Pl/EJtXQ0JCSKUAim6Rh+/v7dZFJjcQDAwNcunQpR0ZGUm6vQK5ZhEIh1bdUT1vWhQsXuG/fPl3WIJ9//nmaTKasvAhdXV00m82z9jLtKJCLYXNDeXm5LpPhaMzMzPDIkSOsqamhyWRia2trUi2QjNDxrO56Qe363//+91lTU5OSmSLvyaV8DMoFV7/HRbc/uaGzoaGBTqdTV7kGBwfZ2NhIg8HAXbt26TYnkqzumVqySYRt27axpaVFc/m8J1c8iLPOb5IzXDwcOHCAdrs9rh0rlWFxfHychw4dosViocViYXt7O8fHx1OSO941p6en+ZWvfIXbtm3j1NRUym3qgcnJSVqtVs2W/EVDrujbPNDcxKqqqiivSqVm83q9LC0tTXt4cbvdrK+vZ0lJCRsbG3X3Np2v1T0TGBkZoclkYl9fX9Kyi4Zc5Nyb5D7QRJfnBCtRydfjkCsUCtFoNCrWClPByMgIW1tbaTQaWVNTwyNHjmSk49977z2F1T3XEEWR586do8lkSjo05z25YhTzkJtNLjc55I7jthsm2NcedbK19V8Stx2l9icnJ9nZ2cny8nKWlpZy3759cbWevK7a8JHsPKmv1X2+iCdbY2Mjm5ubE9bNf3JF3XzkhofcdDSrd0pfXx9Npr/VvF7Y29vLhoaGiE0qG86Bg4ODXLlypa5Wdz0xMTFBo9GYcAqQ9+SSw+36tmLDgaP5R5FzEglnZmZotVr5y1/+ktFzMLkLzYULF9jW1kaz2Uy73c6Ojo6M+8VLyKTVXU90dHRw06ZNcc8vHnJJw+Es/B5X+HeUVpf8oNQwMzPDrq4ubtu2jUajkS0tLQojZTacA7Va3ReCoyJJbtiwIa5H7uIg15CbqGqM/BRJug98i02uk4piMzMzNJvNMcOatInBYDCwrq4uZ+7L7e3tWbO66wW3202bzaZ6Lu/J5WpyRIZBt18kxfBmz7mhMTzvGhsbi2gtURQVmxgsFgsPHjwYs2CcDUgaKNNW90zCZrOp7s/Me3JpQSAQYElJCVesWMH9+/fT6XRy6dKlkU0MuUYure56wO128+677yapHK7zklwx8w0xamolktJkXRRFjo2N8b777iMA3nPPPbObGK5mSdr4kPu6yz8WFsp8KhXYbDb29PQojuVlCKXo0EEUlMFbIACffHINP/vZz/DQQw+hvLwcH3zwAb7xjW/grbfegsFgwC233JR2iKB0MDU1herqanz605+Gx+NBcXHxnPhZiDSoFzgbJKmhoQHHjh2LOZk3SPRGS+ekTQwlJSV0Or9Or9fL8fFxlpSUcHLyMr1eL0tKSjLqZZoM0b7uZH5qKznmnvGcBs4rcqlCVG5iuPue2E0Mz7/Qzsceeyzye45gp7Mu7kKwuusN6cXYuXOnwjU7r8klbWJYtmxZwk0MDz74YIym8nq9vP322xM6B+qtTTLh676Q0NXVxdra2sjvrJJLj85KdRPD5OQkS0pKVBeVMzlERt+p3Oqe70NgPEQ/67zQXJcvX1ZsYmhra9Nsk/J6vaypqUl4PiHBZDxoqhJky0tFFAQhdv1ShTfSTprf/va3mmTOZ9jt9sjqwoImVzqbGCTs3buXhw4dSlgmFQ22f3clXZ7ZnUFi2CFx9/4TijJyfklW92AwGNPWYtRg+/bt4759+0hmkVxaH6SemxhI0mKxaFpOSUQwuezNVQ6FA6KrycGqbx9QbfOpf81fq/t80d/fT7vdTnIBaC5RFDkzM8OjR4+mtIlBqpsIly9fpsFg0CxLUg0m8xGTrtxUBcWCuYSw1f2+vLW6zxczMzMsLi7mzMxMbskl38RQX1+vu4tJf39/XA+IeFAjmETiE67dCiKF1zWVrtTxrO7RbS3GIVGCzWZjIBDIPrnGx8f57LPP0mKx8M4770x5E0MqndLZ2cmGhoaUZYynweQL4gCIamWM0bCv+wNxfd0XM6HkqK2tpdvtzt7yj8fjwa5du2A2m+H3+/GLX/wCwWAQjY2NkRjs8cCoZEhaEQwGsW7dupRl3bJlC44dO4b6+nqcOnUqfHDYg8PCbjA8lQj/O/VcpM6f//xnPPDAA7j33o34+c9/jiVLlsS0m0/LOunAYrHg/Pnzc+lZ5B2YSkIhZT0lRkdH8cQTT2DFihV44YUXsH37dvzlL39Be3s7bDab5mvMt1OCwSDWrl0b97xEEjVEE2zozVE41pSp5iwZHR3F/fffD6fTif37989L1pSgJnLUsUT9kmlYLBYEg8FU1xaTR/mN3sTwwx/+MCtfS2pDjs1mS9ulxuv18va/KeHD96jvgcy01V1+X9c5N1+LjiWvsLflePT1+XysqKiYnXNpEEa1iOyg2iaGXM8xysrK0vfqHHJTmDWaAqBnaO7UK2fVfd31vG+1lsIfEnOZLqQNwEqDrj7hvlOB3Hlgw4YNKUzoRcUfkrndxKAFRqMxqSVfKxG83pcUk3w1X/d0SaWlvqvJobplLqzJ9Eutkg4CgQAtFgs/JWWyik5oFQNZqr4nnngCJ06cwJ/+dBHr1/8dtmzZAoPBgHfffRcul0vTuBzOUqrvvCC6zb/+9a/4yU9+gptvvjluHam8lnnd9u3bsWPHDtxztw2BQABfe+zr6OnpQU9PT/rCy/D222+jp6cHS5YsQXd3N+6//34AwNDJA/jnwz64/adV72GhoLi4GJOTk/iUSn7HpLjlllvwhS98AWvW/IPieCo3mYkHEt3m1atXExILSCVnoYiysjWwrL0T/f/7P3jkkUewdOkypJtNVQ0vvfQSPvjgAwDAnj170N/fDwA4/NxeVEpZXOXaQBDw5uhbUa3MZiLLAT7zmc9gamoqN86C2ZqLQefb+9Y3w77u3d3dmtYiU71PqbzFYolM1Ddt2hjOxTM7r4qsa0ahqWpuzpXrue7ExARLSkrm5lyRrw/5eC4q/0pldh9wZ0/SNFBcXKxLMoLp6atzcd0//JAkeerUqYy56/h8vkj05t7e/w7vEfCfIAT1L1b/yf2R3U+Ke80Bx0RR5IULF2gymZQT+uEEk8Jkb06uoUYgo9HI999/P6121SLMSNfS4k2hh/NhIs0lcohfEqK/FOfMFrmANKGH/JPVfeCZSNih6AfRVKWSjy/3HyYJoSXcdaLOV/N1jy6bTZ/8A81V4T6QxBxyR2xccslzNSxGmyKK5JO+nrH/w6qiXvzxNTH85TV7/OSPvw1hbTOatlTLpm1ial8BOUBxcXF4YpkA8gm9/P+jo6MoLy+Pa3WXyqouFWUI/3ToNJrwPIQiAUVFRRCsO+H2izhzaI+iK3K1zCRdd2pqCsXFxWFmiSCIYawtfRCrzA/h3bHhcGEAGPbgtOjAKp7HavMa2SrDwt+Vdscdd+DixYsp1/vDH/6AzZs346mnnsKePXuSls8swcJfo9Jzf+50eMlKFEWQDH85ykGoLw9lGJR9qV+8eBGrVq0KM0SAgOGTPSirqcWqVWvw1sjorJzDcLT4cGjPWvQcJrbu+PyCVVZUMW2YzWacP38+pXZeeeUV1NTUoL29HY8++qjmevMhmJrMsQi/xPGeO6NNIQJAXNd0fT0h15bBYBBmszm8piEAODUqRL0FIp7+zr/jR//5b3jVfQZC81bccQ346Brx0dXwQyEZ/n0t9iFJx1M9p6Wc2nFBECK/pXPr16+H//xokscyh+PHj2PXrl04efIkHn744YRl1YiRKsG0DV+J7WiCYgQRZ9uN9cjIFNSeQzAYhNVqRZGAsIYiVwEAzKtX4Y23R+F55ju4ueqbsEDAuf/6FWqqqnHbTQJI4Labww/l4xngtpsE3HaToOjoj64xcjyVc3LIy8U7Lq8v/yvVKTVbcPHtN/HRtfjeDxJeeOEFtLS04OzZs9i4cWPS8vGIofcQmdoIl/2pitpzGBsbg8ViCVsZ/Z5nIvaTyddPEgi77oqiyKmrw7OxRckrV5VfIVeuiop/8uPR5bScm8/xeG1fuRqOZGMwGOK2JSETEWZSNVMkQ7KyUSbJnEHh5iz3rnT7RV7540lWNu0nGQ5cC4C46VYClfz9VeVKe7oESKWNeMenEpCLJNetW8dBf5DRmVKlzko3wkyiTs+WHWwhQXWDhtQZap165Wo4jEwqWkNLuXjX06Nt6f979+7lM88+Hz4oi37zyfRHCX3d9cJCiE2RLYiiqL617MpVkVOfxPoAibLzaueih0R5e6meizfsaql/5RORU7Jj0nmv18uqL/89r1ydMwxnO677jUSwTZs2qW+KTaSW5R2ZT8pb2mJ+7XqYRKFQiPfcHba6J7oPrUOUdn+wxU8w+XZ+URQJkZxzBJQeVNTzitUe2fdyTB1zMm7evJler5dvvvlmTiPMpEqwfJiDyWVMKRCJfPhZ+Lc5h+i9ge3t7dy+fXvKcd0z0bmLVYOJohgTGAbRjy8f3pZ4OOHaPbdpoWo3r3OITU0uDg4OEkDOojRHYzESTC34WxGijIUxRjFVK54IENFVcwYx4IEgCDj8dll43Y0ED1ZjiWAFVpfBZrOhuro66SK2HqDsoTDOA9JqaI1XfyHi6NGj2LlzpyL8Zs5jRaQLyc+puil2HuVqckT8n7q6ulLe2q8HbhQ7mM1mi7mPPCNX7IdE2NCr7uDoPtAUWXmIl+Ag18jnITKSJS5OooM8I5cSktZSizIzhzlChpMcPCCrvzCQzwQj55IcRGvWvCaX5Im53/26puLR2isbw8xit4PF01qiKC4Ocrk8f9RcJVFiqVwjn+xg0rUXbWIpaXOC6rA45J6dzCvnaTMzIq3WdbMPZOEZg/NJg3V0dEQWqdWQZ+SKN6FXai+/x0VU7aYYhzy9vb1cuXIlP/7444xJmg7ygWCXLl3i8uXLF3cyz6QRXyiz2Eu/STqdTra2tmZXWGo3LejtD6Y3bog0xPNFugnU9UI+2sFumATq6cDr9bK0tHRBR1teaEPkyMgITSaTprDtNzS5SNLlctFut2tOpp4L5IpgcgcAURT54Ycf0mq1sqOjQ1P9G55cJNnQ0ECn00ky+/OYhWQHSybLtm3b2NLSorm9ArkYDu9tt9sjfl4LdQ0vl3awJ598kg6HIyXP3QK5ZvHee+/RZDKpxp9fSMjFENnV1UWz2ZzyJpYbmlzR5BkcHKTBYEg/jmqGkU2CDQwM0GAwaMpoEo0bmlxq6O7uZmlpKf3+3ISKypUdTK3swMBAjDZPBQVyqUAKpqslcmCmh850CZasjXjo7u7m8uXL0yJvgVyzUBsiTSYT29raciSRNugxREbvOWhtbdUU2ywZCuRKgPHxcdrtdjY0NNwQdrDJyUnW1dXR4XDokm1t4QfZygE467tuMBhw7tw5AEB5eTkuXLiQM1kSQY/gJ6Ojo9i0aROWL18Or9eLkpKS9GVLm543CA4ePEiTyZRwLTLXpov5arDe3l6uWLFCs+VdKwrkYmpWcoPBwNbW1gWVKUSOVAg2MTHBlpYWGgyGeaV4TobCsIjY7XRMsCUsEAggFAphzZo1OH78eNI62YbWIfKnP/0pzGYzrl27hpGRkUiWDl2hO11vEPT19dFms7GioiKrO4rStYN5vV7a7Xba7XYODAwkj/uVhktPgVxp4sUXX2RpaWkMyeZjwNR7ziYnmNfr5aZNm2ixWBRb7jOJArl0QmdnJ0tLS1leXs7Ozs4FMSebmJjgd7/7XS5ZchNXr17NY8eOJalxXfH/dKleIJdOkLROV1cX6+vrWVxcTKfTSbfbrVouk3J0d3crZJj7CkxhQ4oOYgrkApmJ5ilIqgadvXz5MjweD7q6unDmzBlUVVWhsrISDocjpRTMWvC73/0OL7/8Ms6cOQOfz4fa2lrU1dVhx44dkdgNETll2c7iya4XCuTKAq5fvw6fzwefz4ezZ8/C7/fDbrfDaDTCYrHgrrvuiiSR/+xnP4vVq1cr6geDQYRCIQiCgFAohGAwCL/fj/HxcfT29uLee+/F5s2b4XA4UFlZqSTNLJmaqwUcPjPXZhEEiPgShunDXIp5EWCRbplRCuTKEfr6+nDx4kUEAgG89tpruHTpEoBwmO133nlHUdZsNmPlypUAgGXLlsFqteKuu+6CyWTCxo0bNV+zuVpA1Y9F7LAKEAAcaK7C3sMzGOLLyET6igK5bhAQw6iqPgzf6UPh8FdCWEE1Vwt4Y60LZw5JaWj0SwJaMKJmGPJ3NxfvsXTFoV/1QFgbTmQBYW7kW73GAd8bozL59KNEgVwZRrysaFm7/uxf72kvtlZvVZ4ksLps7VxZTYH/tKNArsWEOGQghuF9jti6fR0UuYQE4K3RN1C9ZlWsVpXn0J4nCuTKc8xRIn7+S2H4DQjNW7FOEBDpcgIY9mDvYR+qq78cq7XmSSw5SQvkynMIEU0U7kq5/pE62uM9g7WryhCttZpbdgLVu7FnhzWmThiJM6apyiOfBhS+Fhc3iGFUC1Y0+0XUWoWwDSxwEoJ1J1C1Gzx9WP9rztrZCuRaJFCztg+dPID1tXtnfxVBrolcHr9CY2UC/w8jdbRp70zowwAAAABJRU5ErkJggg=="
|
<image>如图,已知⊙O的半径为6,M是⊙O外一点,且OM=12,过M的直线与⊙O交于A、B,点A、B关于OM的对称点分别为C、D,AD与BC交于点P,则OP的长为()
Choices:
(A) 4
(B) 3.5
(C) 3
(D) 2.5
|
2.5
| 10,817
| null |
2.5
|
"iVBORw0KGgoAAAANSUhEUgAAAGoAAAB1CAYAAACmoXTZAAAk7klEQVR4nO2dd3wUV5bvv1WdlFAiSAQhJIFMFmAQ+RFssD3YJhqDh2jMjAM7MPbbz9vxvv283TdvZncn7O7MYD54hhkHFntsZAxjAx5jZIskoggCSUgESSAJJYRSq7uru+r90apSR6mRWgSPf5+PoLvr1k3nnnvPPfeccwW73a4IgkAwoCgKgqC0fhO9fpckB/n5lxk9emRQymu/HoLX544gCAKKogT+XHHQUJ7Pf277xC2daDQxatr3WDB9tP86CiD4L6otL1FElmVEQRAQRbHTf+r7iAKCztkYRB2IgvMPnESSrRSd/Zq/HMlBEAQnQUXfZbtW0vVze3VwTaPT6Xx+7uh9WZa9Okltm7MtMoKgtP0uCAgOG3U3LvGrTzKRJAmbzUJD3TX+/G+/4PNjF/2WqRMC618V+o5p2gEEARkFEQHQgSCDIqMIbYWgKFgriti1axe1A54EZBRFAMVJLM9R749Y3QXnwPHNdSrxRFFEQeVQtW56wvoN4+9eXMiVBBs//5e1yDiw1Bfzzhs/4Wf/9ksGbvkNaQkxAXO1P3S5FxQUZOcH5/fWqUFEcBJPVGixVvKXvxxCUkRiY6Jd3nZ2gr9GKIrS7lSkQuPqACHLshf3+Evn2UWedbXb7VzOz2fuo2kAiOgwRvZn8Y9X0XL0C7LOF/tsXyDtckWXCSUioFcEZEFBRkEQdMiyqHWE3WrhwtFsasL7MzReR1RUNIKgazdPtSP9EUp97q+z77YT2ofssu461xa5dVQqigNrSyXHPrvOqFEJqANPFAwY+iQzfpCdhrp6n7neLYd1mVCyLCMrzgqqHaQ2THZIVF3PJb9MYNHC6TTW3yFpYCKyQuva0D7BPOdpVwJ0tOjfTb7tpdOIpICzu9rekx0StTfyKJWTSUvsiaK0CRs6BESDjh7RER2WEwi6vka1QkRAVhRkRXZKKkg03ykl4xe/4JA+kZLr5yk8V8IPXoxtFXf8rwu+OtHhcHDz5k1KSkqQJImbN29iNpsxm81YrVav900mEwAmk4nIyEgMBgNxcXEMHDiQ/v37a887gttgUpxVV+vtkGyUXS4kackserb+Jigg2S1cPn+Uc9eTWD4yOaByOkKXCaV2qjodgHO02202Lh4/jtIvlWEOkYaGJqqr7ERFyog4G+8klztcpzOz2UxhYSG5ublUVFRQVVVFY2MjgiBQW1uLJEkoioJOp9PKVUe0Sjyj0ailCwsLo1evXiQkJBAWFkZ4eDgDBgxg2LBhDBgwgJCQEK/2KQ7ZKdG6iOZOLhORJCsX87IYv3AdgiC0TtcSTTcus+V3H9BrznOkJUV3tYuBoHCUy4IrOgUIm7WZM1mfk38rhJU//Rk9gTs1pfzT4iqiYtsIKviglMPh4Ny5c5w8eZKysjKqq6uprq7G4XAQGxtLXFwcoaGhDBkyBJPJRFhYGBERzulF7UybzcadO3e0/GprazGbzdy5c4e6ujqqq6tpaGigpaWF0NBQEhMTSUlJoWfPngwaNIiRI0fSv39/p6QnAB5SqYKIbLdRcf0Ce68r/G5gDAB2h4WiUwf58KMMbhqT+MnfL6ZXB9N7oAgCocTWfwUcspWGiiJ+/YcPyc3+krSVvyTG4eBm4Sne3r6Dw2dzifrP37J+7Y8ZFN3WcFmWqa2t5fjx41y8eJGzZ89SW1tLjx49iI+PZ+LEicTHxxMWFtZhbQRBwGQyERcXp/3Wr18/7bOiKDgcDqqqqqiqquLWrVvU1tZSUFCA1WolMjKStLQ0kpOTGTlyJOPHj6dHjx5a3iAjWZs5+dVOtn+wk6w8K3/e+m8A2Gw2Si7doMeIJH6yZiWPj03peve2ImhrlArF7sBmlRk2aR7D+/VAEBQcNgm7EMX3NszD1NSCQ1ZQFKdoW1BQwPHjxykoKODYsWNIkkRycjKzZ88mOTnZa73ypT1w/a1tevK9/gmCgF6vp1+/fvTr10/jwIqKCiorK6moqKCwsJAjR47Qs2dPJk2aREJCApMnT2bEiBGAiCI4id0zMY0fJco0NTW1li2QNGYOr/xkCb3F4Hat4HA4lGBuKlWxWhAUlw5s1Vy0LsSSJJGbm0t2djbnz5/nq6++IiIigtTUVG006/VtDdX2ZqLoU9pT1wf1cyDwpy6SZZnGxkaKi4u5du0atdU11Dc2MGTIEMaPH8/IkSOZPn06JpPJWW7r2iwo6toq3rXo3RFkWQ4+oVQoigNFAMXRtiG1Wq1s376ds2fPUlpaSmFhIXV1dQwYMIARI0aQkJCAwWDw0lR0xCW+0nSkt1Pf8UzvWW5jYyPl5eXcunWL+vp64uJ689RT85g7dy7Dhg1rLaOVSIKMgMFNmxEMBJVQCjJC63qlygiyArKggCxTUVHG55/v4//9359SU1Pj1MGhQ2/U0atXr4DF5UDgbyOs/q4oisadKoE66gOrZMNk0FNfX8+cOU/Qp08vJkyYyGOzZhPbyylMqKK8LMsoAuiEB4hQ3trpNilQlmWam5s5cuQI3xzKwmJuZuDAQfz2t78l9ZFhhIYYURSFFStWeOUJ3hwUCGeBUzS32WxeaQNVSXmWZbFY+PLLL4mNjeXw4cP88Y9/4Oz5C1wpKKR3XB8ef3w26emTtMGmKI7Wd4Mj8cmy3HVhQjtOQJW0nURyOByUlNzgk092UlZWRq9evfj+88uJ7xfHO++8ww/WryMqqgevv/4/qaysJC4uzuf00xF8Ec9kMnlxaKBE9oQsy9y+fZuqygp+/MYmLlw4R8rgJCZPncbRo0c5cOAAn3zyCRcuXGTJkiX0juuDiFOEDyaCJpq4Nt9qtXLixAn27NmDJEnMnTuX2bNnExYWRlVVFUajkUmTJhEREcGUKVM4cuQIixYt8srTk2i+OvluhAd/8LU2qVOjzWbjwoULjBn7KMMeGY4g6BAwYDIYmTVjJmPTxvDXv/6VzMxMKioqWLx4MWPGjPHKr9u153ej4FQUhbq6OjIyMvjzn/9MVFQUGzdu5Omnn/a5B4qIiGDlypXk5eVRVVUF0CFhgg1/UqSiKBo3FRUVsW7dOk0DoqYRRZHY2FiWLFnCK6+8gtVqZdu2bXz++edYLBY3SdS1nEC1967okFCuJ6XtQZZlysrK+MMf/sDhw4dJT09n48aNJCf713UZDAZGjhxJWloaR48eDaic7oKvciVJIi8vjyFDhjB27Fi/aXU6HWlpabzxxhukpKSwZ88e/vjHP1Jf36Y5V7cQd0sgFQFPpO2NbofDwfXr13n77be5du0aS5cuZdWqVURFRXXIFREREaxZs4ZLly5RU1MTeM2DhPYODOvr68nNzWX9+vUYDIZ23xEEgT59+vDKK6/w5JNPcuzYMbZu3UplZSXgTlzXU+VAERCh1EJ8jQhJksjPz+ett96irq6ODRs2MHv27ID2ELIso9PpePTRR0lLS+PkyZNuZd4r7vJ1witJEpcvX2bAgAFMmjRJq5Nr3V034upfaGgozzzzDOvWrSMvL48tW7ZQUlKiTZVqv3QLofxlKkkS58+f56233kKv17Np0yZGjvRtuNJep/fo0YM1a9Zw5syZe85V/k5fGxsbOXPmDGvWrNG06p5pPQUGdRCbTCamT5/Oq6++SllZGb/5zW8oKirqUj3vSoZ0HRHqiNu6dStRUVH86Ec/YvDgwX7f9dUhrgYoY8eOJSUlReOq9uwYgglPHSE4dZBXr14lMjKSmTNn+nzP80DTMx+DwcD48ePZsGEDjY2NbN68mZs3b3a6np0S9h0OB6WlpWzdupXIyEg2bdrEgAED3Crq2ghXuKpstEqIIj169GDt2rWcPXuWhoaGzlSrU/DcXymKQnNzM6dOnWLNmjU+pVVfbfK0aAInsUaNGsWmTZtobm5my5YtnZ4xRPCvcvEFWZapqKhg69atSJLExo0biY+Pd6u0ZyNc4WsEg7NRU6dOJTk5mTNnzvhM47luBWMN89wOOBwOiouLMRgMPPHEEx2+0xF0Oh2pqam8/PLLlJSU8Kc//YnGxka3NIG0Q1QTBmqVU19fz7Zt26isrGTjxo0kJiYGXOl2KyKKREZGsmbNGrKzs6mvr++wQ4JpOKr2QUtLCydPnmT58uXExsYGpQyDwUBaWhovv/wyOTk57NixA4fD4Xef5QuimjAQWK1Wdu/ezYkTJ9iwYQPDhw/vYhPcYTAYSE9PJy4ujnPnzrk989WQYEuGql2GxWLhmWeeAbo+GFRJWW3bqlWr2Lt3L5mZmW7pOjTIgfatctSCJEnixIkTfPzxx6xZs4b09HS/mXa2A9Wd/tq1a8nOzsZsNt/V+53tVPU9i8XC8ePHWbhwodt0HiyYTCZmzZrF008/ze9//3suX77s9ry9PnOjjr+E6ry9detWJk+ezIIFC9z2VL4W1852mtFoZMaMGcTFxZGbm+uWp2s9g73HkmWZ8vJybt++zXPPPRe0fDXjn9b+MplMLFq0iMTERLZu3UpdXZ2W1tcZnJaP6xd/nWs2m3nvvfcwGo384Ac/wGAwdJv4rHLVihUryMrKwmw2B1xOV4hns9k4deoUc+fO1STY7oDavpdeeonKyko+/vhjnwalrionRQlAFy9JEsePHyc7O5tNmzbRp08fTQxVF+CuEMy1kuoCq3JVWFgYubm5biK0p5QWjMHicDioqKigvLycFStWaMpXV+1DV+Bp9K/T6UhKSuKll15i9+7dbjOHWq6Xw4KvjF1VRtXV1Wzbto1nn33WS33f3rudgatXRq9evVi9ejWHDh3yMrAMNjdLksTZs2eZOnUqQ4cOdXvWXWos9ahn4sSJbNmyBYvFornYqHDzmAFvCqpsZ7FY2Lt3L5Ik8cILL3ht6HwJIXetw/LjamIymZgzZw7h4eHk5+fffU8ECFmWqamp4erVq6xdu9Zn/boLoaGhLF++nPLycvbv3++luHX77i8TRVG4cuUKGRkZbNiwgd69e2u/3wuIokifPn1YtmwZBw8e9OKqzsBX3e12OxcuXCAtLY3Ro90dz7qTSKo2IzExkRUrVvDuu+9SVlbmV3HrVzxvaWlh165dDBkyhBkzZnRbhduDylUABQUFQOcHiq/pUuWmixcvsn79+nvii+VZJ6PRyOzZs4mJiWHnzp1+03rVTJZlbDYbN27c4ODBg5qU11mbg65AFEX69evH8uXLycrKQpKkTpXvT5y32+3k5eWRlJTE+PHjg1HlgOriClEUiY6OZvXq1ezZs4fq6mqf7/lco2w2G/v27eORRx5h9OjRXZbs2kNHp54hISE8/fTTyLLc6aMCf0cZ9fX1nD17lh/+8IduB4PdCV91UU+I4+Pj2bNnj8/3NI5y1R7fuHGDffv2sW7dunYLdZXzuwuiKNK3b18WL15MZqbTT7azcK2nzWajsLCQ+Ph4pk+f3ukj8mBAPT1YsWIFO3fu9MlV2hqlEspqtZKZmUlcXBwTJkxwS9wdBAnEqSw0NJR58+bR3NzMlStXOl2W62BsaWnRjjKMRmOn8wwGVF3gxIkTiYiI4KuvvvJKI7omVu2uP/vsM1544QU3+2/w1rL7OoMJNlT/p4SEBBYuXMg333zTpdGvHmVcuXKFsLAwHnvsMe33+8lV4DzpXrRoER999JHXzOE2lNUG1NfXM3Xq1KDbUHcG6iAIDQ1l4cKFmM1miouLO52fLMuYzWaOHTvGypUriYmJ6ZThZzChSqRGo5H09HTKysq4evWqO1O4GmhYrVa+/PJLZs2aRUxMjM8M7wfRVK4aNGgQTzzxBAcPHvQ5+gPpaKcFbwmiKDJv3jy3wXi/CaXuHadMmcK+ffvc0ohq5WRZpq6ujqysLJ9Wq2qGrriXVkLg3FctXLiQ6upqSktLvdIF4r3R0tJCdnY2S5YsoWfPnm753y+4Sr4hISE89dRT7Nu3D4vFoqXRCOVwOCgsLESv1zNq1CgtQXuNuJcNVLkqJSWFuXPnkpWV5dcew993WZa5ceMGZrNZG4z3c1r3BYPBwOjRo7Hb7RQWFmq/a1Of1Wrl9OnTzJw5U9tT3M/pwBNqPcPCwli6dCmVlZVeVj3tGdYoioLVauXUqVN873vfIyEh4YEhkqvkK4oi4eHhpKena9bD4CJM2Gw2jh49yuTJk+99TQOA2hiDwUBqairTpk3zyVW+oEqr5eXl1NTUsGzZsntQ487DZDIxYcIEjh07pv2maSaqqqooLi5m9OjRAY+0+2UnHhYWxvPPP8/169cpLy/vML0gCNhsNk6fPs20adMYMmTIPahl52E0Ghk5ciSXL1/WzBFEcJ7HXLp0if79+2sLbCC4V9Oip5rJYDAwYsQIJk+e7DY9tPd+VVUVpaWlrF69Wvv9fg20jqCex0VHR2t2FRqhcnNzSU9Pf2DWJBVa3CHB+Q3F6dEXFhbCmjVruHbtmk9DfFfYbDZycnIYO3ZswILS/YbRaGTcuHHk5OQALoQqKSlh2LBhD2blRaHVH1bUPOZ0Oh3Dhw9n3Ng0jhw5AvjueDWGRVFR0X05yugsDAYDKSkpbRwlCAJ2u52SkhIGDRqkJVRtGO43RNr2eW0GizqQBcLCwlj+/dVcunRJc4RToRLNZrORm5vLI488wrhx4+5t5bsAVW2mnhiIiqIgSRJlZWWkpKR4dMj913/5g6jXYTAYGDc2jTFjxnD8+ElnHAuXuIGKonDnzh0uXLjAunXr7tlRRjCg1+tJTEzk2rVrTisk1Z1Tr9e7CRIPyhThNJUSfGrZXZ0L8vIuUl172+25zWYjPz+fgQMHMnXqVK98H9RBqOodY2JisNls1NfXI9rtdiorK+nbt6+XNjzQuHbdiY7WTJ1Ox7hx4xgyZAgnTx7XQqSqPk45OTm8+OKLXpHDHlSJD9p0qgaDgfj4eMrLyxFlWebOnTv06tXLLeGDCkVxIOPQpmhRFAkLC2PlypWcOXOG27drUBQFu91OUVERMTExzJo1yyufB2EQdgSdTkd0dDS3b99G73A4aGhoIDIy8n7Xyydk2e4ML6fosNmaOfX1br45cw1B0KEPMTF3yVpGD4hm4sSJDB48mJzTZ5g9Zy7NzY2cOnWKV199VQsT96DD81hJEJyR0pqbm51rVHNzsxbq7D5Uz8/nVog6QKal5SYf/fLXfJp5mubmFurv3KboVCa/+OV/ceHmHaIjo3jxxRc5efoUd+pquXLlGgaDiaeeeupeNSSoUKfm0NBQWlpa0KsHafePozxjxjpQQ9MoigKCTEtTGTt/+R8czWti7it/x3Ozx+KwW7h+9ms2/q//ze6sxxj1wjQGDBhIcel1vjn0NaXFN1iwYAGxsbH3qV13D9epWF2nwsPDMZvNTkI1Nzd7uUDe39NdZzwlQRCQrC1kH/iULfvy+fnvt2rBCnX6EPo+ks6c8YM4XXwdSZrIxYsXaKxvJDMzE0ERg+6/da+gSn3q1Ge1Wp3DWa/XY7fb71vFVMFAEHS4BnqSFRv1Zfn8bvMHJC97mdljk11i18o4cFBXd721UTp69uxJTEw0tdW3iYqKctvAP0xwPcy12+3odDr0qtSkOgGr1LxXnOTkXM9A8K2BrySJ6qJzHLqg45Nts5xx5VqvkVBkO7bKqxw6e53pUxIwGHRMnzaFf3zzTQqLrjJ69Ggvg39X3E8bCVe0N3OpJ9Imk8lJqPDwcK5du0ZLq8pIURTC9EGPYtounCG4W+03EEBptW+4WYFh8ERGJ0YDbQGDJauFM0f2c0E3nl/NHAXI9IiKYuOm17l9+zY9e/ZEbCde3oNApEBgsVgIDQ116voiIyNpbGwktNUv6F4Sycm9emeMO7nV3QdFU77Kih0M4NTJtpoN2G2UFpxk8469zFn6MmMTewIiCgKCTtQ0LAreusoHbaPb3n5O5agePXog6nQ6IiIi7mlsB7fKCK6xHhQ3fZ3BYCR5+HD65Z/g0MXriAjYHRbyju/nd7/bgil5Fn+/aGaby07rfSCiKIKotB6NuONh4SRoi28bFhaGXq/X07t3byoqKrwStrhoz0N1Oq/vrmlCdbp233WFYjBgkWVaHA7nMwHAO1qkTTDQZ9ijvLR4ML/96b+Sn5aM5LBzvbmJAYMf5fXnf8CjSW36STW/FocDRVGcn2WHV/kPC1RHwvj4ePQ6nY64uDgtiLvgEjlSbbTaUM/vgXz2/G6RZQRJIkQUvfJzhfq7KTqR5/7hdcp//zGNjY1IBiNDxs3lH5c+7pZOHRiu3y2y3G4ZDzLUbVNzczN9+/Z1RsAMDw+nR48elJeX068dkdZXg1u6+cxKFIz0HjSWn/3MGS/PbLcT7uO4whdBHjbiuMLhcFBZWUnv3r0xGo1t+6iBAwdy7do1rzncc8rzRKhOp/11F9SY4ooAzovBWuvzYMkFQYVq0Zuamgq0blh0Oh0JKSkUFRVpp7p3Kx11J2eZ7bJ2LtUWCN4p1d3LuH73Ena7neLiYi1imwjO8/nk5GRyLl7URHNXzvI3z6u/+5py1N89n4WIorcw0QpfwkuL3X/eFo910TMPf58fRHhaWqlhUp3XTLgQatK4cVw6e/auHcX8TXvtTYmuwoTnO1556D0vttQRpjO2PjNqOjHP8vx9flDhyhiqIJGXl6fFstWmvuTkZHQ6HSUlJV6Z3E+pyVW3p+Hh2QoFDFe1nRoPMSwsjP79+wMuHochISGMGTOGEydOAK0BBiXpvk8Z2ibWxz7r2wo1QEl6enqbTbr60Gg0Mn78eL755hsAbcP4MEwb3wa4rlFWq5Xjx48zZcoU7bkbocaNG8elS5eorq5+KGwKvg3wlFjVuExXrlxh4sSJ2u8aJVSDv4SEBDIzM7sUTP07BA5Piy+bzcbhw4cZMmSI201ybiwTFhbG/Pnz+eQT97vPv8O9gSw7b3fbu3cvzz//vNszN0IZjUYmTpxIcXExV69e/W7qu4dQFEVzdq+urvYyGPUKrNinTx/GjBnTblye7xB8KIqC2Wxmz549TJkyhejoaLfnbnEmFEUhJCSEBQsWsH//fs2d5Tt0PxRF4ebNmxw+fNhr2gMXQrlGwJ8wYQL9+vXjs88+u3c1/ZaiPT2kq8DW0tKixZ9yvVlHhZvUp0oekZGRrFy5kp07d96XG2i+TVA9YtpzYVL9i7/44guvm3VUiL4objAYmDRpEjExMXz55ZdBrfjfKjx1eardvCiKWCwWDhw4QGJiIuPHj/cdU9aXZKe6s6xcuZIPP/wwIIfm79AxHA6HF2epd2/t37/fjZs8bxcQVT8hTwqq0a769OnD9u3b3Z5/G89/uhOu7kyuF66oWvIPPviA1NRULbija1otj/Yyj4qKYt26dXz11VecPXvWzRPxO9w9PNVykiSRnZ1NTk6OFmnU77u+MlChhnuZMWMGmzdvprm5uRuq/7cJWZa5desW77zzDosXL9aO3P2hQ9WDGnzDNer9d+ga1CkvIyMDg8HA4sWLO3ynQ0KJosjAgQN58cUXycjIaDcAh+d9Hd0dxvRBRCDKbEmS+Prrr8nKyuK1114jJiamQ3VdQMo89dKradOmsXnzZp+nwJ7wd6HX3zrUyzvfe+89Fi1apF102RECIpTqSLBq1SrCw8N566233G4V87w90xN/S8Tq6IqnyspKtm3bRmpqKkuXLtWeBXTRV6AViI+P55VXXqGwsJD3339fC/zXUUy/76TEtjvn3333XZqbm3n11VfdnAcDuugrUKhS4Lp16zhw4ACffvqpX6slX4GBv+2c5XodnitUY/8dO3aQn5/Pa6+9RkJCwl3lHZB/javTl9FoZM6cOZrUEh4ezrPPPhtQYd92zvIXi8lsNmuC2Msvv9ypWwsCIpTnnU0hISHMnz+fpqYmduzYQWhoKI899pjf9enbTiBfUDnLbDaza9cuvvjiC1atWsXs2bM75R99Vx5rrp1uMplYtmwZFouF7du309LSwlNPPYVer/cirOv730ao2xCdh7VWfX09GRkZZGZmsmjRIubNm9fpMu6KUJ53R0VERLB69WoMBgMZGRk0NjayePFir3A2ru97Eu5h4LZANvme2vHa2lr++7//mxMnTrBgwQIWL17sFjf2btFlH9Dw8HBWrlxJaGgoe/fupampiaVLl/qMmw7uXPUwEKkjeE5jaiTo999/n7y8PL7//e97cVJnBmiXCaV61T///PNERESwe/duqqqqeO6559r1Sge0M5mHCa7XCnpCkiRycnL46KOPqKmpYf369cxsvWveM9jH3SJovWQymZg3bx6rV6+mtLSUzZs3c/DgwS7dTvMgwrOTVQI0NTXx2Wef8fbbbyPLMhs2bGD27NluG+CuhJ4Livu7ysomk4mZM2fSv39/duzYwfvvv8+NGzeYN2+edvWemh4enJiAHaG9etrtdsrKyti1axenT58mLS2NF154wecVsV0RpoJCKNdRpl5i//rrr5ORkUFWVhaFhYU8+eSTmonuwy79qfVvamri0KFDHDx4kIaGBp599lnmz5/vV5jqysDsloASoigSExPDqlWrSElJ4YsvviAjI4Nz584xZsyYh4aT/EGWZU6fPs2BAwcoKyujd+/eLF++vN1r2buKbo38oU6FY8aMYf/+/WRnZ5OXl8edO3c4d+4cDofjoZL8amtruXPnDh9++CFlZWXo9XqefPJJHn/8ca+gX8FGUAmlKAqKICOic4upFBsby7Jly0hPT3fatYsCW7ZsISUlhcjISEJDQwFvg44HAYLidKYzm81UVlbQ1NTE9evXmThxIk888QR9+/fTApiAu+gdzH2i4HA4lGBMRaqnuiKAoDgv+xUFZ5xy1SFaEASam5t5b/u7VJTd4tq1a1y+fFlz+UlNTe1wZKp2cv464G5vN3VNr+arfm5sbCQ/P5+cC+cx6fQMHZpK6tBhzH1sJtbaYrJyriMY9IyYOIc5wyI5fcvA9FEDUYNwBYtQsiwHh1CK4nCGFpAFnHH2wGG3UlF0hu27D6G6dSo6PWHDJ/PjZ6YjSRKXL1/m8OHDlJSUYDKZCAkJITU1laFDhzJ48GBMLsFJfJfrPXrvVo/mqv5Rb/MuKCigoKCAq1evIkkSNruVoanDmDxlAqH2erZ/ehAFB+ZmG6Io0juuD03l+YRPXs+Pnh6NKAZ3RQkqoZzTlnPqEkURh91C6YVD/J9//RW7Ciz86JlpWCULOTfz2fTav/PMlJE4R53TX/X06dMUFBQ4w3Lq9RiNRpKSkhg4cCBJSUk+xd3A6+d/OnI4HBQXF1NSUqL9r1q2RkZGMmLkaB4dN5r4vn1ovHGJN//pnykw9+Inb77J42NTcNgtXD1zkB/+3Vo2vp3H/DExCOiC6mcsy3KwxHNd6/9t64yoM9F/2CRWLZhJdVFffv7Pa6mvr+TXr8/hk8xzPDNlNIKgIIo6kpKSSEpKQpIkLl68SG5uLpcvX+bixYtcunRJ0ysmJCQQGxtLTEwM/fv3JzIykqioqADq5+S0+vp66uvruXHjBg0NDdTU1FBWVkZLSwuO1vhJ6pnbqFGjGDp0KArOeBaSxczxg5/yQZ6Znb9/0ysS5/cmj2NgYgyu11IEE90i9anEkiSJK/lHWDrnd9glK9XXcrlUFsLkp0fgZGL3FhkMBsaOHcvYsWORJImrV69y9epVrly5QmlpKU1NTciyjE7nvEVAlmXtalaDwUDfvn3d8nM4HNy6dUuzTlWJYbPZNM6y2WwkJSUxZMgQUlJSSExMBNqmTgUJRZZpKi/grQ/38sSyN5mdloRDkVvvCwFjWBiz5r9BYqyCgNBKXEW7riIYCAqhnMuCjCC2VU0RZCzWSk7szUJn/TOV2ToiIsNJmzqfhTPGtk6X/p24DQYDQ4cOZejQodraUVZWRkVFBQ0NDZSVlVFTU0NTU5MmrHiGsvNU2URHRxMbG0v//v2Jjo4mPj6efv36YTAY3JSq7o3TIdttVBadJivnJu//YqaTyAjaODMZwxk/e46zHjglX3AGigwWsYKjQhJkZ5w919/sEnU3L9MQOZNUfQPVNbXkZJlZ8Y//QHJM+yK4p0CgKn7VUe/6DNoCEN66dcstH0EQSEhI8LpP2F+Zvs6U1Gd36m8jAJHRseh0AjKKa+RUrTxnKCCdS3yM4KDrhFLQpgBX2GxW8k6dYPjaN/iXNTNovn2Vn73wIv/+691MnTacWBQ8Y/T5EmcDEXEFwXnzTXJycpea4qtsURTRiyKRPWIRFWisrwNaQ3QLCg67xO0bl2iOGUNitNB2p6+P/LqCrm+gBI//ccZPtrZUk/3ZTWb9j1EIiojO0ItBEwdTVFmDM8yHwe+tn64aZ183gXaHCsrXxZvqd0FvIn7wGCYM7cXHf/oviu+0rnl2C5fPZPKXQ+dxyM5pT6YtFHYwuSooHOU5DSt2G7WlBdwkmdFJ0dgkM4U5mXx+5AKPzt1ADG2isjpqA0V3qpz85S2Kenokjubvf/wq2979kJ/+3ERKK/f07B1LdNIEkqI935IJpvgnyLKsBKvxMgqWlkYyd/2KfX89x/GKEJbMGoNks3D1/CEae47jtQ2vMCstBZ0gdhhK+kHTA0o2C5dOfMnH+48DoDOFMWP+88weM9jtQjJwtimomgm73R4UQqmc0WJp4GDGf3CqyF2qM4WE8eTy9aQlRiMoqqqpy8V2O1yj+qufXdVO7tO3e/z2YLbx/wMPRZduikA8fwAAAABJRU5ErkJggg=="
|
<image>如图,矩形ABCD内接于⊙O,且AB=√{3},BC=1,则图中阴影部分所表示的扇形AOD的面积为()
Choices:
(A) \frac{π}{3}
(B) \frac{π}{4}
(C) \frac{π}{6}
(D) \frac{π}{8}
|
\frac{π}{6}
| 10,818
| null |
\frac{π}{6}
|
"iVBORw0KGgoAAAANSUhEUgAAAJwAAAB3CAYAAAD2OykMAAAKnUlEQVR4nO2dP2zT6hqHf7lUUJ0pY8RChlICFClj5A4NW9qzuAu0A2q7OGVqOiCBxADoSkU6g50BpWVJr4ROJCTUMjQpw1UvQxuY0qGiCEdqxVKYihhOes7y3gFS3Pxp88f+Psd+H8lqSVznlfrw+vt+dv0FiIjAMIL4l+wCGH/BwjFCYeEYobBwrqGAdLosuwjHYeFcQiE5hpeyixAAC+cCyukkVqFgaHBAdimOw8LJppzG2uASVGzJrkQILJxUCkj/MYi50TI+7Si4dll2Pc7DwkmkkPyEwaVR2WUIJcBXGiRRSCIw9tzygoY8LcHr+nGHk0E5jeSneyCiH5tpQFGuwQdnVBZONOVCGsk/BrE0Z5mRmh98MmXgU6pwAoEAAAWGuYm5AaCQDODXmdX7p1UWjhEKn1IZobBwjFBYOEYoLBwjFBZOAuvr67h58yaWl5dllyIcnqVK4NKlS/j8+TMuXLiAo6Mj2eUIhTucYL59+4a+vj4AwJUrVyRXIx4WTiDfvn3D+Pg4Xr16hUqlgu/fv+PLly+yyxIKCyeIqmy6riMajaK/vx+6ruPu3buySxMKCyeAWtmqqKqK/f19bG9vS6tNOMQ4yuHhIcXjcSqVSg3fLxaLFIvFxBYlEe5wDtKss1mJxWIIhUJYXV0VWps0ZBvvVc7qbFZ2d3cpGo1SpVJxvjDJcIdzgFY6m5VIJIJ4PI7FxUXni5ONbOO9RjudzcrBwQFFIhE6PDx0pC63wB3ORvb39zE6OtpyZ7MSCoWQTCbx+PFjZ4pzCXxpyyb29/cxMzODTCaDSCTS0TGOjo5w9epVFItFhEIhmyt0B9zhbKAqWzab7Vg2AL4Ig1m4LrHKFg6Huz6e58Ng2YPIXmZvb4/i8Tjt7e3Zelwvh8Hc4TrE7s5mxdNhsGzjncckQwEBJzdFMyhvdnZEpzqbFa+GwT4QjogoT5qikFEVzDTJ0ECARvk2jyRCtiqpVIp0XXf8c0TiI+EMMmtfA0gxWm9zImUj8mYY7I8xXGEVz4cGcfJxf6NQNWDrg9nSIZwcszXDk2GwbONFkNdAWoNzZ14Doa7z1VMqlSgWiwnrbFYqlQqFw2E6ODgQ/tlO4APh8qQ1HKv9nEw0MtFCqVSieDwu9Re+srJCqqpK+3w78b5wpkFKI6lMgxQ07nxVqrK5YQwVjUbbviHAjXheONNQGkwMfna3JqfTXC5Hz549c41sRN4Jgz0uXJ40WOIQMsnMG6SdIRt+ZnVra2sCaz0bVVVpZWVFdhld4WnhgAaBr6KQdkri+/Tp0+N9z58/T4lEgjKZjJQJQy1eCIP59iQL29vbmJ+fx507d3Dx4kUkEgmsr6/j9evXWF9fRzAYRCKRwO3bt9u+380u5ufncenSJaRSKSmf3zWyjXcLrUwQSqUSLSwsUDQapVAoRNPT07SysiK04/R6GMzCUWez0YODA8pms6SqKgWDQVJVlTKZjJD4RNd1SqVSjn+OE/heODuij0qlQisrKzQ7O0uhUIii0SgtLCw4FmP0chjsa+E2NjYciT5KpRLdv3+fotEohcNhmp2dtX122WkYnNfqJ1LV7YwM3BZ8K1yhUKBEIuH4WGhvb48ymQypqkr9/f00MTFB2WzWlu7UaRhcf6nPJMN6N42D+FK4QqFAqqoKjxcqlQrlcjmanp6mUChEsViMdF2n3d3djo7XWRhskqH8utSXN37kkaZhtH2rVif4TjhZsjWiWCxSKpWiSCRC4XCYUqkUbWxstHWMtsNg66W+Zpf9HMRXwrlJtlr29vZI13WKx+MUDAZpYmKCcrncmaf8dsNg01BOBuEizqMWfCOcm2Wr5fDwkHK5HE1MTFAwGKR4PE66rje92tH6ncEnx2qmoQiZKFjxhXC9JFsjNjY2KJVKUTgcpkgkQqlUiorF4vH7rYfBJ2/VEjVus+J54Xpdtlp2d3dJ13WKxWLHVztyuRw9efKERkZGTh/P5bWG9/+ZhiZkhkrkceG8Jlst1asdExMT1NfXdzwuazzr/XFLVm0cYhpaS3c924VnhfO6bLXouk4A6Ny5cw0zPqVJ2Ct64uBJ4XK5nK9kq1Iqlej69euuvjPYc7cnLS8v482bN8hms+jv75ddjnDevXuH+fl5FItF2aU05MSfCf79z1/HWy+yvLyMt2/fIpfL+VI2wP2PiajrcH//8xcunP9NVj0dU5Utm83KLkU6Hz9+xOTkJIrFouv+43niD6FZtpO4+ZnBp3Y466n1wvnf6v5t3ae2Kzbat5X3WtnP+nruz5fHslVrt9bUqx27W758+YKbN2+iWCwiGAzKLueYUztc9RfV7Gv1l1kro/X1dt6zYt2v2eu5P1/if2//eyyb9X3r9706Ju0Gtz4moq1TaqNuIWKS0ahDVU+jS0tLJ/ax7uvHzmZldnYWq6urrlpA7kzhzuoQ1m4lCh6ztYYbnxl8LFy3XcrJLmc99osXL1i2NnDbM4OPJw3NBv9Vmg2+7Zw01H5G7bEXFxfx/v17LC49q/v5ZhOc2u/9iJvC4JavNMie7T169Ahfv35FJpORVkMvMz4+jqmpKaiqKrWOloRzg2zWr0z7uCUMPnXS4IbLXCybPbglDHb1xXuWzV7cEAa79tIWy2Y/bgiDXdnhWDbnkL2AnOs6HMvmLLLDYFcJx7KJQWYY7BrhWDaxZDIZKV3OFcI9ePAAAMsmEll3BkufNMzMzODKlSu4f/++zDJ8iYwwWGqHm5mZwcjICMsmCRlhsLQOV5VtenpaxsczPxEdBkvpcCybexAdBgvvcCyb+xAZBgvtcCybOxEZBgsTjmVzN6LCYCHCsWy9gYgw2HHhWLbeQUQY7OikgWXrPZwOgx3pcEdHRxgdHWXZehCnw2DbO9zR0REmJyeRTCaRSCTsPDQjCCfDYFs7HMvmDZwMg23rcCybt3AqDLalw7Fs3sOpMLhr4Vg27+JIGNzNA4IrlQqpqkqFQqGbwzAuprMF5JrTcYfjzuYPbA+DO7GUO5u/aHcBudNoq8Otr69jZGQEw8PD3Nl8RCQSQTgcxo0bN7C8vNzdwdqxMxwON13NhDd/bP39/Y3lMPNkaNWlMRXSDJMor9WtVthWh0smkwB+PMqTfqxiw5tPtoWFBQBofKmynMbw5TG8xEOYRCDaxD1MITC2g2uXT+4q/a+2mB6nnMbw5RRgmNicG7C8UUByeBXq5hJGLa/2CS6P8RiFP1LYUgyYJ2QDgMu4NnQNNQ2OOxzTDQUkA2PYqetuzWkyhisjPRxAIHByG04WULaxXKbHKX/CDoChwdZkA5oKN4C5TUJeA7T8z4GjmcfQ8zFMpVk5xopSNzE4jVNmqWV82rEcbGAUqgZsfTC7Ko/xEAODGMIWXq7VN6FyocnZkJphGqQcL01tUt5QCNCofsV0xs/ktR+5m5GvriptUt4wqNki002FMw3lROCnGHlh66IzvYRJeUP7tcS5ojWVjajpitBlpIengP9sYm4Ap2QtDNMeTcZwJj7gFn6vujUwh4casPVyjWepTFc0Fq6wip1bv4N7GWM3DYQrI/3vHdyqtrdyGYXkMMaeA9rDOZaQ6Yq6MdxwIICt2r0UDcbDe5gbZd2Y7uBLW4xQXPFQacY/sHCMUP4PyDIGmZesQQsAAAAASUVORK5CYII="
|
<image>如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 10,819
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAHgAAAB0CAYAAABOpvapAAAQnElEQVR4nO2dS2wb13rH/2PHCQEn0MQI7uVOAzROxnnU04ukHskBNAoCmHJbaNxb3NArjRdXooqiooEEoIACitoAjFG0pFAUdG6DK6sbCQ4KSouINLoQubDJZFExjWExoS5IuwvK3VBGEZC2ZX1dkEPxMZT4mOGMaP0AAeI8znzk/3znNed8hyEiwhE9yzGzDTjCWI4E7nGOBO5xjgTWnRDm5jbNNqLMkcA6E5q4iJtmG1HBkcA6sjl3Hp/fHcQ7b7xutilljgTWi805/CMW8Hfv3DHbkiqOBNaFECbGgE+ngJ/uDuKt02bbs8eRwDoQmliGfHsK1imY92B6ZSQrEolUfU4kEtje3obNZoMoilXnRFGEzWbT58GhCTAXf1dxYByr9CVG9Em9Y14w24BWicfjiEQiuH//PpLJZFlISZKqrhMEAX19fXj06BFmZ2fr0gCKQnMch/7+fkiSVJfGgWzO4fyyDKIv9z6PARYqoa0vcDKZRDgcRjQaRTgchiAIkCQJZ8+exccffwxBEMCybMvpFgoFxONxZDIZZDIZzM7OYnh4GA6HA0NDQ3A4HBAEoXECJTEXblf4auoe7uCtlm0xFLIguVyOAoEA8TxPPM+T2+2mYDBI+Xze8GeHQiHyeDwkCAJxHEder5fS6XTddQAIGCR/qvh5dRylYyBgnFYNt7Q5LCXw2toaOZ1OYlmWXC4XbWxsmGpPOp0mj8dDHMeRw+Gg+fl5U+1pB0sIHAwGSRRFkiSJFhcXzTZHk1AoRIqiEMdxh0poUwUOBoMkCALJskyxWMxMU5omnU6Toihkt9vp8uXLZptzIKYIvLGxQZIkkSzLtL6+boYJHfPRRx/Rq6++SqdPn7Z05uyqwPl8vtyAWVtb6+ajdWV9fZ0EQaB0Ok1vvvkmvffee6QoCmWzWbNNq6NrI1nxeBxnzpxBX18fYrFY631OCzE7O4uZmRlwHAe/34/XXnsNQ0NDGB4extLSktnmVdONXOT1ekkURUvm8FZRvbeSmZkZmpmZoVwuR06nk1wuV1e6dM1gqMC5XI4cDgd5PB4jH9NVRFHUrHMdDgeFQiEiIgoEAiSKoundPCIDBd7Y2CBBEMpfuhcIBoMky7LmuVwuV66XiYqeLoqi6d/fEIHVL6c1AnSYEQRh31Z/LBYjSZLKxXMulyNZlk3t2+sucCgUIlEUKZfL6Z20qeznvZXMz8+Toijlz/l8npxOJwUCASPNa4iuAs/Pz5Msy5ZpYOhFPp8nURSb7rMrilI32uVyuWhmZkZ32w5CN4FDoVBPiktE5PP5yO12N319Pp8nSZLqGmNut5t8Pp/O1u2PLgKrdW4vipvP54njuJa7eOl0mgRBqKuqtLzbSDoWeGNjoyfrXJVWvbcSrXo7n8+TLMtda113JHA2m+3J1rJKu95biToIUpuuVhFuBB0JLEnSoR5TPgiPx0Ner7fjdLR+p0ZFuN60LbBWzuwlstkscRynS7uidhBEpdmuVye0JfDa2hpJkqS3LZZC7xZv7SCIUc+ppWWB9aiXrI6e3ltJIBAgl8tVdSyfz5MgCIaNW7cssBl9uW7jcrkMG3nS6iYZWSK2JHAv93dVtF4H6kmjUTGn02nImHVLAjd6VdZLyLJMwWDQ0GdotaCNqhaaFrgbLT6zMdp7K9H6PTsZVGlE0wIf9KqsF+iG91ZS29U0ogHblMDPg/eGQiFyOBxdf27tIIjeXtyUwM+D95r1HWuHe/P5PLEsq1tdfOCsyuXlZXAct/9CrEOOmd/RbrfD5/PhypUrKBQKsNlsUBQF169f1+cBB+WAyslkvYoVSqjKojmbzZLdbj/gjhT5B/cWvA36U0Sr4zRes+ptXw/e2tpCIpGAw+HQJzdZkKWlJfA8b3oJ5Xa7sb29jRs3bsBut0MQBITDYe2LN+dwnjmNm79JgYrVLBYwBubi3frwEfvlEa/X21NTXmux2rBr5bDl4uIiOZ3O+otSfhpUPbaKVRrXWLa6r8A8z1tibq9RGNHv7BR1EGRra4vsdnvd68TVcRAG/VQrL1GK/OP1xxsKHIvFSBRFPWy2JFbz3krUbmn9mPgqjWt6b2Ma1sHhcBgXLlzQsZaxFtevX4csy7Db7WabUocsy+B5Hj///DNu3bq1d2LzJ9wFWgu01kj5Xp6tkc1mied5y88j++CDD+jll1/eO5Dy02BF2Ihm0PTgQqGARCJRF36oV7h27RomJibaCt7STb7++ms8efIEKysrxQOvv4F3cAc3v6kPdro5N4eQViJaqvfyjA2j3toYxalTp+iTTz4pfy4Ge6n24pR/sGG9rOnBkUgEQ0NDOuZF63Dt2jVMTU3pFwjNQLa3t/H48WNsbu557MiXhJQfcJ9mwDDFvzEs4PaUdr2sGSfrxx9/xOjoqCFGm0kmk0E4HMb6+rrZpjRFIpHA22+/jWQyWXX89anboKnm0tD04GQyCZ7nOzbQaly9ehVer/dQeC9QjIrw4Ycf1gncCs+NwIlEAplMBrIsm21K03z77bc4d+4ceJ5vW+Q6gbe2tsCy7KHJ5c2ixtU4TMTjcYiiqK/AR95rDTKZDGw2G+x2OziOQyaTaSudOoHVd5K9xOTkJAKBgNlmtEQikSi/4err68P29nZb6WgW0VYcvmuX5eVl2O32QzdoE41Gdemq9nzE98NY9wJ79S8AcByH+/fvt5VOz3pwOBzGu+++i2PHjpn+Mr9VCoUCksmkLnZXCUwg5J/t4MWXT+IpEXY6Tt5gQhPl0RyGYcBM7I3GTk5O4u7du/jhhx9MNLA9kskkOI7TpS1UJTADBszOLgDCMYaxcDj4TcydZ8B8/hZSpSkrRKsY/91FnC/tOjYxMQEAOHXqFG7cuGGira0TiUR0C/VYV0RzXD8e/M8DXRI3itDEabjhR6pqp5MRfOofxJ2b32ATgMfjAREhk8kgGo1icnIShULBPKNb4Pvvv8fZs2d1SWufRhZhhwhPS3/F6XtUU3TvXbNzwL3NnWviutAk/nJlGL5//1v0l48Xr9058SJO/FcSP1bcZ7O9hH/7/e/x7q/+BBdH/7zt/mQ3qWxgAZ21i+oEZlkWj7YfAWDwAgMwAF5gGDBA+a9YdBN2CDjOMDjBACDCs4rjDMPgRKmY3ynv3LPfuUqqrzsGlNLehP+fb+KZ/Cncf1R5f9HWP2zcw4sfvIXTJZsYAE9LNv71b3+Lf/j7z/HrS5caz1a0ANvb29ja2qoabCoUCnjppZfaSq9e4D4W2//3qPSJwXGmRgSGKf9LQMnLyrtRlI8fq7icafJcJQTgeOn/42p7YDOE//jvp7gyOqJx/x+QSu5A+IsRvFH5BUuZEwDO/ek5/OfaGubm5vDZZ581+EnMpdZ7AeDx48dtN7jqBLbbf4n/ffhwT4TS3zMAz2jvR1c5UfKyEwY0yjSLb+ZXOKO1MVHonzD9wx/jry7uP1+pj2URChVb2yMjI22PEBlFPB7HuXPnqo5lMhlwHNdeguqb/93dXXqyu0tEu2T7xSu0WzErYJeK555WzRXYpadVx3ZL99QfL6Z70Lkm0k7N0flf/oLGQ7X3r9K47RU6/68p2qlJo/Hn4oIzK6xqqERrJUknNu4JXPqxnuzu0pkztfOhiz9OvRR79zypOl+8vv74fue0xa+9bnXiFbJ99C+0oR5P+WkQJ8n2N6GKa2uf0diedDpNoiiaFiy0FpZl6yYD2my2tqcYac7Jql8nW53zzaV6TU7t/KR2yOfz5HK5SFEUU+dqbWxsEM/zVceaW6fUGM1uUu3rKWvtXvk6pm5TeU0O0W00mI7UNDabDYFAoLzvglldKa0GVuVbpXbQFHhoaAjRaBRU6ks+A1PXuOpFFEVBIBDApUuXsLy83PXnaw1waDW6WkLLrXO5HLEs23axcNhRI7V3e+GdVmOq0wUImh7Msiw4jkMikWg/5xxiWJZFMBhEX18fhoeHu9KVKhQKyGQydQMcnS5AaDhUKUlS3abLzxsejwczMzMYGBgo7zlsFPF4HIIgVA1oaB1rlYYCX7hwoXrh03OKJElYW1vD9PS0fmEVNNBqTOmyAKFR2W3l5ZVmoHalnE6nIV0prRBOHMd1HIu7oQfbbDbIsmy9rdpMQu1KjY6OYmBgoKPJ6FrUenAkEgHHce0PUarsp343I78dJtRtDPQKmqY1mKHX3g4HRtmx2litVVC7UnqEgKgNNKdnrKwDZ1WOjY1hYWGhs2KiB1G7Uv39/RgYGMDW1lbbaalLVFSWlpYgy7I+89MPygFHja2DicViJAhC25F4awcz9Cw1mwplaMVoNFZDDUnYTrD0yjdIescFbUrgIy9uHrfbTU6ns+n4H7UNWb3bPE2tbLDZbJiamsK1a9c6rxN6HJ/Ph9HRUYyMjDTVlap8g2RIzMxmc8KRF7eGun/yQWH61e6QUZtzNL02yWazwefzYXJyUr/c1cPwPI9YLIaVlRVcvXq14ZxsdYDD7/fD4XDov3S31RzxPESf1Rufz0eSJNWVfuprWSMj/7QssFr0HJYwRFYhFosRz/NV3SE1XJWRWwm0vHyU53mMjY1henpa36KkxxFFEbFYDLOzs/jiiy8AFBtYJ0+eBMuyhkUfYIg0lxYcyKVLlzA2NnaowiJYhenpaSSTSeRyOTx48AD37t0zLqpCu67faMPFI5rj5s2bdPz4cfruu+8MfU7bK/xZlkUgEMDly5f1zG/PDaurq/jqq6/w/vvvG/qcjkI4iKKIiYkJXLlyRS97ngv8fj9YloWifFBc58zU/J2fQ3240TbRoxjo9dD/ejI/P0+KolQdWx1HxWYarQf93g9dgrB4PB4AKLcOj9AmHA5jZWWlJqTTJn66O1ixmcYI5HHgzr2UPg/VJZuUUBSl57eebZdQKESyLNePH6T8NFixB0PKP0jQ2FyjXXQVmKj4NqWXt35vh/n5eW1xSRW0Zv8jHdE9TpbP5wOAo4ZXCb/fj2g0isXFRY2+7ia+uQn4U6V1VsVA0OVAMrqga3apYH5+nhwOh+X3RTAKdZrt/hMlVmm8ZoucxtvmtIdhke4URcHU1FRXVgVYjWQyieHhYZw9e7ZcomkSWsbd3/wZOlwcuT86ZZSGqFNZvF6v0Y+yBIuLi5pbuNeTIv9g9drm4n4MqNt/sBMMF1jF4/GQJEk9u5NaNpslp9PZ9HSdQaCqcQWdFrPX0jWBiYqvx3ieJ4/H01N1s9frJZ7nD5y9YQZdjTYrSRI2NjbQ19eHgYGBQ78sZnl5GWfOnMGjR48Qi8XgdDrNNqkes3KWWqRxHKfLEo1uEgwGSRAEkmXZ8lWOaQKrpNNpUhSF7HY7+Xw+Sxfdi4uLZWEPy3Ie0wVWyWaz5Ha7yW63k6Ioltk3cX19nVwuF7EsS06n89AIq9L2jA6jKBQKWFpawsLCAjKZDJxOJy5cuKBbeN1miMfjiEQiWFhYgM1mw8TEBJxOp+X3OtTCcgJXkslksLS0hFu3biEej0OSJAwNDUEURQiCoMsPXigUEI/HkUgkEI1GEQ6HIQgCJEnC2NjYod+BxtICV1IoFBCJRBCNRsuCFAoFiKIIjuPQ399fvlbL2+PxeHlu8sOHD5FMJqvSEAQBQ0NDcDgcPbXrzKERWAvV+zKZTFXwsmg0WnetKIrlkLx2ux08z+tWCliZQy3wEQfT89vqPO8cCdzj/D8n7TzSQ02v5wAAAABJRU5ErkJggg=="
|
<image>如图,已知∠AOB的度数为100°,则∠ACB的度数为()
Choices:
(A) 110°
(B) 120°
(C) 130°
(D) 140°
|
130°
| 10,820
| null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAAB6CAYAAAB9RzejAAAZ80lEQVR4nO2df1CTV7rHv2/Sls40behO2mV34qIQxnhlZuNiK1PoICUqa/nlaIuueHFvqcHaO8WVKL0Xrzo6W6q40h17BXFHHPXWndrBH3gVgtvQizM66NId6QVvEsTFmcVCCyx0itvkfe4fIW/yJm9CEt6EBP3MZJL3nPOec3Kec57z+xyGiAgzABGBYZig7dva2jA0NITbt2+jp6cHAwMDnN2tW7cwPj7OPcvlcmg0Gu55zpw5SExMhEajwQsvvIC0tLTp/ZkogolUgbvS09ODtrY2tLa2wmg0YmhoCKmpqVAoFEhJScG8efMwd+5czr1Go4FcLueeh4aG8NVXX3HPJpMJ9+/fx40bNzA4OIhbt25BoVAgKysLWq0WmZmZSExMnDLOgfyHSGHGBO4Lm82Gs2fPoqmpCUajEVarFVqtFllZWcjMzER8fLzoYd67dw8GgwGtra24evUqnnnmGWRmZiInJwerV6/m3EWjkHlQBMCyLBERtbe3U0lJCcnlckpJSaGamhq6ffv2tPwMls7OTqqurqaFCxeSQqEgnU5HHR0dYQs/VMy4wMfGxqi6upri4+MpPj6eKisryWw289xMJ/GCfdf1ve7ubiovLyelUkkqlYpqampoYmIiYoXqixkT+NjYGFVVVZFCoaCCggJqb28XdCdWorIsK4pfra2tlJ2dTXFxcZzgo4mwC9xV0EVFRdTd3R3uKAgSaGbo7OykNWvWRJ3gwyrwxsZGUiqVVFRURH19fSEPLxwqt7u7m958801SqVR05cqVkIc3XfgCd0kflmVJrOTq6+uj7Oxs0mg0dP36dZF8jSyMRiOp1WoqKCiggYGBmY6OVyS8Jrtbb4Oxt+J9tPHZKXsBu3btwuLFi6HVatHZ2YklS5YE3pWIAjIyMtDV1YXFixcjOTkZBw8eFHTnOz3DgHsOKM8FARICwH1qDSanA5vvcu9Qo4ODg6TVakmr1UZ0jg8F/f39lJ6eTgUFBTQyMjLT0eHBCZxlWU6l6/OcQja1HCEA1GIWfF+Q9vZ2UiqVtG/fPtFax9HGDz/8QBUVFaRSqQLqv4cauFfULJkol8khE9nsz+bmgAReXV1NcXFxZDQanX4+ggJ30NTURHFxcVRbW8uZzWR6eDTazIZaytteRzQpcH0eJp+nRqfTUWpq6iOnwqcSYF9fH2k0GqqoqAhTjLzDEzhLRC1Hy3n1t7Nk2/gOWafZxMQEFRQUUHZ2No2Pj/sM8FEt7cPDw5Senk5FRUVktVpnLB4S15Y2A8DQVI0WM4GI0HK0HCtUDAwWAJCAc8vYP0QMRkdHsWLFCsTExKCpqQnPPPOMz0ZiVE88TAO5XI7W1laMjIygoKCAN30bVuxytxGxk/V1fjmXG1gyUQ4D0tc1C+aWkZER0mg0pNPpHtmSGyhWq5WKioooNTWVxsbGwh7+ZD9cAjBA658M0K9c5swNll40kQSqeQl2Be/CxMQE8vPzkZaWhtra2ke25AaKVCrFyZMnoVarsW7dOthstvBGwFX6+jyQwWL/zZKJ8gACcp0tdpdSvPqNNVRYWBi+rDnLsFqtlJOTQ2+99RbPPNSaEjZiub4292Emv/P1gi/pdDrSarX0/fffhzRys52xsTFasmQJ7dq1K2xhgtf6pqlzmF6vp6eeeoq+/fbbUMZr1jBVeg4ODpJaraZTp075/c50YFiWJX/r3y+//BK5ublY8tLLmBOvxKFDH4Wwsnl0sFgsSE9PR3t7u+BaOlGZOk/YNcDY2BipVCq6fPkyDQ0NUVxcnNdFC48JnDNnzpBGown5vLqgwB0qxVWxFBYWkk6n454bGxtJpVJFzcR/pCCkrh1m7mkcCvxaAFFfXy+Y+4qKiqisrIxn9rg/HjwOLXr27FnOTOz0nFLgAwMDFBcXJ7gUaXBwkOLi4mbtooZww7IsdXR0kFKpDNm06pQCLy4uFhz0d+S8s2fPklqtfqzaRUSn09HWrVtD4rdPgRuNRlIqlVMKc82aNaTXO/vsj9X69BgeHqa4uDi6efOm6H57FbjVaqWFCxfSZ599NqUnj1W7+NTX11Nqaqro/noV+EcffUTZ2dl+e/RYtYtPamoqNTQ0eJhPR4MKCtxqtZJSqaTOzs6APFuzZk1ETPJHOw6BOlbCiomgwBsaGigjIyNgz/72t79RXFxcRK3himZYliWNRkONjY2i+clfxEj20q1SqXhr0gLh1KlTtHDhwseqXSQaGxtJo9GI5h+3Lt0xnn7x4kXI5XJkZGQENVS7fv16JCUlYd++feKM/T7iOFbHtLW1ieOhew5IT0/njfQEg2Ow5rFqnz4sy1J9fT3l5OSI4h8cnhLZV1cqFAqyWq3T7kufPn16StX+uL/uH2NjYySXy2lwcHDafkkApzo/fvw4ioqKIJVKp605fvWrXyEpKQkffPDBtP161JHJZFi1ahVOnz49fc9cpa9WqwPuirnjWmr7+/tJoVBM28/H2Lto7gMxwWhITuDXr18PujXoK+CGhgbSaDQzuhZ7thAfHz/t/fRcK/3MmTNYu3ZtUFrC14qZ4uJiKJVK7N27Nyi/H+Nkw4YN01frRPYSqlarQzYW7lDtf/7zn4N420a+Nqp7aBfWh10U4vofrly5IjC+bqNAAJG9GyWTyTi1G4qECla18+PiuVza/3ejn7GxMYqJifG5gWGqfywBgM8//xzp6elc6zwUmwqKi4sRFxeHqqqqgN7jx0XiMPRrY/1s2xwhk8mwaNEiXLt2TdCe4HGmgwv2bWISADAajVi6dKnoEXSnvr4eNTU1vFMR/cFdtAwA+CPMiDtycPosXboURqNR0M6RItvzGTCMFAzDcJ/8HcfslkTktf4OhUqsr6+nlJQUQdXuLbzZppqng6Me37Vrl9sGBn5dfmT769yhDo5dRPqjl0ny8OFDmEwmvPTSS545JgQqsaSkBM8//7ygavcWHsOpcOdOV7OhlpeDC7Yf5eyIaFaWbgBITU1FZ2enhzlxu3vtadTbLUGW1r4nkIEKv9yeizvmv0JiNpsxb948SCT8831IpMNn3P0hIhw/fpxT7f6GY88MEoCA2h15SFr+3zCRDSzLgiUT2AM65O+wC50B46syi2rkcjmeffZZ/P3vf+cVEAYOoUtAlhYcYNRQTW4SBQF9PRcxP3EuJCaTCWq12sNjsUq3uz8Mw0CpVOKDDz5AcXExWJadUuiutnXv52PznQUgugAVJPYSDhV+11KHC/ubYAY7a4UN2AuMWq3G8PCwM90mvxx/u/VPBuhf13L2tRV5+PBCLjZt0kJy584dqFSqsEe8pKQEMpkMNTU1U2Yuh6259T9R+uEFtBz80MMNSZzZwj0hZhMMw0ClUmFoaMjFkK9JDU3VOKD7JSQSe4HY3KPmCojEbDZzJVwsNe4vJ06cQFVVFe7cuePVjWuMjh7egrztdViW6BnXv/ZauN9cBpqlJV2tVuPbb7/lmTn+M1lacAB6ENlA9nEWsOf3c+4kfX193OHy4ei3ugoqPj4eu3fvxsaNGwU3xhMRJzNCL+6cB1ZqtYJxbW46gFz96/Z6i/PAe9jRglCcVSoVRkZGJh3w7Sy9vchT8zU249LYlYyPjyM2NlbkaHrHXVBbtmxBTEwMampqfLu1mHEBQEJCgoc7s6EWBy4A/6rTuZg663JHormHHQ0ZQKgQymQy/OMf/5h0wLc7engz3t20yat/ktHRUchkMjHj6BWhFjsANDQ0oKqqCj09PV7fZRMTkAfgbq/ZzcaMbcs3I1dfi2W8nbYSLgxf3b1oRCaT4eHDh04DAlhzMxiGwYELEiznDmIC7N00CedOMjY2xrsfJJQItdgBYO7cuaisrMTbb7/t9V3pZF9Sd9ilv21pAcMkAdvrcGG/TvC9aBWqL+RyOSYmJpwGDCBRrZiss+11tzPzS3juIJPJIuY80PT0dKqpqRG0c4y16fPsx5EwDCN8QiRLxLL2g+zVajVpNJpZtY+dZVnq6+uj5557zvOoEO78PO8AkXHtCRERmc1mksvlHldgOLAFcKC3Wv1P3Jk1odiyM5OMjIxQTEyMXeDs1DNkrvCH12aYxMRE7NmzBxs3bhS0lwj0s8hrw2vqo71nBQEOKkpkMtnMnQoowHvvvQcA+Ogj7+fHuArZWx19+PBhqNVqaDQaVFdXixvJGWZsbAwxMTFBvftEbGwsRkZGwtZS94eGhgakpKSgoKBA8I4yfxpiWVlZ6O7uDkX0ZpzR0dGgBe5Rwr2ryPCRmJiInTt3ori42MMu0PhFwv8Rm++++y54gcfGxmJ0dJQziJRuTFlZGR4+fIiPP/6YZ+6cKvUPX+6jMTMQEYaHh/H0008H9b5EJpM5h+kiCKlUiuPHj2P37t24d+8ezy7QTMmNM7sJOFIydyAwDIPx8fHgS/jcuXM9EjRSUKvVqKioEFTtwRCNAhbCbDYHPVgmSUxMjOjGjTfV7g/RqLL9oaenBz/60Y+CeleiVqthNtvHp602lvtECq6q/f79+wD8F+RsKdHumM1mKBSKoP6fJCkpiZu0eEIq4b4jqXSo1WqUlZXh17/+NYDZK0h/6enpwfPPPx+UjCQqlQp3794Fy/JLdaQlakVFBYaHh3Hs2DHOLJIyZbgYHR3F+Pg4nnvuuaDel8TExCApKQkdHR0elj9YbTwVL6TyvVUBvqoHf6sOV3dSqRQNDQ14//33ce+v/bDaWNhY8nDvHqdIqp7E4Pr169BoNEG/LwHs1ygKLW5/8gn7ThRXVe/6bbWxeEIqwRNSiUcmcJgHYueKqzsHycnJ2PqbbSh561/whFQCqYTxEKzjPdffs0no0900IgF872ZwxTUxXc1CnaCuYW7btg3Dw8M4ceIEr9pxz4zuv2cLDoEHW51JACAzMxPt7e3cujJXz6YqIa6lNRxIpVL84Q9/QHl5Oddqf1QYHx9HZ2cn0tLSuA0YgSIBgBdffBFz5yXg5s2bAIJrsIWylLv7/fOf/xzvvPMONm/eHLIwI5Fr165h0aJF3ERXUK10wC7g5cuXo+2L/xEsqY5S7m7nMHe3czUPxM5VsFP5/W//XomBB1/j9KmTvHfd2wtCv6MJV6G2t7dDO7lqN1gkDg/ffGMNPvmvwE8X8KbOfal6b3ZCz97ej3nqSdQfreNUu6MR53Dv+jucVY7YuM4DnDx5EuvXr5+WfxKHh0uWLMHExAS+/PJLD0dCpTsS0Gg02LJlC9555x0A/JmxSBtHmA5EhC+++AI/+clPBLeFBQJPioWFhThx4gT3HGnDrELs3LkTvb293NkngU6fRgMMw6ChoSHoM3h4uC5wu3v3LncwXzTR0dFBcXFx9ODBg5mOSkhwP5iPZVmB/eH+wSvhc+fOhVqtxrlz56afk8LI4sWLUVJSAp1OeG16tHPmzBm8+uqrUCgUAKZXXXlUzNu2bYvKRX+VlZUwmUzinFYYYRw8eBDl5eWi+MUTOBEhNzcXQ0ND4p3eKzLkpX6OiYlBQ0MDysvL8eDBgzDHKnScO3cOTz/9dNCnW7vDEzjDMJBKpaisrMSuXbtECUBsfKkzh2ovLS0NY4xCBxFhz549ospCsK9VVFQEi8Ui2EWLdCorK9HT04PPPvtspqMSNA4t9sUXX2BiYgIFBQWi+S0ocKlUCr1ej/fff1+0gMKFQ7W/++67+Oabb2Y6OkHh0GIVFRWoqKjwsPdWrfmD19GULVu2oL+/P+pKChHh5ZdfRlFRUVSrdsdCD6EFnKK20h1IpVJ8/PHH2Lp1K38vcoTjmEXat28furq6oi7DAsDIyAh27tyJw4cPi+63z/HSjIwMZGVlYffu3aIHHGpcVTvvAJwooKKiAuvWrUNKSorofk85QF5VVYWGhgafpzNEKkuWLMGGDRvw7rvvcmbTqf9CDRHh5s2buHTpUsh6SVMK/Mc//jH27t2LdevWRZVqd7B3717cunWLGz2M5EmV7777DuvWrUNNTU3ITuXwawqspKQE8+fPx7Zt2wBEdilxx6HaN2/eHBGq3Vfabd68GVlZWVi9enXIwvd7zvPYsWNobm5Gc3NzRJcSIdLS0rB27Vps3bp1pqPiNe3++Mc/oqury+e+eDHwW+AymQyffvopSkpK0N/fD8D7qUyRSFVVFa5fvx6RE0MWiwVlZWU4e/Zs0JsE/SWgVQ0ajQaVlZXIy8vD+Pi411OZIhFX1e66PTrUTFUIvvnmG+Tk5KC6uhqJiYk+3YqBXwJ3jbROp8PSpUuxatWqqGvEpaWlYfXq1SgrKwtbmL4Kwfj4OHJyclBYWIj169eHRUP6JXD3SB86dAixsbGibeMNJ1VVVfj8889x6dKlGY2HzWbDunXrkJyczI1zhENDBr1Q7dSpUxgYGOD1caMBmUyGEydOoLS0NKyq3Z2SkhIAQG1tbVjDnVLgvuafz58/j2vXrnmMWUdy4w2wjyDm5+eHVbU7sNls2LBhA3p6evDJJ59AKpWGNb2mFLgvNSOXy2E0GtHT04O1a9dyO1ciufHmwF21hzrRiQgPHz5EQUEBRkZGYDAYuA0F4Uyvaa89lsvlaG5uxsOHD5GTk8OdCOUtASOl9LuqdqEeh9iMjo5Cq9UiNjYW586dm7Fj0kRZbB4TE4PGxkb87Gc/w7Jly/DgwYOoOME4IyMD2dnZHgMyYmfKe/fuITMzE+np6Th58qQotzcHi6i7C+rq6rBmzRpoNBremrhIKdVCHDp0CFeuXMHVq1c5MzEz5aVLl5CamorS0lLuau0ZTY/gVkr7pr29nZRKJe3bt49Ylo34e8daW1tJqVT6vOIxUKxWK1VUVJBKpaKOjg7R/HUgyrp0sUhLS0NnZycMBgOWL1+Or7/+OhTBiEZWVpagavcXciux9+/fx9KlS9HV1YWbN29i8eLFYkRTFEK2YUyhUMBoNOKVV15BcnIyDh48GKqgREFItfuLowqw2Wz47W9/i0WLFqGgoAAXL170mOZ0zxzhRlSBC/2ZPXv24ObNm2htbcWiRYtw48YNMYMMCqF4ymQyHDt2DG+99RbGxsYC9rOtrQ3Jycno6OhAV1cXN5Xszow3WsWtWYRw3onZ2NhISqWSioqK6N69ezxXjnpeqLYPtg0QzHsbN26kLVu2+O2+u7ub3nzzTVKpVHTlypWAwwsWjzqcdf1y3rnOJcHkdxj2ADuDyM/PR3f3V0hOTkZKSsrkiNP/ApjM+eR+2DvrtHNmUL9DDqY01dTU4Pz58z533hAR/vKXv+CNN95AZmYmXnnlFXR1dWHFihUBhycavKvanFdQckkw+R3WTd8Mw0Amk2HHjh24e/cukpOT8eqrGVi1apX9TmwP+XgeEBhKlUhEkMvlqKurQ3FxseDFAVevXsXKlSuRnZ2NtLQ09PX14b333gv5PLY3WB/XL5JrUk1eCBI2gXPRYu2xcBV8eno61q9fb7/d6D92wmIRuGVwKv9FaAw5wlq5ciUyMzO5TQB37tyBXq/HnDlzUFpaiuzsbPT19aGsrGzGBO3Afi2IXRPa7w13fiQMA4bJg4ls9sLEAAyJkVIB4OsW+2vXrqGhoQGffvopEpNU+OeiDdBqtVi4cCH27NkTlvFuh9D7+/tx6tQpPPvss/j++++xYMEC/OIXv8BPf/rTgP0KBY7ju5xLyO33k+kLGCz/nQ3LEuxluXZHHjbvB0x0zn45b1gFLiBtzsjFzmaz4ezZs2hqaoLRaITVasWLL76IhIQExMfHIzY2VvSTHkZHR2GxWNDb24u7d+/iySefhFKpxMKFC7FgwQLRwhEDx3/PzMzk7SolmJGXfxQXXe4aBewl/466Duc/3IQnwhtT/qOhXo/lmyb3oufpwZ7fhB3bW7F/fykKCwtRWFgIwK5SjUYjrl69itOnT2NoaAipqalQKBRISUnBvHnzuPtTAftSLNf+79DQEL766ivu2WQy4f79+7hx4wYGBwdx69YtKBQKZGVloaysDK+99hp35WWoS6qY9LZehUTteVN0gjoXB3rsJ2aHVeCOQkyWK5Cofon8HUe5UspaWiBh5kNfd9nD/fz58zF//nzeCQ9tbW0YGhrC7du3cfnyZQwMDHB2t27d4jW45HI573zSOXPmIDExETqdDi+88ALS0tK8xjkQYc905jAYLmHlst95xCUxcQHQ47hiO8SwLMvrW7NkojyA8rbXTfYNbQ4LqtXnUq3BFNDFa+Jj4z9ORsbUcsTzFsQIwZ7GJsrB62Ry6YM77I5sf92e3mS/XzrkkXGl5Wg5Abn2iLm6m7QLe6LaeCMW/AjZHRBNZlJ+3NwyxgzCEhFrbqa87XWef8PcTACotsVCRGEQOBcwyxJLFspnQPq65nAFGyQ254gVEdVu11Nubi7diSAhu2Oo15P+6GXu2SH47fkg5Ok587D1wxmGAcy9OE9AYkICV3fP/Ey50Dl09t4tEQNDvR7QaoEmEhi0iIwz7Aj/h9+/fQDLXst2GlpawDAM9pMe5NJqD4vAOaEyjgRiuQaFRxMn7DnARxL0GmCgZdiUAFzMXQCVh9uZP53SbKiFhJmPiwCWq1wGXVQrUGsw8YRNCFOMOaFOXvre29vn4YYsLahrNbs4ZsMufOL161lsrzVg/6blAIA8dRIvOjOvmeyolpVO3hvu+dFp+V00+3hHqJm809pRK9obbaBag4lzcsdwhJC3LeRR8Q97PW2o1/PuKc/ZUefhMjJW8nhrVzjNXWMZ+hI+OYbruAp62dsHYGo5gtJlSZz6KW9hQOcj5TBACcjSghZWCyICy7IwtRzBgoS5EXqzoTcROs3tsbRXp+EdaZvEroYi88AdsrRA8ptWXt13t88CICFCBBwskxnAQxO4lH8bCRyyO8vsXdXdke259klExtnn1uc5JhbBDV74JNL+n1u18/+dDminJJVuRAAAAABJRU5ErkJggg=="
|
<image>如图,在⊙O中,P为弧BAC的中点,PD⊥CD交⊙O于A,若AC=AD=1,AB的长为()
Choices:
(A) 2.5
(B) 3
(C) 3.5
(D) 4
|
4
| 10,821
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAGIAAABcCAYAAACV1WDTAAAPxUlEQVR4nO1df2zT5Z9/fTa9YayUP5pQpKYMixS7O0s2sp0uVqBDv27LOv1jGjTBO5LJCjk4SrJEjCZiqGd3XxLALM4EEiFiMuj4UiKRztvdjTgFnB7tthzlu+HQbbeZ9DLQklv7uj+6dv3019r10x8DXklhfX4/fT3v9/Pr/TyPQJLIIUhCEISYv9PF1NQU3G43vvvuO/z8889wuVwAgJ9++gler1cUVqFQQKfTAQDWr18PlUqFiooK6PV6yOXyhVdGQgi5JiIT3LhxAw6HA6dPn8b333+Pqqoq0Q9LEmVlZVAoFKJ4ExMTGBoaAgD09fVhdHQULpcLvb292LhxI0wmE+rq6qBWqxPmHfqZBEHIqAElQsESEarslStX8OWXX8LhcMDr9aKurg61tbWor69HcXFx2ulF4u7du3A4HOHP8uXL0djYiFdffRV6vV7iGs1fwIJER0cHVSoVtVotLRYLL1++nHLcQCCwoDx7e3u5Z88eajQaqlQqnjp1akHpLARZJyLdH8XhcFCn07G6upp9fX1ZKtX86OnpYXl5OcvLy+l0OrOeX8FIRF9fH6urq7lmzRo6HA6SyUkM+c1H9EKlI4TOzk6uXLmSRqOR/f39GaWVDHknwuPx0GQyUalU8siRI2nHT/RDZ0pAJGZmZmiz2ahQKNjU1MTR0VHJ0g4hr6rpwoULlMvlfO+99zg9PS15PlKSQZJer5etra2Uy+W8dOmSpGnnTSKsViuXLVvG3t7efBVhwQg1oIVIcCLknAifz8c33niDOp2OHo8n19lLBpfLRY1Gw+bmZs7MzGScXlEuh8q3bt3Cc889B6/Xi76+PqxevTqX2UsKnU6Hq1evYmhoCC+88AKmpqYySi/rRHB2vvjjjz9iw4YN2LJlC86dOweZTCb57DTXWLp0Kbq7u/HMM8+goqIiPHsH5uqdMjKWqRQwOjpKpVLJ9vb2XGSXFxw8eJBqtZqTk5MLip/1JY67d+/i2WefxZYtW3Dw4MHIBrCoJSJe+d9++20MDQ3hm2++QVFResom60S89tpruHPnDs6dO5dWvEInKl75/H4/Nm/eDK1Wi/b29rQTzBoOHDhAnU6X8RyhkBE9V5mcnKRGo0l7aJs1Is6fP0+FQsGRkZFsZVGwGBwcpFwuZ09PT8pxJCEiulV4PJ60C3KvweFwJGyI8Wb8WekjGhsbUVFRgXfeeUfqpBcV9u3bh6mpKRw7dmz+wFK3hN7eXiqVSvp8vrj+Uq//FCJCdfR6vVQoFCmt2kpORHV1NTs6OuL63Q8kRMNms7Gurm7ecJISYbfbWVZWltLay71ISrw6+Xw+qtVq9vT0JK2zZETMzMxw7dq14U2d+wnzNaoTJ06wvLycgUAgYVjJ1pqOHTsGpVKJ2tpaqZJcNIg0D4oGSWzduhV+vx9nzpxJPEnNlG0yKA0qlSqtDf77DU6nk1qtNqH/vBKRyjJDX18f5HI5Kioq5g17v2Lz5s24ffs23G53XH9JVFNXVxcaGxulSOqeRkNDA7q6ugDEqjFJiHA4HGhoaIhxj87sfkdjYyMcDgeAWE2T8cx6aGgIGzduxNjYWCbJ3Bfw+/1YtmwZPB4Pli9fLvLLWCLOnj0bVxoeIBbFxcWora0Nq6dIZExEqH94oIZSg8lkiktERqppYmICa9euxW+//ZaWQfD9CpK4c+cOVqxYgbGxMchksrBfERFI2JoDSM7Rt99+iw0bNjwgIUUIggCZTIaysjJcvXpV5FcECgnnCkUQRCS5z7ahyz33/caNGygrK8tOqe9haLVaXL9+XeRWNN+ELTx9xwD2mCwiP5fLFT6J8wDJEdmgy8rKYiZ2STvrSMX0551HgZoaPKWb8/B4PFi3bl3CDHPZgUfnVciDh7gSkUrErn81gzVGBC4Ggg6zQjQ6OgqVSiUKGylhubTCiMyLSSxA8kVQZHkef/xx/PLLLyL/pEQIAOD+Cy6yBnvXCOiueQpPYy7BO3fu4NFHH5W0wFIgGQmFYKKzdOlS3L59W+Q2r0Tsar+Io3tNAADjU08GHWcb1e+//44lS5ZIWkgp0N3djXXr1mH9+vW4dOlS2L0QSACAkpIS/PHHH2JHP+eWuQOznxDO2HYQAgiAAkCj2Rb26+3tJYAFmxhKhXjL9Fqtlgg2F1ZVVeWhVMnh9Xopl8tFbkUColpJSIcOdOGisAUMEIFAANe6bHiq9MlwsM8//xwAsGPHjmw1nJSQTitPqXcQBQqkWZqFoyiyGgJmK+bugrD7Ao7uCa4hCYKA6zf+ikhNdvPmTZSUlODSpUv47LPPclbgGDD27yNHjkCr1UKv18Nms4W9U6GMokDZMZafnp4WzaqDGZMk/WERsbUYKQgCBYB2V3CPtaUGs6JeRKPZxgCD4r90mZznz5+nXC7P36GTQJJdxGhdG88/D/B4PNRoNCK3iK1SP9NBSUkJn3jiCY6MjLC1tZXV1dWSnJzJCLM/bCwxfrq6bOF+A1H93TzJSY4ffviBer1e5BYhe6mL4cTEBJYs+Ruo1WrcunULH3zwAW7fvg2r1SqB4GaAWbUS3W+0mV9EmekruOkHSQToBo5aULOzLZXkJAEj5i+//vorVq5cKfIviu6QUunQRkZGUFr6JDQaDQYHB/HQQw/hiy++gNVqxZUrV6Qod3oIFzq2c20z18ByfQ1IJ56ebWwCtDjUZYPz6FcYCEdOvPgpNYaGhrBmzRqRWxEZtWUX+SVBucbGfoFarcbf6v4uvGai1Wphs9nw+uuvx0xWsg4BCJJQFLNIafnECfufj0ZFiJR+zrllcZ4RKaXx1uiSL/ol8Lp5cxSlpaVYrSkNX88DAM3NzdBoNLBYLPEjZhWzrT2iPp8ctcBotsGki65IAJ6/DgfDM2STJK0qSoZ4ErEgS7/du3fz0KFDHB8fp1wuF3XS4+PjVCgUObT48zNyoBG+GoJuGgHaulyMHoiERoKpdNhSY3p6mjKZLObwTtpEBAIBmkwm2u12kmRVVRUvXLggCmO326lQKPI76x7oIoTgEDwaoRHUGXfux6+nTp3iSy+9FOOe8lCJERdHjYyMYMWKFQCCe7B2u10U1mQyoaGhAW+++WZmMpwS4s9+uW4NjARueAaifAax2xRUWY1P537tyW63w2QyxXqkw2ZI7OVyOcfGxkgGjympVKqYsNPT09RoNGxvb8+b5ffHOzYTNTvmHNz2lOcQ2cDMzAzlcjnHx8dj/NK2ffV6vSwpKRG5abXauHavfX19lMlkeZ11z60KBD/xVFWu4HQ6Ey5Cpm37Ojw8jNLSUpFbfX09zp49GxO3srISe/fuRVNTE/x+f7Qkzpd1ikiyMCcAR78OLloGAgGQfpjyoI5CsNvtqKurAyCByeXExARWrVolcmtoaAibEkbj3XffxcMPP4z3338/7EZJN2iKEJeMiHoKgjA7RyjK3Rg1DhwOR7h/iK5/SkREsjcyMhJzG2RlZSWmpqbCs+rI8MXFxThx4gQOHz4c3qSRfoMmARkRCOeYp63s7u5uPPLII4mNLdLVc62trbRarTHuHR0dNBgMCeN1dHRw1apV99Xh90g3vV7Pzs7OhHHTVk3Dw8MxqgkA3nrrLYyPj+P8+fNx423fvh16vR67du2K1xiSfi90MGJoHw1BEHDy5EkUFxfjlVdeSVy3dFmvqqpKeOvYfIcZJycnqVQqefr06XSzXRTI6WFGpVKZ9FqHZMd7yeA1bAqFIisXFBYisnK81+fzsbi4OOkG0HwH3kmyubmZRqMxof9iP/qb9QPvQ0NDVKvV84YzmUw8cOBAQn+fz0etVstDhw6lk/2ig8Vi4bZt21IKmxYRTqcz7shoIZei9Pf3UyaT0eVypVOERYNkl6LEQ1pEHD9+PGWGU7kmyGq1Uq/Xi9TYYldL5MKuCYoYvkZOiIJ/M/xPEMPDw0mv9o/Eyy+/jN27d6O2tjbhjp3FYoFMJhPNugvFGm+hmJqaQn19PT788EMYDIbUI4p5ibLkCIjdtm3bxuPHj6fVOpqamhKOGgKBAEdHRymTye6Ju51mZmZoMBjY3NycdlwxEdFaIeq7wWCg0/l1Whn4fD6Wl5dz//79CcOcPHmSKpWKXq83rbQLDWazmQaDYUFmRSIiAlH/R39Rq5/g4KCbpH9Wl6dmC5XKdaNNTU1sampKKb1CxEcffRS+bnQh/ZyICHtby9zavdHMAN1saQluovj/b4bFxcVJ5weJEAgE2N/fT6VSydbW1rhhJicnRY9nLJZOe2ZmhmazmatWreLg4OCC0wFJ+geCO1ebd0bsXM3uZrXY7CTJkZERKpXKjMzfRkdHWV5ezrq6uriLf06nkzKZbNHMur1eLw0GA6urqzk1NZVRWvAHXDSGtg+jfmRbi5G2rv8iSfb+x3/y7yujd5fSM9Mkg33G1q1bE17SbrFYWF1dnXa6uUb0Je2ZSjDsbS2EYGTIoMHPucud7G0t4a3FL784xaamJtpsNv7bv/dkbKFhtVqpUChiFhB9Ph/1en3cpfZCQWi97MiRI5KpUBgj1E8yWK1W7tu3LzwykMlklMlkNBgMNJvNtNls7OlJjyDxQx7/y5CE/fBjP+VyecI1mlQf7cjmQx5Sv3sBhI2w4iNZZSYnJ9nT00ObzUaz2cznn3+ejz32WFoEXb9+Pfy0zeHDh8PuH7fZqNPp5h0c3DNP20CIR0Ry3Z/ooaXQ92iCkknQ/0wFCQo99qTVasNWgkajkWazOaWyLNR/PnR2dlKtVmf/sadNELijzR7r47aLCJJC9OcjqGWnmf+w/R9ZWlrKyspKnjt3jgqFgteuXUu3Xhkj8vmz7u7uGH+p1R5Cc4fIH/2a/WOxYVaWEY+gkpISAmBJSQnXr19/fzwIuJDTNJkg+Q81pxYnJyf46aefctOmTdRqtVQqldy+fTvtdnvaywiJtjE7Ozu5bds2KhQK6nQ67t+/P6sqKBFmrwkKni3ALBMCMrc9Sjd+OHyAwSOWoYJEIPRobGdnJy5fvpzTR2OzjSARcSodx0nsL/Ep/h0vCmj/Wuz2L10u7GsQ2wGF8s3VM8rR9ZS63pEJ5xWRCqOlZq6vcv2lLWyruljWnTJBTp8/i4dQ2yIGMHRxE/7U8DQAQPfk3NNoi32zKBXknYgQBs5+haJdf8K6WWp2/lNjzLGrxWV2libyLZKR61pI0Xz+XtRUeZeIkNpxfvUJzriDR2ztbS1oLCsSXVsHBDtKIquHP/OGvBMBABjowlFhR/goVcM/m2EEcPGC+MyFIDCfVvVZRUEQ0XXhIlpe3BL+Lgz8N5wAVmuijsCGinsvdhb51o1kcNhqn11hCR3LBTbTnXA70D8b9t5BzoiINxcIL60Ic520IAjEltytcxUKsv5E5gOkhoLoIx7gAREFg/8Hbae+CycpyiUAAAAASUVORK5CYII="
|
<image>如图,△ABC中,∠C=70°,⊙O切CA、CB分别于点A和点B,则弦AB所对的圆周角的度数为()
Choices:
(A) 110°
(B) 55°
(C) 55°或110°
(D) 55或125°
|
55或125°
| 10,822
| null |
55或125°
|
"iVBORw0KGgoAAAANSUhEUgAAAPcAAABiCAYAAACMJ0WjAAAkUElEQVR4nO2df1xUVf7/X3fQKFejzzouY01Nymggtk0kxSfpSwrq2NpHTBJrqeixrqj0wza33MfDB26PtUdm6OouGRv1CY1PYQpYuYqJfrBgRdwNU3AsQPlG+9jxx6PQ8btizr2v7x/DXObHnV8wIMp9Ph48mLn33HPO3Hte55x7zvuct0CSUOkzJIiAJECj0SicIzQgAMc554MQ+i97YYO4OvM9kHBKsenTtbhz9m+BabngZwUAAJESNBBAEoJGg6OfvIG7Zr+ERfnleOvFOY7jgvsTEFRx9y2SJEEQCEGI8BUCTnE3fpKP5rG/wZyJmqDVIkmSYsURCKXC0BtIQBC6sx3u+AcbjZ/k487ZO9HEKsRB41YURDRhumYizBWN+O3seEAioPG+16GXCpWQ0Gg0foQNOB+BxCb8ZvZvuw8HqYueCBtA2IS3aIYAQSNAoxEgCAI0goC0Z9d2xS+FJY1rm+57JEndn1tagGnThgBwFgVJbtmfm34n9qXlOIQNKAobUMV9RZFAuS/+x2cKgGnTcMfE7u5Zv+VDkuQ/J8HmoXA38caiVORvb4Qk2WFnI4SCZVi8bivU4hUM3ffItaLe03oS47AHXzdq5HCCIKBibQ4E42Isnj5DDkuKAWJWuTIIQMUfFwPTzRD3iD3qzrqKsidoNBqvHkDQeSBwshmYMTsOghCBCMRj+qKpaD75ba/zNRjwFCbh6HaPGZOKMcZUnGht6j55rBx7aMbt+Box48bLFbCvnqEq7iuIBgLYVIE94nS8OE7EvunjEe+3C+8jnh52zcMRD4+VYaNgxESXotTWug/jDWPDlq9rGacwZaECaNr+V8SY0xEzbhxavvkagEPwU5fuxfpl47DrLWLm7DhAECBJks9elnr3rzDPvrUXG5fNAQCkjjcC6P9ueW/Y/lkVlswwgyRIIn9JGjbumYLcF2df6axdNTied3cvZ0/rUMegKrp7UH98diPe/KwAX3+8C8IzD2FC1yCbRgPHSCbQPd3SxZC+z/rgxjHdJQ+JAID8ffu6XLy5cSPefPMtABLSnl0LILTBLkmScPz4cZw5cwb79u3DuXPncPjwYQCAzWbDl19+6RY+ISEBI0aMAAAkJibipptuQnJyMrRaLeLjHQM0obwaVO0qxFt7ClG4THD8vmk5IAu74hEDDCaqAM7n7bhPEptAGkAAxrFj8eaeNlT8cTGEtGcQBwH5u3dj5owNLldrfM5OqOLuZzRwdKU0xz/BZ5gGSm8CcEx9bPxmjBzO30zYqVOnUFVVhcrKSlRVVWHIkCGIiYlBYmIibr31VsyZ4+gJDBs2DImJifJ1kiTh0KFDuHjxIgDg4MGDsFqtWLlyJVpbWwEAaWlpMJvNmDp1KkaNGqWQl+6pOxwrx0ahW8xy3klQADSqsEOm6ZOdiDG/CAHAneON2Jv+CMbll+Ot2fEQ0YRdbxF/3hjneFcXIuTnolgZU6X/aaogpi90O1SxdhEXr/24+4Dk+BNFkSTZ0dHBoqIiJicnc9SoUczIyOBf/vIXtrS0+EzGeW2wWCwWFhQUMD09nVFRUUxLS+N7m/6bNpuNkiRRco2bEo9sX8PUJa/T9YTY9UWSJEqSRBX/iKIo374l00A46lKWN0lkUxlTn1lDkixft8hxTgCBKWyiy7P1cZtVcfcDkmSXP7+xOLX7AR4VSYrMne58qBqmPpPvEIjkEMrRo0eZmZnJyMhIZmZmsqKiIoz5khQrAKcoS0tLOffRRxgZGclfPvG4V0WyZBq47aizZDniUeUcGr7ulyTZFSrH7mfVXSn4rsBVcfcDErsE7vGsPMUliqL8QK1WK3NycqjVarl+/Xp2dHS4hfP87NlSun52xiuKIu12e8gt+unTp5mfn8+RI0dy6dKltB74b7mCAsCyI92VV1e95KNwqnjivEfy8wtwy7olLcmNRnc5cn+uqvlpn+PyjuoBRQlChAYrV66Uj3V0dKCxsREHDtTinnsSkZycjOuuu879uhDnwgVBCGkE3lf4ixcv4vPPP8eRxq/wwOT/g3vvvdfPdJcGqoVaEGhEQOoem6AACL1Q5CuvvCJ/VgfU+hiHEIGu8Q+30XMKEoQu4Z86dQotLd9g797/RUxMDBYtWiKPanuKrSdGLr0zN3VUUDfccAPMZjOSkpLw0UcfYe/evcjImIc77hjnFlYQIkCqwg4KyXOxh0ulqKHDblyhcRDYVREIET4t1FRx9zGCEAGREiIiNCAJjYvIBCECZ86cQW1tLT7//HMkJiZizZo1ePXVP+Cxxx7DpEmT+mXxRTCLT5yVy9mzZ7F582b5mvb2/4vm5q+xefNmxMfHgwAkUUREhDpSHhq+e3hAzxYIqUYs/UCE4G6Q4GTz5s2IiYnBgQMHsHHjRpw4cQKPPPII3nzzTUybNg1ffdUQdBpO8fXE5DOYQnPsWCMWLPwV4uIn4ETbSdTW1kL705F499138eyzzyI1NRW7d++GACAiwjHdJ3laVaj4QdPVSjvwbI2DErbn7Q7TuICKAkoDXyTZ1tbG1NRUjh49mqNGjWJjYyPNZjNXr14thykuLmZUVBQtFotXvL4GzvqC0tJSJicn02g0srCwkOfPn5fPZWZmsqCggCRZX19PnU7HgoKCgHkKdUBPpWeo4u4DnIVbqRCvXr2aI0eOZEJCAhMSEmi1Wrl69WqmpaV5hS0oKKBOp1MUuGs6oebL3zlJknj69GmuWrWKer2es2bN4s6dOxWvKS0t5YwZM+TvbW1tjI+PZ25uLu12u+I1Kv2HKu5+oqGhgQkJCbz//vuZkJDAjIwMdnZ2sq6ujqNHj2Z7e7vidRs2bKBer2dbW5vXud60gEpCb2hoYHZ2NrVaLZcuXaqYpitWq5XDhw+XhSyKIs+fP0+z2Uyz2ew2fafS/6ji7mM6Ozu5fPlyarVarlq1ikajkcuXLydJ2mw2Go1GVlZW+o0jLy+Pt912G0+ePNnr/ChVCCUlJUxKSqLRaGRRUZFskaaE5/HY2FjW1dW5Hbfb7czNzWV8fLxfCzqVvkUVdx9SXV3N2NhYZmRk0GKxUK/Xs6ioSD6fmZkpCz0QeXl5NBqNtFqtIbXYvkRqtVq5atUqjh49mhkZGayqqgoqLs+0c3NzmZeXpxg+Pz+fRqORNpvNb15U+gZV3H1AR0cHc3JyqNPpuGPHDtrtdiYnJ8tCFkWRhYWFNJlM7Ozs9BuXqyBeeOEFxsbG0mq19jhvhw4dYlZWFnU6HX/zm9/wxIkTPsOKoujXPJUkKysrmZSU5DNMTk4OzWazz/hV+g5V3GFEkiSWl5dTp9MxNzdXfuf0LOAtLS0cPXq0W5fVV0H3bO2WLl3KiRMnhvQ+a7fbWVJSwoSEBMbHx7OoqChgpRIsNpuN119/Pc+fP+9l8upM21mxqS13/6KKO0xYrVamp6czLi6O1dXV8vGioiLGxMTIYuzs7KTJZGJpaaliPMG0ZtnZ2TSZTAEFbrVauWLFCup0OmZmZrrlq6coCfS+++7zOW4giiKtViv1ej23bdvW6/RVgmfQi9uXmFwXZAS6rqioiFqtlitWrGBnZ6d8TU1NDbVardtUVk5ODrOyskJKS+l4VlYWk5OT5fdZV2pqapiVlUWtVsvly5f7HIkPF3l5eczNzfUbpr6+niNHjmRDQ0Of5kWlm0Ev7t7Q0tLClJQUJiUleRXa9vZ26nQ6eYmmKIrcsWMHY2JiZEH6WtEVDD/++CMzMjJkgdvtdhYXF9NkMtFkMrG4uDhsXe9A1NXVMTY21m+vQxRFFhcX02Aw8PTp0/2Sr8GOKm4f+BOb3W7n66+/Tq1Wy/z8fK/zoigyOTmZK1askI+1t7fzlltu8dlyhTq4JEkS7XY7Z8yYwTFjxnDkyJHMyspibW1tUL8hnNjtdg4fPpxWqzVgmrm5uT4H2FTCiyruAHgW1vr6eppMJs6cOdOnkUdFRQWNRqNs3OEcVFq/fn3Y8lVTU8PMzEzqdDqOHTuWKSkpilZhSqaqfSF6s9nscxzBlc7OTup0urC8/6v4RxU3lW3AXTdOIMnz58/LxijFxcV+4zOZTCwvL5e/5+XluZlpuqYXitA6Ozv59ttvMz4+ngkJCSwuLqbdbmdnZydTUlKYkZHBy5cvBx1fOHD+loKCAmZmZgZ1TXFxMVNSUryOq6Pp4UUVdxBUV1fTYDBw3rx5PH36tN8utPO910lNTQ1vv/32gNf5o729ncuWLaNOp2NWVhbr6+u9wthsNiYnJzMjI6NHafQWi8VCnU7n87ynBZvRaHSrAFXCjypuP3R0dDA7O5t6vT6giSjZXWidXc7Tp09Tr9ezpqYm4LVKrVZVVRUzMjKo0+mYl5cX0HjFZrMxISGB2dnZfuPtK5QWufiq0MrLy3nXXXf1Q64GL6q4fbB161Z5AYXSdJMShYWFcndTFEXOmjUraPNSJzabjUVFRYyNjWVSUhJLSkrk+IKho6ODJpOJv/rVr+Rjntf2lWWYcwlosKP/JpOJH374YZ/kRWUQi9tXAbdarZw5c6a8ICJYLl68SJ1OJ3eZCwsLOXny5KCXPra1tXHp0qXUarV8+umnFbvewdLR0cHY2FguXbq0x3H0BM8loIHYs2eP28CjK752ZlUJnkEpbl+FpqCggFFRUczLywt6l1BnC7V+/Xqmp6eTJA8fPky9Xh+U8UhlZSVnz57Nm2++matWrQrbHPCpU6cYGxsbcs+hN7guAQ1WmCkpKW6LaVTCx6AUtycWi4XJyclMSkryuTGCP0RRpMFgYH19vbyM019302azsbCwkEajkcnJyXz//fcVw/X2fbm9vZ0Gg8Hnqq1wI0kS4+LiQurx7Nmzx20A0hmPSu8ZNOJWaknsdjvz8vKo1Wrl7YJ6Qk1NjVxAc3JymJOT4xVGkiS2tLQwNzeXOp2O2dnZbGxsDGvXU0kUbW1tNBgMbls49RWSJPldAuoLg8HAxsbGPsrV4GXQiruuro7x8fE0m829WkJJOqyuVq9ezdLSUsVlnDt27OCsWbOo1+uZn5/fb+aXTrG3tLRQp9Nx3bp1fZ7mzp07FZeA+mP58uVu1nwq4WHQiNuJzWaTB67CsUrJbrdTp9OxtraWWq1WboE6Ojr4pz/9iUajkSkpKVd8RZRzHrqv329tNhsjIyODnmEgHXkzGAx9l6lByqAS965du6jX6/nUU0+5tZ49tRgjHT2A++67j0lJSSwsLGRLS4vsBmjBggU8duyYW/j+HgF2/T0NDQ288cYbA1rY9QTX35WUlMTKysqQfmtsbGyPxjtUfHPN71tOEmfOnMETTzyBnJwcFBcXo7i4WHZPqxQ+FKqrqwEAQ4YMwdatW5Gamopx48ahpaUFRUVFiIuLc9tL3JeTAWeYUPcdDxTeNT2TyYT9+/fj+eefR1lZWUjpBMJ1X+3p06fj008/DWkT/QceeAD79+8Pa54GPVe6dulrSkpK5HXNoWz8F0yYjo4OGgwGAuCDDz7IiooKN1e3oodXN1EUvY71B5528l988QWjoqJYVlbWJ+k5l4CGwpYtW5iZmanObYeRa1bcbW1tNJvNNJlMPHToEMnedYldr7VYLFywYAFHjhzJ6667zmuFk9P7YkAhX8EZn5qaGkZFRQVlVhsqrktAXfFXgVqtVup0OlXcYeSa7JavXbsWkyZNwgMPPIC///3vmDRpEoDurmOoXV+S0Gg0KCsrQ1paGsxmM0wmE7Zt24YJEyYgJSXFzZXLMzOGQBAERAgaCILQ9TcVR+HhsK3v3YABUP69kydPxpYtW5CZmYndu3f3OG4qvMZEREQgOTlZfmVx4s/vWXR0NCIjI/HNN9/0OC8qHlzp2qW3eA4YJSUlMSUlxWtwJhhvG0o4fVM7vW/s2LFDPldaWsrMzEcVr1syDSw/2t0KvbE4lcAUNkpdfpQHiJ1GZWUlo6Ki+MUXX4S11QxlCSjp6BmZzWbu3r2bpGrIEg6uenGTjnXOTmOUwsJCkt6FI9TC0tjYyAULFlCr1TI3N9drc31JkpiXl+dmsOHsjtvZyCkzct3CkmTudDD1ma6dWwZA2XXab2/bto1RUVFBrV4LFJ+TQEtAlSqSpUuXhnVDi8HOgO+WB+pC19bW4q677sKRI0fQ2NiInJwcAN5dQNfv9DMivmXLFjzwwANIT0/HpEmTcPLkSRQUFCAmJsYrvm+//RY///nPXY453NYe+3gnBOPtrr8CAHB7TCr2Nbc6jvST/2qSbvfQ9bcLggCNRoO5c+fi3XffxS9+8QscPny4x2m53uPY2FgAgMVi8Qrn6S/cmb8JEyagra2tx+mruDPgxe1rOuXcuXN45plnkJGRgddeew0VFRU+p7dcIQlBENwK/JkzZ/Dqq6/i1ltvRUlJCVasWIHm5mbk5ORg+PDhABwF0LOiOX78eLfoXeqL3bt34xdpM7sPdIk+Ztw4sCuOUH0t9xSngF2/KzF37lxs2LABDz74YK8E7kpKSgr27dvndVyj0bjlw5m/CRMm4Pjx42FJW+UqELcSf/3rXxEbG4tLly7BYrFgzpw5Xq2xrxbfWag0Gg0OHz6Mp59+GnFxcTh79ixqamrw6aefYsaMGV7XaTQaL0HabDb8x39EOXTdVVZFNGHXW4Q5PU7Wu7MYt7a2IPWOcY4v/eS6OpTBw6eeegr5+fl46KGHeiwy1/TS09OxY8eOoK/9yU9+ggsXLoRsa6Digyv5ThAqp0+fZkZGBo1GI/fv3++235kSvo67Or575513eOHCBflcoHdz1/O33HILOzo65HdtSZLIprLu92pXmsoIgPnbw7tYxB9i2ULCUY0QyGEZPdNVzsf69evdPKL4cisUCE8voIp59PBbHh8fH3I6KsoMeHE7H/57770nG6P0ZD9uJcd3vRVZVFSUW14kSWL5ukVc/Ib33mBLpoGY5r1aLKy41Ev2cldh+xO4MqtXr6bBYPC5w2uw9y7Qpheu8VitVtXGPIwMeHG3tbUxJSWFCQkJ8p7fodiC19fXy47vli1bFtDntCee/q9c03bt+DhCHeNUCKxodMlTV4vd18KWPD5sW+wQtCAIbgJfWCYGPS2Yl5dHg8HA9vZ2Lyu3YMnNzeXKlSu94lbqDXR0dDAqKirkNFSUGdDiXr16NaOiokJei+zp+O7tt98OqrUPtQADkMMf/fgNhZYSclfcibMLH37chbJ1kXJeFpZ1eTlxCevvNy9fvpxxcXE9Xhar5AXU133+/vvvVXGHETdxX/yxU/7rL5S6dw0NDTSZTExJSQnJ4byr47t58+b1+cb3w4YN46VLl3yeD2R+GjY7c4VoHO/bGg9xL2S55L877Wv+OTY2NiTPok6cS0DPnTsXML1//etfvPnmm0NOQ0UZr5a7P4XtSWdnJ19++WVGRUUFvSxRkiTW1ta6Ob779ttv/YbvDa6FUa/X+y3wjlbaXSz9abvic0CtB5lYsGBBUJ5FlXAuAQ2EOqAWXgbMVNj+/fsxceJEtLa2orm5GU899ZRXGLpMkYiiiE2bNiEhIQG5ublIS0vDd999h9deew233norAOVpIH/2zcHgOh02fPhwdHR0dH1TSisCEkS3WS9n6qTYt1M+BDSP/AV0VOAQy4i5QgQ0ggCNRoCwuHvJp698uN6/oqIimEwmTJ06FRcuXAgpK84loJ5xevLDDz9gxIgRIcWt4gdPtbu23J7ddKVuu69uvL8uvuu5jo4OLliwgDqdzqt2v/hjJ/9f57/d4mhvb+dvl7/En42O5uNP/NLNZNI1n/++dNHr97ii1P1UOuavpe/27ukyJSdPi9l9XyvZ+64FV4j4oxwQ+DXL6HjXFbmNiwBiUei7w7h6FiWD6wl5LgH1dU1NTU1IWyOr+Mdvy3390Ei//zsvX8L1QyNx/dBIdF6+JF/netzfub9+sgOx8XGIjIxEc3Ozm/GIM9ywyBtAErW1tZg/fz7u/c/7EDnkOvyj/u/4n80luOfeSXJ41+sEQZA/u6bvRMlCTOmYkpmkk5iYGLS2tsJpC6TRaGRrNEGI8N1LECL6bkFYV8Tsao23LRYwr2UNjkiFeAQaCAKhwVy8WbYQKNyDcoUehz9KS0uh0+kwa9YsXLp0Kaie0KRJk/Ddd9/h1KlTjiz6uMZiscBoNIaUHxXfhNQtd4rF81jn5UshdTFPnTqFWbNmYcWKFSgpKUFBQYFs5ulEkiRcunQJ77zzDhITJuG5557DQw89hObmZvzhD3+AXq93C+9Z8Xh+7gtiYmJw5MiRPk2jpwiCAKk8B48WTsGa9ctwp+B81I7/zuclBPnYnBVbREQEPvjgA9xwww2YM2cOLl3yrjg9iYiIwOTJk72WgHrS1NSE8ePHB5chlYAEFLevls/1/PVDI3HDddcHleC7776LiRMn4p577sHhw4cxefJkt/OSJOG7777DihUrcPvtt2P//v1477338I9//ANPPvkkIiIiQl6PHS48W/bx48cPWFtoiUeRv/FtYFEufjvRu6VsamsJKT7X3z506FBs374dJDF//nxcvnw54PUPP/wwKioq/IZxs9VX6TXyE/Mn4GAIdP3x48cxZcoUlJSUoLq6Gq+88gqGDh3qFmbv3r3IzMxEYmIihg0bhsOHD+P999/Hnaafu4Xrr0UXgRg/fjyam5uvdDYAdLfEcg9K+AYn9wILp83xCivxKCp3/S+waBrmCP7vpVe8XQwdOhRbt27F2bNn8fjjj0MUfQ8QkkRqamrAPdIsFosq7nDifPkONL/t69y/L110O+ccLHHGZ/v3Ba5atYparVZeq+s6oObm+G7yf8qO7/zlyd/AnufgXzC/rafY7XbeeOONIW3j21/Yj6xmGqZyzdEup3xepqlTuOaov8Gw4DaUsNlsvP/++/nLX/4yYNjo6GifO5w6t1lSCR9BW6gFIw5P7451dXU0mUw0m81efrNcHd9lZ2fz4MGDQcV/JfCXrtls7pN9yHqCqwmqc0TcaZHmxB7CSLlE79+uNKPg9CyanZ3t1+bc6QVUidLSUs6bNy9gnlSCJyhxh9rq2Ww2Llu2jFqt1q0lJh3miOnp6dTr9Xz11Vd9et/wJ6iBtIne6tWr+9XZXvCIDhPU1DU8IjlaYenI65wqBBC2r9m7ABVrR0cH4+Pj/XoWLS0tpdlsVowvJydH3kVHJTz4FXdPzFGrqqpoMBj4+OOPy8K12Wx86623ZMd3noLvCQNF4HV1dW620wMlXyQp8jBfT3U1P/XfFe9tz8jpWfSFF15QjNffElDVKUH4QaAHGmxhPX36NJ988kkaDAa5m+p0fBcdHc3s7GwePXq01xkeaNjtdkZHR/s1eR1MWK1Wjhs3zqczQOcSUM+tog0Gg1dZUzdJ7B2a3ppjAo59x+Li4vCzn/0MjY2NsNvtmDVrFh588EGMGTMGR48exXvvvYeJEyfK11yp6axwExERgYyMDHzwwQdXOisDgujoaOzZswebNm3C73//e6/zqamp2Llzp9uMx6ZNm/DEE094zYKEo2wOanpTM7S3t3PmzJmMj49nVVUVCwoKBozju/7E1YVvb/yOXa0o/c4TJ05Qr9d77WaqtAT0tttuc3PhO5Beba5meizuDRs2cNSoUXzuuef461//WnZ85++96Vou7AaDgfX19Vc6G1cc1xkTi8XC6OhotxFyTy+gVVVVcsWoEl4Uxe1vbzKLxcKkpCTGxcUxOTmZBoOB+fn5iut1r2Uxe7J+/Xqmp6e7HRuMLZDnM7dYLF5LeJOSkrhr1y6SZEpKSp+7FR6seInb12opu93O5cuXc9iwYfzpT3/KtLQ0lpd77xU2GAs06ViLrtPp1NZbgYaGBkZFRcmzJHl5eczNzWVVVRVjYmL8bqCo0nOC6pZ/9NFHjIqK4tChQ/nYY4+xpaVFFrGzpg6mlb7Whf/nP/+ZKSkp8vfB1HMJRH19PaOiorht2zZ5CajJZArLtKiKMn5b7n/+85/U6/UEwAULFvD7778PKlLXOK51Qbtit9tpNBr7fHunq5WamhreeOONLC8vZ2RkpLrrSh8jkCIBDSRJ6p6KkIhTZ07DZDLh56Y7cffd9+D66yJlb5eSJDm255KIq9SvQZ9x5MgR1NXVYeHChQAc0zkc7JvsawRHWdEQ37a148MPP4Tdbsdzzz2HdevWuQUlRQhCRNc9k2QXTSqho3HbaACAxB8BjYDo6Gjs2rULu3d9hsih18kFVJ6flgRAGKoY6WDCU7hO32HOpaCu5wfjvK1AgFLX75YE3GYYg7vvvhuiKGLhwoVeq84EebMLQRV2LxHYdVcd9omExsceIZLs4wpQW2v/VFRU4KWXXsLXX3/tZpjh1jsapFy6dAm3334b1q8vQGbmo3DsPed5TxzHnK24Ss+Q76oA4NnpGrnGdDqNf+PjJkdATfdOHoO8k6mIaws9Z84c6HQ6rFy50u34YBc2ALz44ou4++57uoQNuAtb8jim3q9e4fkSvjitexP9I9vXEADLGgef1VWoeG60397eTp1Opzhd6Aw/2CguLqbBYOCpM90rASvWLnJ4RgGItIW0s5GLF79Bsi8dOAwONJJLOyyiCcer0jBzdhwA4M5xMYDgvs9W93vjtWEbHi483dLq9Xps27YNCxcuVNyKSaPRDKqBtr/XH8KyZcuwfft2/Ew7CjhWDkGIQMFJI0RKkEhwwwwMESYCRsc+aoNxjCKsuCr9q4rXuzxUOlqVJdPAtNx8eY1v2DxkXEMEaoELCwtpNBr5ww8/9E+GBiBWq5W33DKapaWlFMXLtLORUwV4eUMVJfKNxaku7pcGX+8mnMAuXZa34Slbm+Pmfqb8qLuhiutntcsUPDk5OZw5c+aVzsYVwW63c/LkyXz5dy/JxxzlbAqb6O63zOkl1c2RokqPkVtuURSZOx0s71pyXb7O8S70caMq4t5it9uZnJwccMeWq/U93N84TE5Ojrz7Ckna2cg0gIvWlPm9Vh3b6T3ycCQtn+JN5mDORIchwX+98AzSAFTu2uHSh+/nd4ZrhIiICJSXl6OkpATvvPOOfJwetgMDdTQ90Np7QRC8wkiShHXr1mHv3r346KOP5GMRx5pRBcA4/g7ZUMUVyvPdamHrLUMAABLxyWeVWDRjBgAJpICIpuOoAmAe1+0BgiAEuFilEeg71xnXFqNGjcKePXvw8MMPo7W1Fa+99po8YOQpapIDajDJOfjnL0+uv0EURTz//POorq5GZeVOjBgxQrZulA1agK5jEfJnZxjn9wF0C65KuszTBOyuLMQMc7rjkOY4pt2ZAeBBmP8rVg7seLguBVG9+SFxxx134G9/+xtqamowb948dHZ2KoYbSMJ2EmyeLly4gFmzZqG1tRW1tbUYO3asW8UgTTQiDUBra6tXpaY5vh1rP26CanYaJhxz2ZruucauP2HGYsV+vPouFBpK79GdnZ3Mzs5mQkJCj53aDzREUeSJEyc4YcIELlmyRF7GqVReKtYuIQCXUXHyq4/XENNyvOJU6TkglXezDWYppyrz3vH6669Tr9e7bTHkykAt3Epl4uDBg9TpdF77kiuWEanbQMr5NzX39cDXqYQESMf8oi+U57ZFtQUPE9u2baNOp7uq95wrLi6WXTB7lQvPYhKg2KjlKnwIlEii+53Ic4zM4SRe6Bq91Dis1TQD753waubQoUPIzs7GzTffjFdffRX33nvvlc5SUNTU1ODll19GZ2cnNm/ejPj4eIVQ3QtDHCuUKC+DFSD4HbfhABtYvOq4wpWLCru730VFRdTpdMzKyvJyvxRsPP3R8rW2tjIjI4N6vZ4ffvhhn6en0jMG5sTqIMM5arxgwQI0Nzdj7NixMJlM+N3vfodz587J4RjAFt3Tvj3cnDlzBi+88AKSkpIwadIktLS0YP78+X2WnkrvUMU9wBg+fDhWrlyJpqYmnD17FkajERs2bMC5c+cUjUX6gzNnzmDt2rWYMGECLl++jKamJrz88suIjIzs97yoBI8q7gGIRqNBdHQ0ioqKUF1djQMHDiA6Ohrz58/Hxx9/HFQcvioBOlxIBbUibcuWLXj00Ueh1+vx1Vdf4cCBAygoKMCoUaN8xq1yZWCXEZAr8k4sKgMLegwmnTt3Dlu3bsWmTZtgsVgwZcoUpKWlIS0tDWPGjJE313DF384vnvEDjq2hqqqqUFVVherqaiQmJiIrKwtz587F8OHDw/8jVfoUVdwDBCWxKSFJEs6cOYNdu3Zh7969qKqqwpAhQxATE4PExETodDokJiaCJIYNG4Z77rnHTeAHDx6ULePq6upgtVrR0NCA5uZmaDQaucKYPn263EK7VhLB5lPlyqOK+yrAVVCe4pIkCRaLBWfPnsW+fftw/vx5NDQ0AABsNhu+/PJLt7gSEhIwYsQIAEBiYiJuuukmJCcnQ6vV+pjKUrlaUcWtonKNog6oqahco6jiVlG5Rvn/oDBsol5o9PsAAAAASUVORK5CYII="
|
<image>如图,在△ABC中,AC=3,BC=4√{2},∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()
Choices:
(A) 1
(B) 2
(C) √{2}
(D) 4√{2}-3
|
√{2}
| 10,823
| null |
√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAALsAAACNCAYAAADvswvaAAAPgUlEQVR4nO2dT2zcVB7Hv29SiahUQohWVOJQIkBtxsOqSJxAqA2cgsSB7XhSkLZQxA1ttc2tB+KZrNj21AQuHDhuq208SZtEghYunZySnqCdP+kFteppVkJMUsSqEsRvDzN23jj2eP7ZfrZ/H6mdscf2vNjf+c33/d6bnxnnnIMgBoUDYLZVnIMxBl7TUSgUUNBrAI7iVH4RxXQBOSygqKYCa2Jw70TEEm497o2ZjDHwqoZXlSkscg1lboDz+9AwhVSuCiUdbFtJ7MRAmMGcsdYzS/MGeFWDkpkFz5dR0XPItLZWNA1ZJY20wuyH85V9gb4bEU9EC2PpN4ViYRabygzuzbSHcIY00scUBBzYwcizE35gQMfp1BSqWhlVLRN2cwCQjSF8glWrKHMgnW7Gb845mmHVaC6H0CYSO+EbDONWJ5Qxhqatb0mOc5jCDwoSOzEEjD3PuaJAwSYWlmrNZWGLmr6Aqij8gCCxE0Mgted5CjmoKnBfyyFfrIIB4KhgoaBBV1Qo9qR8wK0kiJ6x8hsOJlzVy1jIK9BzGTDGkFIK2MxqyCupEKRO2RhiCHAAzGEEtYkBWWKqHK0gIg2z/nNiV2Jnz57Fiy++iFKpNLT37iVWU2QnBsItoDfXmx3XFH766Se89tpr1nIQmZj33nsPq6ur1jKNoBIDwbA74cuCoy3NuLW1hUKhgGeffRZPnvwPU1Mf4MiRI7626+7du9i/f3/bOrIxxEBwoF3ogBXqOQxsbGxgYmICZ86cQSqVwmef/d0S+jBMxZ73NtvlcGyK7MRAdMqqzM99iZWVFVy/voxHDx/g0KFDePrppwGkwNhw3LPbByaV2hvHKbITQ6fRaOD999/Ho0ePcOvWLYyNHcG/r17Byy+/3NrCGEpU74TT8UnsxEDYRbWxsYG3334bZ86cwdzcHEZHR8E5x/LyMo4dO+ZqO4KAbAwxEKJ45+bmWrblOsbGxqz1a2trloUJM/lHYic82ZNtsbG1tWXl0G/duoXR0dG2169cES1MeJCNITzpJHQx22LaFjumhQkbiuyEJ26R3c22mPsA7RYmbEjshCd2oTcaDXzyySeutkXcR7QwjLFQPTvZGKInnLItnVheXsbRo0cBDGcQaRAoshMdES1MJ9viRKlUwqFDh3DgwAHH4wUNiZ3oCGOsK9vixJUrV/DSSy9Zy2EKHSAbQ3hw584dvPPOO13bFpGVlRWMj4/72LreoMhO7MGMwKZtWVpa6sq2iJRKJRw8eLAtCxNmVAdI7IQDW1tbfdkWEVkGkkTIxhBtrK+v95RtcUOWgSQRiuyExfz8PJaXl7vOtrhhZmHsA0lhd1BJ7ETf2RY33AaSwvbsZGMSjjlI9NFHHw1kW0RECxP2QJIIRfYE0+sgUTe4WRgZILHHHCefbNqWsbGxNtsyDE8tYxbGhGxMjHCyDHbxinNbLl++bP2SyGnbfhAtTNge3Q5F9hjhJS67bTEj+bBEabcwMvl1gMSeCNyyLcOOvKaFCTvF6AbZmJjTzS+JhoUMP6ruBEX2GHP58mWsrq7ixo0bntmWQaOxUxZGtghPkT1i2H2wuSyubzQamJycFOq2OP9kTmRYWRjx2DIJHSCxRw67gMxl83FjYwNvvPEGzp0752pbhilCU9wyzoWxQzYmgrjZg4sXL2J1dRW3b9/G4cOHe9q3XxhjUg8kiVBkjwGmbXn8+DHW19cDE7qJk4UByMYQQ0AUkWhbLl686LqPn51FtywM5dmJoeFlW8SRUb+EHhULA1BkjyTd2hY/RW4i81wYOyR2yXGqktuNbQmKKGRhTMjGSI4YmS9duoSVlZWO2ZYgicJAkghF9ghg2pbt7e2OtiVoZKsL4wWJXXJksy0istWF8YJsjISYEVI22yIiY10YLyiyS4LYEd3a2pLStohEKQtjQmKXBKe5LU62RZaBmihlYUzIxkhEN7ZFBqsga10YLyiyS4BbtkWWKG7HXhfGRGahAyR2X+lGrJ1si6zikbUujBdkY3zES6wyZ1vciNJcGDsU2UNA1kGibohiFsaExB4Q5te9zINE3SBzXRgvyMYEhOyDRN0ge10YLyiy+4TTD6CdbEuUBOP2i6SoQGL3ATHfbLctnX66JruIZK8L4wXZmAFxGkgxl51sSyehyCyiqE3ndYIie49086PiKGdb3IhCXRgvSOw94nWBo55tsROlujBekI3pA/HrW3we9WyLE1GqC+MFRfYBMe8AHTfbIhKVujBekNj7QLzId+7ciZVtcSIqdWG8IBszAN2Um4s6cbEwAEX2vui2bksciPJcGDskdg9kr9viN3HIwpiQjfFA5rotfhOHgSSRtsi+s/On9Y/YJe7ZFjeiVhfGizaxj4zsa3skkmdbRKJWF8YLUrUDUajb4jdRrAvjRccOqt3WONkcN9vTyRJ1a5fctuu03t6mbi1Z1Oq2+E2csjAmHcVutzX2x52dPzEysg8jI/v2fADM9b28JiJu57Ze3F98tLevG8FHrW6L38QpC2PSk40RhSSu85tu+hCmqMVte+17RKVui99EtS6MF555dq/IKEbZqBK1ui1+E9W6MF5YYh80QvsZ4fs9dlzrtvhNVOvCeNEWjp1sCuBsEcT15nOn9b28Jr5Hr8d28uyGsbPHv4skOdviRpzmwtixrn6/NsRtv07H63afXo7daV/7a41GAx9++CGOHz+O9fV113YmkThmYUy6mhvjFvGjRFzqtvhNlOvCeNFRwXGaNpD0QaJuiHpdGC888+xRzbTEsW6L30S9LowXsZziG9e6LX4T9bowXkQvZNtISt0Wv4nbdF4nJIjsRtvSnujqEWyTUrfFb+JQF8YLCcSeAkcFM0rz1uOpVMq6DbmSy0OviWo3XI9iQtmW3ohTXRgvJBA7wJCGVr2GrDIOrbIDzjl4+R5UFDCVUaFb4X1vc8VIdOnSJZw/fx63b9/G5ORkQK2PNva6MHGL5iJSiJ0jBQYGcBVZpbnOyGQwoy8giyXMztbMDfe4miTUbfGbuNSF8UIKsQMGUnoRi0oaGd5sEgNDCjmoKlCtVAAAnAEMaFN8Euq2+E1c6sJ4IUk2JgV9cRFZdaGlZuuhSa2GCjgy7WtpkGgIxHkujB0pIjuHjmJRharavzarqNYApNOW0DmAXxu/Nuu2bJFtGZQ4z4WxI4XYWXUTm2oWOTDrq5MD4FUdxSqQVVVr2zsbG3jzzTdx7tw5/OsS2ZZBSUIWxkQKG1NZ1MGVBVt13DIKU7PYVGagtyK+pmn44YcfyLYMiSQMJImEHtkN6PhnHlCz6dZJrqCsz2Aq8xfMYgblSh4H6//FyZMnAaDdtsSr/xQ4casL40XokX2ETTWfZEZQaK1TFAWKVgbPZVAqlfC38+cxf3kOJyZOAjAvCgdY6J/VSLOysoKPP/447GYERuhi75Te0jQNa2truHnzZjOacwDMzP/GNwIFQRzrwnghR2gU9H7t2jV8++23lm0plUq7tiXe1yJQkpSFMQk9sgOwRDw39yWmp/8BAPjmm2/w6aefhtemmLO8vIyzZ8+G3YxAkSOyt/j++5vW89dff932qm0SGHVO+6ZTXZg4I0Vkr9frOH36NE6cOIEnT57grbfewvHjx3c34NjbGSVL0zf2ujCmyMmz+0ypVMLk5CTy+TwKhQLGxsba0mEASNhDJq51YbwINbLvybYQvpOkuTB2Qons9XrdOdtC+E4SszAmgYhd/KoslUp49913LdtCBEuc68J4EYiNMU+qpmkolUr47rvvOkbzJPnIIIl7XRgvAonsom1ZW1vztC1JizhBEfe6MF74LnZ7toUIj7jXhfHCVxtD2RZ5SNp0Xid8ieyUbZGPJNSF8WLoYifbIhdJqgvjxVBtDNkW+bDXhUkyfUd28euQbIvcJKUujBd9i908UWtra5Ztyefzw2oXMUSSUhfGi4FsDNkW+SELs0tfkb1er2NiYgIA2RbZSfJcGDs9i93MtmiaRtmWCEBZmF16sjH5fN6yLc8//7xfbSKGAOcca2triR9IEukqspvZFs65VaDIzxOW1IsxCE6ZFicLk0qF/nsdX+mkHc+/PMhBIqv0XcKyBMPA6SI7WZi4n9tOf5+jjbl//z4mJiawvb2NI0eO4IsvvgDQFL6f/Pjjj7h69Spu3LiBgwcP4sCBA76+XxwQf0Nq8vPPP2N6ehq///47Hj16hP379yfGvph/5y+//IIXXnih7TVHsW9sbKBer1vLX331lb8tbPHw4UP88ccf2N7exueff45nnnkmkPeNGw8fPsTjx48BNAPIc889F3KL/MXpg/zbb7/hlVdeaVvHeJO2jRuNBqanpwEAX3/9NUZHR/1vMYAHDx7gwoULOHz4MObn5wN5zzhSr9dx4cIFPPXUU5ifnw/s+skO432auKR8LRLRw600iJRdc+qo9gedrybm3RbtuIp9BwuYzVc6HnBYcM6h55jVSPP2kOajWvS+JWTS4agg/+rubTUZGwFjDOkpHRWX8mlJ+3C4in0pdxoLAbkUxhhy+g70LJDVm7eGNAwDBi9DU8aRUcgudYQDDBkUKhwLqnkOd8BrOhR9Cqdn7zvuljQb6ij2yuwpFKEgnU4H2JQaaptZ675Kxdk8qlCgqlMYF5qRrFjUJS3NclRQq41DMc/XuNq62+A9a1POOXirbmbSIvs+wCp7DgDgVQ1L44tQKykUA2wIrxZRTKuogAG1PGarSvO5pkER2sgAcL4DxkYCbF004DUdRahYUBg4KtALOZwunsICz1nbMMbAW1ebMfHKJwAusMMXuKYucIOXuZY5xrXKDg+Ke/k0B2veNwwAT+fLgb13HDB46xxi9xwq+f/wMjfCbpo0tNmYpVwNab11ZzrOwAL6ljN4GUtFDq3c9Ov38mnLQiXri3YQKlgqcuRb59CozMDIf4Cp2XLYDZMGS+y8qCK3WMAUS2GEvYpCNY3xTFA91E1UqxmkWx3RFLJQVfNO1+2YYYvYhQMwUEMNOZxqXTOmFJBXgVrxums2JmknMgU0fbpa08ANDs45/ixrSCsKlID8HCsWsaieat4HFYCiFZADUM5nka+aacfmY4IcZtcwACgWUVWze+4CDuzsPrWLO2kns6zP8Kx6rc3bGPpfOZSZQPyewct8RgHP6s3+gWEY3OBlXs5nXdoQXD8iKuzwMteUcZ6vNs/VTuUev6aOc2D3vHLePLdJBgA4MG51Rq/lIHRyTnHdfoKGfL7GgbZOFQM4UowD4McKdzvum+xLt4t5DlkzvdL8l85yTa+E3TSp6HtuDEFEDSnnxhCEH5DYicTwf7gtkQl41l6eAAAAAElFTkSuQmCC"
|
<image>如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()
Choices:
(A) \frac{3}{4}
(B) 3
(C) \frac{3}{5}
(D) 4
|
4
| 10,824
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABwCAYAAADopdXZAAAV6klEQVR4nO1df2yT17l+7ECZhjvT1RMfwsw0MZ1pJjU0MLJLJJfirtwBWaqm9f4IV2Et821zdZduDmQSvdA10nK7bFCNKgnZRCpRLVPTZu3SW0gCBCmVuHNvs6oJCYoDgaSLI/NHmNPNIfb33D9sf/71+UccO3ZoHyng75zznfN+5z3v+56f71GQJHIYt2/fxl//+leMjIxgamoKfX19UtzY2Bg+++wzhH6CVqtFQUEBAGDlypXYsWMHtFotNm3ahOLiYqhUqqX+hAVBkWsMmZycxIULF9DT04O+vj5MTU2htLQUGzZsQEFBAbZt2yZV6saNG6HT6aR3SeLmzZsYHx8HAMzOzsJms2FsbAwTExPo7++HVqvFzp07YTKZYDKZsHbt2mx8ZkzkBENGRkbw+9//Hu+++y5cLheMRiN27twJo9EIg8GQ1rKGhoZw6dIlXLx4EX19fdBoNKioqEBVVZUkWVkFswSn08nm5mYWFxdTq9XSarVyeHh4yekYHBxkTU0NBUFgaWkpW1tbOTMzQ1EUY74TL26xWHKGOBwO1tTUUKVSsbKykl1dXUtNAkn5Su3o6KDZbOaaNWtYV1dHp9MZM22msCQMEUWRExMTtFgsVKvVtFqtnJqaWoqio+hIBhMTE6yurubXvvY11tTU0OFwZJiyIDLOEJfLxbq6Omo0Gh49elRqdQtFZGUuRat1OBxhtLvd7oyXm1GGdHZ2UhAEWiyWBTMimQ9fKlXicDhYWVlJnU7Hs2fPZrSsjDDk5s2bNJlM3LJlCy9fvhwz3VLq5nSgr6+Pmzdv5t69e5NqYKl8nzLdvbaPPvoI3/nOd/Doo4/i448/xvbt22OmVSgU6S4+ozAajfj0009RVFSErVu3YmhoKG76lL4vlZYSC21tbdRoNLJivdykIRHeeustajQadnR0pDXftDDE4/Gwurqaer2eg4OD6chyWcBms1Gr1bKuri5teS56pH779m388Ic/xOzsLLq6uqBWqxNJ5LJTVfEwPT2NPXv24IEHHsDp06exevXqRX3fomzI0NAQtm7dCp1Oh76+voTMAJaf3UiEtWvXor+/H1/5yldQUlKCa9euLS7DVEXr7NmzVKvVPHnyZNrENZeRjA1saGigWq1mX19fyuWkxJDBwUGq1eqk+uR3mzGXQ+g3/ulPf6JGo6Hdbk8pr6QYElqg0+mkXq//wkhGKqivr2dhYSFdLteC303KqNNviL1eL3bv3o1vfetbOHny5OJ05V2O/fv3Y3Z2Fp2dnbLxjNG5ScqoB160Wq0AgNdeey1VOr8w+N3vfgeHw4Fjx47Jxsfs3CQrSm1tbdTr9SlPDn4RMTExQa1Wy87OzrDweHY1iiFyiS9fvkyNRpOVBaRcR6JOi81m4/3335/0gDmhhExMTHD9+vUZn+W8m9HR0UGdTpeUdklo1B9//HGYTCYcPnx4sWr1C42XXnoJIyMjeOutt+InjMetP/zhDywuLqbH40lTW7l7kUh1ud1uGgwGfvDBB3HTxWSIy+WiVqulzWZbcOFfQh69vb00GAx0u90x08Ts9r788svYs2cPtm7dGhV3t81HLRV27dqFhx9+GI2NjbETyXHJbrdTo9FwZmYmY63liwqHw0GNRiO7cUIUxXAJod++19fXo7q6OqnZ2y+xMKxduxaVlZVoaGiIilMoFNE7F6enp1FYWIixsTFZhvAuW8/IBqanp/Htb38bdrs9qo6VAMI2Kzc0NODgwYNSwgh+fcmMNGDt2rV46qmncPz48ai4MAm5desW9Ho9rl69mnObkO82jI2NoaSkBNevXw/bkR8mIW+++SaefPLJL5mxBCgoKEBpaSneeeed8IhQK19UVBS22pWT4404JIkxH3ITnZ2dNBqNYWESQwYGBqjT6cIic5IhAcQlzbtUVCwKHo+HGo2G4+PjUl1L3d433ngDVVVVYUY8Fww4pX8CEH3/KSIThSLt+/8ygry8PFRWVuL06dPBug5wS6vV5uz0upykiqK4LNRSonMmly9fpsFgkMKUgO8Ek8fjSftppXQhSlLpD1MAksQQMpKSfcTTMgqFAlu3bsXk5CSmp6cB+GX70qVLMBqNS0NhKvBXtL2n2TeaVSqgUCjwg8OnIKknBcLVWMh7uYy8vDyUlpZKh1mVAHDhwgU89thj2aQrPhQimg+XYdP3/gej9IIkRI4Cr1r8TIn13tKRuBgYjUZcvHjR90CSgiDkrP0gyaZD+4iyWv9TsAc11tNMYB9HpbDl0buKRKgdWXHjxo2s2g/KzI0RwcZt7zmF51/9M7rt7/lDlFICMWqxc3n0riKxfft2XL9+Hbdv34bSbrejsLAwa8T4mCGGh0m/RJw6aUHZ4SY8LnNi+fr4WNS7yxWbN2/G6OgolCMjI9i0aZNsIi7ZEXb5lk1cw9X3gO+bTOERfo71dDWi7FAZ9DElI/eZFajjwByi0m63S+oqkgFLMjAU4zB97BreA5D/gB5AeKfJ3tOMxveA//jxjxG74nNfhQXq2GAwBCUkwJCsjMyVccosyEcZgGvX7QCCqoyw42ffex77DrX4VVloxee+VMjBYDBgaGgISofDgfXr12ebHtmBnQJ67K7di3//7SlJkjjWDaViE3C4Ce/+94+X7bRJJLRaLZxOJ1bMzs7i3nvvzTY9gEKEXGU+/+qfcf0HCijyfiWFddsJU76fE7EEjAAVy2YogtWrV2N2dhbK2dnZHHFZ5GOGnEV59V2CDP49XpCEel1GzAAAlUqFzz//3MeQ1atXZ5seCTEbfIwe3/nz5/HNb34TBQUF+PDDDzNHWIahUqkwOzsLBXyD9WzTkzLy8/Nx/fp1AEBxcTE++uijLFOUGm7fvg2dTrdMLaAfN27cwM2bN8OelzuUAd213HDr1i3s3r0bP/nJT2AwGFBYWAhRFPH2229LaZaT5LtcLl/nShCEJXU/tFiIoki3283t27fz6NGjYXFdXV3UaDTL8lDR8PAwDQYDlQFjslwgiiKeeuopFBUVRR0X27NnD8rLy3Hw4MHsELcIBDpXSpVKBZfLlW16kkZ1dTVWrlyJ119/XVYlHT9+HAMDA3jzzTezQF3q+Pzzz6FSqaAUBAGfffaZbCK5D84mjh07hk8++QTt7e3Iy8uTHYuoVCq88cYbqK6uxuTkZBaoTA2Tk5P4xje+AaXBYIDdbpdNlK1dJ/QPAEPR0tKCP/7xjzh79ixWrVolpZOD0WjEgQMHcODAAdm8cw0kMTo6isLCQij1ej0GBwezTVMYFApFWGN4//33UV9fj7Nnzya9I7+hoQGTk5NoaWmJyjvXoFAoMDQ05FsG6e3tjdo9l0sInABOdIpVbruNzWajWq1O2c3FUqKoqIg2m40YHx+nRqMhSYriHOcCf14357O872l4eJharXZRzlyOHDnCHTt2pJGqzGDVqlWcmZmhzCaHed4R55jtY54Oh4M6nY7t7e2L2tLq8XhYVFTExsbGNFKXXoRuclCShNFoxKVLl7KtSiXMzs5i165dePHFF2E2m1PS+/Qb77y8PJw5cwavvPIKRkZG0k1qWtDX14dHH30UAKBUKBTYuXNncF+QBBEe3sEd3sEdenzrR/5nj9RR8WDeHzYf1nsJht+hJ2INL14c4Ha78eSTT+Jfv78bL/zn82Hlx34/SKvX/3se87hDEYAHDz60CYdfOoR/e7YSoph7K4qhDAFJXrlyhYIg+AUoqLJEcZ53xPmQ3U5ezovekN/z/u21Xs5Lai70N+kV5zgX9k6sOB/MZjPN5mdC0on0iHN+e+blvDfW+z6657x3/PT6n/00ejxzLH28lP8VMd2SbXg8HqpUKjocDoqiSJnN1uE2RAz9aHE+aOjF+WAHwP83LwbC56V90GFMjYjzlRVkuNVqpclkomfeHcUoJnw/0vZFP4/Yh/n1r6/hxx9/vOCKyxRkN1sDQEVFBdrb2/1PSmmhSKFYASU88ILwAsgLU+crcI/iHulvRUgcpfejRVRuaPbrX/8avb296OzsRF5eHgAx5tbcVId2+fn5ePmVeuzfvx9zc3Mp5pI+kER7ezvMZnNYIEVR5P8N/C/zDRsZaHWh/RoxVAIk+NRPMMxLrxgMvxPoGYnzUSrrjij6jxPMc070sL29nTqdLmTW2de6F5Z3YgkJPJtMJtbW1kox2TqYFHpgJwAEiBHFOT7yL1vYe6lXpsvrsxdRSiRMbYXGB/T3XISKiY7r6e31q8srnPePfYLMSjZvH6OCaeM/j9+8SY1Gw/7+/kVWafKQY3rkkbYwG0KSJ06cYFVVlUx2Xnoy0IoGBwcpCEJc//CZwpkzZ6jX61Pyi5gKgg0/WI/l5eVsa2sLSxfGEKfTyTVr1kQtWInifNoHiuPj49RqtWEXuiy16igvL2d1dXVWyg64L4lsEFG+TmpqalhXV0dRFP3dyhCdnSY4nU4aDAa2trZKYdnQ406nkxqNhr29vUtetsVi4bFjx0iGf3sUQyYmJjLieCZQqNvtZklJSdTya6z0mUZnZyfXr18f1lIzXbbD4aBarZatY8mTA0POaRw4cAA6nS6mR83I9Mmm8Xq9KC8vx/r169HU1JQzU+H79+/HihUrcPr06YzkH1kPL774IgDIutZYMvdMoijSYrGwvLxc8lCXK+fgZ2ZmZL2HZgLx3DORcTzKWa1WWiyWtBFy9OhRlpSULMk9Tqmgt7eXgiBk9GY2URRpNptZX18fM01cF3+CIMi6+FsompubaTAYct4hWnV1NZ9++umM5X/+/Hnq9fq4jTKuE8z29vYwJ5gxD/DHQVdXF7VabZj7iGTeywZcLhf1ej3PnDmT9rwDTjATudtN6LfXZDKxoaEhKjxRhQa8FCSz/JpL6O/vpyAInJiYSGu+R44cYUVFRcJ0sgwJreyAu+yFOlK+cuXKopdfs4W6ujru3bs3bfktxJFyUr7fY7kaFwOThBGYmprixo0b2d7eHjPPXFRZAbjdbhYWFoYNXFOFzWZbkJZIuzN+l8vFwsJCnjhxItmscxIDAwNUq9XSTGwqDSiWM/54WNANOzU1P/UtIHk8JL1R3njcbjdNJhOtVutCss1Z1NfXJ9wiFYtR//znP5OakYhEQoaEFue5M0+TySRNyEXimWeeodlsXhABuQyPx8Pi4uKUpL2yspLl5eULfi9pCQkwJnDl0eu/Db/ySFp+vcv8xA8PD1OtVofZz0TqazFXHiWWEJmyA5eCnTt3jiTZ2NjIoqKiJVtbWCoEKv7EiRP87ne/m1Rj6+zszPylYKEIEBm4Nu9HP/oRdTodp6enUyIgFyEnAUajMe6UB5n42rxkOgZJSEjsTFpbWwmATz/99F2nqiK/e3x8nGvWrOHAwEBUWrfbzaqqKhYWFi56H3GSEuLlaHcTu+3hYR0dHdyzZw8B8L777uNvfvObtI9wcwEB5rS2trKoqCjsugmn08ni4mJWVFSkRWX7dp0kIoijLAN8DJFJ/I9//INPPPEEVSoVVSoVH374YTY2Nua0U7SFIbjFYu/evTxy5AjJ4OXEP//54ag3Uh32BiUkbN9PeKLmQ7Xcty/Uc5t8gW1tbRQEgb/4xS9osVgoCAINBgOtVqsk6rFUYKZH7osrN/jdNycnuGrVKv7yl7+kIAgR13cv3qNdiMryUiQpiuG2oKe1li093SxThjMkFv7yl79QEATJANpsNtbU1FCv11Or1dJisUhr2IlcqMbDQhm4kJlmufiBgQFaLBbef//9fOihhygIgn86JHyAvNgZ7RDHAb7digpFXnA1cawbZ2nCcw8Q7+01SI7CSPqcu8gsV27btg02mw0XL17Eli1b4PV6cfz4cYyOjqKnpwcbNmyA1WrFmjVr8Oyzz+Ltt9+W3UWYaHl3ocu/oemTzXt6ehqvvfYaNm/ejMrKSnz1q1/Ffffdh/z8fHz66ad+T3zKMH8gCylHFvG4Je3uGz3HskMtC+Z8Z2cnBUGgxWKJmgMbHx/nyZMnaTQaec8997CiooJtbW1JLWJlUr15PL6dlOXl5RQEgdXV1fzwww9ZWVlJnU4XnPUWmRFHzjEY4mX3KWvAgxUBhDEkQA+ZuHJcLhfr6uqo0Wh49OhR2clJp9PJU6dOsby8nHl5eTSZTGxubs5Yjy2eStJoNDSbzezo6KDD4QijfW5uzvfdIcwQRVGqK4UijyirpchR/uxQU0q0IdIQiaJI0X6Oh051S2FXe5pYe+oDRqVdQEETExO0WCxUq9W0Wq0xF/ldLhfb29tZWVlJlUolnX4K9NjSKR0Oh4MnTpygwWBgYWEhW1pa6HQ6OTExwerqaqrVatbU/NRPa+i3+36L9nMEwB/UhmgPf1hty7mUaEKgAGmro/2c5CM38Ondp6z+ArwRTFh4r2J6epo1NTVcvXo1KysrEy58dXV18bnnnpPtsaWC+fl5SSWtW7eOL7zwgsTszs5Oms1mqtVqHj58mLdu3YqZT2AoEKk5SJ+f4eae0ZToC1NZTYf2SSoqMAj8WRkIKEPUVvyub7JwOp1saWlhcXExtVot6+rqEo5bLl++LNNjuxAlNWLE/6S8SiJ983I1NTVct24dS0tL2drampQd86kp+Z5n9ylrxCA6eSCK8gUhPZ6kh4eHabVaqdfrKQgCzWYzm5ubYzJIFEUODg5Ks6pqtZpVVVXs6HgnbBQdqZKam5vZ39/PkydPsqKighqNhgaDgUeOHIk/5RFVPz7piKuWUry8IakL7pcSk5OTOH/+PHp7e3Hp0iX87W9/Q2lpKTZs2ICCggJs27ZNckm4ceNG6HQ63LhxA11dXWhvb4fNZkNJSQm8Xi+Ghoag1+shCAL+/ve/o7+/H1qtFjt37oTJZILJZErpeieOdUOpfwLNPaOwmPRp/f4gQ0L9eydLWIpX6C3kvZmZGXzyyScYGRnB1NSUdIsAANjtdr+fFiUC7mHXrVuHe++9FytXrsS6deuwY8cOaLVaPPjgg3jkkUfS4l8yyJCrsJge9H9T5GkxeaeeiTOPIWKx92B5Y8Yni3T1lERRjFILCefl0lB2wKBbm6M7JKL9XMoGnUxhPSQXEcWURUzJJIvA2CO08ke7m0JucUgNi2JILmzkqS1D2AA2spIWi3AGeqWrlkR6ebWnSSpTocjjvtrmRVeKdOgzSIHMzxiFLJYh6WmtXtaWgS3dPiaMdjeFddvjlZnKBKXc0bQAHemAEoiYBJP7GcP+LvZ0R7KGPdANpEyHkLiGkT/vxWOP5wMECvLzg3Ey6Rcz+RfqNir63fQ4eF2RllwyjOCZ+WAlBDqFYz29UNTu881EK4DDP30CZZKT/tw4ELQgpEXOlgoyGqanJXwSNNURcq4g5x0ph/lzkGnw3e83otvucwnYfcqK7+kV6BlbOvrSjZxniDKO2uFYN36FWuk6JNNBC8oA9F7oWRriMoCcZ0g89F7ogfX7u4IB0o08D2SNpkUj2zozVYj0jUECNiMweo41A7tcsCwZYu9uihoMAogaJYvLkDH/D/YCbrF0TlWzAAAAAElFTkSuQmCC"
|
<image>如图,⊙O中,A、B、C是⊙O上三点,且∠AOC=110°,则∠ABC的度数是()
Choices:
(A) 130°
(B) 125°
(C) 120°
(D) 115°
|
125°
| 10,825
| null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAMYAAAAYCAYAAAChr4ICAAADhklEQVR4nO2asVLqQBSG/2hxeQ1ngMLhCZbKUmysbLW5G+c20NzO0hkLx5mkhMrbUtGw6wvIEzAW2S18C7GAcwsBQxJIUGIUzjezQ7Kb3bM52f+cbAaHiAgMwyywV/QEGOY7wsJgmARYGAyTQKowHh4ecHR0hPv7+y+Yzu5ShJ938dlmvWcnbfN9cHCA5+fnDU6NYYqnVCrh5eVlaXtqxnBdFwBweXkJIuKSU7m5uflyPxdhs+gyu+eLi4uV6z41YzDMLsKbb4ZJgIXBMAmwMArDwq87cJzFUnd9aFuEXY1czf4w1hCGhu+z6zZHGc1HBSkEPDPdHBqDM7TQqLjQudolKAlINbOrUOs0cL4Lz9dq+G59GhDqcH0LaBduxOGZhaHdBrqbniQD4Awn5elhuYxmW0Gig+tcF6lFMBQ4rMzsHuNUAoMnk6PNb4D1Ua800MUVDBGIHvEX53Aaw3dfTMkkDOu76EGgVi2nX8xkR/fQqVWx6NUvWKS2j+5ckBbar6PRkVDt4/xsFo31Ua+0AM/gsX0893m5eQUpaogu7XRhWB/9ahunGGx8rruO7nUgT5csxmGQ2zu/7XcxGLRQcRw4TgXXuIKhNrZYFtC3LQyEh3/NaHCv4LB2iEjCWBTGZPI6L9Ph4N9W0TyOpF5mA2j0OhJxXVgEQwCxTLIpLPpdhPY1HtDa9v2FRq8DiLOTBJ+W0Ww3Y/ULwtjb+7Xwq90A1W1Or0ViAwzlaTxK2z66AyzPJJ/G4GlhX9PElQQG3f72fpWyAd5iTfZQs/xVSrtodFpoTNNtaxB/D2M+ju13EU/BFv75W8r/m5cudA/DxMi57az5xkMRxuMRkfFIeobG49FbCe5ICI+C2fl4tHB9+Dxav25blutW1UfnlGajGBRJCPLM7NyQUR5JAYLwyKzq+ikMeSJk1xhSUhAAkio3o98ARRIg4cU9a5RK9HdMGIG+Ixny0ng8IlJy/sCiokg7XqctS580MfwEcQCIFSEESZWfJIiIRIJdCElezna/A0qCABG6V0PK8yhBK0SUIIxSaf9tgGkH/Wd/7sRS6TeFA0t4MeYpjFX1HxEqs4sYUp58Dw5CLhUFEVHs37WTyet88x2ti7YlXZtUHz7/6Bjrjr3KJsOkMd98v3+i/Rif7V/U2AyTxDxjzBbfssi6KoIn9Qsv5qxtSdkga/9oXbhv2r0xTJT/rwwheKOgfLgAAAAASUVORK5CYII="
|
<image>如图,已知线段AB=12,延长线段AB至点C,使得BC=\frac{1}{2}AB,点D是线段AC的中点,则线段BD的长是()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 10,826
| null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAABvCAYAAAAtx2jmAAAxDUlEQVR4nO2dd5xV1dnvv7udMo1BBpAqHZRehqp0MIqGokJMLPGN5DWQoImJ0bzX98Z7bxJNcmPUqDfYKy2ASC8iRZihDb13R4YibWbOnLbLun+cWZt9Bhh0mBnGT3g+nwMzZ3ZZe+1nPeX3lKUIIQTXqdJIOIJo1CLg17HMKKpioegKX588TnEoTDgaA6Gj6ik0bNyYlNQ0BBDQQFFACMGbb77J3r17+etf/4rjOCiKgqIolT9Wz6uX19cr/S7/5iQEBFMMzFiceDxOanoq8Vgx8+bO4+8vvY7pCJo1a8aRLwu46/v38b+f+y8Mv4FpCnyGwldffcWpU6cYO3YsjuNgWRY+n686H+A6VSaZcVvEo6awTFtYZlzEw4XCtkMiFjsr/s9zT4l582YIIYT47PMVol2HHmLZyjVCCCEs2xFnz54VCxYsEAsWLEhcyzSrdKyO47gfSWr1sd6/B+m6iuMIHMdB1TTQNIRQOHfuHMeOnWDw4KEArFu3gbbtWlK3TiYx00EIOHbsGKdOnWLYsGGUlJSgqiqWZSWJ9qomRVTn3f4NyLYFmqZg2za2GcUwdBTNz5qVS5j485/Tsk17UlNSaHNLe8beex9tWrcmags0ITh/7gyRSISmTZti27bLCJqmVZsNcV1CVDIpCkSjMYTjoBs+UFRwTNauyWHUqNGMHfsD6tWvz9Yt27FsBUsILNvBcRzq1q1L06ZNicViaJoGgKqqVcIMl6PrRmUlk6oqGIaBqig4ThzHdtB9fs6dK+SRnzxC63Yd6dOnN3ePvIflK1dwS7tWKIqCrqnYto1pmmiaRjgcxufzVSszwHWGqHSyLAtFURACTNMiEExl/+4dtGzZkuYtWgNw7KtjGIYBQiAAn66gKQqguRJB0xI/VzddZ4hKJkWBUKiIlGAQ27bZuWM7//u539Ogfj0+nbeAc2fP8MILf6XPrbcycuTdRCwHBYGha6Xnl+rya8AMcN2orHQSwiIWi+LYNikp6bz71lssWLgIn2EQjccxLYvu3bP55ZO/wpeaimVZaJqKoaho1asdLmlUXmeISiQhHOJmFCEcdE1D13RQjEsee7awiGBqGoauYjkOPkVBrWZ74VIMcV1lVCIpCjiOTTAQxDRNYrE4qurgWA66qqFqOpZwAIGuKDh2nKjQCBgG1SwcLkvXJUSlkoMQDkLYmKaFbVrgQDAtA0UtfeUCUMC0HIQisEjYCz6oERLiO4JDOCQm20IIJ/FNqYUuyh4nRNkvK5XKrp/k30uDUIqCqqr4A0FSMmqBEITOh/jy4FGmTZ3O4cP5GHrCm1AEaFDt7uXl6DuiMgQIC8uKEYs6pKZnUhKzQFUIGjqKcFBwUBGgJnS2aTqomoKqKhUSx0KIUvcxAUNLoMg0zYTLCNi2DSSDR4qioSoaqgFnzpzhy6NfsnfvHtblruPTTz8lJS2NRo0a8+57b3Nj/RtRcVDgusr4dmRBvAR8OqatoWgBBFAUsQgYKoplomPjC6RwsuArCs+HaNWuLXHLxmdoFRLFpmm6L1pVVRdKFkKgqqorGVRVTXIRv/76azZu3EgkEmHFihXs3r2bHj16EI/HUVWVBx98kOeff55wOMy7775LZmZmEpNVJ313vQxhgVUChgEEOXH2HHEb6tepjYOCDwF2HNOyefGvfyE1tRaTfvUEpi3QVYWKSmMpATRNw7Is4vG4+7vf73ePO3nyJFu2bOHIkSPs27ePr7/+mvT0dLp3786YMWNYv349S5cu5Te/+Q316tWjoKCAiRMnkpWVxR//+Efq1q17tTNUIfruMgQWwo6AcCgKObw7dTrtO3RgyK39MAWowkFxLHZt28rChYv44YM/pnHTJsRMB0P/9u6cEIJ4PO6+9EslqZw/f56cnBw2bdrEyZMnsW2bQCBAt27duPPOO7nhhhsAmDt3LkuXLuWJJ56gadOmqKqK4zgcOHCARx99lFtuuYU///nPZGZmVtpsfZvnlPQdczsVFFXHNqPMmDGVL1avoVff24gDjgCfqnK+sJjDhw4xcuRI6tevjxDgM9QK6WapJiDBDPLnUCjEpk2bmDdvHsXFxRiGQd26dRkyZAi9evWiQYMG7jVs2+bjjz9m06ZN/OY3v6FJkyZEIhH8fj+aptGuXTueffZZli5dSmFh4TVhiEvRd4QhBE48Tn7+l+zYsYOGDRuSmZlZap2Dadns2L6duG3Ttn17oiVRDL+P80UlpKUG0bVv70xJvW6aJrm5ucydO5eCggIyMjLo0KEDrVq14pZbbqFp06buOeFwmJSUFAAWLFjAjh07ePLJJ2nSpAmmaRIIBHAcB9M08fv9DBs2jOzsbAzDcI3Ya03fEZUBx/P3sWj+PBo2a8OKnI38dOIkGta9AU0BMxonHitB2Ca1MjJRdB/RqImDIOg3Sm2IbzbZpmkSCoU4ePAg06dPJy8vj+bNm5Odnc3NN99MkyZNaNasWdI5juO4P6uqyrJly1iyZAkTJkygWbNmpfC05qoiXdfdY6WBei2YocarDKmrITFA0zTRdZ14PMI7b71FdnY2x0+eIhaLkZ4aTGARAnw+g2CgNggLYdkIR2D4dGyRcBtt20JR1KRre19AJBIhPz+fgoICNmzYwKpVq6hTpw7Z2dmMGzeOm266iRtuuCHJm7AsC8dx0HWdcDiM3+/HMAyWLVvGvHnzeOqpp2jYsCHxeNzNiVQUBb/f77qzkhRFwXEcVq1ahWmaDBs2zA2DW5aFruvVFuyqMQwhV4/P58M0TQAMw0BRFD5bupS1q9eyfPUGCo4f546Ro6mdEiQUs1BVFV1XEI6V8Oc1DduysBUNVVcQDmia7uYaBAIBAGKxGIcPH+bAgQNs3LiR7du3AzBw4EBeeOEFGjVqREZGxkUrV0qDxH11SkpKMAwDTdNYsGABy5Yt47HHHiu1YwS6rrsSwsuIZa8rhGDdunXMnz+funXr0qVLF+LxOLZtV6tLWmMYQlFKE0tKff+SkhJq167Nhg0bOHDgADM++YRgeh3efedNDhecQlNIpKcpoKmUgpk2qBqaruPYYNtgqIlryxezfv16du7cyfHjxzl69Cjnzp2je/fuvPLKK+6K9qasSVezbOazEALTNAkGg6iqyty5c1mxYgUTJ06kZcuWfP3119xwww3u+VfKfFJVlccee4wTJ07wpz/9iVdffZVgMFglc10e1RgbIiHabXQ9sZo1TWPGjBk88cQTvP3WPxk2dBizZ03l//zxb0QcwSsvvUrvW2/F0BSwTAKGmmAIlARa6Qkd7N+3j88/X87OnbuIRqOkpqbSsGFDBg4cSHZ2NpCQGI7jECzNYzBNE5/P54pqiUnIn2VWU3p6Op9//jmffvopjz76KG3btnXtBcuygIuZ6XLPrygKhw4dYtKkSbRt25a//OUv7r2qQmXUaBtCDujMmTNkZmZi2zbBYJBf//rX3NSsGY4dxu/3cd+4sViKjuIzCBgKJSVRAroKSiLDGQABW7fuYOXq1WzauIFgwEetWhm0aNGCwYMH06lTJ/e+Xglg27ZrxwQCAReMkhJDGoFytaenp7N27VoWLVrEww8/TPv27YlGoyiK4rqYiqIQjUaTmOtSFI1GMQyDFi1a8Pjjj/O73/2ON954g/Hjx1drskyNkRCQWHnRaNR9GRIYsu04KjEULRUZjxNAWIDqCIKagm3FOXroIAsXLuKLL3JRfEFu6dCBls2b0LxZUzp37uKKYAlLwwWcQVESmdLeFy8ZRFVVN5bhOA5CCDRNY8mSJcydO5dHH32Uzp07l4a8Y6SkpLhuq2Q4rzq8FEm7SUrJadOm4ff7GTNmTJUxxHcCqbRtm5KSEtLT0z1QsYKmWigIUHzYikHUAp8OBcdPsmjuXHLXrKTw3Fl6ZvekZ+9+NGjSmIYNm1IrI8W9thTh0u0D3PiE1/KX9RAytxEutiVyc3OZMmUKjz76KB07diQWi+Hz+VyvwMtckUgEn8+XdN9LUSwWcz0KaYh6maGy3dPvBEOUDSAlBiqwLRPLsbAtgc8fxLYFYDFq1D1s376NX0z8GWPG3EPrVq0gaRIBhOvaSZ0sV7m8Z9mJNk0zSVpI1aFpGqtWrWLmzJlMmDCBFi1auHaJdEPlNYEkRrvSy/Qy5qWO9UoRCXJdjfT4TjDE5ci2bYqLiwkGgwghCAQCvDF5MkeOHsVnGCxZupS+ffsyYcIEt7ZB6vCyq8zr4l5uQi3Lct1UCSapqsqSJUtYtGgR//Ef/8Ett9ziMppUB1UBMOXl5WFZFj179nQruaQUkaqoInQphvhO1XbGYjERjUaFaZri4MGD4oEHHhCbN28WQgiRm5srxo4dK/r27SveeecdUVxc7J4jhHDrFy3LEuFw+Ip1k/F4XESjUfcjhBCLFy8Wv/zlL8WePXuE4zji3LlzwrZtEQqFRDQaFZZlCdu2K/25//nPf4rBgweL/fv3u98VFxe7z1ZR+k7Xdtq2jc/nc3X4O++8Q5cuXbj55psB6NWrF5MnT2bkyJFs3LiRgoIChBDu8bZtY9s2qqq6QFJ5ZBiGawv4/X5Wr17NjBkzePDBB2ndujWWZbnekK7r+P3+KoOgx44dS+vWrXnmmWdcOygYDF7xGSpEV8Vi1Uje1ffZZ5+Jn/70p+Lw4cNCCCFs205amaFQSBQVFQnHcYRlWe73chULIURJScllV7PjOCIcDru/L1u2TDz99NMiLy9PCJGQOvF4XBQVFQnTNEU8HhfxeLxSn9c7lmg0Knbt2iUGDRokpk6dKoQQlSKJvtMSQtoCZ8+eZdGiRQwcOJBmzZq51rxpmq59EAgESE9PBxKG2Pbt2zl16pTrxgohXFj8cveScPHSpUuZPXs29913H127dsW2bTf7SUoRSfL+lf3ciqJw880384Mf/ICXX36ZL7/80rVdKptqHENcakKFRxSvWbOGoqIiRowY4f49Ho9jGIbrRSiK4orWcDjMc889x29/+1uOHTuGpmkuRiCveal76rrO2rVrmT9/Po888ghdu3Z1A05+vz+RKe3zufEK770rm6TLO3LkSDp37kxOTo6Lm0hcxDtXV0VXLXcqkWzbFuFw2BVjtm0Lx3FcA/HQoUPiscceEytXrhRCJBpqlBV5krxG5NatW8Xtt98uBg8eLNavX+/+Xd4jFotdZBCuWLFCTJo0SezZs0dEo1FXBXmNUe99LzeOyqBYLOZePxQKidOnT4t4PO6OX6q/WCzmzp9lWVccz3dCZUh0T5S6ho7juD7+2rVrsW2b/v37u6L7cqvS+12nTp346KOP6NKlCxMmTOCdd94hHA67q0u6jPK7lStX8sknn/CTn/yEVq1aYRiG6+56XTzvParK5QRcCRQOh0lNTaVOnTpJcLrP53Ohbzl/FW4jUCUsXUHycnY4HHaNQMdxxJ49e8SPf/xjkZeXJyzLEoWFhe7KLm8llP37K6+8IgYPHiy2bdsm4vG4CIfDSW7okiVLrolrWR5FIhHhOI6Ix+OuVDRN050D6X6apilisdg3Hl+NlxCiVP/JlavrOpFIBIAPPviANm3a0LVrVxzHISUlxV2t5a0ETdNwHIfi4mIcx2HChAl88MEHNG7c2A1kSeNw7dq1LFiwgIcffphWrVoluZaGYVSpa1ke6bruGsLS1Tx16hR/+tOfOH78uGsXyY+3TODbUo1iCBk7cBwHv9+P4zgEAgFWrFhBfn4+Dz/8MJCYIGk4XunlyGNkwMy2berXr+/GFgKBALqus2LFCqZPn86Pf/xjOnfu7NZhFBcXu+pAZnBdC4aQalSOy+fzsX37dt5++20Ad84k05Y1Nr8p1SiGAFyYWD6Mqqq8++67jBs3joYNGwKJIJCEpq8E28rwM5DkWUgdvH//fiZMmMDixYv5z//8Tzp16pTUyaU6XMsrkQS/ZJzDNE2ysrJ45plnmDdvHmvWrHHnQkoHb4+qb0M1iiFEGRfOMAymTp1KvXr16N+/P4CLN8jwtPz9cteTiS7Sb5cvNxAIoKoq+/bt4/XXX+f06dPcfPPNrjsn4xwyI1qilt68z+oima4nSwplcK5fv36MGDGCyZMnU1hYCOD2tqxoUk2NYwjJ4X6/n8LCQubMmcPo0aNJS0sDcMW8rG8oT4TLpFZvkmpJSYkrUj/77DNycnKYPXs2e/fu5b//+7/doJdhGK4noyiK+/+16Ozi7SojmUN+N2HCBHbv3s0nn3ziHiOZpiJUYzKmgIsAlilTptCxY8ekDKeKrE4Z8g6FQui6jq7rbkLsU089Rf369albty4TJkwgLS2Nn/3sZ6SnpydJCIlcSjviWrX8KUv169dn0qRJbszGGw2FCsxXRV2hqiLpAuXl5SVFMysK+pimKUKhUFJkcP78+eKZZ54Ru3btcgEeIYRYsGCB6NOnj1ixYkXSPU3TdF26q40wVjZJsMq2bRdAE+ICaHelc8u6nTVOQgghCIfDzJkzh+7du9OlS5erSgSR4lVmLX322WfMmTOHiRMn0qpVK1d9RKNR7rjjDgKBAC1atABISp+X3k9NkQySFEUhNTWVaDTq2lNX0zC9RjEEJHTgypUryc/PZ+LEiUnZzhUhaYilpaWxbt06FixYwE9+8hM6depEOBxG0zTXgLVtm0GDBgG4XoY0Xi3LSkptqwlld3AhLVCUuqLS7ZSh/m87zhrF7oqicObMGZYvX86gQYOoW7cusVjsqq4pV/Ty5ct5//33uf/+++nZsyeRSCTpBUsdLK10mTZ34sSJpCKbmiYhpKEZDAZZvHgxzz//vOtNVYRpa9bTAYsWLcJxHO69914XkzBN86pCvRs2bGDmzJk88sgj9OjRw50wXddJSUlBCOHWZUgD1HEcpk2bxu9//3uKi4tdSQI1p/0PJDcsSUlJYenSpW40tCJzVu0M4TiOO1DTNLEsy5UCR44cYcWKFdx///0ugihXZnkvQYrIstcHyMnJ4eOPP2b8+PF07dqVkpIS9zivfSABKHlPXdfp0aMHO3fu5I033qiq6agUkiDUwIEDadSoEXPnzi0XnymPrglDAK6OkyicaZpMmTKFDh060LFjR+ACLiGTZS9Htm0Ti8XcCKnMH1i9ejWzZs3ivvvuo0uXLkBiFZUt15OqoCzjtW/fnokTJzJt2jTWrFnjglMVmeiqIlGaPS6Z+IEHHmDTpk1s3LixQlhEtTOEF5aWySa2bXPw4EH279/P7bff7qaYS+a5kuhzHMdNkNE0jUAgwMqVK1m4cCEPPvggffv2paSkBMuyXJvhSpMlUcmxY8fSp08fnn/+eU6ePFluptW1IKlOZexiyJAhpKSkMGvWLHdhfBuqdoaQbpHU03K1vv/++9x22220a9cOuFCD8E02EfEii7Zts2XLFmbOnMndd99Nx44d3URZv9+fZJWXd015X4Bf/epXhEIhZs6c6Z5bU8hbeyoDeT//+c9JT0+nqKjo21+wsgCSb0MSNLFtW5imKXJycsQDDzwg8vPz3WNk+rtlWUmJsmVJ5gnIJNctW7aIX//6125mlASSotGoKCkpcc+LRCLlJtnK1Hv5/6ZNm8SaNWuqLCvqasg0TWHbtpsvIYQQJ06ccMd+OapRwFQsFnOLYN58803uu+8+GjVqRCQSIRAIuPpclMlSKkvSKFRVlRUrVrBgwQLuvfdet6pbRju9tZnAFWMgqqoSi8XcxN5u3boBiT5TqampNUZtSMkgYzuqqhIOh6lXr17NdzsdxyEUCrkBGoAPP/yQ2rVrM3To0KRsZ2n1fxNwRVVVNmzYwLx58xg5ciS9evVKchGl0eXz+ZLS5sojXdfdqGJaWhqhUMgtRK6KbOeKkoy3RKNRV5WJ0ihvha4nSnVpdXy8TUF0XefQoUPk5ORw1113uXhA2YJYb2a0bOMjjUNJ0rV88MEH6dmzJyUlJSiK4m5V5M00kgbllVxZabUbhoHP5yMlJcUNib/33nvk5eW5TCdK7aKrxUsqQpLhvbkhqamp+Hw+du/ezerVq91FIEq9sPLQ32o3KmXqumVZzJw5k7Zt29KtWze3uFZyeVmSrQKk+JcPv3btWmbNmsW9995L586d0TTtsq6llwm+qTgtG3pWVZXTp0/zxz/+0QV/5DHXMgp6KUm6c+dOXnjhBUKhUFK7A8nAl7xOdQzWS1JSrFu3jn379jF8+HC3qKa81SU3NJWpcKqqsnr1aubOncsDDzxAv379KCkpccEuKfKrgoYMGcKRI0dYvny5i6XUFJvCS3369OH8+fNs3boVwEVoJZZyqTFXO0OoqkooFGLx4sV07tyZLl26uBNa3qQGAgFXuhiGwaZNm/j4448ZM2aMm/bmdS29qqqyqVu3btxzzz289NJLFBYWuuOuaaBVRkYGnTp1Yt68eQBuF12pQi811mplCDlxOTk5fPnll9x///1EIpErAihCCDcvUtM0cnJymDlzJuPHjyc7O9uNTNq2TTgcJhgMJtV3VMVzjBs3jkgkwjvvvOMGwi636q4V6brOiBEjWLt2LQUFBW6ybo2yIU6ePMmyZcsYPXo0derUcUGq8lLHpYEHsHjxYhYuXMjIkSPp1q2bq8OliygBr6uJ+H0TatGiBQ899BBHjhypcNygqikYDHLLLbcAsGrVKoArdrJRHMeplieRL2bGjBmsWrWKv//9767Yko0/vbD2pc7dsGED06ZNY9y4cUmSQVrR0uL2qqCqqKiSiTKRSITTp09z4403ouu621boSoalV5JUpVQxTRPbtsnNzSUQCNC7d2/XeC871+4YvGhVZX5k2pk3RS0/P1/84Ac/ENu2bXORMolWeht7yOoobxrY2rVrxRNPPCG2bt0qIpGICIVCLqIojymLvFUFqiiryrw1ntFo1G1JIMfvfRb5nJFIRFiWJUpKSkQkEhFCCBEOh6u0lUDZNECJ/JadM0lVojIk0ifVgTTyPvjgA/r27Uv79u1dg0+uZtkWUJSumGg0SiwWQ1EUvvjiC9e17NSpk4sLSJzhal3Lb/tssqJMCEEoFErabEVKKcCtpJJkGIZbTyLFdjAYLNfdvlqS9pkM7XtxmEvds8psCOmjyyLU3Nxc9u/fz+jRo10jzGs3iNIkFdu2Xfg6JSWFDRs2sHDhQn70ox9Vq2tZHlmW5bYeTEtL48SJE8yfP5/CwsKkSZaZWN7wumyNqOs6p0+f5syZM1Vq68jrRiIRzp49e0XgrEoYQoaOJcViMaZOncqQIUNo1KhRknsmJ8O2bVJSUlwOVlWVrVu38tFHHzFixAi3vK66XMvLkWRcryQKhUL84Q9/YP369e533mIZ+bzS1tE0jTNnzvDJJ5+Qn5/vXrcq6dChQ0ydOpWTJ08CyY3mvVRlKkPmJaSkpDB37lxs22bEiBGuqJK1m8ITV4hEIm495969e3nzzTcZM2YMffv2TeoOL11LmVhTnQyhKAoZGRkALsjTpUsXOnbsyPz5810RLQ06IS60NZBqwrZtpk6dyueff05aWlqVMbWXac+fP8/8+fM5ePCg+7dqUxmyMBYSbuaSJUsYNmwYmZmZbrxCUZSkPAcpGXRdZ+PGjbz55puMHj3aLeHzRh+9ruW1yICWto/sJwHw6KOPsm7dOvLy8gDZ4FS4NocXAt+3bx979uyhQYMb3YSbqoK8ZbCwRYsWKIrCjh07gMvbV1VmQ8gHnDp1KllZWQwfPjyJI711il7Dctu2bcycOZMhQ4YwZMgQN7wrJYlskCFfxLWIHchxe6ulsrOzuemmm1i5ajWhkkipS+0+LZaVyBvNzz/K6lUrGTBgAIFgKmnp6Yn9R6tAQniv2aBBA1q2bMm2bdvKPUct669/0w9wyQ4uohRV1DSNrVu3snfvXoYPH04wGExK95LneVGzXbt28cYbb3DHHXcwfPjwJHUgu6N826hlVZDEIaQK0DSNSCTCD3/0AOs3biYUjeEI2ZXWxoqWYGgOxUWnmfrhe7Rr0wrTjCMUFRsds4oipNKwl3PYvHlzTp8+zYkTJ4DL9Naq6M2ESO4BKY0oWYxrmiaffPIJTZs2ZcCAAW70UZLjOEQiEdcWWL9+PTNmzOCuu+6if//+rvHlTXm71Mu/FlCxt3G6HJfP56N3794E0zJJSQkSjdv4DZV4LIwRMFA0hc8WzWPBgnnMW/QZp06d5IGHHqFOZjqFoQjpKX4MvfI9Jild/X4//fv3Z8eOHRw5coQbb7zxknNXIYaQFrNEuxRFcSuGIPGSVq1aRUFBAb/73e+SdKSMVMq2wYZhsGXLFmbNmsXAgQO5/fbb3biAtwt9TYoRyGf29srWNI369eoyZHBdSiIWiiJQldIu+JqfzRtWcebceebNW0hqrTpMnjyZ4pIYmqpQKy0FpQo0nxyXHGfr1q0ZN26cu3GcfI6yJ10VEuZF5bz5i7/97W/F66+/LoQQbiGqRMS8+ZI7d+4UEydOFEuWLBFCJHpCyZ5KEqksLCwsN6+yusmLQEoyTVOYliVipi3ilhDFoYgoKSkRjm2KaVPeE61bNhVrVy8VQjhizif/Ej169BD9BwwWn69YLUpitrCrIFXT26FOoqVyrBINrrScSuGpH/SWvwGsXLmSr7/+mqefftr1Nvx+v2tbSEBp//79vPPOO4waNYqhQ4cmbV7ilRJXqsuobvKGu712jAAcRxCOFGObcdLT04jFTSzb5r5xPyKrXn0KC7+mOBRi8OBBaLqPolAIQ0tIk8omaYBLW0J6apZluXuPXUQV5T65koW40JRcCCGOHTsmHnroIbF8+fKkmIbs9iZXem5urnj88cfF0qVL3WvK7GHJwfF4XBQXF1d717dvSpZlXVR2XxKOiVdefUO8+upkIYQQsVjYc4YjSkLnLrqOadlVEneRnfy80tabbX6prOsKay6vgSe5z7Zt5s+fT4MGDRg0aJBr0EgcXTbslnUTQ4cOZejQocCFamtRml4ngRPZsKMmkXyuSxX8pAR9BP0Gn8xO1HD4fEEcJ47jxLCsKCkpqYm9PyyLSDSO4wgUoaBUaA/i8knmr0rkWMZWnnzySbZt21Z5SKV8aXKnO1koI9PKHnroIfc4CVJJgGTXrl289dZb3H333dx5551uXMIbGJJiTnaZv5p4RdlkEC9zSTdY9qryJqN6/wYX9s8AXMaVKk5ObElJCSdPnkRVFI5+eZQpU6aUVpn7UFUDVdMRCigqaJpKIODDNG1AIEjuniPn5WoWgwTEpIssi5u3bt3K9u3b3WeTvSWggl6GvIncSUYOetq0afTu3Zs2bdq4EyZdS4BNmzYxdepURowYwW233XZZ17LC7XAuM1ZJ3pforZqWdoDXjZTPF4vFSE9Pv2RU1bZt8vPzOXnyJIcOHWLr1q1s2byVzMxMemb3YPr06ezdt4c77riDbt26Y+gGtmOjqSq27WDbcXyGAaULzHsP+TK9m7dUhLzJt/L/Fi1aJMU0vDZahY1Kry+uqiq5ubns3r2b5557zk3VkvtaSgRy9uzZDBgwgO9973tuxXdVu5aX2k1HqiNvFrJ3HFK8BoNBdy9vScePH+fgwYPk5+dz7NgxDh06xNGjR6lXrx6DBg3iRz/8Ea1atiQWixGORvjXzJm89MordOjYkWFDh9OjtODHtm10VQPHweECA0jp620edjXzIpnXGzdq0aIFp06dcssVpPsPV7HFkhcBKyoq4ve//z1du3bl4YcfdvMZKH3QAwcO8NprrzFy5EgXjpYboktLvbi4mNTU1CoNZ8vxepFWb02otzjH+xJ27NjBli1bKCgo4OzZs5w9exbLsmjUqBHDhw+nZ8+e7tYLAMI0iZoWupEQ06fOnObV//f/OHzoEN27daNXdja9e/VCQcGRKlPTUEqZQEoyOX+V/ewffvgh8+bN49VXXyUzMzNJilT4bpKbNU1zs3pHjRqVZDNomsaBAwd49913XWa4Fq5lWUbwfi9tFe/EnzlzhnXr1rlMIHtE1qpVi06dOtG7d2+3DxVcsFNi0RgqDoaRKBeIRCLohkFWVl3+1/94lm07dzJt+gzeevtt1uWu445hw2l7y82oCISTXGboDZtfzbxc6tmbNm3K+fPnKSoqok6dOkk7CF6VhHAch6+++oqXX36Z73//+wwcODAp5r9+/XqmTZvGiBEjGDx4MHABqZSM4TgOsVisyuolvY/nvb6UTPKYvLw8VqxYwYEDBzh//jw33HADN954Iw0aNKBjx45069btoj24pQqSTU8Cfj+qqoCTyJlISU8nHIuhqCoOglQjAfVv2ryZJYsXc2jvPpo2bcKj48fToHFj95pX03i07Pi8GIT8/dixY+zevZvs7Gxq1ap19Qzh9TJeeuklioqK+K//+i+3AyzAtm3b+PDDDxkwYIC72YkXyJIdZqVBeTXNNr/t2CORCOFwmPXr17N48WIOHz5MVlYWTZo04aabbqJZs2a0bt2aJk2aJJ0npRmQNG7p1vkMA2HbOJaFJRw0w5fYcDYeR9MTJYWqomIAlm2zdcsW1q5YwRdrvqD/oMHc9f3vc9NNN7nXl16c1wD+NiQZQY5fRpjl97IZq+ytcUWGkKtYuj+GYRAOhwkEAmiaxubNm3nttdd48sknadeunbvqdu3axeuvv859993Hrbfe6opCL/4vry0n2bsyXORPJLti8hre/70TdinxKLvLFBUVceTIETZt2kReXh5fffUVrVu3pn379rRv354mTZqQlZXlVpGVva8kee3LqSEch8T+4xf237Rd9zSxZz0CNInh2DZ79uxhxowZ7D9wgL59+zJmzBhuvPFGd/zlNUstO1dyPDJ10bvIyqofOeffmCHkgOQh3gRR0zT5wx/+QEpKCk899ZTbEnjLli1MmTKFQYMG8b3vfS9JrEJyA/JL3UvqTsD9WRqgkru9Is47KZJM06SgoIDTp09z9OhRNmzYwObNmzEMgz59+nDrrbfStGlTMjMzqVWr1kXjqarWg5eaau8LPHLkCC+++CKFhYWMGjWKzp07u7sOnj9/noyMjIvSDbzeHlxwoa9ke8TjcSKRCBkZGW7owe/3l88Q3m2LpRUuac2aNbzyyiu8/fbbrv7fuHEjs2fPpm/fvowYMcJNJ/O+vMupBa8akkwkRZx0Ecvzx0+fPs3evXspKCjg8OHD7s/NmjWjb9++3HbbbTRs2PCiDCZRmuImQ9hycqsi8eZyUy2lcHFxMZmZmezatYuXX36ZYDBI79696dWrF82bN09ylaVtUJZxLyu5ytDnn3/Ojh07mDBhQpJndVmGkGiZ1GPecHckEuHZZ5/lzjvv5Pbbbwdgy5Yt/Otf/2LgwIEMHTq0Qq6lF6DyvrSy+3BL2rlzJ3l5eZw6dYoTJ05w/PhxIBHmHT58ON27d3dfsiRpDJe16L338TJwZVJ5wlg2UPGu7M8//5ypU6eiKAp9+vRhzJgxpKenu3MroWmvdPDepzymmDx5MjNnzmTOnDlu6oKqqpd3O+WKkTUHPp+P4uJi0tPTWbhwIZZluZ7D0aNH+fDDD93YxOVcSwlJlzdZ8sV7f5eSqbCwkNzcXDZs2MCxY8dcIzYjI4OuXbvy+OOP07jUWgfcDVOkqvECNN7aCe894Nqk5cnoo1x8fr+fQYMGMWjQIObPn88XX3zB008/TZs2bfjpT39KMBhMAtbkud9U1TVo0IBoNOrOhwxBlItDeAttIFFUUlBQwPTp05k0aRKGYbB//37ee+89Bg0axPDhw4ELLp33ZcgNxC43WK8d4BWJmzdvZu3ateTl5aFpGunp6aSnp9OhQwe6dOlC9+7dk0K5Xmkm8YOyK7Nsgq78SAlY0bbAV0PyvhIok0ahzFYfMmQIc+bMYdu2bfzsZz9j+PDh/PCHPwQugFcy09ubuHQ5Sk1NTcpVldcolyHkRaX/res606dPp02bNvTs2ZMvv/ySN954g549e3LHHXe4mVByhUvXUpSm28mXcDmybZuzZ8+yceNGli5dypEjR6hduzYtWrRgwIABNGrUiFatWtGsWbOLxgkXbBVv1FSK1LI2iJQSciKEEElZ3dWdfyFfjGRgb+2lzC4bN24co0aNYv78+eTk5LBkyRLGjRtHv379yMjIwDCMpM465ZGslJPxKDkv5TJEWeMlLy+P7du38+yzz3LixAn+8Y9/0KdPH0aOHAlccCXl5Ht7R0pG8AJCxcXFRCIR8vPzWblyJevWrQMgKyuL9u3bc88999CwYUOysrLIzMy8aAK9Y5TkFfdlLe7y7APJ+GWvV5l0pet60V95rLfgSaqSMWPG0K9fP7Zu3crs2bNZsGABd911F/369XPrPOS1ZLmjt0W03IAmLS0tCbCCK8QypJElV9qTTz5Jt27dGDZsGP/85z/p0aMHw4cPT+rq4g3MlJ2EcDjMyZMnOXXqFIcOHWLHjh1s3LiRlJQUBgwYQPfu3alfvz7169cnIyOj2ldpTadLlR6cP3+e1atX89FHH1GnTh3Gjh1L+/btycrKApJhA6lCFUXh9OnTzJs3j3HjxrnR6Ct6GSUlJa7enzVrFrm5udxzzz3MnTuX7t27M3r0aNdFlCu/7Oo7efIk+/bto6CggEOHDrF7927OnTtH3bp1GTZsGP369SMrK8vdA0s+uJdzq8oN/K6RN2JZFnexbZs5c+YwZcoU2rZty7Bhw+jfv7+rsr0SVbr3Mrwu7T2fz/fNoOvCwkKef/55GjRowJkzZ+jduzd33HHHJS1027bZt28feXl5nDhxgsLCQvbs2YOqqmRnZ3PrrbfSqVMnlyu9KgQS5Xwy509mS3kf4N+ZJDbjZQppp0kKhUJ8+umnLFmyhMaNG9OvXz+GDBmCz+dzwUMpNXRdp6ioiIyMjAv7oZfHENLa/vTTT/nggw9o1KgRAwcOZPTo0UnHHT16lF27drF9+3aOHDniDjQjI4NevXrRr18/d4tF+WBeBFNauWVffFlE8t+VyuIKXi9JMonMQYGEwXjmzBnef/99Dh48iGVZ3HvvvYl0RQGOSJbAklHgCjaEEILjx4/zi1/8AsuyeOqpp+jXrx+2bbNjxw5ycnLIzc0lHo/TtGlTAoEADRs2pGPHjvTo0eOi6KA3IOR9UG+oVw60bFHPvztTXG4OpLqWCT2Aq+oB8vPzWbx4Mbm5uQSDKYwf/yidOnUiGo3y1ltvkZ2d7bZmAlCEI4Sb3ynAm+tp2TaTJ/+Td999j18+8QS1a9dm+fLl7Nu3j3r16tGsWTO3ZrB58+Y0btz4kjkH8kWXzW/0xiLKRubKwrH/7urCK+bhwpwIRwbQSuNAlo3t2K661TQVSGxYO2/+XPbs2UP9+vW5++67+csLf+Guu+/moYceIhaLJaSzFY0L1WcQK91jO5ASTKxcBXbv20ef3r3RdZ3WLVuSmp5G0BcgLS2NrKws1yWU+f4y5gHJUUGvqPNCrf/uq/7bUFm1IYRAQUF1FFAUFFUgHCexpjUFRwhUVcG048TiJrUya4GSCDEc++oYx48d49SJU/z2t88wadLjieMVBV3VNMxIDDMWJ712raSbHjpymI5dOtOlU2dSgykEAn5qZ9YmWApJm6Z5UdeU61R9pAhQhEqiREggSoWosBJZ3IoqQFFQdZVQSQif30f7jh1o3rwZofOFfHnkKB063JxYoBKHcCJxoWgaGCpb8zZz4PAhdJ9B8+bNad22HcXFRWTdUAcFT3DmOgPUDBKlH0hS9SiJP9iOhaqpIMAWTiLVX1ESuRiOg6ZqOI7AtBx8hr80H8IRIhYq4ZNPP2XVqpUcO3mCcDjM2aLz/OO11+jdrQcWCXFkqNXfz+k6VZwEFkpp6Y0pLBxho6kaGirKZUBqxbEd8er//RvT/jWDP/7lz9xW2rFlwqRfEI6Eee0fr+IzSlsKe+Dn61QDSACitOZL8ZT6lEoIIWxXFaAqqEqpcnEsFsyaxZatuyiJRgiHiqldtwHjx49HXfP5SqZPm84Lf/4Lt/Xv77qGXbt2Zc/evRSGitFUFaEIbOFc1HDrOl1DStiTiQ8XPpIEl/67qqgEU1NYvmQRB/fto0nT5ixetIAXX/w7+luTJ9O5Sxd69+sLAhRVwSGRih5MSUHXdCwhsC0bw9CSsIPrxmRNIDco5XKDNDIRCTsBwHZsHASqoqIoOsO+9z3WffEF9//oQVre0oXu2T14/oW/oa5Zs4bRY8ag6rJFMESjEY4cOULfPn1KEzEsHPtCHeOlcgyu07WjUs1xEamKikC4icaaohOPRhHCJv/gYY4XnMRnBDie/yUL5i9i4KBB6LZt06p1axCJIIk/4GfZZ6tYs2YN//fFv5HmDxA1TRT1Qhe16k4euU6XpwtYovdf+TcF6YYEAwFsM1a6kBVyczawfuNWfvDwf+DTDUaNvofxj41H1w2DLZs307R1C/wBP7t27eLFF19kzJgx3NavH7ZIYOaGpiFIzjG4TteYlMRLLzUhL9gIIoFDJABAQTwWwzB0wqESDL8PxzTZmLeZN99+l5Y3t2XGtJn87e8vM3zECPSfT5rEq6+8Qv7XJxAIVq1aTbt27XjyyScJGn7CVhxD1ROGJReSOK5LiGtPggt1Hl7RIJeqZScimIFAkFgsSlp6OpZtUVRYjO5PIfOGLNLS0hg8bDjvfjiNTXm70H/x5C+xHYf1a3Mw/H5+/vOf0/+227CBuHAwdAMNhbhtoyqgqxqObcN1tXHtSeKESqmnmfw1fl8AxzKJxE1SUlKwYmF8/nSW5SyjU+du3NQyUSU2bcYszpw5R5t2bSte23mdvjvk2DEURUVRDebOns7/fO4PNGzUisY3tSQSPs3BQyf49dNPM+rO/vx/F7hsrK9RgC4AAAAASUVORK5CYII="
|
<image>如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若△AOB=15°,则∠AOB′的度数是()
Choices:
(A) 30°
(B) 40°
(C) 50°
(D) 60°
|
30°
| 10,827
| null |
30°
|
"iVBORw0KGgoAAAANSUhEUgAAAHsAAABHCAYAAAAnfzipAAAO8UlEQVR4nO1dX0wb15r/jckmUUP+SDtsfBN3fa+UKpMECadAodgJrJqWpKJSK8ylkXigklse0BazalQe0Jq7ygMPhBApVSLRB6JWimhB7VXSGyBU8ebCDbkxMlXJOlV5cJW9iVMq1chIdbr2/PbB2IzxH8bGNm7rn2R5Zs75znz273zfOeebM+cIJIk8w0SnCfUD06ETYwfGp36PwT8Sn3zSCSEqpwxAk/Z9SEIQhPUz/kqQ/j+VKSiqGm9aYRQE1P+jESRBErIN+JPQiUf7D2eUaAC/KaIBANxsyKGvIM/TDBBNAzFZ+ptA84CcY8V+fdh8y14xrsnOEYygEec/eTd0QWHxpfubsP9wdGvD/Gt98h4C8+JfG0CT0IlH1jFMn6+PTSZAAfiNOd2MY/MtGwAmv8MjAL/7wysItcVrkIDoPKilvyjkBdlh5yIQCKkUJlxePV7DLFGw9FSxZbMVAADh5d9jH4BH7gkA9VitgxrwphWdrn4MvBtdL9USHQwGMTU1FTm/f/8+FhcXIxWssrISO3fujJyLoogjR45s6PfkK/KkzV4dW5sHZHzaEaKSF8zQfKrD2F/PoV4oWreM6elpOByOyOfBgwcAAJPJhKKikPyRI0dQUlISkZmdnYXP54ucP3nyBN988w2OHz+O0tJSHDp0CKWlpaitrY07LldeCx/Hy5cPyBuygRVyraMAQpbLpn7wk05FBkSZtMPhwNDQEGZnZzEzMwOTyYSysjIYDAYYDAZUVFREl6+ShLA3mJ+fh8vlwtdff43p6Wk899xzaG5uxunTp3Hw4MEM/OLcIo/IVhckefDgAa5cuYKrV6+iuLgYb7/9NoxGYwyx6SJZhbh//z4+/vhjjIyMYMuWLWhubsabb74JSZIyUn7WkeNxfVLIshxzLJP0er08d+4cJUmiXq/nmTNn6HK5SAYzcq900l0uF202GyVJoiRJvHz5Mv1+f9r65AJ5RTYZCaiRcohkm81GURRpsVg4NDSUennhSiPL6xKoppx4110uF1taWqjVatnb20uv15t2edlEHpAd5FoLDZH8J4qiyLa2Nj58+JAezyNqtVpaLJaEf2au/sBEFcftdtNisVAURXZ1ddHj8eREH7XIg3G2BuG2+unTp+jp6cGBAwfw5MljOJ1OXLp0CTqdDnv3/g4PHjzAtm3bIEkSvvjii5iSctUWJrqPXq/H4OAg5ubm4Pf7IUkSenp6EAwGc6LXutjs2hbGzMzfKEkSLRYLHz58yLg2unLx1n/bKUkSzWYzFxcXM6pHJrxDuAyPx8OTJ0/y6NGjdDqdGy53o9h0sgOBALu6uqjVajk5ORk3j7LdDcPv97Orq4uiKKbVlucKsixzaGiIoijSZrMxEAhsmi6bSrbT6aTBYGBLS4uqTk2yMk6ePEm3251hDTOHxcVFms1mGgwGVVaejf5H1smON5wiyd7eXmq1Wo6MjCSVUYNAIMCzZ89SFEVevHgxfWWziPBvGhkZoVar5eDgYM51yLllBwIBWiwWVldXc3FxccPjXSVcLherq6tZXV1Nl8u1KcMbNVhYWKAkSTxz5kxO75tTsv1+PxsaGvj6669nNQBx8eJFiqLIs2fPbmobmQxer5cmk4lmszlnwZicDb2WlpZQV1cHrVaLzz77DNu2bcvavdrb2+F0OjE1NYWKigrMzc1l7V7pYvfu3ZicnMT27dthNBrxww8/ZP+muahRbrebkiTRZrNtOJKVKsI94a6urrwNZ3Z3d1Ov12e9g5l1sh8+fEi9Xr/hDkmycGWyNJL8/vvvaTabeeDAAdrt9g3pkS309fXx4MGDaY9K1ABxoxdyguMU4fP5WF5ezoGB2Bmjm4Hr169Tq9Wyvb09q39qurBarTSZTFnzQBHLjmch8S0muOY7fr5AIMDXXnuNVqs1I4pmCl6vlxaLhVqtlmNjY2mVkc1mqLm5mW+88UZWyk7oxmWOs8MIAisfIXzcyH4Vjxbb2trY0NCQUWUzCbvdTr1ez+bm5rRCrtki3O/3s66uju3t7Rm/V4jshGWN8V1jDTsmVsntb1IQLsdXpK+vj+Xl5fT5fFHX823cqwy5Xr16dbPVicDr9VKSJPb19WW03CjLjqXiPBuNHRxfOQtSXrX4pv64BU5OTvLZZ5/Nq8d761WymZmZSMg1md65rKxut5uiKHJ+fj5j+kS12TGFDTQqSA1G8vU3gTD+O8fXuHOfz0edTpe3Pd5kCAQCtNls3LVrV96EXD/88EOWl5czGEx/Ro4SSYdeid6xGrcaqTFaY8hua2vjO++8QzL/XLZauFwuVlVVsba2dmXq0+aioaGBNpstI2UlIfsczWjigBxbq/qbYt243W6nTqeLaafzAelUvL6+PoqiyN7e3ixoFI1koyCPx0OtVpuR5+ErZMcSKk90sMZ8jjHpN62sQbTF+/1+HjhwgNevX9+wQvkEt9vNEydOpD35IFMTIUZGRmgwGDYc50dYnbWKjVuNrLLeiL5xuHNm7Ihy4VarlS0tLRtSJJ8RDrl2d3dvWsi1ubl5w8GpBG78PM0wRoZcMlcsHUqiQ2kLCwvcunUrz507F7+oXwk8Hg/NZjMlSeLU1NS6+TPdZ1lYWKBOp9tQZYshWx5oXA2krPlEd9ZC4+z29nYWFxfnRWdmo0hGUDhtdHQ0EnJdXl7OlWokydbW1g1ZN0I/InHXPtkf4PF4uGPHDpaUlKStQL5BjUV6vV62trZSp9MlDLlmYzSysLBAURTTjusrLDu44q8TZ16b1NXVxVdffTWvw6JqoJaYtfkmJyep1+vZ2tqa8VmuidDa2pr2UEwxeUGDn4Vg6INg3DfdBSByfWlpCUNDQxBFESaTKYtP3LMPtfPN1+Z76aWXMD8/D1EUcejQIYyOjmZ9+Y/u7m588MEHWFpaSl14lfeQK39Kdd17m81Gq9VKSZI4MzOTVk37pSKeJ5iZmaEkSWxoaMh6qLilpSWttjumg6aWbL1eT5fLxaKioryd55VrhEOuoijy8uXLquVSnb0zNjbG6urqlPVLSvZTBiIf5fmd2b+zvLycY2NjrKk7Rr/8fzEFr5VVm6YmX7LryvS1vydXcDqdrK6uZm1tbVamGgUCAep0Oi4sLKQkl3TC4VYUxf0evfoJTp8+jVvTt3G82ohtwpZQO7+CnxHEVhRFPmrTlFDmS3RdKa/8DsuEjxPdIxNgnDbaYDDgzp07OHXqFMrKytDb25vRexYVFcFsNuOjjz5KTXAt+4msRXms1+u5sLDAf6s/wT/fuB6xpLArUlNGovNUrycqO9k9cwm3283a2lpWVVVtOL6tdPVOp5OSJKUkr6rNVrrEe/fuReK0e/7ln+N2Rgpkh6BsiwcHB1N630vNFDFJklKqQBE3rtbVDQ8Pw2w2w+FwYN++fdi7d29K8ukgm2VnE4IgRIZrFosF8/PzmJ2dRWlpKe7evbuubLJzAGhpacHw8HBUU8JkQ78w68k6TLIsR9IkSaLL5WJfXx/b2trS6oSt18FaT6d48ok6k+v9ts3AyMgIRVGk1Wrd0CPhqakpGo1G1fkjlh2vM7S2Vi0vL+Px48eQJAn37t3D0aNHE8ptRRH+iZqEafHk4p2rlV97LdFxPqCxsREulwterxelpaX48ssv15VhHIstKyvD/Py8+pf91dSIsFXY7XYeP36cJKnVan8VDz82G2NjY9TpdGxtbU0r5p3Ks/akQ6+fEYxqLx0OB55//vnIYnKpLAlVQHzU19fD5XJhx44dkCQJo6OjKcm/8MIL67b/Yaw7zla6wLm5ORgMBnz11VcZW3esAKC4uBgXL17E559/ju7ubjQ1NeHJkyeqZI8ePQqHwxF1jQk6aSm9xelwOFBRUYFbt2794h9+5COqqqowNzcHSZJQWlqKK1euqJJRrs0KJHmwo7Zt8Pl8LC4uZiAQoCRJvHv3bsrtSwHqIMsynU4ny8rKIiHXRLHzQCBAtTSqtuzvvvsOer0eP/30E7799luUl5erFS0gRQiCAIPBgLm5OZw6dQqVlZXo7++Pm7eoqAi7d+9W9X63arK9Xi927tyJ6elpVFZWRlb5LSC7eP/993H79m1cu3YNL774YqRzrERJSUnM823GabdVk728vIw9e/bAbrejrq4uda0LSBlhwiRJgt1uR0tLC44dO4aenh4EAoFIvniWHV4KW4mULHvHzmLcuXMHJlNNYUOWHGBtR6u9vR3z8/O4e/cuKisrI0OukpISeL3ehPLyyvQi1TsJ+Hw+7Nm1G+M3xlBR8UKooMLeDTnH3r17cePGDQwPD6OhoQEWiwV7diVqs0PLemtWdtNJSjYvWPEfh/tw/uUtWFpawvLyMrZv34pLly6F0oXwvh4FbAbeeustXLt2LdRhrowX91hx3AIAhsmOa6ED+KPVgf0TIQGfz4cff/wRev0fIjkKRG8unnnmGZjNZng8Hrz33ntRaYyznYVAmYwlWsaFpmMYfrwPTVPD6MyPTYJ+k1CSlrowooxYA0G5rVIIE53Hcdv0BvZPCxAiuePst1VA1rEe0aGOcpibm7CaQs/QNYIAQRM6broQcsEa5bZKQGjz00H8J0YO/y8emfbhcGQCecG68xGCQJDhCvEyzk+No8MINA7IoY1rBxoxYq2B9aasYJCAzHF0DhKW/pdCNUr7r3ilQHJeIPFQVxM1phbwP/jHdBNqOlbyH9ahJrwxXiQey9BrulC+zNfUT+XyGkE1i6Ktl6WQnr10Obw0ysDKafT6N6tmu+K+Gd63eqARNfsPI+y+BUGAJsGgWlbOEYuTpZCe3XQg5LIhADfdHuBTKwShCBqhB7AFI3ujaYBQO236L+Dt8yci4jfdnpgimfA5afI4eSE9u+kRV44JfHGP6JgIggziZocGF14xwnpzpTKE1jUDgRfZMRGkzBsri91pFK48PJU1GOM2kiG4ziS/QvrG06MW75/oYI1JuSpGaAP6GmvoteIkKxyuFkmut7RlAfmAsY4a1lj/EjkPr5YRXkRBRVd7tc2OhmI7RYV3p9LVE4X0XKQDICbwFwdQ+Wp4s/kBmOsv4G9ojPTMo/bi5LrRGnX7ZRaQW/CCGUXW0dhX6o0dGJ/qxyvUAALw/xMAlwQ+8rXaAAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()
Choices:
(A) 55°
(B) 60°
(C) 65°
(D) 70°
|
65°
| 10,828
| null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAOgAAAAYCAYAAADwO7FhAAADp0lEQVR4nO2av27iQBDGP0fJicfISYYC8QTmirRcGqq0UaTTUkJzHSVdmt0ySPcCVEgn7DfgCRAnxfseBHLSXsGfrI1tbIzD+pifZAXWu8tk1sPMt4ullFIgCMJIrs5tAEEQ8VCAEoTBUIAShMFkCtCnp6ei7CgdZfNFUfaWzQ8mkcZ3VpZNIsuyQHtKa8rmi6LsLZsfTCKN76jEJQiDoQAlCIOhACUIg7nO0rlSqcCyrKJsKR1l80VR9pbNDyZwd3eH29vbg/0ybRIRBPG5ZCtxPQEhC7LEeCRE04Jlha8OvHObFkuczRaspkDepZSiGZrPQ6djrjfMIXpdIl2nUuMqBkdxP/2I/w9fcSfoA5dBAUy55zPqAPs2K5cpsBwW+1w5QHCOTZtz2Q9IBnzFHaidC12mEBFfqTOo1xlg5jRQs0/4RVI6fMzxgHvNB60XH9wZ4ruxmUO32YMQEmi1wevVI+fz0Kn2MGUu1Evro9nuos+AxmU/IBnwMZ8ytLcurNbhRPRKFaBSNDFu99GYns68UuKNMWzUEHwEbdQaAGavuUvGQvDGmD3cwwYgxQDzmg2ghW73uECSYoAhGFw9ODdU6wxHx/2l4Y0xZG2svSghHnuYsj72lkVPp8vFand9ZGKuGPfXJYzD1SUXMC7TShINnzsKhvrG544CsLnyShRXMSpjT0LadQlk0C+Vm8BfQEI8Az+3Yb2XPS4JD+OhVpJo+POpob6RmIwA7iso5YPnlSjyFTNQGZsffV0UfA70qs3IDdjEEleKR/SGPVQtC1a1h4uucOUrZruSRG8XGAwBFhW550ZOMNrpTxu1hzqoAjWAwLoAdrcPhilGk/0IjQ9QKfD89xeWixWWixWUy/Ct9hWrt3es3t533cLvw+1Z76Xpl9QetunQZ6RFTkbYF1gb7eBw/DQyPkfARn8CQKvbhQ0J0TnyiMWuYS23I0ZLAWHqPplhhNclsTIJ17zLxSqgN7d61OeOcrgf0KdpXme5l2ZM3Piwfg6/zkfEEdP2qMFQ7Rl5vLLZ2s+jIbfaKaDFXWawH0wjvC5rXR93VLcXoL9/3ASE63LxR3FnLWavr24CZ196UBQZoEntx3xhZMJlmpgPXnmOEgslweb8G0UR8xvrCMOIW5eEL7e9n/qt3t61TaJgW/heVN+odv39sXNknTvpMwmiLOw0aF6tdiqt99lzE4TJ7DLoNgjiMk1SRosapwdV2ntR2THt+HCbPvbQ/0YQpvIPWXsMCwuBF5UAAAAASUVORK5CYII="
|
<image>如图,已知点C为线段AB上一点,AC=12cm,CB=\frac{2}{3}AC,D、E分别为AC、AB的中点,则DE的长是()
Choices:
(A) 2
(B) 3
(C) 4
(D) 6
|
4
| 10,829
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAHIAAAB6CAYAAABjjgcQAAAZHklEQVR4nO1df2gb99l/ZLVTaN2pf8jkSs7InS9Enml1jZbFJaZKQCNqrBLnrVqHVe0E85A7F6YwZfOIiws1qxNrxGEudd50TKGCuJuDC002uXHphTrMTNnsgF07TC5O5RIxBaagdFFeND3vH97de5LupDvdnaSl7weEfXffH8/d832+P57v830eHSIi3OcIBoPwxBNPwP79+2tNimZoqDUBakOoXR49erQGlFQXuvtdIl0uF2xsbMDi4mKtSdEU951E8tHX1wd79+6Fa9eu1ZoUzXHfMnJmZgYAAJ544gmwWq01pkZ73LeM/PWvfw0TExMAAECSZI2p0R73JSP7+vrg4sWLoNPpwOl01pqcquC+YSQ7Z2O7VEQERITR0dGvhUQ+UGsC5AARQafTCV7rdDqYmZmBn//857C4uMg9i8VitSK3usD7BF1dXQgACAAYiUQQEdFqtXL3urq6MJfL1ZhK7XDfryO/LrhvxsivO/7jGYn/ntR83fEfNdkRAn/y83XGf7xE/j82UfcSmUql4Nq1a7C6ugo3b94EhmG4Z2tra7CxsZGXniRJoCgKVlZWAGBTOUCSJGzfvh1sNhs0NjZWk/yqoe5mrRsbG/Dxxx/D7OwsfPLJJ5BIJKCzsxOam5uhtbUVdu3axTGjpaUFzGZz3nryxo0bsL6+Dt///vchmUzCa6+9BslkEuLxOMzNzQFJkrBv3z5wOBzgcDhg69attXxd9aD1+kbK2m1lZQUDgQBSFIUEQWBPTw9OTEzgyspKUX6h8grvMQyDFosFm5qasKOjAzOZDPdsaWkJx8fH0e12o8lkQovFgoODgxiLxSqivV5QM4VAMpnEiYkJtNlsSJIkBgIB/Oyzz1Qp2+l04rlz51Cv1+Mrr7yCHo9HNO3S0hL6/X4kCAI7OzvxzJkzmEqlytZRb0yuOiMTiQQeOXIEGxsb0ePx4IULFyTnlfLxFhYWkKIozGaz2NLSgp999hl2dHTgr371K8Gy+GWeP38ee3p60Gg04sDAACaTyYpoqAVUY2S5F4zH4+jz+dBoNGIgEMBEIqHJR/F4PDgxMYGIiA6HA2dmZjAej6PZbOZUd+UQj8exv78fjUYj+v1+TCQSqtOpNjSXyHQ6jQMDA2gymfCNN97AW7duaVZXLBZDkiS5MbG/vx/HxsYQEXF+fh4JgsBYLCa5ASUSCY72oaGhvLG23qApI6enp5EgCPT5fFXppvx+Pw4PD3PXY2Nj2N/fz12Hw2Fsa2vDdDotq9xEIoEej0eWVFcbmjAyHo+jw+FAmqZxfn5etXJLMT6ZTCJBEPiPf/yDuxeJRNDhcOSlCwQC6HK5KqqfnQ27XC7BhllLVMxIsY8ajUaRIIg8ydASLB1DQ0Po9/vznsViMTSbzXn3stksOp1OfP3114vKECu7MP/g4CCazWZcXl5WSL16UFUiQ6EQmkymqnc/mUwGTSZT0QQqm82iXq/HTCaTdz+VSiFFUTg1NVVUltTufmpqCk0mk2AZtYAqjMxms9jf348UReHS0pIaRYpC6EOPjY2h1+sVTN/W1iZI08rKCppMJlxYWKiYlmg0iiRJ4sDAgCht1YJiRqZSKXQ6ndjZ2SlpIa02stksms1mXFlZEXze3d2N09PTiFj8oS9evIgkScoa7wrLSCQSaLPZ0O12y55EqQlFux/Ly8vwne98B8xmMzAMA0ajUS3NIQcsowoOh8Pw1FNPgcViEXze0tIC169fL7L3AQA4cOAA9PX1waFDh+Bf//qXpDoLy9i6dStcuXIFtmzZAh0dHbC2tlbulbRBpS0gEomg0WjE8fFx1VpVJaBpGufm5kSfT0xMiHa7LF588UX0+XyKaRkZGUGj0YgMwyguSy7KMlKo319aWkKj0VjzNdWFCxdw7969JdMwDIN2u71kmkwmgzRNcxohJZienkaTySSohNcSsiUymUwiRVGCkljtwd5ut3Pjnxji8TgSBFG2LDZdKemWiuHhYWxvb6/qmCmLkdlsFh0OR562pFaYn5/Hb3/725LSGgwGSROxubk5JAgC4/G4pHJLNVyPx4Pd3d2SylEDRYwsRZzf70eHw4HZbFZTosohl8thd3c3hkIhSelpmsZoNFry3dhnExMTSNO0Yr3q3bt3saOjA4eGhhSVIxWSJTIUCiFFUXWhmmKV41IblNvtxnA4LLl8n8+Hbre7Itr4jSUejyNJkmW7fzUgiZHz8/NoMplE12rVhtfr5XY1pGBwcFCSZORyOczlcpjNZtFut6uiZoxGo2gymTilhFbziLKM3NjYQJIkaz5DZZFIJJAgCFkTiVAoVNJKQAjJZBLNZrOsjW8x/P73v0ez2axpb1aWkQ6HA0dGRjQjQC4CgQAnXVJb9/z8PNpstqL75ZTlCwsLSBCEKj3R4OBgXnettmSWZOTk5CTabLaaT25YpFIpfOyxx2Tv2N+6dQuNRqPs+nK5HE5NTSFFUXj79u2K8rMMy2QyaLFYNOvZRBmZTqeRJEmMRqOaVFwJRkZGKl76fPOb36zYZGNwcBCdTmdFDZrPzNnZWbRYLJpYGogyMhAIqKK2kgIhQ6hCZDIZJEmyYo1JR0eHosW+y+XCn/70pxXnZ9HT06PJXi0IfbxYLIYmk6kquxn8+ksx8syZM9jT01Nx+V6vV/K6Uyh/Op1Gi8UiaxkjhEQiwe2dqglBifR6vVVbyEpBNptFiqIU7R0ODQ1x+4aVgl2//ulPfyp6Jmfy4vf7i6wZlKKIkWyLqcXeohimp6eLbG/kYnJyUhWV2ezsLJrNZkE1nlSTkcJvrMYMtoiRfr9fcctVGzabDRmGUfTCCwsLSNN0RXkL6x0bGys6iiAXPp9P1V4vj5HJZBKNRmNdGeQyDINWq1VxOel0Gg0GQ0V5hRqQ1+sV3OeU2tjYeYhaOyR5jGRtX+rJLP7ZZ59VzcCJIAhcX19XpaxMJoNPP/00njx5smS6Ut+yu7sbz549qwo9eYx86qmnFHdhaoJ/jkMN2O12nJ2dVaUsxE31pdlsLlum2Amy6enpspveUgF8dVShDWitwT/HoQZ6e3tVN02Zn58XXN9KEYZsNosmk0mVXqKBNSY6e/YseL1evi1PTZ0srK2twSeffJJHk1JYLBbVHSjt3r0bRkZG4ODBg3Dnzh3uvhTfBnq9HjweD/z2t7/l7lX6zTkruvPnz8Phw4fzCKmmowX+CyAijI+Pw6uvvgoGg0FSHilobW3NY6RaDfWll16CZ599Fl5++WXZeQ8fPgy/+93vuOuKvzniprGuFLuWaoE9x6HGWpbfxa2srCBFUYLPlII9inDs2DHZ+RobGxUfM2wAALh8+TLY7fZCBlfWMlTA+Pg4HD58WNBOVi5d/Bb++OOPQzwe52xY1exx9Ho9TE5Owvvvvw/nz5+Xla+zsxMYhimiR9a7IiJ3Zr8ewD/HoQVKWaWrAbZ3k6NOHBkZUbxBISqRtcLp06fB5XJp5m2jra1NU4+RFosF3n33Xeju7oZbt25JyrN37164fPmysorX19fRZDIpag1qgT33z0qMFuvZI0eOyLL3kYpCWoeHh9Fut0teA0s12RRDQywWg/b2dmWtQSWEw2GwWq3cOQ6dTqf6WG02mzlnSmqicHw7duwYEAQBP/nJTyTlb2trg7/97W8V19+wuroK27dvr7gApeAzamxsrChGh9pLIIvFAqurq6qWKYazZ8/ClStX4N133y2blqIouH79esV1PRCLxURPMlUDLKNmZmbAaDTCnj17BE9OiUFOWoDNlr++vl4JqbLrNxgM8OGHH8LTTz8NbW1tgu/GXqsikRaLpeauMt966y3w+/0AIE8K5Urstm3bIJFIwL1792Tlq7R+kiRhcnIS3G43bGxsFKVnr3fs2AHLy8sV09GQSCRg27ZtNXWXefXqVUgmk9Dd3S07r9wGqNfr4fHHH9dknBTDnj174I033oDnnntOtAGRJAnJZLLiOhru3LkDjzzySMUFKAUiwvDwMPzsZz+rKH8lDXDHjh1VP5Dq8/lg9+7d8IMf/EDweWNjY56uVi4avvrqq5q6vvz8889hcXERPB5P1ercvn171SY8fLz99tvw5ZdfwvHjx4uePfzww/DVV19VXHZDOp2Ghx56SAl9ijAyMgJHjhwBvV4vO28wGOSU+3Ikc8eOHZooBcp183q9Hqanp+Gdd97h4pOwUCqR/65/E5m7d7lfNSD3HAd/0T06OsqFguD/pORlGAY7OzsrJ1wh2KMI/D3MVCpVkTU8izxnEIYtW/L+qgEs0UrHxsbA5/NJ7tr5Usf3pMxHMBgsm7eaa0kh0DQN4+Pj4HQ6ZUthX18f1wPRNA0Am6EVG9QQ6VIQ6/Ju374NoVAIXn311ZL5xRoCe59fvtTudevWrZDJZOD27duS0muB559/Hg4fPgwvvPACAACk0+mSk86ZmRnQ6XSwsbHBbfofP34cdDodkCQpzEj2I93LZLif0DX/XiGE0vKf/ffp0/Bfhw4JKsf59f/PvXtFZdzLZMD+zDOgb2jIY3SDTgeBQKCIZiFQFFVTqQQAePPNN+GBBx6Ao0ePQjqdLuqZkGel4XQ6oaurCy5cuMA9379/P3R1dQFFUQCtra24trbG9bWF42Opayn/IyLe/ec/857xz3GIjcdsntHRUdQ3NPxfaKQDB7g0/Gf6hoa88b3wf8T8cbKnp0ex+b8UlFP8s0cR3nzzTcGjf4ibNrAgMv77fD6MRCIINE3n7Z1JZRx7LTRBKldGKBTiznGIMTJz9y4X74oPfUMDdnV1FZWdy+UkNyzEzSME9XIsIhqN4je+8Q3cuXOnIOMBoOx+ZQNBEPDll1+Kir9hyxbR7ol9zv6kYnh4GAYGBkqmef7557nxgI9f/vKXcPHixbx7KFPfCrBpLaBESV0JCt+FtZPavXs3bN++HbZs2VL0HuwyhaKokmU3sJZlpZglBVLzf/jhh9DS0sLNuAqBiBAMBiESiXAL51Jly2Ui+zFrMXPV6XRw5coV6Ovrg6amJhgcHIRdu3bBjRs3wO12w/e+973Kdd7j4+P4ox/9qOz6sVQXKPSMvc8fHxE3zyle+ugjwXzstdVqxa6urrw0bJfj8/mKxkN+fWJjZGFdStdtchCLxfDYsWNoNpu5iAqF5ialPI+ASNcaiURwdHR0M83s7Cza7fayg7IaSgKGYZCm6bJ1AQBHYCFYJqsBtWyDhN6HHw6jsbERvV5vSYt01heQENjJDv+bjI6O5p2JkWTqoZamx+VylT3HEYlEuGCehR+I1eaodQ6/s7NTVQeA2WwWJycn0e12IwCgy+XCcDhc9tRWLpdDg8FQ0k/BiRMn8jRYhY0ZEFHUc4WaKjs55zjEJFLoBZTA6/XimTNnSqaRYjc0OzuLXq8XjUYj2mw2nJiYkCzpuVwO5+fn0WKxSEovhgZEBLvdLmjFVcmMVAynTp2CQCAgSTne1dUF4XCYu2a1GvwFMaqwES7FvEJsIrW6ugpHjx6F5uZm+OEPfwgkScJf/vIXuHr1Kvh8PklWgOw7MAyj3IoREfGdd96p6Hy+VKyvr+O2bdtkHQzlx0cGFbtTPqampmSdYk4kEjg+Po7t7e346KOPYm9vryreJJ1OJ05OTioqoypHBgrjcVQbYt3jwsICtre3l8yXyWTwvffeQ5fLhXq9Hnt6enBycjJviKjUbJN1l8YeGVACTm1CkqQmFtipVErxOQ4t7FtZJhkMBsFx+8KFC+jxeNBgMMgKflZYRznwx0fFZz8AAF544QU4d+6cki5a8P7JkydFz3FIhRb2RDqdDgwGAzQ1NXEapOXlZXjttdfgscceA7/fDxaLBa5fvw6ffvop9Pb2yn4HKXRPTk5CT0+P5PSiYDmqxUHXTCaDBEHUlU+CQnR0dGBvby9aLBYu/JNUb19SJKiUH6FsNotNTU24vr6uuNfJ00jTNK3quqpUPI5aIpVKYSgUQofDgXq9Hnft2qWKF0i54B89V5WRan541snR6upq3v1q+icorGtqagp7enpQr9ejw+HAUCiEJ06cEHReJCWSrFLI8QJdDpq5ZwmHw5r49Jb7QaPRKPp8Pi4MbzAYzHN2ND09jU6nUzBv4RKI/anhLkZT9yyI6jlMomkaP/30U8XlVIL19XUcHh5GiqJEldQsVlZWSs4NrFZr3hp2dHRUFe2Spg6TEDf9cCt1YRaJRATdjqjdPfHLY5XUnZ2dkpTULLLZrOgSBBE56cvlctwOhNJDqYlEAo1Go6pu4jRxKiglHodSsIvpQiX1e++9V6RBKteAKIoSlNjR0dE85ontyMihGVFjp4L8l1Xi5jMajRZpS9SWxLm5Oezt7c1TUhf6C5dTp8vlEmx47PYR+/vjH/9YlEbuu1XVzSdiece7Yi8gZyYm5yPEYjEuAKfZbMbBwUHVwhb5/X4MBoNF9PDHRzUmOIgaOt5FFP6g6XQaCYKQ5QqbjaCqlssxVklN0zQajcY8JTXfxbRSjI+PY29vb969SCSSxzw1vEnPzs4iRVHVdYWNKN85fW9vr+Lz+ZlMBsPhcJ6SempqSlMH+ayVBB8+n0+QeZXOWO/evYttbW3Vd07PQmq4iEricfBx6dIl9Hq92NjYWKSk1lqJsL6+jiRJ5t2zWq15Y2Iul0Or1SpLMvl0F4aLUBuCPs35YMMClWtJAwMDsme6KysrGAgEkCRJpCgKh4eHSzrY05KhBoMB0+m06OEg9jczMyO77KmpqdoHcEEsH1KJ3ariz8TEVFxffPEFBoNBTknd399fFyEp2tvbFflMF0NhSCWtoEqQs2AwWDIeRzqd5pTUBoMBPR5PTZTUYsjlcnjw4EE8d+6cKmWx+OKLL/KCnGnZo8iKHykUdrBUPA7+5iyrpK5lQOlSGBgY4JYFanzwTCZTn2EHEYUDgfLPcSBu7mv29/cjQRDY3t5epKSuV4RCIVW33GoeCLQc2NC8L774IjIMgxRF4QcffJCnpD569KiqZiPV2PpiGAY7Ojpk5RGbB9R9aF4Wf/7zn/HBBx/ErVu3IgCgTqdDiqLwxz/+sejGdL34SRcDq8guBSnvICVYthbfoiJGIm5qPgwGA77yyit46dIlblOapmkEAKRpmgvYqZbVgVZGWCyMRqOiJcLIyAg++uijNQlf/0Cltj779++Hv/71r3Dw4EF45JFH4NSpU3nGx5cvX4bFxUVYXFyEUCgEi4uLQNN03k/I2W8pAyStjLBYUBQFn3/+OZhMJlll3Lt3D/r6+iAajcLVq1ehtbUVAIrfp9z7KYIUbhfulOt0Om5LJ5VKodPpRLvdXna3hGGYqkhupXj55Zdlm14kk0m02WzodrvzxsRqDyWSu1ar1YrBYBARiw/TZLNZ7O/vR4qiZC18c7lcXTF3aGgIX3/9dVFaCxGNRpEkyboIQZXHyFKtiC+8kUgEdTpdkdouFAohQRCKFcN85rK9AcvcU6dOacbccDgsWR86NTWFBEGoFiVIKSRJZKGdypNPPlm0C8A2gmg0igRBqL7nNjc3x2037dy5UxPJjUajXCA0sUadzWa5fVGt1W5yILofyUfhTnk5iYvH4+hwOJCmaZyfn5dESCVjCp+5NpuNs3Dzer148uRJ2cxNpVLY2Ngo+pxhGLRYLOhyuURnt7VaZhVJpBAhVquV0/qzTJXSfU5PT3PW21pq/vkQYi4ruULMLXxfgiCKNFGJRAI9Hg+azWbN9hOVomzXWrhTjijNXQiLdDqNAwMDaDKZcGhoqGoM5WNubg7ffvttjrk6nU60W+afYk4kEviLX/yCo73Uzn6tFR5lGVm4U84eDZdrURaPx9Hn86HRaMRAIKDY+EjphxOT3KamJi66utFoRL/fX3J7rl5QlpGFBrrsOCkVQmFpjxw5go2NjejxeOqqq3rrrbdw586d+NBDD+HAwEBNeo9KIcqR0dFR1Ol0qprL85n697//nfN6wa7FtIyQI4alpSX0+/1IEITkc5D1KJU6xBp7pYfN8/i/+c1v4IMPPoA7d+6A3W6Hffv2gd1uVz0CwvLyMjAMw/1MJhO43W7wer2cao2mabh27VpR3jr4VKKoC0bysbGxAR9//DHMzs4CwzBw8+ZN6OzshObmZmhtbYXvfve78PDDDwMAQEtLC5jN5jwd5o0bN7hwEHfu3IFoNApra2sQj8dhbm4OSJKEffv2gcPhAIfDIeq0gaZpOH78OOzfvx8ANn2iXrx4sW6ZWXeMxALF8u3bt2FxcRFWV1fh5s2beQ5319bWYGNjIy9/c3MzfOtb3wIAgAcffBD27NkDzc3NQFEU2Gy2sk5+2fppmobFxcW8ZzRNA0mSea426wUV735ohcLdAaPRCM8880zVgrDpdDoIBoNAkmTefUQEkiSLGk69oKF8ktqB7Sy0jEki1CExDAN79+4toqGQufWEuutaxVDY5YrdK3Vfaj0NBZ6ZWXR1dYFOp6vLrrWuJZIPtcMsibXfjz76CA4cOFCUbmZmBv7whz9wklpvqLlEKpEeLdDX1wcAABMTE3m0sf5lCydA9YKaS2S9MJFtz6dPn4ZDhw4BwCZtrB88gPplIgDI0LXd5yh15uPEiRO1Jq8kcrkc/i+/Jz3ehrl4jQAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()
Choices:
(A) \frac{3}{5}
(B) \frac{4}{25}
(C) \frac{2}{25}
(D) \frac{4}{5}
|
\frac{4}{5}
| 10,830
| null |
\frac{4}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAALkAAAAaCAYAAADrJf0cAAAF60lEQVR4nO2bS28TVxTHf3dciSifoeqDPKhEQjf9AMROE9odgS/Qje2UIpB4LdpFWFSqjaEPCQio26pVicOuIaUlWVcqErHZYAL9CpUaJ4Dnni7G8/DM+BVCmAnzl0aee859nDnnzLnn3jtWIiJ4YBeVUiR4syAisbL73Nxcy287GPaN17mVUszNzXVtHDVEWeYoy2bDdvA4yNoPHCeP0xucIEE/CETyBAn2GpJInmDPw+heJUGCeCNx8gSxRD/ptfJvIdodXLx4kdXVVQ4fPryTsiWIAVZXVwEib/uVlRUmJia67gS9FUbslp8rpSK5UH09cmnCJkSlFGhBYrjUiaJze/fwRWmUGD4HD7cDhERyuzMBYmEfW/qAsMGHflXP1GKAmB2oxBmOr3bRedMLtEOwK/ubeN+FSEVxkVDPlZAQ+qpcz6tg914TpiVbdxHSYPQhlt78unN9VeH1YT9Cc/J4w4rgIiZKpQLcXY+0/ukjNlNkHNA+RfHCPQwKNAbz9iUuVeP1DkjzkcIc3KI304rdEkj5BkscfNtw1ajRUqE4mXI+Q7Gv3GIworuHQXZHIoCBpsznM0u9jhoZVC6n3YeevERVyuRnFwKiKtgR+f1dOBOj0DSEwjCUzxh5FiOou6jD8lErehtqnPN/VChkIFu2UpnGYpabxyYDgdnAtYnVUTPS3Z69Sm1ylKGx9taQCHm5rhbJGIoPH59w8jfzO+FU6jiPhz4ID6CqfR7XK/z9KpuiQDHG2btrFNIZihWNaEHEZGH2BseMPIsd8sgE7eCmJ1pqrP+ZZXrG0qMaGSIdvkCzYTp3D0oTkivfkixZKXvoUYUpC5IHIb8Q4N3KI9myKVprl6itVrslWy5TkDXtjmfqNSmkw+VNEITXdBbB+jHLWUeHpl6TQgZhthxo78nJDcytOi/uf8184xuujT5hPTPCiCdY9x23uzXYIX718lXmyVG+fjRQZXQox/Coal1sKujpsLdX+XyzYUth8XdujAwxrtzxDDXO/lGg9oSKvEQ03yX9vm6+Ur6qzRm4+rQG88dRSpEyTsH3Grk2E+imJSdX+9b54QbMnv8IAD3yXotx+l4zdWuwA3yTMtfPrpAunmQGA2frrqmVQ2fnOTfm7agPp+pVPtVa9BYW794kNxVU/OjwBMDLHRbtgn6jwnfWUAJgoKXC8hJWGijCgxJcGMtQehjspiWcVa+c4ssfv+KQkSI1foEV/K+QF9HIJ1V1nUcKhocONCmGpRA73w7Iv3uf62jK3J3PMnU0qMRabQWG32dcOu/xJmjC3npVABoeLrHMpxw5aOl27MwJ8qyw9Fsl0NSxuK4WuSpX2NjYsBZt5SxH3n0H81kdc6uOAOZW3bnswxa77Ie3bj+8XuqF0w2nbPG2rPtnncfYKfgyFwvVdWr5jznqe7F0tcS1m5CdmrHSKDdrbO7OJE7vhzvjWbsr1eU7yPS0m2k4we5goK0B0HhYZOq0wRdnDjmM6tMaz1MDAKQGBlHNX6esFOZWndTAIKmBQcxN15m89NTAoOV80oEHgYjrreflB9oPv82owD+P/m7hA7y4/zXfLtljBB1HvOdg28wfnXNN+++DHl51+Q5q/4EWmqnXKJ0+x710kZMzwTzHWjuEzDYRyY9fF99VkYGJlaoc+WQMsGbME+MXuCc5poOZIfyaa2Y6Ki2Fqpbn9b+sVWozA9qX/clZpTY2N1pWrY36hjQ23attvR5526E3NjfkQWlCAJn95V+H/uznz4RMSda02bavVwlTFiTLhBTWPLsqlYKkFUKmKFVtiogp/o2DBJ1hlrOOb2IFeOs+U2zZwfICPyHMIWyayzPb1tVaW3SP9bz1XtT/a1YMH8/e6mvUwx2zXXuznJd9Rm8vZyc4W41tvC+Mr7V2LkuWVkN4r2y5nWP7DRRusO3It5f424Hz7Yo9zXunexvteN5yu/t+eGFjbrfvTm0SvFlocXKgrTN0csawdt5FYa+8MAfutb2f5m3b7dkS7G30/BViEg0TxBX/A/hEvm+Tzs99AAAAAElFTkSuQmCC"
|
<image>如图,已知点C将线段AB分成1:3的两部分,点D是AB的中点,若CD=2,则线段AB的长为()
Choices:
(A) 6
(B) 8
(C) 10
(D) 12
|
8
| 10,831
| null |
8
|
"iVBORw0KGgoAAAANSUhEUgAAAJUAAABhCAYAAADfoeNAAAAOh0lEQVR4nO2dT2zb9PvH3/3pV1HEJQLBjATUQutkxsQscTHZoeZE1u8BswNNT80ESrNT0wNakL5ShoRUEIekFyIqoWynAhLKdiBmp6SHLYVLUqkiYYmUoB2SWyJxcGglnu+hdZY/Tmondv44eUlWWzv++BP37efzfJ7nsT1HRIQZM0zk/0bdgRn2YyaqGaYzE9UM07GpqArYuTaHubn2ZQPyqLs2BdhUVBex+SiPsNOJcJ5AdLrEvbtYmQnLcmwqKgDI4w98jP9cfLbm+nd5hJ27WNmYycpK7Csq+T52r1zCxZaVF3HpCoCjJyiMpldTgW1FJd/fhVe63rF+6bJzBL2ZLmwqKhn3d73Q0BTyfzwGOizYDDOxp6gKT3DkldChqcIOvtyFpgWbYR62FFXhl5+Ay0vta7Gz7sdjZxifzTRlKTYUlYxv/MDHzdO+wg6uzS3BjzDyjzZnQ5/FzNkqoSxvYG5lV3OTN074ToeFymQyqNVqLetKpRJKpRIAQBTFjn14nofD4TDWVxtjL1HppF6v4+DgoCGW3377DaVSCblcTlMgLMticXERALC/v9/RXiaTQb1ehyAI4DgOFy5cgCiKYFkWLMsO4RuNF1MjqvX1dSQSCTz//PP466+/8N577zXEIggCWJYFx3F9t68KNZfLoVKpYH9/v8W6LS8vN4Rmd2wrqkqlgvv37+PBgwdIJBKYn5+Hy+XC8fExfv/9dzAMg9XVVUiSNJCYzqNUKiGZTGJ/fx/JZBILCwsQRRGrq6uaQ6ktIBuhKArt7e2RJEnEMAz5fD568OABvfPOO5TNZls+m06nKRAIEMdxxLIs+f1+SiQSlvcxm81SJBIhURSJZVkKBAJULBYtP+4wsYWo0uk0eTweYhiG3G43xWKxxjafz0eRSKTn/sVikUKhEImiSA6HgzweD8ViMVIUxdJ+F4tF2t7eJpZlSRAEikQilh9zGEy0qBKJBEmSRDzPUzQapWq12rI9FouRJEmG2qxWqxSNRkmSJHI4HCRJEkWjUSqXyyb2vJNUKkU+n49YlqVQKDTR4ppIUSUSCRJFkURRbLFKzZTLZeI4rkNoRlAUhWKxWMMKCoJAoVCoYyg1k3K5TH6/n1iWpWAwOFD/R8VEiSqdTjfEdJ7/o+czRkmlUuT3+4njOOI4jvx+P6VSKVOPoVIulykYDBLLsrS9vW3JMaxiIkRVrVYpEAgQz/O6hBIMBikYDFrap2w2S6FQiARBaEwKulnNQVC/O8dxlgnYbMZeVLFYjDiO0321plIpEgTB4l61Ui6XKRKJkCRJtLCwQG63W9PHG4RsNkuCIJDH47HcvxuUsRVVuVwml8tFkiTpPonVapV4nh/pFF0Na3g8HnI4HCSKIoVCIdP6FI1GieM4ikajprRnBWMpKlmWied5kmXZ0H5ut5v29vYs6lV/JBKJhuPNcRwFg0FKp9MDtVmtVsnj8ZDH4xnLWeJYiUpRFAoEAuRyuQyb+Gg0Sh6Px6KemUM2m6VgMEg8zxPLsuTz+QxfOM1Eo1Hieb5vkebDTgJwujjDlKc4eb3xvvujMjaiKhaLJIpiXzOdbDZLPM+P5VXbjWKxSJFIhFwuFzkcjoaVNeqHqb7WeQHeFvJhcgKEZgGdrXOG84aOr8VYiCqVShHP833NbhRFIUEQBh5SRkm1WqW9vT1yu93kcDjI5XJRJBLRba0VRSGfz6fTUsfJ2y4odYsXZIKhGr2oZFkmURT7nin5/X4KhUKm9mnUyLJMPp+PGIYhnudpe3tbV8A1Go2S2+3uabFPhzwvaWknH/aSCYZqtKKKRqPkcrn6HrZkWSaXy2Vyr8YLo4lvNaGufZGeWikzhrhejExUoVBoIMe6XC4Tz/NjH7MxE63E997eXsdF2dX6n/lNZgxxvRiJqILBIPn9/oHasCINM0moiW/VD2tPfKsprRZh2VVUkUiEfD7fQG1sb29TIBAwqUeTT7fEdywWaxNWj+EvH6awSWIbqqj6KUVpJ5VKkSiKExU+GDbNie833niDXn/9dapUKkT0LDbVYq3i3rM4lTkMTVSyLJMkSQOJQVEU4jjOdpWSVhKLxejChQu0vLz8bGXc+yzo2SW8MAhDqVHPZDLY2tpCLBYb6FammzdvYnl5GR6Px7S+2Rn1vL/wwgt488038ffffyMajVp+XMtvJq1UKrh58yb29vYGEtTdu3cBYCYonSSTycaF/Omnn+Lp06dYXFzEnTt3rD+4qXZPAzNmacVikTiOm/lROlHjd6qDrigKsSxL5XJ5KLNmS0VlRrGcoigkiuLEFKiNmm6+q5p5MKPM+jwsE5VaRz4ogUBg4sppR0WvyVA6nSae54nInFl4LywRlVnRbrOEOQ3omV03l8lYmTO1RFSSJA1crz2NaZh+0RuuCYVCjUyGldUdpovKLNPqcrkGKmCbFtTzrWcSUy6XiWGYxt9WjQSmiqp5ljEIzVfUjO6oN70amRW3X6xWlGCbKioznOp0Ok2CIMzCB+fQb/m0WgyoYsVs0DRRmVHSqygK8Txv6R3AdmCQenxFUYhhmBYRmT0ymCYqM5xzj8cz1rcejQNm3OCh9dCSQW6gaMcUUTXHQPql3SzP6MSsO4a0brg1M3ZliqgGtVLFYpF4np/Ih1EMi0gkYuotaBzHdbgZDMOYEsIZOKGcy+WQy+UgSVLfbaytrSESicwextqFO3fu4PDw0NQKg/X1ddy7d69l3e3bt/H1118P3HZL6cvJyUljw/z8vK4Gtra2sLi4CL/f31cH1Kz5ULLnE4hV56dUKuH9999HsVhsrKvX63jrrbeQSqXAMEz/jbebruPjY91mrlwuE8uyfc/4ZmmY3lj99BqtigUzZoIDiWqQWvFqtUocx83SMF0YxuOQtBz/arVKDMMMFBrqKarj4+PGovU3x3F0dHSkKcT2z7Zvu3HjBv388889O9etjV7rm7e3f59JYRiCIjqNWTkcjg4BDRpl7+moq36V1s+DgwO89NJLePvttzE/P9/ij52cnGB+fr6xtG/7/vvv8corr+DGjRst25ppbqPb+ua2m3+q+6i/dzvGODJMH3NhYQGSJOGHH35oWa/lxBuiXWXdrv72330+H3377beaVqNXG0dHRy2R926WRO/6bsft1Z9xxePxDMVCNdPNrx0kvKDLp2ofStTE8dOnTzUb7faPVxSF3n333Zb4yExUp4wym8CybMcdSoPUWzWGPyNDRDKZbLyDxcj+W1tb+OSTTwy/YWGShq9+GPVdQm63u2MIXF1dxY8//thfg6q6ujnVzdu1VNzLGW/e1pwGOM/RPq9P3YZcrUmFnu82SsYh35nNZonjuI71DoejryyH7jRN8z/FaPJxGMX2k8g4CEpFEISOm0v6Tb/pStM0z6gqlQoqlQp4ntdtDWdpmE5GPeS1ozXj++CDD/Dw4UPjjfVSnNYwYzRTPqyYy6SgKAq5XK6xsVAqWkHPYrFILMsabstwlYIRkz2KZ5qPM4qikCRJY1t7rxX01JoZnodhUek9yDg803ycGHdBEWk/mbAfv89Q6UutVkOtVtP1ds1bt27h9u3bU/EmzvOo1+tYW1vDxsYGXC7XqLvTFZfLhUwmg0ql0lh39epVHB4eGmrHkKhKpZIukdy9excLCwtwu92GOmNHJkVQKu0xK5ZlG6/t1Y0Rs6an5HcSn2luFZMw5LXTXhreLYbVC0OW6vDwEFevXu26vV6v4+bNm4hGo1hYWDCmbptRq9Vw/fr1ibFQKmqoKJPJAAA4jkOpVEK9XtfdhiFR5XK5nimWzz//HKurq4ZiWHakVqvho48+wvb29kQJSqU9ZsVxHHK5nP4GjJg1rWJ5FaufJDIpVKtVEkVxot9A0V7Ra7S+yhRLValU8MUXXyASiRhpznaoFioUCk20tWYYBjzP49dffwVg3Fk35fGMa2trCIVCgxXLTzh2EZRKc5XCc889Z41PVa/XNZ3vr776CoIgQBRF3Qe1G3YTFABIkoRkMolarYaFhQX8888/uvf9f70frFQqHZbo4OAADx8+hCzL+ntrM0qlUiNhbhdBAa2lxgzD4M8//9S9b9/DX61Ww61bt6Y6fFAqlRohFDsJSqXfWvW+LdXW1hY2NzenNg3TLCi7ngNBEFCr1XByctKSujmPvnyqaX+m+TQISmV9fR3JZNKQo647TqXedTHtzzRXX8s7LdUX5XKZXnzxRUN3khvyqf7999+pTsNMk4VSYRgGi4uLhmZ/ukUlCAJeffVVfPjhhxAEoa8OTjKZTAZra2tTJSgVSZLw8ssv69/BqBlE89uXZsvULK+99pru4W8ob9GaMV0Yi1PJO9gpWNSTGWNOATvX5jA317psaMS9DYhKxsbKT+b1cVKQN1pPpNZZnAouYvNRHmEn4I0TiAgU92J35VqHodEtKnnjSxw5r+DSRbM7O77IG3OYWwHidHYSKQ7v7soUCyuPPx57IV0/+3PpMpxaH9PjeOXDTvLG4+SFlyx+UfjYEPdC+73CcS9his5DC3Fv06tx8xR2ar8q93xLVdjBN7iH75ae4Mh5GUtmCn9ckTewsutE+N4mpsgwn0vhyRGwu3LmCqwD9wj03fWOz50jqgJ2vgE+2zw7tVcuTcFJLmDny13A+19sanzZwpOj4XdpLCjgl5+AcP7UFciHAf9Spz8FoPfwp75uvrGY/Fbw8SROXoC0v2p3k2978mFytrgDp+fJGe5wEHoMf2fDHtEzT995eQoGv8ITHMEJza8qfwP/YyfCn3WafLtT+OUn4OP/PBupCk9wBOCKxsxNu/SlsINr68C9R892mBqzf/ESruAx/sgDrWO9jI2VXcAb1xwW7c3p0PfxPfWLy9hY8uMxvPiv1vXVbrriXnW4c9KpZTsz+VM0BHbM/PJhck7Jd+8g7tVO3WjNjM+YpWk0KWDn2hL8j9W/nQjnH02hheqPmahmmI4pt2jNmNHMTFQzTOd/eH0WFhfUjaEAAAAASUVORK5CYII="
|
<image>如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是⁀{AC}上的点.若∠BOC=50°,则∠D的度数()
Choices:
(A) 105°
(B) 115°
(C) 125°
(D) 85°
|
115°
| 10,832
| null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALUAAABiCAYAAAAWaJI+AAAKv0lEQVR4nO3dQWzTZhsH8H/GJCIucJi03mY+JaWgIqX6Dt/qHmjFJS0Xc0G9tUiTw04Jhx0qMYVqSAWBVEdCgvSS9oTUSyNBk3KYuh1IdwtIhaLaUsMu7YfGF7bDkklj73egLk5ip0lq+7WT5ydZ1ezEflkf//3YcdwAY4yBkC7yGe8BEGI3KmrSdaioSdehoiYtyCOV0ngPomVU1ORQ+dgElnkPog1U1KQpLRVDFiIG+0O8h9IyKmpiTUthtT8NCQXeI2kLFTWxkEfqbj/i4xq2N0WcC/MeT+uoqImpfGwb/elx3sPoSIA+USQN8jEEJhYMM2TkWBp+KXFKalJLSyG2/R0YYx8nVYEonoOPug8qavKJlk8hdrcf6bjhSof6ymenidR+EINAIABAhKI+QzwE5GMBfOpC/NOCUFGTrkPtB+k6VNSkwdraGsbGxrC4uMh7KB2h9oM0+PLLL/H27VscP34c1WqV93DaRklNDmSzWQwNDeGLL74AAJw5c4bziDpDRU0OinlpaQmZTAYvX75EpVLBH3/8gb29Pd7Daxu1Hz0sm81idnYWgiAgmUwiEonULFcUBW/evMH8/DyfAXaIiroHHVbMumq1irNnz2JjYwN9fX3uDvIIqKh7SKvFbOTHtKai7gGdFLPOj2lNRd3F1tbWMDMz01ExG/ktramou9BPP/2E2dlZBINBzM3NdVzMumq1irGxMTx48ODI63IDFXUX0YsZAJLJJEZHR21bdzabxdLSElZWVmxbp1OoqLuAk8VsNDQ0hEwm4/m0pqL2MbeKWeebtGbkiFSmiGBA7STKCsupzmxxfX2djY6OstHRUba+vu7MRixEIhFWLBZd3Wa7qKhtkWOyKDJFL2JVZYoMBsgsZ+NWeBazbmVlhUmSxGXbraKitkWOyaLC1Pp5ABOVo8e1F4rZyOtpTUVth5zMIDdmck6G6fxWFYtFFo1GPVPMunw+z6LRKO9hWKK79GyQzy5Aliy+vbe5jXYfrfj8+XNcvnwZV69eRTwex/r6uuMnge2IRqMIBoPIZrO8h2KO917lfzkmm/bO+yeQbSR1sVhkkiSxSCTCVlZWbByj/YrFIotEIryHYYqS+qi0bWzKUuO3rLVVLBdgneAGxmSemppCsViEJElOjNY2kUgEgiB4M61571V+pyqiycngfko3nDzW8lMym/FqWlNRH0mOyTBcymMqU3MKkw8paL8Xs5EkSZ77N1BRHwFg8qGLKDLZ4lOXbipmnRfT+nOuvY/PsRbvMHj9+jVmZmZQKpWQTCY93y+3w9hbe+XfRfd+OKBareLbb7/Fu3fvcOLECbx48QJzc3Oe+aXbrVQqYXx8HMViEcFgkPdw6NvkTrh//z4WFxfx+PFjfPjwAVtbW11b0AAgCAKi0SgePnzIeygAKKltVSqVMDs7ix9//BF//vkn3r9/j6dPn+LixYu8h+a4vb09DA8PY2tri3taU1LboFQq4erVqxgbG8OFCxfw66+/4rfffsO9e/fw5MkT3sNzRV9fHyRJ8kZacz1N9bmdnR02PT3NBEFgmUymYXmlUmGCILDd3V33B8fB7u4uEwSBVSoVruOgpO5AfTLv7Oxgenq64XXBYBDxeBx37txxf5AceCatue5SPnNYMpuhtHYfJXUL9vb2cP369UOT2UwvpvXk5CQUReE3CG67kw/s7u6yRCLBBEFg8/PzHa+nUqmwgYEBtrOzY9vYvIz30YmS2oSezMPDw/jqq6+wtbWFRCLR8fr0529cv37dvkF6GPejE5ddyaPqk9nuvtDrX4OyE8+0pqSGdTLb/SFCMpk8eKRBt+Oa1sYK//uf6sHUC5xOZjOU1s6rSepjgeM1P7uVW8lshtLaBfVV3s0pXS6XXU9mM5TWzmpa1PXtiFl7YtWuNGtlWm1zrF7XbH79mP7+p8rK5TJLJpPci1nnhwfC2OnRo0dscnLSte01PVGsb0fqf35gf+FY4DiOBY7jA/vr4H3G+e0sMzK+zmq+8f3Gn/p7/vf+LX6YncN/hv8NACgWi661Gc3ot6F68kurDpicnMTr16/x/PlzdzZYX+VW6We1zCq921mHmVbnm627XC6z2R++Z4IgsGQyyd6V/2u6Lp68+DUoJ7l5dDr0kl6zNNWXmyUqD7///jtu3ryJoaEhAB+T+ebNmzh58iTnkTXy9CMGHCBJEkqlkjtprVe3sQetZ7XMKoHtTurD3q/3zP0D/2LJZJKVy+Wm7/EKSmtn1CS1sR810tO6fpk+v36ZcX47y4xHhFbWrffMQ0ND+Ozzf7CxsYHvkzM4depUw/qaHW14obR2SKvV76W0M17N0JPZryit7dfSx+RWCe62arUKRVEaemY9mf2oF9N6b28Pv/zyi3MbaVbxXvnYvFKpsPn5eSYIAkskEr5OZjM7OztsYGCA+/Vztzh9dDr0OjXPKxt6Mp89exZv3rzBxsYG5ufnfZ3MZrz2iAGnOX50cmx3OYL6ZO6Fr0J54WtQbnIyrT1166lVMvvlzwcfhWe+tOoSR9PakV2lTb2YzGYore3BNal7OZnNUFrbxPbdpEWUzOYorY/O9aReXFzE6dOnKZkt9PX1YWpqCrdv3+Y9FFdEIhF8/fXX9h6dbN1FmshkMkwQBDY9Pd0zjwroFO9HDLjN7qOT40mtJ/PPP/+M9fV1ZDIZCILg9GZ9jfsjBlxm+7mELbuGCUrmo6G07pztSU3JbA9K6yOwYSdjjFEyO4HSujMdJ/Xa2hrGxsbwzTffUDI7JBgMQpIkDA8P98TVkL6+PkQiEZw/fx6Li4sdr6fjP49x+vRplEqljjdMSDPBYBCVSqWj93ac1LFYDABw7do1sI+PWqDJgSmTySAYDCIajXIfixvT3NwcALT8qGQz9IeMiH9oeaTu3kJioQBAhKwsId1/FzGkkTb8CXhP3aVHiCUthZHwBJZxAypjYOwZvsMUAhObOBeufalFUWtIjQQQCNROI7E8NOeHT0gtLYWRcAJQVDxLjyO0PzsUvwFZHER/qPblFkUdQvwZQ04G5Nx+v6PmMLgwgakUlTVxV/5uAgVRwVK8rnoRxrnBc6gL6mbth4btTfFTtIfGIclA4ZVq43AJOUwe2QVAvHIJ9SUNhBBPxxvmf265Lm0Vy7iCpRAAaMinpjCxICPHxi3fQojttG1sAhis7zGasExqbXUZhUIC4UAAgUAYt3ADKkuDStp9+Vjj+Y0+xfK8R+cGseFksBnLE8XVZUBR9X5aARLUT/Mynq47v2EMjKlQxPZ+2b4U6scgClhebaw9LW9+4cKiqFW8whVc+nSaiRsyUFhepasfXGjY3pQh7R8m86kUNIRw6cqVhjP/7rN/LpeYQiqvV5+GfCqF1fC4SZ9tVdT5LDZNG3PChbaK5UHpY+unpXDrVT9CAELxeE+0g+NpFTllEMsT4Y9t18hdbF+Ko+FiiI41UJkiikxR9f9UWU4WGQAm5xpfTZynKh///+uTePDLIWYaknokEEaiUEAivH8yEg5jYnMQSk6t+SiSuKX2/EZVxLauBPSihkt6z+hWEI9R8aowCOmgjq8c9NbEHN3Q5HX5GAJZCazuMKmlYli9lLbuK3sY3dDkaRpStxYg10SzBi0VQ3j53KerU6QGJbWHjQQCKFgsExUVzyimTVFRk65D7QfpOlTUpOv8H9i0ReL5k/dHAAAAAElFTkSuQmCC"
|
<image>如图,在△ABC中,DE∥BC,若AB=7cm,AC=5cm,AD=3cm,则DE=()
Choices:
(A) \frac{15}{4}cm
(B) \frac{20}{3}cm
(C) \frac{15}{7}cm
(D) \frac{20}{7}cm
|
\frac{20}{7}cm
| 10,833
| null |
\frac{20}{7}cm
|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAAB9CAYAAACS0pD7AAAZkUlEQVR4nO2de1Bb153Hv1fi4TR45UxoUaYK8kPYF4PXok5j3NLaDg/jCVOTdWbtTpKJvc00jvG2uCETe+utcEOneCPHnhQIbdzJZLYPZkojJSEbbCtraGDtBlrykHjUOMYDWaPAbCAiHYyl+9s/pHu5eqLH1QPQZ4Y493Xu0bnf+zu/8zvnngNK4gXHcdFJw8cuw+nDBMD5V/oUcWShw4f1Ps+NNzIsU4jI7zGGYSJO32carl0EAP1GMAyDxo/XgohARODOlELG5EG2TgOKPAuSkxLvDMQLKQQRCCJyuwcBYMABkIHQj7K8h1BSpceFX/xoPk95D+F0VSlonQYJqJXlKxbA+4FKdS7gLUbnlgwg4I0zjTChGJaGH4HxkMXatTmAZmPQ94klDAWyx0kixtvC9KOMycN6vQGNT1cucLXTEiUKiZOTMFlI6/6OS/2O8H6HJ14Wpv9vMAFYq8nxk5Ck2ZKURV8NLVQ1iI9bLBZMTk7i0qVLGB8fx+DgoHDMarW6bQMAy7LIysoStvPz83HPPfegqKgIWVlZYFk26HwECzEQVUyJ9S4v2WrIarXCZDKho6MDly9fhsViQXZ2NtasWYNt27ZBqVRCq9WCYRgQkdfDB+bFxdPb24vx8XH09PTg2rVrGBsbg1arxdatW7Fz504UFxcjMzPTR244gGQAAxAGUcbkeldDBGDgNZy+ugFP78mLSplETMwb6wsQSYyjra2NqqqqiGVZUigUVFlZSWfPnqUrV65ImEN3urq6SK/XU0VFBWVkZFBeXh5VV1dTe3u78wTO+ze95oqt6I1m4RyzUU8ofUo4JwHDLJRwYgkVs9lMR44cIaVSSUVFRXT27Fnq6+uLW356enpIr9fTli1bSKVSUU1NDQ0MDHg9fbNRTwCIYRgCQCVVeueBRFSJi0UhFo7j3N7Oqakp0uv1xLIsqdVqeu6552hkZESSyKuUDA8P04kTJ0ilUlFeXh41NDSQzWbzPjGxsu2XRSEWnk8//ZROnDhBCoWCDhw4QN3d3RGlFwtx8XcwmUxUVFRECsVKqquro+npz4K+NlFILHfbD1arFUePHsXGjRsxMTEBs9mMV155Bd/4xjfinbUFYQAYjUbU1NRgcnISK1Z8Ce9/2AfN2hwcP37czYH2bDYnWhQ3ocVy69Yt1NbWYtOmTVixYgXMZjOam5uhUqkkST/aIX+j0YiCggL89Kc/hU6nw/79+/H1r38dA5ZBdF/+H8zOziL/Hzfh1KlTsHMOV2spgYm3afPHm2++SWq1mvbv30/j4+Pxzk5IGAwG0mq1pNVqyWAwCPt1Oh395Cc/oerqaqqoqCC73U6jo6NUUfEdYlmWTCYTEcWmegyHhBPLyMgIVVRUkEajEQrPk0QtTH8i4dHpdKTT6YiIqKKigqqrq4nIQRzHUVtbG6lUKnr44X+m0dHRmOY7WGIqloUecktLCykUCtLpdDQ7OxujXDmJRIALiYRHLBabzSa0kHhsNhsdO3aMFAoFtbW1hZ2faJEQlmV2dpaqqqpIrVZTT09PvLMTNLxINm/eTAaDwafgxPt0Oh3V1tYK26Ojo6RSqbwsaFdXFymVSjp27BjZ7fbo/YAQiYlYPAtRvD0yMkJbtmyhyspKmpqaikV2IsaXJQnGMvGWRXxuT08PZWZmOgN3LjiOo4mJCSopKaGioiKfPls8quK4Whb+DRKb4ngQbMEHW934Q1wNie/d2tpKarWaJiYmvK6pr68npVIZ16g0T9x8FoPBQEqlMqr9NlIRjkh8WVNfYuGpq6ujoqIin76ayWQipVLp1+GPFXGxLOfOnSO1Wk1mszket18Q/kFHakk80wwkFiKiAwcO0KOPPurz2vfee49UKhW1tLRElI9IiLlY6uvriWVZGhkZifWtg4LjODIYDLR582ZJRCJmIbHMzs5SUVGRmxMsZmBggNRqNTU3N0uWp1CIqVjq6upIq9UmrCMrlSXx5wMtJBYiZ/+XRqOh1tZWn2mNj48Ty7Jx8fNiJpaXX36ZWJb16cRJQSziJJESjFiInBYkkD83OjpKarVaEJQ/pG4xxUQsBoOB1Gp1wlU9wcRJpCRYsRA5nVqVSuW3zAYGBnzGaKJJ1MXS0dFBSqXSLY5AFN+QfbhxkkhZSCyeeWhubqaNGzf6HgNDzhiNUqmMWSBTUrF4/tjh4WFSKpXU1dW14LlS3tcfsapu/BGKZeERdzr6or29nbKysmLSnxQ1yzI7O0tarTZunrsYKeIkUhCOWIjEnY6+qa+vp29961tR7xqImli+//3v0759+6KVfECiESeRgnDF8vnnn3t1Onqya9cuOnbsWAS5WxhJxOL5Fra0tJBGo6GZmZmQrpMqL9GKk0RKuGIh8t/pyDMxMUEqlYrOnz8fQQ4DI7llGRkZoczMzLj0ZUQ7ThIpkYiFyOnQfvnLX/ZqLPDwfW3RGiwmuVjKy8vDKpDFECeJlEjFQkRunY6+yqympiZq1b+kYjEYDMSybMwGLsU6ThIpUoiFiOhnP/uZ305Hm81GKpWKOjo6Ir6PJ5KJZXZ2lrKzs2MSJIpXnCRSpBILkf9ORyKn9cnLy5O8dSTZ6P66ujps27YNxcXF4QwaD+o8frT8yZMnodPp0NfXh8rKSgDRH6mfKPBl1dzcjOvXr+PkyZNe5+zduxf33nsvzp49K/nNI2Z8fDyqjlWixEkiRQrLwv8ufjTdunXrfPYR8Q0NKTttJbEs9fX1ePLJJ92mp4gEcr09gSzJQiw1S8OXCf+7GIbB3Xffjba2Nhw5cgR//vOf3c5Xq9V49NFHcebMGUkzERFWq5UUCoVkViWR4ySRIqXPIobvdLx+/brb/uHhYUmtS8SW5fnnn8fBgwclsSpGoxFf+9rXcPLkSdTW1oZkScTQ0pxyRsDz9xUXF+PEiROoqKjAzMyMsH/dunWoqKhAQ0NDUOksSCQ1+2fTU5SZmRlxJ9ZiiZNEitiyRMOn4jsdHQ6HsI8fGxNOOMMzjzLPmp0L5mtb1ymNv2hARUVF2N8e8z5JbW0tdDod/vrXv4ZlSRYj0fCpzpw5AyLC008/LexjWRaFhYU4d+6cz2sIADjfz9wrj35VJfxHjMNtS6NZH9bo/MUaJ4mUaPksYnx96dje3k5btmwJOS3PJ+IhFseCD40/euXKFWJZNqSbL5fqxh+xEAuRd6ej3W4nlUrlt0/J0wj4w2O2ShkEy+OcEpq3PsJEfbxpeuWVV3DgwL8EZR6NRqMQPNLpdEFVNeJ7LSU6OjpQW1vrc/+OHTt8HlsIz7JSqVQwGAzYvXs33n33XbAsi8ceewyvvvoqfv7zn3tdX1UmR9NFwDkDCwcA0BvNXhMh+m8NiZ6TkBGXYBwOB/74xz/ikUe+G/BHJOMksYF/kcXcd999aG5uRnl5OSYnJ/HII4/g97//PQDvVlDjBcLhUkBv/BBEBLNRj5rKfBgtHr4Mb2Lcqh/X/370up5e+2jeRIkHFW3fvt2vufLs4EviJFA1VFtbK2kVxT8r8ZeOWq3WZwejgzNTMYrJwj94i4EAkMHs0RpyKsbjTWac04Yf3VPjtp////b2dnz3u+5WhYi8Wjfvv/9+Mk4SJFL/Zv5Z/fjHP0ZOTg6eeOIJ7N+/H+3t7V7nDrzRDqZqNzaCAcChqvohFB/RozLP3bo7fRYfFv/MkUYwpaVY7zV/L4fOzk4cPXpU2BOOTxKIpVkFcV7VhcgthHgnMRwYyCTz21566SWUlJQIU615cvXaxzA1NoFprAEAGMwcGvO87+vm4PKZN57+V1BpCajpb14XWK0TmJqawoYNGwKKRKofuugRFCEDB3ITh8/SYQDG5UpKVX7p6ekwGAzYunUrrFYrvrDN4M6VGcLxi+1NMJg5VOYxML5QhYfyZXjtIwcq82Xu+SVP+9dvRNXbQONugKluB51vdvtVr776nzh37lew2Wz44IMPoNVqsWfPHkl+1FLnUmcHGAJ27NjhdayjowOA+zFfjmtYyBiAIwwODuIPf/gD6uvr8cwzzwDgAMsbYI5eAF1oAuC5asl3IG4DeS30cKTJhMaGBnADr6EkZ4OX/M+d+xXuUqxCcXExKisrl6V/ERocGAAEGWSQg+AAMC8EhpyLO/gSkGRlyzlAjAwsy+KBBx5AW1ubSywyGM9fxOFdZcKp/Kol5b5WLRF7u4bTh+bX6xNPES4ie/X8VBlLP+YqDcIYFGGPZxAsuKCYFHR1dZFWqxW2D5eCjBbn/3NkoWKAIG4ZiZgXi/l1Oqw3zG8a9c5t0TWzs7OUnp6aUPOcLQYOl87P0T//5/uBRJvp6WnKyMgQ1g7w+hMtNuGJjIicizsebXdb0uTqtY9ddmneCg0MDODee9WQyeXSmMdlQuMFwlMlBIOZExax0h9mkMeUot+z4zbKtfrKlSuxYsUKZGgfBufKC3Gif12+i0/0h0ucimJcQRjO+SbAR1XU2tpKlZWVUdb+UsNBHFnogbIqLztyuJTxWdVHOz/bt2+nixcvBj7Nh9GTPd14UVBVZZ5zGa3GCyS8ARcb5ru7BwcHkZPjZ7m2JH6Qof/185DlrPFqKq9bXwLT1Y8DXMtFJT85OTkYGhoKfJqPVntQI+XI5ZUPDw9j/fr1IWdvsUASt+z49Nov/BfKS8u9jq9dmwNwgWIp0VlagWVZDA8Ph3xdULnhm3nXr1/HmjVrQr7JYiGiIJgPnTFgQOjH202E3Xucy+/yFhsArn08iJINawIlERVWr16NkZGRkK8LWroMw2BmZgYKhSLkmywLRMM5hOqDccYtcLjc2e9CTgExDAP0G/FM439jV8kuzyQQnepnnlWrVrmN1Q2WkOzcF198gYyMjIVPXMY4rdN8sRrbL2L9Oo3rIARFVFU/BCp9CjWV+T5S4a+PjmgyMjKiL5aZmZmkWLzg5puOglVxPmRCP5pqmlC2a4+wz9FvAMMwaMJTbs1UtypI2IiOz5KRkYHPP/885OtCys3U1BRWrVolbEvtEMYbk8mE3NxcFBQUoLu7O8irXJ1tQlnIAMhgef0MZEweLhLwUL4MDCMHwzBIyfsn/IfRPC8U12Vu3pKwER3LsmrVKthstpCvC2ldZ4ZhwHHcku1Nzs3NFRYCLywsxOXLlyVLe344Agf3d9RzO/pMT09DrVZjamoqpOtCzuWSEIqv18PH5xBSWk7/q8An9MqDbrjllOy3MXdrTvize1jBcB2jREF49AxgNurBMIzwV/qDF9DQ0ACWZVGwWYvnn39+abwYPpiZmcHKlStDvs5tiAKTkoo0uQO35zjI0lIh9xjdn5GRgampqUXl5IpHozFw/pYXjpShpolgIQ4bXbGQMiYP9dBjYGDAdXZ0m6/xJNxnGHRQDgi/fR5PPG3DC0fKUHM1B0Qm15hTgMFGnDXqYWp8W9Sxt3iqh1CZmZnBXXfdFfJ1XoOf5uFgv2V3vl+MHKlpcnzpji/hs//7DHYOSJEBIAduzzmcb688FakpvCma3w/IkJKeMl/0gY6JEZ/nuj/j93o+rwzkaXLQnCvfshSkpZBwfv9bL+KZJhMM5gshF9RSYmZmBnfeeWfI1wV4fWRISZODEf4FVv7DSthsM06hgIP9NpCSnoa09BQwDjsc5No/x0GWloa09DSkyDjYb/MmPdAxMeLzUiGHAw4u0PV8HgmOOQ6y9DSkpcnBcHbMufKYmirDr5r+DcVVrlHrIt+VIBqSIcrDUsCXkx6daoiRI0VOwgNds3o1Pvnf/3Ue4zhw5MDtW3OYu2UHB3KGGjgOHCMD/8W9LEUOhuOcRR/omBiOAyeTu3wmBvK0NKdAF7yegTxNbKkYyFP5D+QGcfUdYFdJubMA3b98wcX2JpS4PodwFvDSqIZ8OemffPIJVq9eHXJafkqEET5jZVLkkHEOOIiwbq0G/f2iTwlkKUhLTxP+UvjUiPx3igU6Fsx5wV4/n0kwBDD9V9EJYJ1mo1cBWt7Qo+kiUPXUjwCICnhpxRwFPvroI2g0mpCvE8TC3Z7DHF8lMIxbXEAuBxxzt7EhN3e+a1smg4yzi5rXHDjOtR8cHHZXSROBZDLnjQIdE8MwYIiveoJMOwDEALQxB9sBXBvudz+Gfvyg8hmUVLl/VMWBvL3jJcLVq1exYcOGkK8TyplhGICzY26OgyxV7v69SIocMsiwLmedEOEEZEhJlTlFdmsOc7c4V2pO/wEOV8zGziA1VTZ/jd9jHOx8bIeRIzWktDnY5xwgEBxzdnAe2wQOjrn1KDu0A//e0DAff+s3QsbkQXZYjwuiQV5EBNlSVQqAoaGhsAaxBRnu5+CwM7A75qBQKPDFF19AvkjH4VaVMWi6OD9Gh/+4arkwPT0NlUoVVt9QcCPl7BwgZ5Ceng6lUimyLosBvgfYCT9klOOcg6e9hEJYsr4KAJjN5rD8FWABsfDVgB1yIZpbWFiIrq6uRdTj7PoU1M9R8myLMRA+BFsqiJ/Vu+++i61bt4aVTkCxyFKdrRwh2AZg9+7duHTp0iLqNwkcL2HcisB5LsMszirWH+Jn1dnZid27d4eXTihDFADAarVCq9Xi5s2bYd0w1hA4D0EsXxwOB+6++26MjY1Fr2+Ih4iQlZWFVatWLRq/hRfKQu8Eefy7FOnt7UVubm7YHcEhiYU3Z9u3b0dnZ2dYN4wXC1WbjMe/SxF+3rpwCcs+l5eXC/OTJUlsxBa1paUF5eXe3y8FS8g+CwBwHIesrCz09fXhq1/9qs+3lh8DkyQxsFgsePDBB8P6XognLMsik8mwd+9e/Pa3v/UriKRQEovf/OY3XvMAhkpYlgUA3nvvPTz++OOikWVJEhWHwwG1Wg2TyQSWZcNOJ+TWEM/9998Pu93uts7N4gnULS9MJhOUSmVEQgHCbA3xPP7442hubvZ7PEli0NzcjIMHD0acTtjVEODslNJoNOjr6wt7ZZAk0WVwcBA7d+7EyMgI0tPTAYTf+IgotKlQKHDgwAGcPn06kmSSRJFTp07hyJEjglCA+RogVDsRkWUBgE8//RTr16/H0NCQZGskJpGGa9euobCwEMPDw5LMfhFxp8lXvvIVHDx4EC+99FLEmUkiLQ0NDaiqqpJsmpSILQsw37n4/vvvJ61LgnDjxg3cd999klkVQKIh7FlZWXjiiSfwwx/+UIrkkkjAoUOHcPz4cWknXwpuhsOFmZ2dpezsbGH1rCTxo7W1lfLy8iSfr1gysRA51xliWTaslT6TSIPNZiOVSkWdnZ2Spy3pqKDKykqsXr3a59JqSWLDyZMn8c1vfhPf/va3pU9cavWNjIxQZmYm9fX1SZ10kgXo6uoipVJJ4+PjUUlfErF4rtja0tJCGo2GZmZmpEg+SRBMTEyQSqWi8+fPR+0ekjSdffHkk09ienoaLS0t0Uh+WUFBhOfLy8tRUFAQVRcgaiOZX3zxRQwNDeGXv/xltG6xbFhIKKdOncLf//531NXVRTcjUpopz+poeHiYlEoldXV1SXmbJCLa29spKyuLRkdHo34vyR1cTzo6OkipVAZYrTxJuPT09JBSqaSenp6Y3C/qYiFyxl/UajWNjIzE4nbLgoGBAVKpVDENgsZELEREzc3NxLIsTUxMEJF3lZUkeEZHRyk7O5taWloCnid1GcdMLETO1csLCgros88+i+VtlxTj4+PEsiw1NDTE/N4xFQuRUzAsywpVUtLCBM/AwACp1WpBKLEuu5iLhYjo5ZdfJpVKJazimmRheGd2oaonmsRFLEROp1epVNKVK1eIKGlhAmEymUipVArObLzKKm5iIZpvVsej/l0s1NfXx7R5HIiohfuD5caNG9i7dy9Wr16NX//618mV0lxMTk7isccew8zMDFpbWxNiBGLcJy5Rq9Xo7u5GVlYWNm/ejN7e3nhnKe50d3dj06ZN0Gq16Ojo8CmUuLzjcbZsbrS0tJBCoSCdTrcsB1DZbDY6duwYKRQKamtri3d2vIi7ZRGzb98+fPDBB/jLX/6C/Px8vPPOO/HOUtQhl4V46623kOuaZ9hsNuPBBx+Mc858EG+1+uPNN98ktVpN+/bt8xrMs5RaTqOjo1RRUUEsyyb8+OWEsixiKioqMDQ0hNzcXOTn5+P48eOwWq0AlsY31WNjY6iursb999+PoqIimM1mFBcXxztbAUlYsQBAeno6dDodzGYzZmdnsWnTJhw6dAhjY2OSpE8SOonBpnXjxg0cPHgQBQUFuOOOO/Dhhx/i2WefXRyTUMfbtIXCxMQEPfvss6RQKOjAgQMRj5OJVXXGcRyZTCbat28fZWZmkk6no6mpqZjcW0oWlVh4pqamSK/XE8uypFar6bnnnqORkZG4+zK+Bn+dOHGCVCoV5eXlUUNDA9lstjjlLnLiHpSLFIvFgubmZrS2tkKj0eDhhx/G9u3bodVq45Kf3t5e/OlPf8Lvfvc7WK1W7N+/H9/73veCnkiHfxyJ6JclnFhogcHJgY6/9dZbePvtt/HOO+/g5s2b2LlzJ3bs2IHCwsKwpyBfiO7ubly5cgWXLl1CZ2cn1Go1ysrKUFZWFtHMkIlIwolFKqxWK0wmEzo6OnD58mVYLBZkZ2djzZo12LZtG5RKJbRarbA6SFZWltfbb7FYMDk5KWz39vZifHwcPT09uHbtGsbGxqDVarF161bs3LkTxcXFyMzMjPVPjRlLViy+4B/+pUuXcPPmTQwNDQnHrFar16zhLMu6hdrz8/Nxzz33oKioyKe4ljrLSixJIiOh4yxJEoukWJIEzf8DuoXxeHUlq8oAAAAASUVORK5CYII="
|
<image>如图,⊙O的半径为5,△ABC是⊙O的内接三角形,过点C作CD垂直AB于点D.若CD=3,AC=6,则BC长为()
Choices:
(A) 3
(B) 5
(C) 3√{2}
(D) 6
|
5
| 10,834
| null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAIgAAAB+CAYAAAD/cVlWAAAgzElEQVR4nO19f1Bc5d3v54BXtKasvlma7bgR+4bYhSUNUONd21XiGMelpbeZZmF9W7zdtmTw17TpvHSCoy6kTUdyTW9xiiMWva41fQVCSN+WjthBk0ZiIt6GvIFlo0UlIdcSwtQ1G5slZc/n/rGc5ezZs7+XHwl8ZjJhn/P8fj7n+32e7/N9zgMuAYgkRVGUhfjDIgx2OGg1ggAIfJEVHYPk3gpaO8LjLiVkYAlAACAIlIXMNpsYQv06Aevqh1HZPgiSENmJLcOVECqGUGgUwjNbQhBIMna0KwwEIATI0VC4Dj8VHBgcrEehjDgiOmATOlHBdlQGWSEilFxXPl+uWugKzDnURnHm92BDJX7qykf9UCg5AlEKUNBgRWUIJ5RxrnwsTQkCEcRwQHoUtIEdNgASl0KlhCqWguiYwZKYgxBA6GuQAWIYwy6gwGgMhgamKcouEUPzIpcMOYAlQpDAJFUR5nLBpYhH1YFXqBV5RktA9i4JgsghjSmNRhgBDLtmaSLnx969e2NntgQkyZIjiDSmGahEW4cV2HsfCis7MDRDHdHVjvpKK1hhDUsbbbp2pU7lrgiCJDs4mRV7caL9CXzRbcM6IQOCIGDdT10w1u+VLW1nISj1VJzPLmcs0VUMIIoiMjIygn8jQ0AGBPgpIlPICP4vgWREEkhdKAhC1HiXI5YcQdQGUB6W7ADPFzHmm4BXhIqJCdkroNa5gTffDwA4dOhQ5GyivEvzNWjzLZ2uKEtqpLfrzP87g5GR93D8+AlMTk6ir68vqA7Onz+PgYEBWewMXHttFr6w5l/xuX/RggJQWlqKnJwcrFu3DgaDAatWrZq/Rs1AFMUQKSepR+k3EEqedEmaK07FkMShQ4fQ29uLAwcO4K3Dh7FKp8Mtt9yC2267DTfffDOMRmOw84qKiqDJ1mBf1z5893t2XJt1DX7yk5+gtbUVFIDv27+H6667DqOjoxgYGIDL5cLk5CTMZjMsFgs2btyI22+/PWTA5qudcsLEQ5pkC7rscfr0aTY1NXHTpk3MzMykyWRiXV0de3p6ODU1FXOL3ul0UqPRsK+vj93dv6der+fJkye5f18Xi4qKWFRUxK6urmB8n8/H7u5u1tbWsqSkhFdffTXLysrY3NzM8fHxOWunKIoKt4W5x2VHEL8/4J/h8Xj461//mqWlpczJyeEDDzzAnp4e+ny+qOmVHex0Opmdnc2BgYFgWGdnJ3Nzczk6OkqS7OpSJ4oEr9fL7u5uVldXU6PR0GKx0Ol00uv1ptjaxCCKYtz+KvHSbFERRBp86X81DAwM0GazMTMzk1arlW1tbZyeno47bzmampq4cuVKDgwMhDwXRZGtra3My8sLkQixiEIGpMuePXtYXl7OrKwsVlVV0e12x6xfvJAIHlmSqDg4iVGex8CiIUg0UpDk0aNHuXnzZn7+859nY2MjJyYmUsr3ySefpE6nizp4TU1NNBqN/Pjjj0PC1YiiNmDj4+N0OBzMycmhzWYLkVKpQl6eKMZ+QQIRyQSEDMlFRJBIeOedd2ixWKjX69nc3BxThcgR6S1zOBzMzc3lyMhIzDQOh4MlJSWq6qKrq4vFxcVcv359iEQJHTyRXq+Xu3fvpk6n4+bNm8MkVjJtiB3Pr/hfJU0c+S5agkxMTLCmpoY6nY5OpzNt+dbW1vKmm24Kzi/UoBy82tpams3miOSUiBJN9ZDk9PQ0W1paqNVqWVtbS4/Hk3D941YtSeURjkVJEHknqr25ag2Mp9Hbtm2jwWBIaqVRXV1Ni8USdb4TzxxFFEV6PJ4g+ffs2ZNQPZRzkHarMONoLftnLKCxYi8HY8iIePpswQkif1tHRkZoMplYUlLC/v7+tC7p7HY7jUZjkByxJ3vhsNlstFqtwTpHWnZGI4o8fl9fH41GI81mM8fGxlTLjGfi3lEJotARJMT0cHvAQ984G5asN/6CE4QMNL6zs5M5OTlsbGyMa9DiHdjp6WlWVVWxqKgoKZEuxz//+U9u3ryZdrudfr8/Zh3ikSjT09N0OBzUarXs6elJuE4iB+kwggUNg6HhQw7mAzTsmA1X1nfRzEGidaTP5+PDDz/MNWvWsL+/P63lTk9P02q10mw2q5IjnuWxBKkNPp+Pd999Nx966KGIcZTo6uri+vXroxKlr6+PN954I7dv3x6xXmq5i0MOFqCA9UNyCeOnyEE+UQCioi1q+lhYUAkyOjrK4uJi2my2tBuVLl68yPLycprNZp4/fz7kWaqqy+v18o477uBjjz0WM65clXV1dbGkpCQiUTweD7/+9a/TbDaHzJPCVrGS1hBFDtbnE0YHT4j+kGeckSywvhK1XrGwYARxu93U6/VsaWkJe5bqAPp8PlosFloslpCVRzrnNB6Ph0VFRWxsbFR9Hq0s5apHPr/w+/1sbGxkXl4eP/jgg6h1EDnIx5XqZabYabbTinDVkygWhCD9/f3U6XTct28fyfAJWKyBjPbc6/XSbDazvLw8IZtJovD7/ZyYmKDBYGBzc3NcaaR6S+2NNkdxOp3U6/UcGhqKnJ9Cvcj7xd++hUA+G1xRjpzGgXknSG9vL3U6HXt7e0PCE327lfH9fj89Hg9NJhOtVmtkPZ6iFFGmHxsbY25ubsLLVXleElGKi4tDiNLV1UWdTsejR4+qp++wEoX1YctZ0RWQHoXWdkWChKs4vwT54x//SJ1Ol7TJOdpSTxL5drs9oclnOjA6Okq9Xs/Ozs6YcWOpHqVE6evro1arZV9fH0n/7BJbZfUyNDTEV3ZYmQ8wv/7ETIHywslQKRJboswbQd5++23qdLqkVyqR1JAoihwfH6fRaKTdbg95pvx7LuF2u7l69Wq++uqrqvWNBVEUVVVPZ9c+Hjx4kDqdTqZu/IQAAhkKI1k+Cyrq2T4ka39IIcpCY9drXgjidrtV1UoyUHb82NgYDQYDt23bFgybb58JCQMDA1y5cuXM2x6OROu1f/9+FhUVcf369dy+fTv1en1wiyAuW5Fq6CLbzZXEb0dHx5zknZuby7q6urTnHQ3RpENfX1/cajTWIB87dow1NTXUaDS0Wq1saWnh2rVrOT4+HmLNjTe/ZDCnBPH5fCwuLg6b5ScjfpVwu93Mzc2lw+GImC7RcuItO1bePT09Ya4E8dZlfHycTU1NNBgMNBqNbG5u5tmzZ4P1aGxspNls5qVLl2LWMR2YU4LU1NTQZrOpPktl8IaHh6nT6bh79+6o8dLdcUqnomjYv38/9Xq9qkuBEqIosq2tjVarlTk5OaypqaHL5YoYv6ysjNu3bw+mTWZfKV7MGUHa2tqYl5fH8+fPJ2zniIaBgQFqtVo+/fTTqVYxLkTr/Fjt2LNnD3NzcyNuxA0NDbGmpoZarTboHRdPfSYmJqjX66Pu3aSLLHNCkJGRkaArXyQkKkH8fj/7+/up0WjS6h+SKtQGQt62lpaWEBeDiYkJNjc302g00mAw8Fe/+lXc7gfyfA8dOkSdTsfTp08H67GoJYhUuenpaZaUlARN0OmYB5CByZ9Go0nKILVQkPpk9+7/xdzcL/Cb3/wGtdrPsaZmKwcG/iskTiL5Sairq2NpaWnYs3T1OTkHBGlpaaHJZEpXtiQD1leNRhPVELVQS1sl5PVwu9186KGHqNPpeMstt3Dt2rVhG4epYHp6mkajMS7VlCzSQhCpUyYmJqjVaqOqlkQH8tVXX6VGo2F3d3cqVZwXSPszLS0tQRWye/fuoArZtm0bN23aRJ/PlzZCS8tqr9c7J2omJkESKbC6ujrEYBUPouXf2dlJjUbD1157La1iMxqSnVB37f9PVlbex+zsbNbU1IRZjKV87HY7v17+P9K6HWC321lbW5u2/ORIm4o5evQo9Xp92vw62tragqfd5gPxEFAZx+12c9u2bdTpdCwvL+eePXtYc496l8qJZrVaabVaU6uwDBMTEwpTfPqQMEEizdpLS0vpdDrTIuKko5CRdjEj1WMuIT/R19LSwqKiIubl5XH37v/NsbEx+ikyqhlbVt3p6WneW2ZhdXV12urX1NTEzZs3py0/CUlJEOXgHDx4kHl5eWkRm88++yw1Gk1aDxnFi2ik6+7ups1mo1arZXV1Nd9+++1QR5+YO19+ygnk8/lYWlqqqpKTIf/U1FTQxJ/OlydlFSOKIsvLy1U9wxJFU1PTnInKROH3+/n++++ztraWOp2OFouFe/bsieqE5Jc5kHdYZ3ZYBYQdS7B2BOjk9XppMpmibhfEA7kZ/jvf+U5KeSkRN0Ei6eiBgQHqdLqQjktmQulwOKjX69N6jjVafSLN+D0eD1tbW1lSUsK8vDw2NjZGtIRG9RIXyfYKhdOwq531xvwQB+O///3vNBqNYdsGyfShx+OhVqvl+++/n3DaSEhZglitVjY1NQV/q+0yxsLjjz8ecppewlzuMSjz7enpYVVVFTUaDaurq6NOjmMfH/AHHXqk2yLaGwJnVIYb6tkm+kPSjY+P02AwsLW1NcTgmAwcDkda5zYpEWRiYoIrVqwIHilIhvU//OEPaTAYIpIjXVCr28jICOvq6qjX67lp06aIKkRtQyxYvwjVDPiLWtkx87exYtb9T1T8T866LkhGr0T6Ut5XY2Nj1Gg0aVtNpqRiWlpagru1kRoUraE1NTVJH4VMBPLTaZIKMZlMzM3N5c6dO6Oe05UQJjXkfhghhQV+nWgomPX4EkDjjqFZl78IpBoZGaFer496vjee+pWVlaXNupqSBDGbzdy/f39YeDxvv91uZ1FRUdyfcUgVvb29rKqqolarpd1uD1MhcsmQ6u6z0l/0RENByMVEfn9kkgwNDaXsfed0OvmNb3xjtj4pSOOECCLvuNHRUWq12oR1pXTarbi4WPW0WzpVy8jICJ944gnq9XqWlpbyxRdfjCl6Y4n2eES/8jiCv8OhOPmmiK9oc39/P1etWsVDhw7FLEsNXq+XGo0mLS9f0hJk586d/NGPfhQSpjz3oYTP5wsehUxERyaij71eL51OJ++4446gx1kkFZLMJDieuCcaCkIPTktpO6zhV5ypwO/3x+26qOZy6Pf7abfbQxYPySJpgphMpoQOG/t8PpaVlfGee+6h1+tN+95Kb28v7XY7NRoN7XZ7WhyklYjPUXiQjnWSepk9otDWkE9gC19huAqLBDXXxXjR1tbGsrIykqlt/ydFEK/Xy6ysrLilgNfr5d133x12FDJeRBqY0dHR4NeCzGYznU4nz58/n/IhrETiKCerYd/qkB9NmLGJRCpNrQzlB/UkxBr08fFxrlixImXrdlK7uT09PTSZTHF17IULF2g2m2m1Wnnx4sXkainD+fPn6XQ6WVpaSr1ez8ceeyzYefO14xsZygPU0RHTOD/Tnpdeeok33XRTyGovWlulT1MYDIao+1nxICkJUldXx7q6upgDIp12u+++++JmciTS9fX10W63U6vVsqqqir29vSkZ0uLxMU3Hd0qS8WVVQ3NzMw0GA8+dOxd3+pqaGtXD5YmUnxRB5POPSCSZmJgIHoVMFqOjo/z5z3/O3Nxcmkwmtra2xqXW/H5/8N+VhJ07d7KoqChu1S6fhySLhAkyPT3NzMzMqJWUTMc1NTVhz2IZ1Hw+H51OJzdt2kS9Xs+6urq4jg5cqVCuUrZv3x73KnB8fJwajSal8kMIEiJ6/OpiaGRkhLm5uREzHB0dZV5eXkzPMuUZk76+Pv7gBz+gRqNhVVVVxBVSpI23pYSHH36Y9957b1wT/lTtIbMECetj9Te9u7ub5eXlYeGiKAb3EyJtX6t9OmHnzp3My8tjSUkJW1tbwz5aq4YrTXUkg6qqKm7evDnmZy7MZnNKXnlRrigIfSSKgetBR0ZGYDAYwmK/++67MJlM2Lp1K3bs2KGaoyAImJqawm9/+1uUlZVhw4YN8Hg86OnpwV/+8hdUV1fj+uuvj3bxQKBmM7caSL+vdEh9L4fT6cRVV12F733ve6r9IN3yYDAYMDIyknRfzbIgxq0RGRkZEEURbrcb69atC3k2NDSEu+66C48++igeffTRkMpIjXv77bexdetW6PV6/OEPf8AjjzyCv/3tb3jqqaewZs2amBUVFfelAOm7XEcUxWCe8r8XCwGVV42IoojMzEy8/PLLOHfuHB588MGQ5/J6FxYWwu12J99X8YoaSaxbLJaQtfXAwACzs7NVPcrGxsb4i1/8IqhCnn322ZQ/RSnHUpt7SJC32+fz0Ww2R/Rq7+npSclBGsouFkWRFEk/27mjfjAYJlXKZDIFvzUunXZ78cUXg+mnp6eDtx3odDpu27ZtTrzEIuFKJk2kuZfX62VRURF37twZFu/gwYO0WCxJl4mwDhXDt6vlMBqNHB0dDZJDOu3W398fPIhcWVmZkE/DfA1qXDuxad64S+QwUyrxPB4PDQYDm5qaQtp5/NgAzWZz0mVfFaabBMC1Ywc6ARQUFISppE8++QT9/f3YunUrdu/ejQ8//BD5+fnIzMzEww8/jJ/97GfIyckJSyfKriFVIhH9GC2fSODM9V2R0knPpbrIf0cqP1ocOZRx5PVX5qF255xaOWq3dmo0Ghw8eBBmsxnXX389vvvd7wIAVmR/Fh9//LFUOiLdYzmbZ2ickEsNp6Z8oHsn9t6yGVZ0YlhRCUEQ4PF4UFVVhZUrV+LHP/4xDAYDqqqqYDabAQDDw/JUs+m0Wi2MRqNq5RJBpM6NhliD/cYbb+CRRx7BNddcg2eeeQZf+cpXYpaflgsD47ioOV4SiqKIVatWobe3F2azGStWrMCWLVuQlXUtLly4ANIPQcgMpumoFGBT3D5fUFGP9o56FMrzJqUpOyAKHbA5/on2n/433CfsQMHQIBqMGSGsFwQB27Ztw9mzZ7F27VoAwEcffYS//vWvURsxOTkJl8sV0igqVglZWVm4/fbbVVcPckLccccdyMzMDIar4bbbbsN1110XfNvlkMqWbrDMz8/HyZMnAQAmkwlHjhy5rC5IVkrVkydP4p577sHzzz8Pk8mE3NzV8HjOz5KEAASgw2aEjQ6w3Qa6O2Az2rC3og3ssAXzCrn1smNHPdbW1aH4vSdh/JIb9eyAVQy9TVHqXDVRKS1pY6mASGpiamoKR44ciTkwfX19uHTpUkgYZ259lJpz7NgxeL3eiHmQxHvvvYfx8fGoZen1+pjL8JycHBQUFISRXk6yz3zmMzCZTABC1ZiSvHfeeWfM603jUbPHjx9HWVkZXnjhBXz729+G52MPRAJSMmII9evWwe3wY29FILCjUoANYQTxE8jA4A4jvtQwjMzMDPj9IoAt+K3vZWyZMZBkZV2DqSkfVq1ahdOnTyM7WwMgoJYA4Oqrs0IaIoVLaeWI9iyeeD7fxWBZ8vCpKV+wnvI6Z2VdE1X3v/7660EV09zcjK9+9avBZ2NjY/jggw9U00m/JycnceLEiYjtAIBLly7hyJEjqs/k+R46dCim/aWkpATZ2dkh8ZRkMxgM8Pv9eOW3/wEh8yr8+7//GA0NDbNluupRWDiMenagAi60N1Tg33YIqB8aQoMxZA6SAbrq0VUwBFIIdOgf/ieEhnx8KesaYGoqOAhZWdfg+uuvx9RU4O2VOj/a34k8k0OZRh5+zTXXBjtVSQr5b/nf8jKU17DffffdcLvdqoOxevVqrF69OiS+GrZs2aIaPhd455138I9//CPic0EQ4Ha78dFHH+HfvvNt/O73/xlGusF9nRjGMGxCBmwACuvbMcgKFCotpoMdDlrrZ89s+HwX2VYxc4MARfp8F0OeGQwGnjp1in6/nz7fxZB/8nhyxPssmfCLF/8Rs5xIeV0JiLU0HhgY4O3/3URxetaZyS+e4BMFs4e6/INPMD/Ch/+BmS/0NgwG7B+PF2bMnicVrGyfIYnIQEebTKbg2dl4B3EuCRIPKaIRRHS1s76yIORrxRUdqd2QMJ+IRZA333yT95ZZKL8ZUzrU1S77IkF7BQhsmQmbRQZJkMOoW+uDgEI8/n8/BcXAVd8U96JyRuRIgueGG26A99MLYWJNrgbSjfTmPbvxNbSjAoXGHRi2tmOQgT2YEx0FGKpch8q94Rtk8wG1jbloiDWhv3DhPD573QoIQiZEBNTMUGcnhiusM2ObAWIIw24ABUYUQDH/kZgiVxNKTvplqqampob/58WXZA4+F1XfUDXVE+uZ2u940yvDIv0tIXDyrTBwXkXR4PYKEMbHY14KuBggbfdHshI3NTXx0e2zX6JWnhkWORiYUgDc0h7uOhA0lGVlXQ3Jghbg5KxFLQOzS9j8/HwMu1zBFUGkVUi01Um8aRLJO1pa+d8EAFc9bA3DKGgYDJmxhyIxa+1cIdaSVrIHqe34AoGddrPZHGg3/cjImNmJr8yEICDQIQVW1HfsRUNFpmQiCSJAEAIQZAUofk9N+XDttZ8BAOTl5aG3tzfhhi4kKDelA+jY8VO4sQXt9WqW3SG4hgUoJe18IZmtBDVIeZw8eRJ2ux0CAAqZstVMuNmdKqs0uciYxcxvaakoh8FgwODgYMoNmE/IbQQiOrB3L4CKiuD8Sg669qLDRRRUVqCQ829JVZIjVbIMDg7illtuASDTDAQAdQuzErK9GBmjZuSMmij/15u/gDNnzuDChQtYsWJFSpWfTwQbP+yCC0B+wex0TN4text+hpPYgjZHQUwnqsWOs2fPAgBWrlwZDCMFSF0hxNHADNU/Jd2kAiEzAxs2bMBbb72VaH0XCLJVAQEUGJEvzBCGDOmiwb1W2DoJa0cnbMLCzEGUb3Uq8Q8ePIjbb78dgmKrZPaHMkX4CipyL8gSKyuxceNGHDhwIGLSSOkWBhkINlwAMlCJhvoCDDdUYsewtE85hPbKAnypchgVHYPYW7FwtU10gzBa/AMHDmDjxo1g3EtnFToks7SSjl6Sl6EH14xDVHtD4G43zBjHjBXt/K8on2i4HJGOo5chu7nxgCQ+/fRTaLVaTE5OhsxDeBlskYsgMsJka2D+NVv/yI41lwvOnj2LvLw8eDye4FI4GSTcC4IgYMWKFSguLsbhw4fDni1ezLgiQEC4rg11AuLM6mUxKMhkIXmXpUIOIIXXpLy8HD09PWHhCQqk+cHMsm6WGBFcDxFuM7ncIIoiRFHEn/70J1gslpTzS0jFyDvv1KlTuPXWWzE+Ph7C0sWuZpSWwvRFXhyQpgCrV6/Ge++9p+ofnAiSliC5ubkwGAz4/e9/HxKu5iW1kJBqItVJUPxW/h2Cy4wcQKD/9+3bB7PZnDI5gAQJopQM999/P9rb22PGW0hINYnmGa70Ervc0dbWhqqqqpCwZNuV1CpG6tBz587h5ptvxkcffQSNRpNUBZaRXpw5cwaFhYU4c+ZMWizdCUkQ+flYIOCs+7WvfQ1Op/OKePOuBDz//POoqKgIkoOBLzgknV9KEgQIeE9bLBacPn0aV199dUjcdO1MLiM+nD9/HmvWrMHRo0fjOhAfD5KygwCzOq2oqAi33norfvOb34RnvkyOeUVrayssFkvayAEgOVO7EmoXCi1/5GV+IG11+Hw+1Q/vqn1oNxGk5RUvLS3FjTfeiD179gTDlqXH/ECS6C0tLTCZTCgqKgp7zlS+p5IMW9WQ7ksNlxE/5JcaKr/9lioSnqRGw9atW7FixQr88pe/TFeWy4gBkvj+978PrVaLp556KhiWNltUyhSTIZ6LlZeRGpRzu8OHD1On0wVv9E733C+tBCHn5mr2ZagPfLSr2dPlp5P2mWR1dTUuXbqEXbt2RZJY6S5ySUA56SeJxx9/HFqtFjabLSz+olQxEkZGRpZVzRxDuk8m0o2c6ULKBIl0iVBbWxvXrl07J3fDLHVMTExQr9cndF9PskjrKkYhmfDggw/C4/Ggra0tGCZ9aGbZTpI8LBYLiouL8eSTT855WXM2SoIg4Omnn8a7776LZ555JhgGLBvRUsGuXbvw6aefYufOnfNTYDrFkZoqGR0dpV6vD34ucxmJQd6nra2tzMvLC7tYaC5PFszJJFUOv99Pt9sdctXnZXdUYhGgq6uLer2eH3744byWO+cEkXDkyBHqdDr29/fPV5GXJdRengMHDgRN6fONeSMISb722mtxXfW5jFkcOnSIWq027EqPuVYtEuaVIGTg+tJYN0svq6AAurq6qNPpwk7HzafZYN4J4vf72d/fT51OtzxxnYHaC+F0OqnX6xdErcgxbwRROq643W7eeOONqteISFiqBrZdu3YxLy9v3iekapgzQ1k8OHXqFL71rW8hLy8PL7zwwmX1vZG5wCeffIL7778f586dw+9+9zusWrUq5DkX4FDavFus5HzMzc3FW2+9hRtuuAHFxcV455135rs6KUP5fklHH+U3V8WDw4cPo7CwEF/84hfR19cXJIf8q4cLct5oIcWXHK+88go1Gg137dql+lypbhab+om0JxUL09PTdDgczM7OZnd391xULSUsGoKQgV1gk8nEL3/5y0F7yeW2okmEIH19fTQajTSbzXO+K5ssFgVBlJ3a0tLCnJwc1tbWxu3jejkRyePxsKamhjqdji+//PJCVycqFsWumXLzrqamBi6XC16vF2vXrsVLL70UM4/FdB44Evx+P5577jmsWbMGn/3sZ3Hy5MmwM7TAInOqWmiGqkEuUfr7+2mxWKjX6/ncc8/Fddu0hPmUKtFUi9frZVNTE3U6Hb/5zW8GLcnR6rdYJOKiJIgE+YWAR48e5ebNm7lq1So2NjamdN14uhFpMMfHx+lwOKjVammz2SJuMSy2Cbcci5YgkTr92LFjtNlszMzMpNVqZVtbW8TryRcCPp8veC1sVlYWq6qqYl4Lq9bWZQmSIjweD1tbW1laWsqcnBw+8MAD7OnpSUgFpQter5fd3d2srq6mRqOhxWKh0+m8Ig6RLaglNV04c+YM9u3bh+7ubhw4cAAbNmxAaWkp7rrrLmzcuBFZWVlpLW9qagqvv/46Dhw4gDfeeAMulwt33XUXysvLYbVawyyglzOuCIJI4Iwp+s9//jN6e3tx8ODBoFXSYDBgw4YNuPnmm1FYWBiMX1xcjOzs7BBf2U8++QTHjx8Pnms9fvw4Tp06hWPHjsHlcmFychJmsxkWiwUbN24MuePucgNjmO+vKIJEwpkzZ/D+++/j+PHjmJycxJtvvhnsGIkMEgRBwPr164NfTBIEAXfeeSc+97nPobCwMHiVqhISuaSP7FwOy+54sCQIsozksSgMZctYvFgmyDKi4v8DAmj0yxTUBu0AAAAASUVORK5CYII="
|
<image>如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交弦BC于点E,CD=4,DE=2,则AE的长为()
Choices:
(A) 2
(B) 4
(C) 6
(D) 8
|
6
| 10,835
| null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABlCAIAAADIyfpsAAARNklEQVR4nO1de1ATVxe/mwQykYLyDI+QoDGgtoJadaxadXzMaKtYHzPa2s7IFFGpVEU7fOpUq62MRYv4yjhgLVVr6Ugf1pHRotVq7RS1WFupoFIIScwLFfJcyG7u98dttjHZEEg2JHH6G4bZPXv2Pn4595x77969i0EIwX/wGaxAF+AZwX88MoM+8Njd3X3lypXm5ubeuwJoh1dlCxioArseuAOnTxnodLqkpCSPalarVaPREATR3d2NJGFhYbGxsVFRUX3KLuDQaDQ4jpMkSZIkh8MRiURsNpteFfYat27dyszMbGxs9KjZ1taWnZ0dExMjFouHDRuWkZEhFAp37drV+7yCAQRBFBUVJSQkJCcnp6eni8XiTz/9FMdxWmUPPNpsNpvNBiHUaDRFRUULFiywWCxI3vONN27cWL58+cOHD81ms0wm++yzz6RSqVfVCSRMJtPChQu//vprs9lcU1PD5/N//fVXWk0P/hHDMAzDTCZTbW3t8OHDm5ubSZJE8h7ughBiGDZ06NCkpCS1Wn3//v3Zs2enp6d727wChq6uLrVaPW3aNB6Px+FwIiIiwsPDaTV75R8fPHjA5/Pj4uJefvllFstzaDKZTHfv3o2IiLh48eLNmzfnzJmTmJiYmJjYt0oEAerr659//vm//vorIiKitrY2Pz9/+PDhtJpP8YjsCP2nhHK5vLy8/PXXX79//35ycrJbR+uA7u7u+vr6mpoaHMcFAkF+fr6P9QkU7t2798svv/z8889Go3Hv3r3Z2dlhYWG0mk/xiOhzJJEgiNOnT1+9evXy5ctWqzUnJ4fD8WzCMplMr9ffuHGjqampuro6MjLSp9oECGaz+caNG59//vmoUaOqqqreeeedmJiYadOm0fo0D4305s2bQqHwt99+a2hoOHDggEQi8diuSZKUyWTx8fGRkZFCoXD27Nk2m629vd37CgUIf//9N5fLFQqFbDb7tddeY7PZ9fX1NpuNVpneuCCEcrn80qVLJ0+ePH78eFhY2J07dy5cuMDlcseNGycSiXrI3mg0trS0zJs3DwCQkJCQkJBw8eLFe/furV692ve69SeuX78+ffr0+Ph4AMC5c+c6OzuHDRvmzq3R82iz2b777ruKigoej2cymXAcr6io+PHHH8PDw1NSUlauXElrlRBCtVr9ww8/nDt3TiwWX7t2DQDQ2Nh48uTJrVu3MldBv0Ov1//5559VVVULFiy4du2axWLJy8uTSCSTJ092dwsGezFoc4o8TqcUSJI8depUcXExClZUyqNGjTp8+HBERETfaxQY1NfXr1+/vqOjAwCAGvKMGTM+/vhjLpfr7pZe8fgfPMKtf9RoNCRJ9tzfdroFddpZLBYaWfN4PGSYwP6rhgowOxyNDA3h2Gw2n893pYWex66urvLy8idPnrjrLvUANpvd2dl5586dxMTEjIyMrq6uvqYQJHDiEQBAEERUVNSWLVtcaaHnkcViDR48OD4+3qm36M4zOoLNZqNoI5PJhEJhZmZmiFLpWlmSJAcMGEDLAI1/7A1ZPaOhoSE/Pz8tLQ3HcalUGhsb60tqIQGa7ouPJAIA1Go1AGDHjh0xMTFbt241mUw+Jhj88MtzBZ1Ox+VyRSLRunXrlEqlVCoNrTjjBRjgkZqDQ6c4jre3t0skEgBARkbGxo0bz58/X11d7XtGwQxm7BH1EtCxwWDQarVDhgxBp5MnT3777bcPHjx4/fp1RvIKTjDfro1Go0ajGTx4MCVZuHDhvHnztm3bJpPJGM8uSMAAj05xSa/Xq1QqsViMTiGEXC43JydHIpFs27btyZMnvucYhGDeHg0Gw6NHj9LS0tApYjkuLq6goADH8dLSUuoh4rMEn3ikHZs/fvyYzWYPHDjQSUcikRQWFtbV1R07dsyXTIMTPvHo2tMkCEKn01GN2kln/PjxBQUFJ06cuHDhgi/5BiH6tg7AIwwGg0qloho1cBkdzZ07t62traSkJDU1NSMjw51ayIFh/2gwGDQajWOQcWIHw7Bly5aNHTt2+/btaNhDyZktST+DYR6NRqNarXYKMk4YNGjQqlWruFxuSUmJ0Wh0VQjFKVGGeTSZTGq12umRP3RZbSQUCt99992mpqaKigrXRELRNhnmsaOjo7u7OyEhwVFI8eJI0OjRo9esWXP27NnTp08zW4aAwKc44+T+SJLUaDQCgaCXt8+ZM+fhw4eHDh1KSUkZO3asLyUJOJjs95jNZseRDOiFp1u6dOnEiRN37tzZ2trqS0kCDibbtclk0mq17jqPtIiIiFi1alVCQsKuXbtCesjIJI8Gg0GtVlMzPb1EYmLi2rVrNRrNoUOH0GK2UATD9qhSqfrKIwBgxIgRBQUFV65c+fLLL5HEcUIzJMDAeIaKNh0dHY8fP05NTfUikenTp6tUqqNHj6ampk6dOjXkuj4M8IjqDCHU6XTx8fHuVlp6xJIlS+Ry+e7du9EDW98L1p9grF3jOK7RaHxZdMvhcFasWDFkyJDi4mLHIWNIgDEeTSaT0zS4F4iNjS0oKLBYLPv27bNYLEyVrR/AGI9Go1GlUvnII7BPU/7++++VlZVMlKufwKQ9OnXCvcaECRNyc3NPnTp19uxZ31PrHzA2/2g0GrVare/2iLBo0SK5XH7w4MHU1NTMzExG0vQrGLPHR48e8Xg8RpaCo55jbm5uZmZmcXFxW1ub72n6G8zwaLVa1Wr10KFDGUkNAAAhfO655/Lz8zkczt69e/V6PVMp+wnM8GgymZRKpePjBF9ArSoQiUSFhYVNTU3l5eVBPrxhjEeNRuPFiNAjxowZg6Ypg3xlCzNxBgVrpoKME1555RWlUnnkyBGBQPDSSy/5IwvfwWS79t8bhMuXL58wYcKePXsePHjgpyx8BDM8dnR0kCQZFxfHSGquCAsLy8/Pj46OLi0tdX2lKRhcJwM8kiSpVCpFIpFfJ2n4fH5hYaFCoZBKpY4LpYOBROCORwhJCEkICQA8l9L1cYKfMGLEiMLCwp9++unkyZOO8mCYZHMXZyCEJIb1ylrNZrNare6fma5p06YpFIrKykqRSDR9+nQQHCQCd/aIYWwAMAzjAOC5lMge/RSsXfHmm2/OmDGjrKysoaGhf3LsDTxbHIQEhASEJADQfkxQlwAAZrNZqVSidu2g7JAAjfDfa/arNgeJFUIrJQHABoANQpvNZkV+ZvXq1QKBYPfuEqVS6XXNmUVvWi5EJNpPCAAwxA6SPHnyqLOzUyAQAODIBel44JCOY7o2AEjaAwAA4g7RZ7NZEZs2mxVCYtCgQRs2bNDrjVKplHZlS//DM4+oddvbOIZhYRjGBgAgB2qzdWu1qqSkpPDwcABsGMbBMA6GsewsQwj/EQLAcjAxBAgAxDAOixVmLwmShGEYemEK6WMAYACwMQx5czaEhFgs3rTpf3V1dV988QVDVPiEXkUSDGPb2zWJSLQDdnV1q1Ta9PR0l8jeJ/ePPZ2s4wWW/Q8DANoPAADkuHHjVq9e/dVXX9XU1PQlL7+AJl67RGoM2R2GhT9NFgYAG8et9mlHJ+L60K2D0AYAdEclnT6EELBYYNGiRW1tbQcPHkxKSho9ejStZv8EdNrX0QkICRSy7TIMwzgQkvaWBSgLMho7FAqFPVizqKCBNNELsPbQZLM7BBtylBjGAgCD0Eo5VkoCoRWdImUISeQT7AcYAP9IVq1aNWzYsN27dwd2ZQvte3Ec14aGmrajEB2bzRa5/KF9podlv0Td/m86iFPnrP7pYLGe1keOmIUSxDA2ukodsFhsKlkej7dhwwYI4YEDB1xXtvRb75KWR7aD3f0DCAlXIQDAaMTb23UOC0dRnHH8DTB7nKEIZTkooAjGotNn2ZX/iV32S44HAACQkpKyadOmO3fuVFZWEgTRRwaYQW/6j6g3R9L6r0eP2qOiogK+s0xmZuZ77733/ffff/PNNwEpQG/mH9GmPjSaVqtVqVRSjxMCslaeynTmzJmtra0VFRXJyck9bMjhJ3jmkZZBBLPZrFAomHqc4DtycnJkMllpaSmfz0cvivYbfJo3s1gsDx8+7HlVvb/hmCmbzV67du3AgQNLS0t1Ol1/FsMnHtHI2h+PZbxGXFzcpk2b5HL5kSNHeljZwvisJQM89nML8oj09PTNmzfX1taeOnUKSfphrtcnHh8/fszhcGJiYpgqDVOYOHFiXl5eZWXlpUuXgMPKQkqBcRfk/fNCkiTlcnlaWlqQzKSCpzsMS5culclke/bs4fP5I0aMAH52397bI47jaBWz668dKDgxlZ+fn5qaWlJSolKp/J219zyiYD148GDXXSODBJGRkVu2bNHr9YcPHzYYDH7Nq888UnZnNpsRj0wXiUmkpqZu27bt2rVrVVVVfn0Zos88UnaH43hbWxuDa6P8hKysrPXr1x8/fvz8+fM9qPnol7yPMwaDwWw292Zb9oDj1VdfbW1tLSsrS0lJycrKotVx3Ri4T/DSP0IIlUqlQCDwYiO5gCA3N3fkyJG7du1y3bOFskRfXLyXPOI4rlAoqGAd/OByuUVFRQCAffv2OU1Tuu6r5wW85NFisaBp8FDhEQCQkJCwY8eOhoaGY8eOOW0B6HstvLdH9Mw6hHgEAEgkks2bN1dXVzP+aMxLHru6uhwey/yLYOiN94ypU6euWLHiwIEDdXV1DCbrJY8Gg0Gn07m+ShgS5rls2bKpU6cWFxc3Nzczlaa79Wb0ZkXJtVptdHT0gAEDmCpHf4LNZq9bty4uLq6kpISpDeLdrZOiNyskt1qtbW1tYrG4N9+sCE4MHDhw+/btCoWivLyckRfwvCECjayHDh1K8Rj8btEVAoFgx44dNTU13377re+pecMjjuNyudxxAW5IuEVXvPjii4WFhVKp9PLly728xZ3FuOWxpqZmypQpEyZM+OCDDywWS3V1NdXnQjyGUCe8ByxcuHDx4sXFxcWNjY290XdXZZrxtVqtzsvLQ1sVsdlsvV4/f/78WbNmUZ9osFgsSqUyyGd6KHgcNa9cubKlpWXnzp2ffPKJ485DNptt586dFy5c6O7uRvv7RkdHnzlzhnYo7GyPVqt1+fLlRqMxLy9v8eLFCxYsmD9/fmxsbHp6OuUN29vbeTxedHS0r1XsF3hsNDwe7/3337dYLPv373dcTYlh2KxZsyCE2dnZmzdvLioqstls2dnZ9PNvTt/rOnPmDI/Hq6uroyQWi+Xo0aN//PEH2hifIIiqqqo33ngDPlu4d+/ezJkzjxw5YrVaHeVr1qzR6XTouKmpacqUKWVlZa63O7frjz76KCcnZ8yYMZQkPDx83rx5kZGR6Ift7u5ubm7WarXl5eUcDgeGYKSmBZfLjYmJ+fDDD5OTk+fMmYOEt27dioyMpByaRCKZOHFibW3t2rVrnW5/ike5XN7a2rpmzRrHzwGwWCzHF4xYLJZIJEpPT29qagrd/iMtRCIRh8NpbGycMmVKREQEQRBXr1594YUXqOEGSZJpaWm3b992vfcpHk0mU3h4eM9fMkPmOWPGjECt7PIfWCwWh8Ox2WzoOzNWq/X48eNHjx6lPjsDIezs7BQKha73PsWjSCSCEKpUKugQ4xQKhVarzcrKQvxiGBYVFRVyXxj1Au3t7ePHj3f8XGBLS8uJEyc2btzoqvxUw+TxeLm5uVKptLa2FkmuXr1aVlbG5/NRE35mvCEtnGp369atUaNGUZ9xIghi//79sbGxc+fOpb/ZEXq9fv/+/RKJZOTIkVlZWVu2bGloaKANcB4/TRrSIAhi0qRJ586dQ6ctLS2TJk2aOXPm3bt3afVpptQJgrh9+zaO4xiGCYVC1/0cYYjvCewR6PtcV65cEYvFyB4JgnjrrbeWLFnibvTx3/e5mMEz1XEJIP4P/m5UGKIBQwwAAAAASUVORK5CYII="
|
<image>如图,已知AB∥CD,E是AB上一点,ED平分∠BEC交CD于点D,∠BEC=100°,则∠D的度数是()
Choices:
(A) 50°
(B) 100°
(C) 80°
(D) 60°
|
60°
| 10,836
| null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAGoAAABpCAYAAADStbY5AAAW9UlEQVR4nO1dfWxTV5b/3RdKyozUlEqjuCvtmBQoRtUQM//gfzZOmEIMDCQZVQ0z1RZHFQ2dXalJYSBIS9KOtoSqm2S0CySwCykzI6UdqaUfuE1CGycddQMaDaGM1CQEHNhVY2e1JFN1ifP17tk/7Pf8/Pye7ff8nAToT4rA792vd8+955x77rnnMiIiWAwiAmPMcD7OOQRBiMt/6dIlBINBXL16FQBw7do1TE5OatblcDiQn5+PFStWwOVywWazweFwZP5BSwDMCkKZIYxEFCVCoRA6OzvR19eHzs5OhEIhucM3bNgAAHA6nVi5cqVmmUNDQwgGg5iZmcGlS5cwPj6OoaEhFBYWoqSkBFu2bMHmzZvx8MMPG26/VnsXEpYQKhMMDQ3h3LlzeP/99/HXv/4VHo8HbrcbHo8HNpsNgPkZKmFgYAC9vb3o7u6G3+9HSUkJysrKUFlZqUt0CZnWbRnIInDONZ+LopjwLBgMUmtrKzmdTnI4HNTY2EiDg4OG69EqOx18/PHHVF1dTXl5eVRZWUkdHR2G6l0MWEaoVJ3GOaebN2/Siy++SHa7naqrq2lgYMCq6nXrTIWOjg6qrKwkm81GLS0tND09Hffe7GCwGpYRSg3lBwYCAfJ6vWS326m1tZXC4XBCGithZvQHg0Gqqakhu91O9fX1NDExkYWWmYelhFJ3UDgcprq6OrLb7dTe3m5lVWnDyGDgnFMwGKT6+npyOBxpscSFQlZmlCiK5PP5yG63U2NjY9K02eb9WoTSk3Occ/l3MBikyspK8ng8acvPbMJyQoXDYfkDg8Gg1cUvOHw+HxUWFlJra6up/CLNx/9WDAyROJFinHKKDBatoWspoUZHR8nlci0plmEFwuEw7du3j6qrq+VnRjgB5/OpE6WAZYTq7+8nl8tFV65csarIJYfW1lZyu910584d+VmmrDuSX8metWVqSkKl05D29nZyu90UDAaXjDqbDXDOye/3k9PpNLW0UPelSDyRNRInzucT0mY0o0RRpJqaGvJ6vbLK/SAgEAiQ2+2m9957L2XaZANXVEkjUZwjIu3JYZpQk5OT5Ha7qampyVDj7hdMTExQeXl5Sq3WLNSkMkWou3fvksvlIr/fn3mL7nHU1dVRfX19RmV0n95PACJ/ZQdIpOt04MDJuDSmzMHPPfccDh48iOLiYj37oXnj4xIH5zzud2NjI4aHh/H2229rpuEQFf8ncMT6hm52gjGG4zeeBEUmDcSmLchhTwJrnoiv2Cj1jx07RnV1dRmNoPsN4XCYiouLqb+/P+GdUg5JMkikeZqjIdoF0E8Pn44ljiY9eWgHtX46HFeOIUK99957VF5ebiTLA4NgMEhOp1Nzka+lN0fY3Q4a0VDHu069Ql0jSbQ+SQnQUgYGBgbI5XI9UNqdUfT395Pb7U7ZR5xGaBdAB9o6E9/xec3+T2tGTUxMkNPppEAgkGaTHywo1Wlp2yT2LtEqId78hADEsTe1qq5GSmVienoav/jFL9DS0oKCgoL7WlEwC+UO8O7du/H444+jpaUl+i4nLq1e7wlgIIooHhyUkC6OUGqNBgBee+01uN1uWcNbEtvSSxwtLS344IMP0NvbKz+TtD0GAE+sxi4AgZv/FdfnxATwQCdOdwcAEuPKTMr6lHLpQVjEWokrV67Qj3/8Y5qavhs1Cym0P+LUdeoVmf1JbO9693FC2Sua7DKBUEqCbNq0ifr7+78jkgmEw2HKy8uj7du3k5a5VCRO17tOEhgIEAgA7Tp4SltFJCJdL6S2tjZcvXoVbW1tlrKFBwHT09P4+c9/ji+++AK5ubn405/+JHtUmYbeaLDb7ffFxt9CY2pqisrLy6m9vZ3sdrtla09Nra+1tRUVFRWZj4L7EJRE65U05L179wIASkpKUFFRgYGBAYyOjmZcccKI+G426UPpV6HE9PQ0lZWVkc/nIyIir9crO/Q0NzfTyy+/nJGsTyBUc3Mz1dTUmC7wfgXnXP5TIxwOU3l5OV24cEF+ZrfbZQOBJEq+/vpr0/XHEYpzTg6HY0l43SxFSDNCTSyPxyPPJCKiwcFBcjgc8m/OOR09ejQjY3acjLp8+TIeffTR++YEhNWQDgkoF/1VVVWorKzE9u3b5WeffPIJPB6P/Jsxht27d6Ojo0N+xjk3ZOWJI9Q777yDZ5991vgXPKDwer1wu93wer1xzz///HMUFRXFPSsoKMCqVavirBWGrDzS1Lo3VHJR9W8iJLZkhYuWsjw1vF4vnT17VjNdXl5enKeShPb2dvJ6vabaIRPK5/ORx+MxVchCI5WlWXpvFbHUqKqqiiOSEgMDA+R0OjXf3blzh2w2m6mtIpn1Xbx4EVu3bpVnmpaBdrGgbgsjLm9da0EAA4EnWK7TgV6ZUhuqqqpQVFSEqqoqzXR+vx/FxcWa/ffYY49h3bp1uHTpkuF2CVIjent7UVJSEnuxiKfr1BAEIc7sz1gOrn96EoIggDEGxhjKDp2Oz0Qszj/BCLQ6WRAE7NmzR1MmKSHJJ73+c7vd8Pv9kSYa2TIiimwM5uXlGZ6OCwOVrzYRnTy4k4AddD0qF0S6TrsA2vmrtvicBk9y6K2TiCLsLp0TKXl5eUmP7PT09JDb7U67XRJAFBNyi32qTguychD9ffLQDsKu2ui7mAy63n1c1wchXeitk5RWhmTtHBgYoI0bNyZNQ5SamFoQAODLL7/Ehg0bluSmoNwmEjFy8QR++cYn6Gpqir7LiW3IRdORaF626q2TioqKkrI7Kc/58+exc+fOpGmAyIHxL7/80ljbgMiB53Xr1hnKuHCIdDxDDk4d/0eUHWrDljUx/zhGkY8fHQ0AILAcwTJ3Ab11khaICH19fXFyXg8OhwNDQ0OG2iIAwK1bt/DEEzGHP6s+1BoIEImDsxGMfAh4trjBFOt0afB3XWjCrkM7sQYCGBhEykxrraqqQnFxMbxeb1qhDWZmZnD16lW4XK6UZa9btw7Dw8PGGjQ1NUW5ubm6/HSpQPLc6b6pkEE8IldGLp4gANQ1ErFsy7ImRZl6lvB0ZJIafr8/TkmIO7Cmkn1m9qiE27dvo6CgIIGAS05eSQ4ht27GnjEAwk3s3/IP+OmhU9i6hkEQhJis0ShGqXozxhLU6NraWmzYsCEtdqeE3++H2+2WfyvLVcu+9evXG2d9oVAI+fn5hjItBgSshefQDuz719h6iQc6I37aB0/ho2MvAoDscqW3hEq2PmxoaMAjjzyC2tpaw+1Tr0OVIJUoyc3NRTgcNlaBesouRShP5e3fhdjJB4A6b1hjJmpoaDB9KkNyZNEyDSlZMVFsvQaDbv/CrVu3NFnfUoMYHZT/8gHJWwREhNLV+maidM1gDQ0NICK89tprAIwrU5cvX4bT6UyIsQQgjhUDkC0pRiGXsJRse0oQiWCMIYfF1G55zaToUC1zUTpmsIaGBgCQiaQsP110dnbG7T/F2q5PcJvNhlAolHYd8pcsJdueEhHDanQtxWL2u/LycrzwwgtyOkGhOnBQUqOthFdffRVAPJHMQI9QjDHdNhiVU0uTOglQaFBgGBoawujoKP785z/L2pOyQwQwXRYjcY6GhgZwzjMm0uTkJEZHR+F0OjXfa7WBiDAzM4MVK1akXc+yZC8XO0adHg4fPoxXX30Vubm52L9/P3w+X9rsShAE1NfXAwB+/etfG66bFGHhiCiptqcHxhhCoZAhdzzBbrfr+pwtRSKdP38eAFBRUYHt27dj+fLl8rN0lICGhgYwxkwRCYifIYwxzW33rOBeUM8lhMNhcjqdspeUKIoUDAbphz/8YVq7pkeOHMn4YLQaZmJOBAIBstvthvIINpsN4+Pj2R8RFuA3v/kNPB6P7CUlCAJsNhteeumllLJG0u4kVdwKSPKpsLDQUD6j8glAZNUF6wJhZg3BYJDsdrs8c5S2SOVM07JR1tfX05EjR+TfVtkxzfqVm7L1Afpm96W0tqqpqcGxY8fkRaVSVixfvhyvv/46amtrE5QKaSYpZZJVdszOzk6UlpYaznfr1i3Y7XZDeQQAWLVqFQKBAIhzzM7F/jhbGsrEpUuXcPv2bezevVvzvSAI2L59Ox5++GFZsQAiJ/++/fbbjFVwJZSDt6urK84hCFAtwnUG+vDwsHEnVyKi2tpaam5ujswxzmlmVqS5Rd7lUG5BpCuwlewxHR+6TFigGYVAQnFxseGoN8sAYMOGDejr60sYOZwtrIpOChOR9NfW1oZNmzbFLSj11nc2mw379u3DM888gx/84Ac4c+ZM0voyYYHp7uaqMT09LcdiNwQilReSPKM4zc2KNDMr0sxcJCojF8X42RZNOzMr0oyoDOWoeD7L491Nkr2Tk3Aizmn8f/6XHE9tpNv/PRbbBNTMH2tr2+l/p8fy/5au/eUrmpnj8ekzYBNmHF608Nlnn5laDgkAsHLlShQUFMjXKkTAsGwZk/9lAJjAIDCGZQwACPMi8NBDApY/xCCIhHmKPp8nCMsELH9IwDIW+R0dFkneKWpmwPw84ejRf8aLL/w9/saWH7Wex+fPYTyaP9LG3/3+d/jP/kv47dk2HPzVAXBRxKzUxmUMIMlqaHgwJ8w+9UZhuujr6zO1QJb5R3FxMXp6euLfMoaHchSdSQBymPx/ToS5OY7ZOYp1AAGcMTmZkKPooGTvlCDgyrVr6OvtRW1tLZYtEyKDQ5U/J0eQ87917rf44x//iDNn/gM7oorFRx9dgJDDFOZaAjexhFITSbLkmNke6u3txebNm403Qppasu855yqWFGErc5zT3ByPZ0FarESdX/k72TtSsBfOqajkJ9SjFrg6+c+2t9Pzz3vj2HLg5k1yPFVI/zcVVqSNvTcWEzY+rVln/4mJCfO+5xQV4J6tHgz85S+RPRKm9DdgyMkB+DwBytHJAIEkdgfIo5UBAgjzyqHLolM3yTvOuTxyz7//Ph599DH8nbs4Zdm/+/05fN7Xh3NvnY0bgAUFBXjmZxV441hjZKMRMfYLGFMk1Gl7e3tNsb0//OEPKCsr09xgTAl51IgiHTz8T/T60TdojqvdgTnNaQl+PcVAJcC5Xp64d5GZ++1U9PjP12NJy56anqMzZ89RVVUVKZWJmVlOc+I8zc2K9M23d8nx1Aa6EbhJc9E8UlmZnKc14+lKFIvbYQZxtiP9IyOc5sREVpENl7L6+vq0DKfpsh+rQ9clO1aTDJmsu4hUR0MLCwtBRCrtDyCOmKejAlaZYqQVfCgUwrlz53D48OGk6dvb29HX14f29vaUZVdUVMjuxlagp6dHN/JnMrz11lvYs2eP+YrVlFOGMRPnNNZIWYA0M8vKyhIiH1shyAOBADkcDktiDZaXl6cVnVkJK05zxmRUtENSFZoNdifd5ZHqxGMmRyvTZampkJeXR5OTk4byWBESQnN/Q6/gbAWvCofD5HK5ktrzMj26Gg6HyeFwmA4OKR2rUcunVANXFEWy2WxxA9/MYF8SsZDUA0P9IT6fj8rLyzNmXZkqFsp26nW2+rlVykwCoaSKFupwWzAYJIfDoXmKnMg6IkkwI2OM5k0lRsxwpqRbu0VFRdTb25tVYlVXV+te+WMVkZQdMzo6akqxCIfDZLPZDK2fampqYttHCphifWrqKgv56quvyOl0UjgcNk0sURR18yZbk/h8PiorK9P15zYLURQTnFzSYWNGnYDMrrf0kNJZ4vDhw/L9E8nCbZuB3oag3kyyamZPT08bViz0PJj0glht2rTJ0iua0vJqUQdlsgJnzpxJULUlNT0ZuzM6SPSIm66Ql/Kn2pVV1pOMnZuFJqHUH3fnzh1yuVwJUcfMziy1kJXqk4ikvmI1k/qS5dEbgFqXamodq9EaBK2trXE3t1mFtP3EAoEAOZ1OS6491RKyVs+kdDA4OEhOp5Omp6eTstV05ZPf7yePx5OV62thpECzi05l+VLnKAmSjEjZjhBdV1dHR48eTZomHatGIBCgjRs3Zu3+XnlGJdPOiGLTPJ1FXzKo1yLJtDsroUfwdBb3brc7qXxSu1pnA6ZcZCXHjnRGuzKNUoArFYepqSnN9AsBzjm9++67crv05NPdu3c13xPpL4QtZ31GEQ6H07rjT9lQpa2Nc76o7E4JqeO3bdumqVik0g737NmTtevzlDDtdC4FvE3WSOXoa2xslGOqLsUrjtSyU2q7nnVhYmKC3G63phqejYGW8emAuro6evbZZ2XrhdLDVfpYpQfrwMAAud1uXaG7mNdLSIt7ZRu0FuWDg4NxdzxK35nNtpsmlLJRHR0d5HK5dAVyZWUldXR0yESSDLCxsKLZ/9B0oFYsJMdUZbv8fr/mmjLbsOy8zcDAABUWFiaMPunG66U8k5RQyiS1fGpqakr6DdmEJYSSZsTY2FjCXfFOp5Pefvtt3Q9cKgRSorS0lHw+nyyfwuEwVVdXL2rgft3bbtRI9+D19PQ0vF4vvvnmG8zOziIUCuHu3bvYvXs3li9fntQhhjRchxcDd+7cwbvvvgsiwpEjR3D8+HG8/PLL2Ldv36K1KW1CGQHnHO+88w6ef/55fO9738PevXvx/e9/P/1GJYnPsFDo6enBF198gdLSUpw4cSIuTN6iwIppqV4CisRlDa++vp4cDofMQtRIZRFJqCvLO85jY2NUU1NDa9euTTAbxd+pu7As21IZpfYqk34GAgGqqamhVatW6RIsm0jWqdJACQaDVFNTQ3a7PaGNnM/L8Wulb1zoeIYWECqxE/QCyAeDQaqtrSW73U7V1dUpTxFqBSecn0+MJpaOJ5AeJD9Gm82WdBCpg93fkzMqgvQbHgwGqbW1lZxOJ61fv54aGxsXdF3i8/mourqaHnnkEXmNR6RP8P27EL2LEMSi4edOXhxasPYSWcX6KDaLblxsS7g+OxkGBweprq6OHA4H2Ww22eAbCoXi61BZPYzgypUr1NzcTKWlpZSbm0sej4fa2toMrYf274pdcDzS3SqHRl0oWKb1RaJ+XcfPBAd+eZ1j6xoWDeGW3rULRITx8XF0dnair68PnZ2dCIVCcLlcePzxx/GjH/0IQCQU9cqVKzU1w+HhYYyNjWF2dhb9/f0YHx/H0NAQnE4nSkpK8PTTT2Pz5s2Gj71wjGCnUINm/iGeJAE02oWc1dvQfYOwZbWhokwjY0JFQoNGrl44deggfINDaP7wfaxJErhMvSYj1fpJ+fvy5csYGxuTDy5cu3YNk5OTmuU6HA7k5+djxYoVcLlcyM/Px/r161PWr/VO2YaRiydw4NOH8MEbkXCovypnGFp/Ah8efWnh1n1WTc3u0/uptftj2sl20PWo4FVfoZCOppSpK5hZJGtb9+n98l25jDGZ5WkfFc8OUpsaKHUEFx7oRDffghdXM3y0az3WKtidOhpXKmQSLsFMXs7nwRGZPcrvlAI4cojoutCErpF5EBE622pRulZA9w2KqBYLhJRfxinGJiKxXEVEjjfHrn6ra+vBm9WRUDO71q2V8y4Fc1AqCMIyOXpmXAhsMAAcCFxEEzuArWsiabbs3YddAD7tubig35eSUOr43RHlQJCzdp8+gDfffDMS93X1tmy1c5Eg4LPPPkXtjqflJzR6Ex8CeGL1qqzUyDnXvhbJQBGxmOLRgAM02oWLtAUkRmbXyMXjWHcPRHxWgkMEMK9711SnrwnbNke4BeEGKlZvA7ADT/8kO7Y/dVRn+bmBIsBYTpTdCZHg8K98FmF5gnSRySiIRdjivQIBOQCWganuHRjpbgVjDC0fAFvXMDCWA4GtxYc794PoAlZnUT5p6gRmNJB/O/jTSIB4Flv0yYHjWeKFW/cSIna95NopV/27EMjKNsd3sB5LIyDfd0iJ7wh1j+D/AdpgbpuzGXkUAAAAAElFTkSuQmCC"
|
<image>如图,A、B、C是半径为1的⊙O上的三点,已知∠C=30°,则弦AB的长为()
Choices:
(A) 1
(B) 2
(C) 1.5
(D) 0.5
|
1.5
| 10,837
| null |
1.5
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAAB6CAYAAAClZ1HsAAAaWUlEQVR4nO2de1BU5/nHv+8ihSRgqoH6M16QMCCyKsRLwIRKEZNREUsRZDJGZuwkdQyZ5CcdO0k0LFqtjWm1qcZgbKLUWHGz0omDdDKio5loIOqYQRBFAhhCf4JI21ACInue3x/LOezl7O7Z3XPOXuQzo+ye9/acd5/3fnkYERH8hAULFuD48eN4/PHHvS2KDUQExpi3xfALNN4WwBnmZWLz5s2YNGkSNBoNLly4IDmcGvAKZ5Eq5zflWVV8XunMa4/MzEwQEerr65GVlQXGGD7++GOn4axRUiFNqXKmL5rRmk8Mn1c6MRISEnD37l309/fjT3/6Exhj+O1vfys5vFLN4IgyG6DbUq9IGoGA3ymdeS0VGhqKS5cugYhw9epVMMbwy1/+UnJ4uWGMgVAP3cx8GBRLxf/xO6WzV0vp9XoQESIjI8EYw89+9jOXwnvMsC7Xb8nH1gZgxowZyqQTAPid0jmCiPD222+DiPD888+DMYaoqCjcunVL+cQZQA06bKUSFGsVVO4AIKCUzvyH/tWvfgUiwoEDBzBt2jQwxnDu3DnF0uagR34+g66EQ2NDAmaOVnR2CSil4zGfM3vuuedARGhqakJeXh4YYzh48KDDsFLTMMewSo+ceh20DddwjWmRMDMgs1YeKIDhOM7m2eDgICUnJxMA2rx5sxuxGm2e1JUkEKAhDRgBIGAlHSPbtEcxEdDFUaxfFRwcjJqaGhARbt68CcYY1qxZ40KslllGDTpswTEQGWEkDpw+F9BqkeCh7IFMQCudM8rLy0FEmDJlChhjeOaZZ+z6Jb45JbPP9TrMXgWU6LSCv2vXRufnnOLdita3OHDgAM2dO5fWrl1LfX19pocirSTHccRx3HBTOoN09Ubi6CoVazH8bLSJdQQj8p8Ff0f885//xNmzZ3Hx4kVcunQJN2/eRGdnp13/EyZMQGxsLObNm4f58+cLUyxEhJaWFrz88svgOA6lpaWIiYmxCMtnmeNpEQ4PeENiF79Vug8++AAHDx5ETU0NACAiIgIZGRl46qmnkJSUhLi4OEyaNMlGMWh4ZMtxHG7duoWbN2+ioaEBly5dwhdffIHw8HAsW7YMWVlZCA8Px5//vBd1dV9j165dWLhwoTdeNeDwG6W7c+cOfv3rX+Pw4cMAgDVr1uDFF19URBFaW1tRWVmJ8vJy9PX14bnnnkNn5x18+eV55Obm4ne/2wZAY2pI7VZ2ozWdXbzWsEvkrbfeIgAUEhJCe/fuVSQNsakVc6qrqykoKIgACH/z8/MVkeVBwCeL4sDAAFJSUsAYQ29vL4gIAwMDKCwsdCs+clKZ83056zD8s4yMDAwNDeH48eMwGo0AgGPHjkGj0SAlJQX379+XlM4ow3hD0+3VLP39/TR58mQCQJ9++qnKUtmntrZWGJWeOHGCANC7775rNlIFRUZG0o0bNyTF56xmDXR8pnnlVwk+//xzb4siUFlZKTTtdXV1RERUVlZGTz/9tOCnurpa8MMrYFVVlbdE9gu8rnTbt28nAHTo0CFviyJw6NAhAkCTJ0+mjo4OCzcA1NPTYxNm//79BICysrKE2nrfvn1qiexXKK50jpoSALR06VKXwijJrl27CAAlJibS/fv3bdy/++47ctYjSU9PJ8YYnTt3jtLS0ggAbdy4USmR/RLFBxJi82S7d+8GYwwtLS2oqqqyG4ZU6pi/+eabYIzh5MmTICJ8/fXXGDNmjI2/5cuXw2Cw3BNsLeOZM2dw/fp1pKWlIScnB0SE7u5uMMaQm5ur6Hv4DWpreXx8PM2ePVuSX3s1nrs1oXW40tJSiomJcTr9wYdzNbvi4uJIq9UK37du3UoAaM6cOdTf3+9SXIGEx0rnigIAoD/84Q+eJulyutb+c3JyKCYmxqV+ZFFREa1fv96lNIlG+qzmHD58mADQuHHjqKGhweU4/R1Varquri4C4PUM5vtYb731lsthPWkULl++LDoAOX/+PDFm2oNXWVnpdvz+huJK19jY6NEP5gxnNV5fXx9ptVphbs0dKisrKT4+3q2wPEajkQBQU1OTjVtHRwfFxMQQANqzZ49o+ECa25NNG8Qy5cqVK3YVTulMbG9vpwkTJhAA+tvf/uZRXIwxUWVxN64rV67YdV+8eDEBoA0bNoi6B4LyKVYF3bhxw0bhPMkw67D24rpy5YqwPvrZZ585jccZAwMDstfUAKilpcWhn5deeokAUHZ2tqxp+wKKKF1fX59qNRwfH78yAIC++uor2eLPyMig/fv3yxYfDwAaHBx06IfjONqxY4cwd/j999/LLoc3UETppGSoXBw9elRY+2xtbZU9fqX6o44Kphjl5eUEgMLCwhw2z/6A7DkKgGpra+WO1oa9e/cSAIqPj6fe3l6XwvLbzZ2xfft2RbYw8Wl//vnnLit1bW0tBQcHEwCqqKiQXTY1cFnpHPWtnnrqKXrjjTfcjkuKP51OR4wxSk1NlZyOu6gxd/7qq6/SwoULXQ7X1dVFcXFxBIB27dqlgGTKIVuulpeX04QJE5z6c7dPV1hYqEjHmpfHWq6amhqKiIiQNS17PProox5t5Vq6dCkBoMLCQhmlUg7ZlE6pWiE/P58A0IsvvqhI/PaIiIigmpoa1dKTI//Wr19PACgzM1PU3VemW2RZ8A8PD0d1dTW/lmu9tutWnM8++ywYY5g6dapwJ4madHd3Izk5WbX0qqqqEBkZKcmvvTzdt28fiAgLFy4EYwxarRb/+te/BHexzRdewVOtPXLkCCUkJHgaDRERDQ0N0Zw5cwgA7dy5U5Y43WHVqlW0fft21dONjo4mg8Hg0I8rtZXBYBA2mF6+fNmpf7VqQo+VzpneSnmRzs5Omjp1KgGgjz76yO145EKGsuhTaV++fJkefvhhAkAGg8HrzaxHb1hQUODSaNWahoYGITNOnDjhiSiyUVpaShkZGaqlZ60AGzZsoHXr1imiGD09PcI6tDdbEo+Uzt1See7cOWH14MKFC56IIDsAvL7XTUq+eqqUWVlZBMCt7VqeYhpIuNCfpOHO54oVK/Duu++61H+sqKgAYwwrVqzAjRs3QERYsGCBS3EoSXNzMxhjCA0N9aocO3fuxKpVqxz68fSmzxMnToCIEBwcDMYYli5d6lF8LiFFM8XKlFhQe6WPP7QSHR1Nd+/elV4kVMBc5ri4ODp58qSom9o4+2nklo0/HxIXF0ednZ3ypG0U92fxZpw+1+IsZ67eSJw+l3I+sbwIsOh/N0g6bMIvVs+fP1+akF5GYhlUhQ0bpOWx3Hz66acEgIKDgz2epxxRTkv9ARGZXXNleb3VsbyRq7AsAgE2EZlTVFRk96SXr7J+/XoqKirythgWtYi3CgHHcVRXV0dhYWEEgI4ePWrfr80TEb3gLN0hKJy2mBqsojDSMcpF3ogickRnz56lWbNmiQpQUFBAAGjNmjXO3svrw3ZrzH9gX5EtLi7O6wOt3t5emj17NgFwOnfJ59qxPAjb8MH4lpO/x48IpvtybWszUyRXqbjkmMWz6Ohom601mZmZDne7+joGg4ESExO9LYYNtbW1NtvklSwQYnGbP9u5cydFR0dTaWmp43houJXUFlP98LNjeSAkFNNV4gjFWhBWldtN1PR85DMAwV9KSgoBoG3btnn0Yt4GALW3t3tbDFHUbmKl/D5lZWUUGxtLxcXFI+HM4xhuPRNKrgoOpvGCqXJDHoYdHfTReCoqKmjatGkUGxtLgIbe3+9Y4+3hS4p39+5dnxpAWJOammoxopYbT36L06dPi24x4+qLaSYSqKR+JH5Ti5pDx4gjzBCUzrkg/IklZ+uD/sQzC56mv/71r3ZcnRdEpTl16pQqewfd5eOPP7Z5VleSQNCamlIiIuOxlQQzPUMuQMgrH/Zumcmf6EYCEhEBGhoaUmcbulqYdxds8JEK2aGMXqSgoICKizdbdL84aiDdTPMLv21nQGAszzPTQqMQsFgLyvuEE57xp6IA0Nq1a30yE1xl06ZNpndx4s/8XTlSv3vgzebf3rtmZ2eLzlLwTavFwJSz/Aje4wwxzTTz/Je//IVWrzYlsm/fPoqNjaXTp097/lZeRPzH9H6Tak1+fr5PXaWWnp5uMYgQ4GybVjGEXOc4jjgHGb5kyTKbayFefqWQ5s2bR7dv33ZDdO/Al9zTp0/T1KlTicgo0oyO5IMv1OcVFRWUlZVl81zNGtf8EqEDBw6I+6Gr9FaC7RjBGstlMAcelyxZYtdt6dKlfnfx88MPPyzcrjkCr2z1VoZIQNot9dZRqMbQ0BAxxryWPg8Aqq6utu/ORvLL0YyI5AX/8ePHmz7bKV2NjY2UmJio6l40d+Gt3YhhGtqb1p0t55iGn3kJb/brbt++LXoBEsdxdmqq4XyyU4tJUzrOtCTj2I8pBZ1OR/Dx2yezsrJEj+05Wp3hZ9gd9VWUxFtKx99HI3blrdPmnRP9KH0TZ05OjksJ8psE9Xq91CQUQUxOsaaKH0yJ90eMw0q32WtKFxISItgrU6svx98kLzeSToN1dXUhKirK4pmzTYT8JsHXXnsNjDG0trZKSUp2rOXcvXs3li9fbmskuGQrGrESOp3WwoYECCBcQ8M1wFsWcIgIMTExuHnzJgB1rsd97733sGLFCmXSkKKZBoPBoxs06+vrCQDFxMQQkXsn++XC+pU5jhveTQNCrvgWHtFaUOUKLzMzU7VrJPitaUohqehGRETgm2++MVdUlxRbqzXVHps2bQJjDM8//7ykuDzdkm3N119/jUceecQmDdbQgAYAM7QjdlvNt/B/ssVUC5boZo48Z5Z+lGbChAm4ffu2STQFa7j8/Hy899574DhOsTQkKV1/fz8eeugh4bu7yrB27VoQESIiIsAYwzvvvCO7Yjni5z//OU6cOGHznLRaaGFlrmlYLE6fi/xPgFy9Hnlmz8nssxqMHTsWP/zwg0k0hfIsJSUFFy9exMDAgCLx80hSupqaGgul85S9e/eCiGAwGMAYw5kzZ2z8yFWazeP59ttvsWjRIhs/GqxCcUkCrpWswpZrI/4/yWMIyj+OXL0Rn+RZZpVa+sbL/9BDDwlKpwRRUVEICgpCS0sLAOUUGwBsjSWIEBoaip6eHlE3Grafav1ZCrW1tfjvf/+L8ePHQ6PR4M6dOwgPD3c5Hkfw8TQ1NUFr3nxaMau4AXXQYvbMIGzhH+aVg7h8gAFERjAWBMD19/QEPp179+7hxz/+sSJphIaGIjs7G+Xl5YrEb42kmi4sLExSKXPnhwgLC8Pg4CBOnjyJsWPHYsGCBYr8oHFxceju7rZz1I4DGDBL1yCMXIkIpM8HmKlv4w2FM6e3t9emPyoHjDFs2LBBNYUDrJRukLsv/DMnIiIC3d3dohHI9QNkZGSAiJCTkwPGGF555RVZ4jXn9u3baGxsxE9/+lMrF0dlz6pZ9YLCASYjy2IX7HjSDWGMobS0FDt27PBENJexyNEfaYIt/vJERUWhra1NFYE2btwIIsKdO3fAGENZWZms8be1taGnpwdz58516E/JEaI7tLW1ITo6GoClbK4WAj4sb5Zq3bp18gnpghAW3DPabtLs7OwU1l7Vht+tXF8v74L73LlzPbYNoSZhYWGiS1HOsJ7r5Lfn2252UA9GZFmkB7n7Qk1n3syGBP0IA0P3hJJl7ce6djQP64qbmL9bt24h7olYTJw4ER0dHbhPQ6LhednNZTJ/H2vS0tLQ1taGW7du2ZXBVxCzvm0NWQ3q+HA8DQ0NmDlzJrq6uiTfhacI1lpoXdPx33mv/HeO4yz82vvsipuzMHq9nsaEBlvsLePd7hkHhX/m363jsi75S5YsocjISFEZfAnzn8qdlZqqqiqfOYDk0mKiea3BlyCxgYcbiu/QnU8zLy8PfX19iI+PB2MMJSUlNn74v0QkWsNZ94H+8Y9/YOHChQgPD/fkFVTF1X7cBx98gGXLlvlOP9VaC8VqnnvGQXr66afp9LkzTv2KPXdU0w0M3ZMUh5j/RYsW0ZjQYMGYm9Sa1xy+1igoKKDg4GCb577AqVOnJN3ALibzG2+8Ib6rxsn7Kfn+wuSwo74PAOTk5KCiogKLFqaLujsLbw97E8tkVirFalgAOH36NPru/YBJEx7Hf/7zH7T/33eY/D+T3Eq/rKwM4eHhQt/JW1MjYuj1eqxcudLlcKtXr4ZerxddR3X2foq+P6995n0gMTrvdlFISIhNKbAXzrqPJcVN7LvU8F/UnKcxocGUODfJJqyzdzNn48aNPtP34QkKChL20kklNTWVJk2apJBEniE5d+8ZB33uxxCDt6Szdu1aUXcp1rK3bdum2oU6UgztuZrv0dHRlJKS4pFcSiJpIME3b1OmTMH169eVq3bdgKw6x4WFhRbTBe+//76Fu71mw/z5pk2bsGvXLuGZkk2NddzW369cuYLp06dLju+RRx7Bk08+iS+//FIW+RTBkUZaN2P79++nF154QYWyIB+zZs0ixphb9soOHDigeO3urBbNy8uze+bV2toP/OTmLJdzVOkfwV0cNVP8aaZHH32UhoaG7IYRg7eyqBTOrueSmjZg3yq2r+FyboaEhFBXV5cSsriFK/2tyspKAuDyMUnrAypqTae0t7fTuHHjnPoD4JFtMbVxWenKysrs2p7yF9w5JskbMVaTZ599lsrL7d8d+O9//5sASLKG40s4zUUx26i+2sS6iqvHJGtqalR9d0dpNTY2EgDq6OhQTR65cCsHs7OznV8B6kMz+s6YOHEiAaCWlhanfuvq6ghQ3sDJnj17aOXKlaL5yNe6RqPvXfYjBbeLLRzcmeZPCsfDH5N84oknnPptbm4mALLaxJDamnz00Ud+39K4LX1CQgJVVVXJKYtPcPDgQQJg90IgXjk6Ojpkv6uY78pUVFRQUlKSjTvfF/V3vGIbzB/gLWk7MtzW09NDAKipqcntdKSuQBQUFAgL9/7YkpjjkdYkJydTWVmZXLL4JMnJyQTA7gWQ/f39lJCQQN3d3bKkt3//fpsdJenp6TRx4kRZ4vcFbHYOu4qUHa3+Tm9vLx577DGLY5I8NLwjZcaMGTh16hQmT57sUVrW+Tl9+nSEhYXh8uXLNn7Jx3bDSMXjG2Fef/11pxb7/J3w8HAMDg6iqqoKY8eOxZtvvim48T96Y2MjlixZ4tFFQStWrIBOp7NId/r06aIKZ5623yFHdQmZR3K+zsmTJyk2NpY+/PBDG7dZs2ZRY2Ojy3HyAxMeAFRYWOiRnL6KLErHd6hdxd87xH/84x8pLi7OxlpgUlKSjSkrZwCg3t5e4fM777wjl5g+h8dKxytOUVGRhdVDf1coV3jppZcoNTXV4oggY8zuhdDWpKen0+uvvy5cSxtIxmHEkHXOIycnx+Ze2geFgYEBWrx4scUoE4DoNbPmGAwG4UwrAI9trPoDsk+02TPL+aDUfHq9ngDQ8uXLhZpr69aton77+/uFG8sB0LfffquytN5BkdndOXPmBKSSufJO/FkLfpJZbEcLr5AAaHAwsMxfOUIRpWtra6P09HRRt0BURiL775Weni7YVli3bp3wHABlZ2cH9KqOPRR747Nnz4paeXkQGRwcpJCQEAJA8fHxFn8fRGS7LpzMZtGJCGlpaUhNTUVISIhcSfg8ZGdlJjg4GAMDAzhy5IhwsOn69esBv5JjD0k3cUrBfHac//yb3/wGoaGhD8RSmRRWr14Nxhgee+wx3Llzx44vDt4yHaAWir/dq6++CoPBAI3GtaT8RUnN5XS0LMW7zZw500bh9KsYGGPQMAbGgkw3vs/SoV7N69vVRK12vKWlhRhjLs/U+zu1tbXCQMLR5HldSYJg7FmwayEYfw4sVO/JAqCioiK1k/UK/HQJrEau1nB0lXQzLQ3e6VeNKp3HmJfsxYsXC/eiBCoAaP78+QSAduzY4dAvV19MCVhFx4bN8DgyjBcIeG3Mfu7cOb86ICyVnTt3EgDat28fAaCjR8VNP5nDm/sENMSszUEFIF6fKOJ35vrSAW53aG9vJwCUlpZGTU1NBIDOnz/vNBxHV0mnHWlaHVtjDAy80rxaP2trayMAlJiYqJY4spKQkCAc0mltbSUA1NraKimsqWnNFZpW4oZty2LlyLMAQ7UJIbHpBP5ZVFQUiAg6nQ6MMaSkpMBoNKolmlvcu3cP8+bNg0ajwe9//3sQEdrb2xEdHY3+/n5MmzZNUjz1BgOu5eUib9jwE7F6k5lPrRYJyonvXbyt9WIcP36cAFBYWJhDm/FKreM6uozns88+o7CwMJv7Q8rLy0WXtexKyJma1mKt5ajVVMt513S70vik0vE0NzfTnDlzCABlZWXRN99845KiyaWUzc3NlJmZSQBo7ty5NjcBvP32226tozLGhCkVQDP8N3BHrTw+rXTmHD58mMaPH08A6MknnxQulpEDMeU8cuQIJSUlEQCKjIy0Owpdv369rAv3nPBf4OITSudqjXT+/HlhWxAAioiIoBdeeIHKyspcPhTT2NhIhw4dojVr1tC4ceOEOHNycujChQsO5cvMzJRwlZeDWouz8znA8fjcqy/Q2dmJyspKnDlzBhcvXkRzc7NwJtTZ68XGxiI5ORmLFi1CZmYmIiMj7a6h8nECQFJSEu7fv4+Ghganfi0doKpxYl/EJ5TO3g8k9tzuj6kiP/nJT5CYmIhTp0459WtfxzgQNCJuHECagFZMn9hDI+XyaWd+zeHLkRLliTGGrKwsSQoHONIdMYUzPQ9khQN8ROnkRqlb0TUaDbZu3YoPP/xQ1ngfNGTbxBkIOGq6eduzBQUFKksVeIwqnRli/UeO4zBmzBicPXsWaWlpXpIssAjI5tUdxPp/HR0dGDNmDJqamkYVTkZGlW4Y61ruq6++wpQpU/D9998jNjZWeO4Dg32/Z1TpRPj73/+O5ORkEJGNHVhvT9cEAqNKZ8Xu3buRk5MzWqMpyOhAwozXXnsNe/bsGVU4hRlVumF+8YtfoLq6WtQg7yjywE9JjTavw3R1daG3t9fbYgQ0fH/4/wEbYK8oNxfRcAAAAABJRU5ErkJggg=="
|
<image>如图,AP、BP分别切⊙O于点A、B,∠P=60°,点C是圆上一动点,则∠C的度数为()
Choices:
(A) 60
(B) 40
(C) 72°
(D) 60°或120°
|
60°或120°
| 10,838
| null |
60°或120°
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAAB+CAYAAADSr7SpAAAdv0lEQVR4nO19fVRVx9X3b+Zg0JZIE0ExgaJwEQy8iTHG6JIVIYLNq5X4/ZGCwdZHFE0RK2pXfOFJl01AjTFPNUK0EaMrfoJgTSqKFapNK7pi1IuQ8KF5UINiGqlkaZRz9vvHuefcc+49Fy5wgWv0t5Zyz3ydmdkze+/ZM7MPIyKCG0OSJHDOAQBEIhgTIOEeOHqoac4XrkFV0BJMDCdw7iHnA4HEZghCD8Ny3RW8uyvgLCSpGYwJAKAjRjOZsWTiMoAzcO4BZXxxYvcdMYD7giCSZZZYRz4gEwgA3lu0ESw2FoPDmSVckrOxrq+pK+D2BOHcQ2VZAMAtPc25BwrWLwDGxqC5+AeQhRCCIKhpVeLcR3B7ggDyrBBFUX0mEkHle3GYxmCJScKx2DA8xQV9Ho3suZ9wX9RYFs7WDiciLHq/BO+nTgUARIeaAAASrES7H4kB3AcEkSRJFs5kYUEEFL67CO+//z4YY+AR08EkiyCHAEBmU0RiC6W6L9yeICKXhTqBwDkHXdiLInpZZltEOLs/C6HBA6zpSSaIopHdb/Do7gq0xut7wEMdNtL5QghLi0FFOSAiECPUXKwFSSFqWQwcBAIRdZhtdYscIjeBKIotxq+e/xIBIACUd66ZiIiSY2EJ4xS1KIskSVciSYYlWd8nSS2l6B4wIvdeqSuQQOBgXTZqu0tLc2sZol1HcDAQERgjXbw2TXvGlu1aRSmju7S0bieIUScqncQ518UTA7RV5pyDM30TlJW8s7DteMZsVvxdDLdhWfLoZ+pfBY2Njfjiiy9QWVmJq1evorS0VCYMcdTWVOHy5cuwEknCE0/4ISQkFESEHj16YNSoUQgICMCgQYMwdOhQeHl5dUfznIbbEETBlStXUFxcjOLiYpSUlOCbb75BZGQk/P39ERwcjBdeeAE/8eoFRhwDBgxAYGAgMjIyQOD47zfTUff1/+LSpUsAgKamJpSVlaG2thZ1dXU4ceIE/P39ER0djdjYWIwZMwb9+vUDAN1AsB0UXQm3IEhlZSX+/Oc/o6CgAE1NTRg9ejSio6MxevRohIWFAbAKWSNhm5GRAQB488031c6UQIBkr/qazWaUlpaipKQEJSUl8PHxwbRp05CQkICQkJCuaXALcOk6pLWRpe3MhoYG5Ofn44MPPsD169cxbdo0/OUvf7EjgALld2vCVnk/BwO4fV0iIiIQERGBhQsXAgDKy8uxZcsWvPjiizCZTJg9ezamT58Ob2/vNrTchXClDm27lhBF0S6svr6eUlNTycvLi+Lj4+ngwYN25SjrA2fXCenp6ZSent7OWluxb98+mjFjBnl7e9Py5cvp+vXrHS6zrXCplmU7ejnnatjly5cxf/58hIaGQhAEVFdXY/v27Rg/frxdOcoo72o+PmXKFOzatQtmsxlNTU0ICQnBkiVLcO3aNcP01AncvsMEsVUPbZ+bmprw+9//Hs8++yz69u2LqqoqZGVlwdfX1zC9O8Df3x8bNmzAl19+CU9PT0RERCAjIwM//PCDLp2WIK5qh0tnCFnsR0rl9u/fj5CQEHz33Xe4cOEC/vCHP8DX1xecc1XFNZIJSv7uJla/fv3w9ttv4/z586itrUVoaCiKiorUeCMZ11F0WKhrK6KwmKtXr2LOnDm4ceMGCgoK8Pzzz6vpFGHdEjtSBbOb7Gn07dsX27Ztw/HjxzF//nyYTCZ8+OGH6iwHrApNR00uLm9xWVkZnn/+eURFReHMmTN44YUXWh1JtjOhu9YAQMtyYfTo0TCbzRgyZAiGDRuG8vJyNc5lg8iVGkJubi75+PjQoUOH2py3NWtvS3CVlkXkvGa3b98+8vHxob1797rkvQpcsg4RRREpKSkoKipCSUkJwsPD21yGu7An29lJDljRlClTEBAQgClTpuDzzz/HW2+91ab3iKIo73jaaqbtr7qMxsZGTJgwAWfPnsXp06fbRQx3RkusaPjw4Th9+jSKioowbdo0NDU1OVREbMMFQTBkj04TxOhF5eXlGDZsGH7+85+jpKQEvXv3bjXPjw39+vXDZ599hp49e2LEiBG4ePGiYTqt9qlAe3BDTefsi21HSFFREUaNGoXFixcjOzsbgiDYTXd3YUOdDU9PT2zfvh0JCQl47rnnUFpaqsbp9nQMiGKLdsmQ8vJyTJ8+HXv27MEvfvGL9hRx34Go9X365cuXIzQ0FFOnTsXJkycRFBRkOEhbUo3bTJCGhgZMmjQJb7311gNDDAW2nWvUsRMnTkR5eTni4uLwr3/9y3D/pSWitImniKKIV199FWPHjlWtpUb4McoOxphDlmwrnN944w08++yziI+Pd1ieoxnSJoIsXboUAPDee++1mO5BkR0KIbSEUgbjli1bcO3aNXWvRknvMhmybds2HDx4EJ999lm3rqTdCdr9d9tB6OnpiT179mDkyJEYMmQIJk2aZDfLyGD/yI4gRoWfPHkSS5cuxfHjx3X2m4eQ4cg0FBAQgPz8fIwfPx6DBg3SrdGcliHaRJIk4fLly5g6dSp27Nih7uY9hPMYNmwYcnJyMH78eDQ0NKjhtidq1HBHBSkU/PWvf41FixY9cBqVK6D04eTJkzF79mwkJyfr4o1Yv0oQW2pxzrFr1y58++23qjB/iLZBy23eeOMNmM1m3X6KYR7lhy21mpqasGzZMmzatMnQ4PZjVG07E56entiwYQNSU1PVnUejPnTIst58802MGzcOw4cPd3i67yFkGMkCwL7DX3rpJTz99NN45513ABgvDwy1rNraWuTm5qK6ulp9odGiyCj8QUNLZhCjgbx+/XpERETgN7/5jXpIT5fHNoCI8Mc//hHJycnq2SRHnf6gEwNofRFsO0v8/PyQkJCAzMxM4/JsM9y4cQMHDx5EamrqQznhAih2Ky1bW7FiBXbs2IHGxkaj9HoKZ2ZmYu7cufjZz372wJhAOhNGhzr69euHKVOmqLJEC12PNzQ0YOvWrVi8ePHD2eEiONoDSUtLw6ZNm9DU1KRPr33YuXMnJk2ahH79+j2cHS6ErfUDAAYOHIjIyEjk5eXp02oftm7ditdee60LqvjgQntofPbs2di6dSsAqHKGKw9ffPEFvvvuO0RFRXVbZR80xMXF4cKFC/j6669VOcMBmVrbtm17ODu6GIIg4Fe/+hU+/PBDALDOEADYt28fZs2a1W2Ve1Axc+ZM7Nq1C4CGIJWVlWhubn5oXu8GDBs2DFevXsW1a9fk6xsAcOzYMYwePbq769ZmOLIh3U8QBAGRkZEoKSkBYFmpl5aWIjo6untr1kb8GIihICoqCseOHQNgWamXlpYazhB3bvSPyY4WHR2tHq7jX3/9tUP54e6Ndvf6OYvhw4fj4sWLaGxsBK+pqUF4ePhDU0k3Y/Dgwfjyyy/BKyoqEBIS4vDQ10N0PiRJgslkQlVVlTxDQkND1cj7jQ0QHM9szZXMrqhKu8E5R2hoKL766it5hgwePLi769RusBYOXzIAy15hYExQD6kxbvn7yrKuq6QTGDx4MC5cuABeX1+PJ5980i7Bj0WmrC4kpMUBh6vl0+skiag6vAlxYaburpoOAQEBuHHjBnhTUxMeffRRuwTuaH63lW/aZ7K5My77aQQI1ahAGmKD5d85OUdhio3BuKCBcCdW1rNnT1nLampqcnuXRQqclW9aDxI1R4oxeHwMAKB4cw4QHAjAhKSkWLiBuzDV7N67d298//33gJeXF926dculN0m7EsXFxfT444+Tr68vHT9+nIj0PlYOf7BU9dUIgIpqiIjaf+O3s1BXV0f9+/cnwOZmdHc5hmzve8PCwtTOHjJkiF18WhzocLXl94QJVCU2d6SanYabN2+St7e3vfMZ5QqwO4BIcbwv6VyNK2GA1U8vAHj26qlz8CdVF2EN0hATLD+bfvlLmHQuybu/nbY+I7mXl5f9Rns3CHQj+aC9kuzo9tJTYYPxyCM94efnh3fWrNV9FKH4b0eQNj5GDZv3X/MAAMuWySovucEiWDlweOvWLfTu3RseXl5e+P777+Hl5SU7Ija4uuUOMBoku3fvRnl5OX73u1TVv6IWxZ+8g9h1a60BTF6X0LjD8qObeL9mjEHRdnUzhDFAIgmiJEKUREjdP4AAGK+JamtrsXjxYhQUFKBHD/2HW6qPZIMxhjUHgLEmy0LQsjhccwAYGxPbVVV3Gv/5z3/Qq1cveYbcunULAMAYhwCCSATOONxlotjOjqamJsTFxWH9+vWGniOCY+dDFOe55VrKEW7fvi3PED8/P1y5cqW769MiyOb6w9y5cxEZGYkZM2ZYQiQdm2VwUg66CQcAZI97vr6+8AgLC1NPuetB6moX4OCcASRBIgJjguxfksiq5TAOQekUbThkBytqd7UUp3u9Np11oZeT8wEu1f0v/rZ1K0T15LkAcCY/MwYiS72Z/AELbR05Y9b3uQkHAICvvvoKTz31FLjJZILZbAZgq3Uwi9doBs7lRsi8mFucfRIkAjgXIHAORgQ5O0EiAmcCBC6AM/lZRktxWmjTcXBIIAJOnTqF1evXYu/uPfhJr17gjNDcLIIYQRIlSz4RjAsQGAdIgqjUkXHADbQqR7hw4QIGDRoEHhYWhqqqKgAGrokge1pVO40I6rAiAkGCJIkQLd/3IDWcqckYuCWslTjdiwnEmEWGMTAu4NsbDZg8fRbef28D/P391fwMBG6pKBHAmQe0zEuZEepb3JQmVVVVCAkJgYfJZFI9oxGRbjork5tJSnOYXtBr2ZQCUv5zxA9aitMnE0mCYGFVCQkJiJ81AzExMbpkzBLPqGVbl0KW7gS1cMGpsrISoaGh4IGBgRAEARUVFZp1q67XVXWYoOW/DIwkjWpsYVmMgUHPpqDw7ZbioFVvGWRBLXd2VtZqcIHh7bdWGeZ300FvB0fEOHnyJAYOHAhvb2/5SltUVBRKS0sxKHQQRIvsYDYFySNQVzw4YxBJhEiWZ86gyB7Rwr9VhUDN4yhONklJBHDGIEAu+9DhYvw59wOc+Ps/W8gvbzzJ+a2CHYCDZweKRDehpKREPfXDAfkYSklJCQRFQDNjx5R2jWDckseSz5pYE26TzybOKmgZOBes3sEZxzdXv8GcxERs3bINfRUPEpr8DAqLJZAoaerBLMqGo+eug1ZR0v7W9m9JSYl6Lo4DsrdNrdMtQK/HEznJ99sBI8ctgNXz0MqVK+1MIkZ1dFfo1keMqUZSpe6iKOLEiRN6goSFhcHDwwOVlZW6wogsJhRbYd5J0HZwSkoKnnjiCSxcuFB1HvZjgK1bv9OnTyMgIAB9+/YFoNkymzp1Knbu3KkmFEURRBb20InUMLJT7d69G0VFRdiyZQsAva8qd/F63R4YuWXftWsXpk2bZg1UdtbOnDlDgYGBRNR9m1RERFVVVeTn50fnz59Xw5T6OPLt60q/vV0FURSpubmZ+vTpQ5cuXVLD1Vu4Q4YMwWOPPYbS0tIuN7+ThR01NTVh0qRJePfddxEREaHGO+M12nZjTWFw9h8Os+bRj1hJl5Hg+lWLrUPMAwcOICIiAoGBgZa6kX6XPzExEbm5uQaVdT205SsdPnfuXIwaNQozZ85sU1lEDESi5vSlaFFBrB8Xs75Lb6y01oNb1qyWL4UC6heoOwplwNkOqI8++ghz5szR1M3mlNmrr76K/fv3q5dHXAVDJys25efk5KCqqqpV94FGkD+lZ3X2z5gAAiBJ2vfoBwDTnEyxRgDaMUouUiSMOE51dTVOnDiBKVOm6MJ1NfL19cWcOXOwfv16l1XGma8FlJWVYdWqVSgsLISnp2fbyrcwFlLcuIJBkpp1Jni5LZbflnzMYPbI4VYYOTp2FdauXYvk5GT1CBZZ7YV61NXVUZ8+fejmzZtdINqIrl+/Tv7+/u1y4E8kC/z09HTKSF+phjVLNsJfsqZ1utx21cY51NfXk7e3t9rHWmXFbuj6+/tjwoQJWLduXaeNDi0Lmz17NhISEtrtsY4xBnACaRwblReu1X1gsro4G5wx8InLjWojp7Fs+y7LKYIEcvkyWNvmzMxMJCYmwtvb2945sxEFq6urycfHx6WzxGh0ZmVl0csvv9zhsv9f+n8bqr0S3VV/Vx3eRMArVGVwSE6iKooDaNPhr0gUqVOnR319Pfn4+FB9fT0R2avynAxkRXBwMBITE7F8udGIah9sF3aHDx/Gn/70J3z00UcO8zir6THb81WkbCX0UB5x6SLDhAmSLo2C5a+E4EBcGubHBoPLe3Iuh9KW3/72t0hJSVF9Zdl9rsLRmiMjIwOFhYUoKytzacU457h8+TJee+017Nq1q0W3s85oenZEI9mia7vHXlRTgzD2F1ys4ZZvsct5j2xOA0LTsGx8DLSfcO3oITrbgc45x9GjR/H5558jLS3N4WBz2GIvLy+8++67WLBggd2pwY5AFEXMmjWrRaNhW8BsiEZM64JVbjRRFYIHxiAobAJqL36lWq7ZxWIUIRZBrBJBQUGaUjjachDbiMvYLlR/+OEHLFq0CBs2bICnp2f7XI1Pnz4djz/+uKFfp/YiJSUFTz75ZIu+49sOCUpTLNv98gyx6CxVR48ieGwMgk2hqKm9BECChCrELSnGmv8KwqdrCGNigtq9MnfEZbSdvmrVKkREROiUF6NZ4qFE2FJMCdu6dStGjhyJZ555pkO+e4kIe/bsQVFREc6cOdPucmwhH74Q1A0oNVDz99hFjqQYjiNHrUk2L9+MdwszUVX8AVjaBJggr/DRCacZ8/LysH37dpw6dQqiKKpf13Hot9fWyZaWQE888QT27duH+Ph4O/O8s5AkCTU1NVi8eDH279/v0vsotu7zRPGeLp5QDUgDAQADBwTjy5pLOLJ5OdjYJJjA8bcjn2Jc7EsAuHq0lIgsQr/jppOysjLMnz8fn3zyCXx9fdXFpsMju86qa7m5uWQymdr1fdhbt25ReHg47d69u815nYEja68kSVR1eJN6HYGqiggALc35VI6nKorjE+xV4XaovcqdFEWNFUVRvfORn59vl9YRdARpbSWbkpJCMTEx1NzctjsWM2bMoLlz57Ypj/MQ9QTRNCEtTjbaMsbocDWRVF1EcctyiIhoc84SzUUeA6J0EHfu3KERI0boBoq23xwRpU3fMWxubqaYmBhauHCh03mys7Np6NChdPv27RYr0hE4sx9iO9hE8Z7L66FFfHw8TZw40S68tfY7pdtJkgQJ9yAIAj7++GMcOvxXbNy40RonKeqlcn5LAuEeTp06qRoNe/bsCcC5D2N1Buzvl7T+6RRywsCqpNHuv6xatQpnzp7G9u3bdWkV2azkkYz0uvZQ32w2k7e3N3366ac6qmunpK3RUJKkTpkdinExPT29XTudoii2uiPpKNzofXn786mP7+NUU1WtphEtfFTSlOWoru3a9AgPD8fHH3+MWbNmYePGjVYzt2AtLuG1eMTHy9+rAoy1ClfMFNtTHW2F9naWsy7Dte8jkhfNkiQhMzMTc+YkIG9vPoJMwXL7mHzgFdCfyndU1zZ8pc26+JIgYty4cThx4gQmTZqEiooKvPfee+CMAZwhKysLHALefjvLrgHONPR+AmMC7ty9jQVJyTh16iQ+P30WwcHB1ng4Wuc1G7JNRtT2nSgJpFK9sbERM2fOxO3bt1FYWIjly5dj586dSEpKQq+fPgJIVr1b+ypyoSN/5UyZrc8vV77DFowx1NTUoH///jh69CiCggZg69btWD75p3j/iG3qKJTTUYSBwElo0XjZriGqPfv36KOP4pNP/oqIiAgMGzYMgiBg3rx56NnrpyoxgM6/YGlbfnuJ0Vo9GxoacPDgQaxZswb/+Mc/sHHjRowdOxZ79+bhJz/piY2HCQtigDzzPXUXc3WygHA2BpVgkJQjrXBgH2xd7BlDuwBShNa2bdvIz8+PDh065FCt7IwjRh05BuSMonH9+nXKzs6m8PBwCgsLow0bNtCWLVvIz8+P8vLydGnvkpmif6FdFsjlJ41lFP36akuI4z5wTu3FPYjULP+WJBSsWwDBQ75EKfzfBRBxAcnJ6zB79mwUHjiIxMREvP12lm4UaFXjzga14QtARm7AFezfvx8zZ85ESEgIzpw5gx07duDcuXO4du0aVq1aheLiYkyePFm1hhMRKgo+AUIGat8AIhGm4Jdw7MtqS4jjmesUQTh6QGAeQMVeCIKA/7kUBJIIRCKkdTF4hEVAGhAISZLw/LChOHXqFIpLSvHcs8Nw8uRJXcM74ijN9pK9UbxytdtWiDp6n3YdxTlHbW0t0tLS0L9/f2zevBkTJkzAt99+i+zsbDQ2NuLpp5/GmTNnUFZWprlwajk6xBiKioowPuZl3QYYYwKCQ0xqPZSBajhonJ3ad8lMMQCNWbjOLm71/JdodYHZbiLu27eH/Pz8aN68eYY2MFt2oX12lrWJomjHstqSVxRFunnzJm3evJlGjBhBJpOJMjMzqa6uTk1XX19P8fHxFBgYSEVFRYZ1JyISpQsUjSgqJ9GOZWclRdOYRas1775nyLicJkj+uiSC5WW2yFudTPnnRcvi756uQ27dukUrVqwgHx8fysjIoIaGBocNcgZGRGyvDCkuLqb4+Hjq06cPJSYm0t///ndd3evr69W6p6en0507dwzLUfI0n9tFUYuyqFnSE0My7yGA0+oCc6vtbpUgEllnR1LWPl2cSM0kSY4NjdrG1dXVUVJSEnl7e9OyZcuovr6+xVWrtuK2jbBN3xaCXLp0idLT0ykgIIAiIyMpNzdX9YakzJi6ujpauHAheXt7U0pKinogwVEblfrlr0ui+av1Ql4kiZJjQYhNcqp+Ts0QmcKgtfln7SksNavTs6VOVHDt2jVKTU0lLy8vio+PV80vhu+VJF3nOyKMliBG771z5w7l5uZSbGwsBQQE0MqVK3UHnBXk5+fTjBkzyNvbm1asWNGmrYZ70nl6CYz2n7MOUMm8h8A0xJCsdXbEVp0kyD6ZIAVmIpKpLpE8QwzTS5bYFsz0169fp5ycHBo6dCgFBATQihUrqKKiwkFZjtESy/rnP/9Jc+fOpd69e1N8fLzK/7Uwm82UmppKfn5+NHLkSNq8eXObjz99kZ9JkO8C2/17p7DcsM6O0CpBRPEe3ZPOUixAC9bkk53zr/K9KqGMXuqMrKioqKAlS5aQyWQiPz8/mjFjBm3atIkqKioMZYZtmJYg9fX1tHbtWjKZTDR06FDKzs7WdbDZbKYNGzbQtGnTyMfHh8LCwmjlypVUXV1NzqD19rRioJTkAe2oHKdNJwXrF2BSajbWFpjxu1dkx8vmA2vxzKYaUFGORfkTwSFYbz638SYcEeHKlSs4evQoiouLUVJSgm+++QaRkZEICAhAUFAQhg8frm4BDxgwAIGBgcjIyMDdu3dRXl6OkydP4sUXX8Qrr7yCxx57DGVlZaitrUVdXR1OnDgBf39/REVFITY2FrGxserNJWfOICt1NLIAEImWvX1R3QqWIFouy9rv0zt6n9MEkaRmmA+swzOTfg9F746ZvxZHNv3Omeztxr///W+cP38elZWVuHr1qu4uZE1NDS5fvqxL7+/vj+DgYBA4ejzCMGqkTMyQkBA899xzqhsqdzVsOk0Q5bSEFo5GS1dCgghI1oWg1vB5P8KJOSr/Mbot293EACCzSN2zdY8CcLznQm56kbR1glj6XDvF3WG66zvTYiezPGkHitF5MyXNfUkQoyqrhkKx+27CKp1OJOL1l3vI9ivLriTnHninsFyXXul8dxhMLcI5Ve9ep+yHuxLJsdZ10rmC1QQGyjt/12H67rxp3BKcs/babDW60x1xSWqGiHJUHInCy78MgwQREcGDAOLgLTTPHeSfEZw+BsQ5t9y7sN527WrC2JrflQue5QWfAK+Pw1NgIKkZi5ZMRNTrmYj7P473OtwW3T1F2wL7w25Wox4spgoGUN459/Re7QzcXMLJUNRY5diNdbTLf4v/moO8c80gIuStS8KUpz2Qf16EhHsOSnRf3B8EYdZTfowJek9F5Xl4n83D5AgBEkT8MvV1xAA4cqgQ3e1Brj1we4IQUYvqdcHhI0gaMxZg8iKxx4UKFAMwDQoFpDYcO3MXdDfPbA8kqVmVJ8mxoAPnZZlxly5QNIPDnc37Ae5PEMn+2Iwo3qOz+7NUIQ5A3ggCCGPnWbO66VrDCEpd/z8QxlJQ/WftfgAAAABJRU5ErkJggg=="
|
<image>如图,CD是⊙E的弦,直径AB过CD的中点M,若∠BEC=40°,则∠ABD=()
Choices:
(A) 40°
(B) 60°
(C) 70°
(D) 80°
|
70°
| 10,839
| null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAHUAAAB1CAYAAABwBK68AAAaFElEQVR4nO1dXWwb15X+6DSWkvWWMtBAVFuEEpCFKCldD9KFS6VZDRW0Nf2QhHYkMcYusHQfyualodoFqgBrygmwoYHd0i9BmAao6c0LLTmW0gKlmoctKWVtqS22lGNZlLEuZQfZkikQWi5a03KsOftA3dFwODOcIWcoKd0PIEjO/Z177rnn3nvOPddGRITPOAqFAlZWVsT/qVSqKk5PTw8cDgcAoLW1FW63W1feRASbzWZORU2C7bNG1HQ6jVQqhWvXriGfz2Nubg4OhwPd3d1iHJ7nq4ixsrKCjz/+GACwvr6OhYUFdHZ2wul0or+/H06nEx6PB93d3TuOiHLsKqIqccXCwgLS6TR+8YtfYHZ2FjzPg+d5kfM8Hk/d5a2uruLDDz/E/Pw8bty4gdnZWZRKJQwODuLQoUPweDwid5v1PlVxANgIgK38h7ABm+0BlbgCbNizu4jKsLq6irfeeguJRAIdHR3weDxiIzej7NnZWbETud1u+P1++Hw+tLa2WliyAGCPvqi0S1AqlSgej5Pb7San00mRSIRyuZxqfEEQmlKvqakp8vv95HA4KBgMUiaTMbcAhdeo9WY7nqilUomi0Sg5nU4KBAI0Pz8vhhklnFWEFgSBisUixWIx4jiOfD4fpVIpxXKb0dl2LFGLxSKFw2FyOp0UCoUon89vd5V0Y3p6mnieJ57nK4hbD5Q6wX06R+Mnr6im2ZFEjcfj1N3dTeFweMcSUw/HpVIp4nmevF6vOe8hEBFdoXAfqG+3EDWbzRLP8xQIBHYsMetBMpkkp9NJp06d0hF7Q/Ep60SXx3sIAA1NyuJJ+pjlRFXr0XI58/LLLxPHcQ0PVzsN7D1LpZL4jplMZuv9dYpYgYiEpTANjU9QuG+TqEJ1+g26v/2cms/nye1202uvvUalUmm7q2M5MpkMud1uikajVWFbHX2TCyUE26AJGu4bpyt0jobRS+NLG5Kw+xX5bCtRk8kkuVyuihntXwJKpRKFQiHy+XxULBZ1pZkYfp4mSKCNKyeoF0M0QYLqKLhtRB0bGyOv16v7pT6LuHDhAnEcR7/97W81431wspdQ3lza/DxPkxoTNZ1bFOaANjevjh8/DrvdjpmZGezfv78i7C8JR48exfT0NEZHRzEzM6MYh66O41XbJKjMgLg/OQT09aFHY3fxcxbVVxHr6+s4cuQI/H4/AoFARdhO3ySvF1Rjf7ezsxPT09P49re/jbt37+KI70h5nxcAlsbx+AvAxFKvGH95eRlAr2Je0kKbgmKxSDzPUzKZbFaRuwqlUol8Ph/F4/8hPgNAQA+9siSQsLk+BfaIQ/AEVe9UWTL7VRLejKC7bUJkxpaekTwymQz19vbSE088oZIZ+6G8lmWwnFNLpRJ5vd5dsf6sh4iNED6bzVIsFiO/3092u506Ojpo37599Mgjj1AikdgsQJpCm5gMlsvUY8eO4Tvf+U6FWox2oLUAoCzX1erKnsvDtN5tZWUF6XQa6XQas7OzaGtrA8/zOHjwIK5fv45vfvOb+OijjzAwMICJiQnY7XYcPnxYksMOUL0Fg0GKxWJWFmEKrNKc5HI5isfjFAgEyOl0ksvlomAwSIlEQtwGjUQixHGcKJqcTiflcjkqFos0MDBQocqrrqcy51rGqadPn8ZDDz2E7373u1YVYRrMGjUKhYKoPGd2UIODg+B5HuFwGF1dXSInr6ys4OjRo+B5HvPz82hpacHq6ioAoKurCwAwMTGBJ/+2A7k/kFjPCksINc41s2eynjQ/P088z1dt+zVLcW0WatU3n89TIpGgYDBILpeLHA4HBQIBisfjVQp8aV5y7mRgXC2NzzQ9RmD68FssFonjuB1hlWAmmCJcTkS/30+xWIyy2WzNPNi+79jYGN25c6cqnHUIOcLhMJ04Ma67rqYT9ciRIzQ1NWV2tpZBqYOxZ8Vikaampmh0dJQ4jqO2tjZDRGQolUo0NjamyJ1SMHlaUZfNb8+AfoW7qUSNxWIUDAbNzNJ0aI0SpVKJkskkvfTSS8RxHNntdvL5fBSNRsUJi9FRZn5+njiOo9dee00zXi6XI6fTqRqez+fJ5XLp2is3jahGCjUTjQzljIhjY2PU399PLS0t5PV6K4hYbxmMO91utyZXs7yl8lStzNOnT1MoFKpZn7qJKs9YTR6YBa0XMdLoqVSKwuEwud1ukYiRSITm5+dNk/WMOyORiGJdlcrR234cx9Hi4qJmnIY4VTrbdbvdjWRlGRgReZ4nAMTzPIXDYUu2LEulEv3whz+syZ1KcLlcutLoaWvDRFXqZcxEwwrU4h55+Pz8PEUiEfJ6vdTa2ioSkU0yGuVGtfTz8/N04MABRe6slUexWCS73a67DrW4ui5OlVZqamqKfD5fPdmYgkwmQ5FIhA4dOkQtLS3ikiGZTDZsHqOnA+iVnVow2ob5fJ4cDodquG6iqr2gnjHeTGQyGYpGo+Tz+chutxPHcapEtNqIWkt26oUgCBQKhRRtlrTg8/lUl46GOFXeMM3g0mw2S2+88UYFEUOhEE1NTVk2065lAXnnzh1F7qy349QjvjKZDHEcpxgmEnViGDI7mM3P8DnVjL1eb0NKb6VGkKqj2tvbxU3w6elpS5dLegliBndKYVSeSsG4VV73Ck6dGAahL0xXiGnRJ2gIW8+kibV6ihEwTQY7ZKSkybASeonJ7HYbkZ1KYKNdPVwu3xdmeYhEFWiJwn2gXpk5v7AUph5UPx8bG9PdW6VrM0bE48ePk9PpFA8+NYuI9cBs7iTaIkA98lQKpa1FsAKEpTD1opdOXGU6uvK3aBsjG4YdDocuIuTzeTp37hwFg0FyOp3U2dmpqMnYiZv8xWKRgsGg6dwphVSe1tMGY2NjVcc5RE5dOtlbMfQyCHSFxh/fU0HUZDJJXq9XsRApEeWaDC3NjRL0HNmwCszQ/M033zQlPzXbrXrlKUM2myWXy1Xx7HMAQFjC5Pll9A4P43FsKYzLM6VlXF0S0DvUJz6fnJyE3+8HEWFtbQ3pdBpzc3NIp9MoFArgeR4ejwehUAgul6tupbOa8tpKU5hbt27h+9//PgqFAlKpVEPH/6VQqnM6ncbg4GBd+dGmst3lcqG1tRWLi4vgOE4MJGEpTI/LzmeIPWxyiICeirDW1lZ68cUXFTUZO3EY1QNBEGhmZoZcLlfFbo2V7xMOhykcDpueD0jYJFxfmD4QJEQVyrPfo7YteSoIAv34xz8mAPTXf7WPnnnmGUokErv+6ESxWKRAIGDeOVKdMONQMlH1LBhsIiSf3V5+pXx+Q/78pZdeIrvdToVCQVyKtLW1iSqrRicUzeZ0Jjvj8Z80tdxSqUR2u11xK7OeNrDb7SJzAUobDoDipImI6KmnnqJ9+/ZVPU8mkxQKhcjlcpHT6aRgMEhTU1NUKpWa4pvBaBq93GlWF2P1a8T2SAvSbcOKzQdB8q3USHfulnsXatir5XI5isVi5PP5RJ2l2ux3O5xxbHFnXEfsLZGkcMa3bqjJ03rfLxqNUigUIiIiyG1H1bIUaEuX17q3hUqlP+uuRDKZFNepLpeLQqGQ4e1FM4hpVHYKsm8zoSRPG3lHqZ51a0dJR4bMBklpF0MvstksRaNR8nq91NLSQj6fj2KxmCkTFK13YNx55swZ9fTSb4FoQzyUtPXpPXllsxx9RyCUoCRPG+200jWvAS3Nhrg1KBK1wS58584dmpqaomAwSA6HQ1SjXbp0qbGMJZByZ6FQUI0nb1R20HdocmOL2JNDyk40NKBErHQ6TTzPq5q21Au2yychqkR2CPcVkhD5fM/S1NQUud3uTXOQ+nurEpjC2+12k91uJ7/fT2fOnDHMxayhkskkdXd3a8pOpUb94GQvwaa8bq9QetRJjxMnTpiyPpWDDemG9KnMjqZsg/qflh71Y4bTgUBA5OJIJKJL79jIupMpMFyvXFYMZ0StWNMbhFnrUznY2SVDRGWzXi2tu1XIZDKiQTQ73nDu3LmqjY94PE5Op7Nuy8ayXrnyQC/DhlDWZKkt9/SipaXFVE80jDHYDFjXASkiwvr6Ovbu3QsAaGtrw+3bt+vas6wXHMeB4zhEIhHxINK7776LYDCInp4eDA4O4v3338djjz2GTCYj+pLQCyIC2c7j/HkAw36MoHqv1rY8ifNXgd6TlXvkevO32WzIZDLo6ekx1eMo21fev38/Ll++rO/Ao81mQz6fR0dHB4gILS0tuHv3rmmVMgqHw4FAIIBEIoG1tTV84xvfwFtvvYWbN28ilUrh5ZdfxvT0dM06ksR5iM1mg+3qVVwF0NvXAyW3IudfeRVZPI/x8T7FcC2whk+n05a6sLXZbHpPsVYmam9vRz6ft6JOhlAoFHD48GF89NFHuH79Oj788EOkUilwHIe3334bbW1tOHz4ME6fPl3hbp3BZrNBSh2hrxePbzKgnA/p/DD854GhyUmMkM0gn25hbm4OAwMDdabWRnt7OwqFgv6jjFLzFbO0C40gHo+Ty+WquYnx85//vGL7km18vP766/T5z3+e3O6D9MmtLblcXspItVIbdG6o7EBDvpSpR6pK92jNRiqVIo/Ho3+iJN2rlJ/7aCby+Tx5vV4KBAKqjaM2o87lchSNRulb3/qWuJnwwAMPiNtrDOUljT7jOyNgjGGV0oLRSPfwSzvAedXZs2cxODiI733ve4jH46qTITUleldXF0ZHR/Hee+9VKL+/9KUvVcT7yvhVkECiQyqa9ENUfTSAVCoFj8cj1s/MNpXmpZuoHR0d4m0Qdrsda2trplWoFpjsnJ2dxaVLl2TOLYyBvfzMzAyefPJJfPGLX8QPfvDPGgnKX1tH8ivzMQK5PDXTgkOal26itrS0oFQqAShPnW/duqW7wEZ65NmzZ/H000/X5E69YC/PcRwuXryITz/9FB9/XNBIIPuW5WMEjFOtwq1bt7B//37js1+gfBnP+vq67vj1NICUOy9evChyp9li4LnnnsNPf/pTU/NUwuLiIrq6uhrulFq4ffs22tra9BO1q6sLN2/eBADLlzRastNso7MXXngBiUTC1DyVYDWXSmHI5Y7Vmw6FQgHHjx9He3s7Ll26ZGmvZvB4PFhcXBSHLqvwq1/9Cj6fz7L8gXL7ORwOYy53pIbHMNmvViwW07XuNBuCIFh+Cp5I2ZLebPj9fkokEpVLmnvCp+JHCd3d3Yo7M7VAGnJwZWUF/f39WFxcrJjZaqUxEzabDSMjI5iYmLCsDLnTK6tw8+ZNdHZ2VsrUvXserPiWo7u7G9lsFkB5/7VQ0Jg1SqAmB0+dOoVjx47h9OnTePPNNy2VnVoYHBxEJpMxNKM3gkaMto1gZWUF3d3dxma/PT09uHbtGoDKJU49hff39+P27duYn5/Xfa0lg9lc3NraCo/Hg/fee8/UfBnm5ubA87wleTMUCgW0trbWXtLIh+PHXH+D/1m9jnvCp3jooYewvr6uOlyrDeWnTp3CP/zTP+LfTv87XvnXVzVVUGp5fEr3FZ+z/9IwNVEih8/nw7vvvqsrrlE0Y+abyWTEYxeaRJUPx3/HfRU3btzAn2//CQ6HA//78e+xd8+D2LvnwYrGuyd8Kj5nYYw71/50Gxdn/wtPub9elU4KaR5qz6Xppd8sDfuth7A+nw8zMzOGZ/e1Rg0mTzs7Ow3laxQLCws4ePAgAAM7SkC5kQae/Huk02nxZbQmVgzRaFSUna++qs2dSlCT8UpxpHH1pGNobW3F008/rXpBgRpqyf7Z2dmmyFNpOTWJKu/pAwMDmJubQ2dnJ27evFnBNXKI3Lm2ViU7mzW71QNWl2effRY/+9nPTM2XXdRrJdbX17G4uLjVvmyNs75xr+JbCmkY86EXCAToJ/9xpioO+y11fyoPU8pbrUyt33rjqZUhR7FYJIfD0ZD9kFytJl2fWqVyu3DhQoVDlap1qhLHMW7du+dBca318MMP4w+//1gcflm6lZUV8F8fwNqfbmP24hyeOPjVqiGRpVnfuFcRJh0RpPHU0svlpzwPtd9q2L9/PziOU7yIXi+kw3GhUMC9e/fENrNqmfb+++9XaH/EbUIj8ufYsWP4zW9+gy984QsV6U6dOoWJiQm88cYb6O/vV02vVpb8ud54tdIaeTe2wd+Ieo9hfn4eX/va1xrOpxbOnTuHTCYj/tc1UZJzy8jICLLZLP74xz8CqF53MoLSDpKbtUCbCnEztTZW2iMxpFIpdHd3V55415IL6xv3xE8ZWzY6jz76KD3zzDOKrsN362lyBqPG1lre4Kzw2SgtT75vLQjCpo2SQp3YuRH2GZ7cIGFyiI6eLxOW53l68MEHKRQKfeauyJQeC5S7wtPbYW/dutWwkw41SO9kdTgcVbZalZwqSFzsyKzUy5brW1Z2ly9fpn379um+M3w3cW8tL9lqaLYjzkQiQSMjI1Xlyw4dX1E9VlD2fjZcQehAIECvv/46RaNRcZljtXrJarCG2ToEVjuuEhp1eqWnTDUfTBVEFW1eFe4wF+gKhU9OSP4TZTL/LdoCl0ol8RyL3++3zP9vsxCJRGhsbKzu9Fb6QCbSHglEom7QVUXPZrWgdFgqkUgQx3GWne5qBpaXl6ucTmlByilmOL2qhQMHDqh2GtGNHXMuybyxbFVR5ciecJ8EQdB0PMmMizmO27HXmmgNoXpdoMuhV57W67CklrPPPcDm4aDlJVzdWuagphWp7QHYbDZwHCde7CqHx+NBOp1GPB7H22+/jc7OTpw9e3ZbD1fJobXLMzIyomqURhprcK31KUtHdV5iaLPZ8OKLLyIWi6lHYtQV3cBKHGGVf5S/zo2fUD2Tmc/nyel01nSvk8vlxMvsotFoXWdKmjmLlnKEkXLdbrepLg6k0HPkpXL2u7k23XJWwWbENvFwkNpazcjEIp/PUygUIqfTSeFwWPdpb7kvomZAbjBWq2wtp1eNolgsksvlqtleZZkqfXKlfDwe4qdH0feBHKVSiTiOo5WVFUOVDIfDojOtnbgcUvJrrOWb32ynV1LoXSZV+lESiIg2lHujDuao94VKpRLFYjFxras0q9uuzQv5PTC16mHFMU9BEAzd/aPTeFef0wpBEBp+qXg8ThzHkc/n2zHLIT02u4zYVizj9Nx0KQXkbtqk2JKrcmgTmed5SqfTuiqghqmpKfJ4POR2u7d9OaT3xmaz5Kl8NDDqOEVcpzZSqDwsn88Tx3FVAl060ZFPerRuZvL5fAZ8CRqDnndXEitK6ayQp+zSPmm5teqsPvxqpFMLkhaWSqXI6/WaNgvMZrMVyyErXNZoNVatOwMEQaDx8XFT5anajdG1YNlF84IgiLdamIlcLkehUIg6OjooHA43zYG0VG+pRnw98lTvqJjNZsntdmu+n1peDRO11lCstn41w8Hi+Pg4ORwOXaq/RqF1GQSRuevTXC5HPM/XvcSzjFOlGB0dtUQNRVR2WhmNRkUvaGyv1uwlkJpCmsEseVosFonn+YY0PJZxqvx5IBCwjLAMzA2Pz+ez5H5UNgQrvbN8QlMPPvnkk4YJStQkTmUIhUIN6SiJ9HEg83TK8zwlk0nTuDaRSJDf71esU6P+GnO5nCEdrNY7NZWoROU9YqUNaSt2jNgMnOM4VQ4zAi252YjTq0wm05AMlaPpRCUqD5OHDh2yZOaqRLhMJiMuh2KxWEOTGXZaW56/kn5T76iiRlCl9HryNJ2oejUpyWSSenp6LJF9anXK5XKiu/hIJGKoU7E8lFRfP/rRj2h0dFQ1jRJKpRKFQiHy+Xz0ySefVKVpRCO1LZzKkM/nye12m3rboRZYA+XzeRobGxMtIeVu2LUaUum8zZEjRwzJ02w2SzzPWzZx3FaiMoyNjZHX69VlOmKm7C0WixWWkKurq7rSyS8DNiJPo9GoLkvFRrAjiEpUHo45jqNwOGxI5plBZCVLSK18z549Kw7Bei8HzmQy5Ha7KRQKiR3AKnXijiCq1OI8HA4Tx3FNv7eGpddjCZnP58nhcBBRpTW/EorFougmvhnzB6IdQlQ5stkseb1e4nnekKxqRNukdm3XgQMHFOvA8zz98pe/pOeee44uXLhQFS616mjWnIHBcqI2wkGpVIp8Pt+2mphmMhny+XziZQtMNLCLl+TaG7n91XbcWNkUTm10aJQ2bCQSod/97ndNr5PcEnJxcZG+/OUvi2dukskk+f3+hiwlzULTht96CStNl8vlxKWI1+ut4BwzytIDKSfa7XZyOp3kcDjI6/VSIpFoen2UsCNlqh4kk0kKBALU0tJCbrebwuGw5TZN+Xyezpw5Q4FAgB555BF6+OGH6fnnn2/qRbp6YCPaRce9VbCwsICZmRnMzs6K3lBcLhfa29sxODgIh8NRdTc6aVjI3717FwsLC7hx4wZWV1fx61//Gjdu3MDa2hq8Xi94nofX6zXtvnKz8ZkgqhzpdBorKyvI5/OYnZ1FoVAQ3e8BUHSBc+3aNdHXYktLC9xuN7q6uvDoo4+Kv+UdoxoCDLqmsgS7nqhKHMeeScOkv9PpdFX8np6eujhvcsQG/3nZw75/wZWlVw3fMmUatmfUNwdWTED05imN98HJXsLwORJo80ySDYSRCfXEFmP7x4oGYPTUGOkYlPTmKY4AWMI755cxNDwMANiDEQwPlUO2C4bcre921NMJ1NKIYVfP452rQxgfLl8VduWVPvjP92B8adiEGteHXUdUrYY2Mw2g3QlY2NI772AZy/Db9sAPoO/kFRA9brgsM7Hrhl+zidMIxKF3cgNEBOHqCQgnv4K+V5YsKU9/xf4fdUNYClMvhihBgnhqQetS3WZh13HqtoFk39gcekeG8QLK8pSwhKvLAHr70LsNVRSxbd1pl0AQ7is83RB9Tg2f31LZTQ6VD2oPTW7oOs9rFXb95sN2oVJO70F5N6kH41eWcXJzniS7869p+D/DEyxKwXecxwAAAABJRU5ErkJggg=="
|
<image>已知,如图,圆O的弦AB=AD,∠BOD=124°,点C在劣弧⁀{AB}上,则∠DCA的度数为()
Choices:
(A) 59°
(B) 62°
(C) 56°
(D) 42°
|
59°
| 10,840
| null |
59°
|
"iVBORw0KGgoAAAANSUhEUgAAAPsAAACJCAYAAADqmE5sAAAcEElEQVR4nO2de1CTV/7GH9rO6qhEVi3ISFWUIBF0wSFoLbRhELAQFHZBsQijLK66il2tbGVn3ZmKt1nc6Uq9LOsNmAXBC6IBlnIp2CoGURAQDWNsBbGVFBVQULoL5/eHm/xMk0DAJCdvOJ8Z/sj7nvOeR5PnPffvsSKkn8CgWBn2cQzGa3Lo0CEcPHgQ1dXVGDNmDG051HiLmZNhycTGxuLhw4eoqanBqFGjaMuhyhu0BTAYxkChUODdd9+FnZ0dCgsLR7zRAWZ2hgVSWVkJb29vJCQkYM+ePbTlmA1v0RbAYBiSQ4cO4cCBA5BIJJg1axZtOWYFMzvDIujv70dcXBwePnyI2tpa1mzXAmvGMzhPS0sLPD09MX36dNY/HwBWszM4TXFxMTZu3IgDBw4gICCAthyzhpmdwVl27dqFs2fPorS0FFOnTqUtx+xhZmdwjv7+fkRGRgIArl27hjfeYL1RfWD/SwxOoeyfu7u749SpU8zoQ4DV7AzOwPrnrwczO4MTJCYmoqysjPXPXwNmdoZZ09vbi7CwMEyePBlXr16lLYfTsA4Pw2xpamqCh4cHxGIxjh8/TlsO52E1O8Msyc3NxbZt25CWloaFCxfSlmMRMLMzzI7ExERUVFTg0qVLsLW1pS3HYmBmZ5gNr/bPr1y5QluOxcH67AyzoL6+HnPmzGH9cyPCanYGdTIyMrBz506cOXMGc+fOpS3HYmFmZ1Bl06ZNaGhoQHV1NcaPH09bjkXDmvEMKnR2dsLX1xcAUF5ezoxuApjZGSanvr4eQqEQsbGxSElJoS1nxMCa8QyTwvrn9GBmZ+hFVVUVHB0dX2vee82aNZDL5ax/TgkrQoiBD4lgWCI8Hg9yuXxYZlcoFFi6dClEItGg0V5ramrQ2tqKO3fu4Pr163j69CkA4N69e2hublZLO23aNEyfPh1WVlawtrbGvHnzwOfz4eDggHnz5g1Zp6XDzM4YlKSkJMhkMmRmZg45b2VlJVatWoW9e/fi17/+tdq9np4eVFRUoLy8HBcvXoRMJoO3tzcmT54MV1dXuLu7Y8KECSCEYNq0aZg4caJafoVCgdbWVgBAe3s7GhoaUFdXh4cPH0IqlcLV1RUikQi+vr744IMPWGw6wmAMQFZWFpFKpcTa2nrIeQ8ePEgEAgGRyWSqa0+ePCH//Oc/iVAoJDY2NiQiIoKkpqaqpTEUjY2N5NChQyQsLIxYW1uTBQsWkGPHjpHu7m6Dl8UFmNkZOmlrayNZWVmkra2NfPTRR0PKu2rVKvLhhx+S58+fE0IIOX/+PFmxYgVxcHAg8fHx5PLly8aQPCClpaVk/fr1xN7enqxatYoUFBSYXANN2NQbQyepqalYsWIFAMDFxUWvPMpjlyZPnozCwkJkZGTA2dkZEokEK1euxP3795GSkkJlJ5ufnx8OHTqE77//HmFhYcjOzoarqysyMjJMroUGzOwMrZw8eRLJycng8Xjg8/l65SkrK4O3tzc2btyIt99+GzNmzMDNmzchlUpx5MgRBAUFGVm1/ixZsgQZGRkoLi7GN998A2dnZxw+fJi2LKPCzM7QQKFQAAC6urrQ1dWF4uLiQQ2/e/duJCQkIC4uDtu3b8e9e/dw/fp1pKSkYMKECaaQPSymTJmCI0eO4KuvvkJNTQ2cnZ1x4cIF2rKMAhuNZ6ihUCiwefNmtZH3rKwsWFlZqZr0r6IM69zV1YWffvoJo0ePxhdffIGZM2eaUrbBuHXrFjZs2IBx48bhH//4B6ZMmUJbkuGgPWjAMB927NhBrK2tibW1NWlrayOEEBIVFaW6tmPHDrX0zc3NxMPDgwQGBhJHR0dy9uxZGrKNQnp6OnF0dCT79++nLcVgsJqdMSyKi4uxYcMG2Nvbw87ODjk5ORYXw/3VYBqWsMfesr4dhknYvXs3PvnkE1hbW0MkEuH06dMWZ3QAGDVqFAoLC2FjYwNfX190dnbSlvRasJqdoTe9vb2Ijo7GlStXQAhBSkqKxqo4SyUjIwN79+7FuXPnOHvuu+W9jhlGQRnW2crKCp2dnThz5syIMToAxMTE4OjRowgJCeHsaD2r2RmDkpubi08//RReXl6or6+Hvb09iouLacuigkKhgFgsRmhoKP70pz/RljMkmNkZA6IM6zxx4kTY2tpi9OjRcHd3x+9+9zva0qihnG4cPXo0p1bfMbMztKIcibazs8OkSZPw6NEjHD9+HM7OzigvL7es+edhsmzZMnh6euKPf/wjbSl6wfrsDA1ePXbJ19cXVVVVOH78OG7dugUbGxtm9P9x6tQpZGdnc6YPzyLVMNTIycnB9u3bkZaWhrfeegurVq1SHdiQl5cHsVhMWaF5UVRUBG9vbzg5OWH27Nm05QwIMztDhTKs86VLlwAAIpEI2dnZqhBSeXl5OHr0KE2JZoetrS3S0tKwfPlyXLp0yazDbbFmPMc5efIkeDweeDweoqKiALyMLDMUfh7W2dbWFmKxGDt37lQFhVQoFGhvb2dBIrWwcOFCbN68GaGhobSlDAgzO0dRKBSquHDK3Wmff/45eDwenJyc9H5OXV0dhEIhVq9erQrrvGzZMgQHB6vNoxcUFGDx4sUG/3dYCrGxsfDw8EBsbCxtKbqhtCaf8Zpo25hCyMvNLFKpVK9npKenEz6fT+rq6lTXdu7cSSIiIjTShoWFjbjILsPhww8/NNvNM8zsHCQrK0tnTDhlGKnBiI+PJyKRiHR0dKiuyWQyIhAISF9fn0b6SZMmDV/wCKK7u5vw+XzS2tpKW4oGrBnPQdatW4fU1FSt91asWDFguOeBjl1av3499uzZo7GppbCwED4+PgZQbvmMGTMGf/7znxEfH09bigbM7BxDoVCAEIIZM2YMOW9lZaVG/1xJVlYWRo8ejaVLl2rky8/PZ1NuQyAmJgbt7e0oLCykLUUd2k0LxtBoa2sj1tbWevfLlWgL66ykr6+PODo6kubmZq15HRwcyKNHj4ald6TS2NhI+Hw+bRlqsJqdYyib6N9++63GPYVCgaqqKo3rsbGxyM/PR21trdbtmZ9//jnEYjGmTp2qca+mpgYODg5mHUfOHJk9eza8vb3NK+gF7bcNY+goB+herd2lUqlGbPe2tjayYMECsm3bNp3PUtbqugb1PvvsM7Jr1y7DCB9hyOVys6rdmdk5ilQqJTweT2d8uMuXLxM+nz9oXLiDBw+S+Ph4nfeFQiFpbGw0iOaRSExMDMnMzKQtgxDCzG6RKPvnTU1Ng6YVCAQ6a/XW1lazqpm4iFwuJ+7u7rRlEEIIYWvjLYj+/n6sXLkSHR0dqK2tHfQgw9zcXLz33ns6p+rYqrnXZ+bMmeDz+SgrK4Ofnx9VLWyAzkJoaWmBp6cn3NzcUFhYqNeJpSdOnEBkZKTO+3l5eVqn4hhDIzIyEunp6bRlsOAVlkBxcTE2btyIAwcOoL29HeXl5Thy5MiAeR4/fgxPT0+to/rAy+AVjo6O+P77740hecTxzjvvQC6XUz02mtXsHGf37t3Ytm0bSktLERAQgMWLF6OoqGjQfCdOnMBvfvMbnfe//PJLeHt7G1LqiGbx4sXDOt/ekDCzc5T+/n4sW7YMN27cQHV1tWqOfMKECXBwcEBNTc2A+XNycrQe56REIpGY/ZZNLhEZGYmcnByqGpjZOYiyf+7u7o5Tp07hzTffVLsfEhKC/Px8nfl7enrQ2tqKefPm6UxTUFCA4OBgg2ke6fj5+Q36AjY2zOwcIzc3F4sWLcLevXt1hjIODQ1FQUGBzmdUVFQM2ES/evUqnJyczDrqChfx8PBAZWUltfLZ1BuHSExMxMWLF3Hp0qUBd7bNnj0bHR0dePDggdbgkOXl5Vi0aJHO/BKJhG18MQKLFi1CRUUFFi5cSKV8VrNzgN7eXgQFBeHhw4eorKwc0OhKAgMDddbuFy9eHLCJzqbcjINYLEZFRQW18pnZzRxlWOfg4GCcOHFC73xisRgSiUTjem9vL3744Qed4aBbWlrQ29vL2fPMzJnZs2ejurqaWvnM7GbM2bNnERISgqNHj2LDhg1DyhsQEACpVKpxvbGxES4uLjrz5efns1rdiPD5fNy9e5dK2czsZkpiYiL27duHS5cuDbuP5+PjoxFA4c6dOxAIBDrz5OXlISQkZFjlMQbHxcWFmZ3xko6ODgQFBaGtrQ1XrlzRq3+uC7FYrDEF19TUpLNm7+npwe3bt/H+++8Pu0zGwLi4uEAmk1Epm5ndjKivr4eXlxfCw8MNEvRALBZrrKaTyWQ6++NFRUUs1pyRYWZnICMjA+Hh4Th9+rTBYo/b2tpi0qRJaGhoUF178OABpk+frjX9uXPnWH/dyEyfPh3379+nUjYzuxmwadMmnDhxAtXV1fjVr35l0GeHhoaqjco/ffoU1tbWWtOWlZVZRH+9qqpKdUoOj8cb8gk5xmTs2LF49uwZlbKZ2SnS0dGhM6yzoRCLxcjLy1N9fvbsGcaNG6eRrrKyEm5ubhgzZozBNZiSpKQk+Pv7q07J6erqQnJystkYfty4ceju7qZSNjM7JZT9c21hnQ3J3Llz0d7eDoVCAeCl2bUZ+ty5c2Zfq1+9ehVCoRDvv/++WtdESVJSEmQyGbq6utSul5SUIDk52VQyB2TcuHHUanYWlooCx44d0zh2yZjExcWR9PR0QgjReZKMQCAgd+/eNYme4SIUClUx9/z9/dXuSaVSYm1trTXElvKeOdDX10ccHByolM1qdhMTGxuLM2fOoLq62mQnooaFhQ24C04ulwPAsA6eMBdSUlKQkJCgdapSV4COkQYzu4loa2vDu+++Czs7OxQWFpp0R9nixYtRXl4OAFr764WFhZzYznrgwAG4uLjA3d0d+/btU7snkUgQEBCgNV9+fj4SEhJMIXFQBhogNTpU2hMjDH3DOhsTsVhMvvzyS8Ln80l3d7faPZFIRC5fvkxJ2eujPCVHoVBo3BuoeU+D1tZWIhQKqZTNtrgamcOHD+OLL76ARCKhurlEGdDC2tpabZCup6cHTU1N1LZdGgJl0/27777D22+/rXbP399fZ/OeBs+ePcPYsWOplM2a8UYkNjYWEokENTU11HeRBQcHo6ioCGPGjMHTp09V1/Py8iwiXHRCQgL279+v+qxQKMDj8bB161Zs376dojJ1uru7tXalTAEzuxF48OCBWv989OjRtCVhypQpsLGxwdixY3Hv3j3VdUs5oVVpaB6Ph/Hjx8PJyQlyuRx/+ctfKCtT5969e1rP1DMFzOwGpri4GL6+vkhMTMSePXtoy1FDLBajt7dXbdfVN998YxE1OwBkZmaiq6sLnZ2d6OrqMpum+6vI5XJqsx7M7Abk1bDOS5YsoS1Hg8WLF0OhUODmzZsAgK+//hoCgYDzq+a4xM2bNzFnzhwqZbMBOgPQ19enCst87do1vPGGeb5Dvby80N7ejvr6egAv++ssXLRpkclkmDlzJpWyzfNXySFaWlogFApVYZ3N1ehKAgMDcfv2bQAsKg0N7ty5w8zORYqLiwcN62xuhIeHw8rKCkVFRRg3bpzOWHQMw9PY2AihUEitfGb2YfLzY5doExUVpbatU/kXFRWlli4wMBC9vb04fPiwRYzCc4mCggKIRCJq5TOzDxFlWOebN2/i2rVr1KZRfk5mZiZCQkIgl8tVWztLSko0QlCNGjUKM2bMgFQqZWY3MaWlpczsXEEZ1lksFiMrK8ss++fK6aaTJ09i/vz5cHJy0kgTFBSE58+fw8vLy9TyRjS1tbVUVyqa36/VTFHu9z5y5Ah+//vf05ajQVVVlaqmPnnypGouV9vhjRMmTAAA6mePjSTKysrg4eFBVwSVFfkcY9u2bWTBggVms5lCG1lZWaq93oNt/Lh58yaxtrYm8+fPN6HCkU1cXBw5duwYVQ2sZh8AZf/cEGGdjU1+fr6qv75kyZIBtbq6umL58uW4ffs2QkJC0NPTY0KlI5OioiKNwVJTw8yug1f754YI62xMlCGnlAbXZ2/66tWrMXbsWMyYMQPu7u64evWqUTWOZHJzc+Hr64tRo0bRFUK1XWGmpKenEz6fz5k93llZWSQrK0vj+o4dOwbMN3HiRBIdHU1kMhlxc3Mjn332mbEkjmgiIiJIaWkpbRmsGf9zPv74Y1VYZ67s8c7Pz4efn5/ataioKK0j8a8iFotRXl6OX/7yl6irq8P9+/fh6+uraikwXp+7d+9CLpdrfD9UoP22MReePHlCRCIRiY+Ppy1Fb5RRWH7+x+Px9IrOcvbsWeLp6an2b87JySEuLi6koKDA2PJHBNHR0VpbXTRgZieE1NXVET6fr4rAOlLo7u4mDg4OxNHRUe3F0NzcTBYsWEA2b95MUR33kcvlxNnZmbYMFSO+GZ+eno7w8HCcOXMGMTExtOWYlDFjxkAgECAgIAC7du1SXZ86dSquXLmCN998E15eXmhpaaGokrvs2rULn376KW0Z/w/ttw1N4uPjiUgkIh0dHbSlUOPgwYPk448/Jo6OjqS5uVnjfmlpKeHz+SQzM5OCOu7S2NhI+Hw+bRlqjMiaXaFQqI4lNtaxS1whMDAQxcXF2LlzJ9atW6dx38/PD1KpFGlpaYiJiUF/fz8Fldxj3bp1+Pvf/05bhhojzuyVlZXw9vbGH/7wB6Meu8QVlHur58+fj+fPn+PChQsaaSZMmIDi4mK4ubnBzc0Nt27dMrVMTpGRkYFJkyYhKCiIthR1aDctTMnBgweJQCAgMpmMthSzYuvWrWT//v1EJpMRgUBA+vr6dKa9fv064fP5ZP/+/SZUyB26u7sJn88nra2ttKVoMGJq9tjYWOTn56O2tpZ6WGdzIywsDAUFBZg1axZWrlyJyMhInWnnzZuHhoYGVFRUICQkhNqJpOZKeHg4Nm7caJZBQSze7AqFQi2sM/Uli2bIwoULUV9fj56eHlXEnR07duhMP2rUKOTm5iIkJAQeHh5sqe3/2LJlCyZPnoxNmzbRlqId2k0LY2IOxy5xhejoaJKdna36LBQK9fp/Y0ttX3Ls2DEiEoloyxgQizX7vn37WP98CGRnZ5Po6GjV57a2NiIQCEhjY+Ogefv6+khcXBwRiURmvQ3YWFRVVRE3Nzezn8K1OLP/97//JRERESQiIoK8ePGCthzO0N3dTezt7dWuVVVVEYFAoPePODs7mwgEghG11FahUBA+n6/XS5E2FmX25uZm4uHhQXbv3k1bCifRdppreno68fHx0fsZI22prYeHB7lw4QJtGXphMQN0r4Z1TkxMpC2Hk4jFYkgkErVrMTExeO+997B69Wq9njGSltouW7YMkZGRCAkJoS1FP2i/bQzBrl27iIeHh9blngz9kclkZM6cOVrvhYeHk9WrVw/peZa61Lavr49ERESojXFwAU7X7P39/Vi2bBlu3LhhVmGducqsWbPw4sULrbXx6dOnYWdnBx8fH3R0dOj1PEtcaqtQKLBgwQK4u7sjIyODtpwhwVmz3717F56enpw5dokrLF26FPn5+Vrv7dmzB2vWrIGXl5feS2ZfXWo7Z84cTi+1vXr1Kry9vbFt2zbOnACkBu2mxXA4e/Ys4fP5ZhHqx9L4+uuvib+//4BplEtmh7p+gctLbZWhym7fvk1byrCxIoQQ2i+coZCYmIiKigqcP3/erKO9cpl33nkHTU1NAx7l3NbWhtDQUPj7+w+42u7n9Pb2YsWKFfjPf/6DnJwcThwXvWXLFtTW1iIvL4/TOyQ50/blUlhnruPj44OioqIB09jZ2eHy5cuQyWSIiIjQuz+uXGorFovNPqrtixcvEBQUhI6ODovYCs0Js3MprLMlIBaL8e9//3vQdG+88QZOnToFoVAIJycn5Obm6l3G2rVrIZFI8Nvf/nZILQNTkZGRgdmzZyMwMNByfnO0+xGDoeyfcyWssyXw5MkTjdV0gyGXy4m/vz8JCgoicrlc73zmttS2sbGRiEQiEhwcbJbbVF8HszY7F45dslR8fHxIVVXVkPNlZmYSR0dHEh8fTx49eqR3PtpLbVtbW0lcXBxxdnYm58+fp6LB2JhlM76zsxO+vr7o7Oxk/XNKiMVinVNwA/HRRx9BLpdj2rRp8PT0xKZNm/D48eNB8y1fvhxFRUVISkrCli1bhiN5WDx48ABr1qyBr68vPDw80NTUhCVLlpisfJNC+23zc0ZqWGdzo7GxkXh4eLz2c1JTUwmfzydxcXF619pbt24lQqHQqCsiz58/T6Kjo4lAIBgxvzWzMrtyLrOuro62FAYhBg2vdP78eRIREUEcHBxIfHz8oGMwxlhqW1paStavX0/s7e1JTEzMiNqdR4gZzbNv2rQJDQ0NnJ/LtCS2bNkCJycng55H39nZiczMTKSlpeHOnTvw9/fHokWL8MEHH2iEC3v8+DEiIyMxefJkpKWlDXmV5K1bt3Dx4kWUlJSgtLQUrq6uWLNmDSIjIzkxv29ojGb2qKgojR1UCQkJ2L59u9q1zs5OhIaGYs6cOSzaq5lRVlaGv/3tbygsLDTK83t6elBRUYHy8nJcvHgRMpkM3t7emDJlClxcXODu7g4ej4cTJ06gtLQUN27cUDOpQqFAa2srAKC9vR0NDQ1obGxEa2srpFIpXF1dIRKJ4Ovriw8++GDEhyQzas2elJSEgIAAzJ8/HwDA4/GQmpqKFStWAABqamoQHh4OGxsb6mdXMzT56aef8Ne//hUJCQkmMQohBC0tLejq6sKjR4/www8/oLe3FwDw6NEjPHv2TC39+PHjYWNjA+DlYh17e3tMnDgRPB4PU6dOhZWVFQghsLKyMrp2Q/PJJ58Y/JlvGfyJryCTydRq8oSEBMjlcgAvV8SVl5djw4YNOvNbWVmhv7+fk1+WJfCLX/wCjo6OaGpqwty5c/XKM9zvTGnKadOmab0+XKysrNRMbya9VioYzewKhULjS5LJZBCLxQBevomN8fZiGBb2HVkORptn/+qrrxAcHKz6nJSUBIlEomrCMxgM02I0s0skEqxduxY8Hg88Hg8ymQxdXV3GKo5hoURFRal+Q8o/qVRKWxYnMYrZFQoFAKCrq0v1l5mZaYyiGEZCm8l4PJ7JdWRmZiIkJAQlJSXo6upCSUkJAgICVL8xhv4YxezfffcdXFxcjPFoholQmkwul6te2AkJCVQML5FIVDM6jo6OJi/fUjCK2VNSUrB27VpjPJphYl7dl7B9+3aIxWIkJSWZrPyqqiokJCSoPm/evBkJCQlsv8QwMOhovEKhAJ/PByEEEokEcrmcfSkcpaqqSmvrTCAQQCaTmUzHt99+i+TkZCQnJwMA+029Bgat2W1tbdHZ2alq9rEvhbsUFxcjICBA47qTk5NJdeTn56u6EqmpqXBycmL99WFilltcGfRJTk5W9ZNfRS6Xm2w8RmlqZaWhnLYtKyszSfmWhlFX0DG4yY8//qjWT1aiUCiQnJyMkpISk+goKytTLcJSlg8AM2bMMEn5lgar2RkalJaWam2ub968GSEhIVprfGOQn58PPz8/1WelJlOVb2mYzRZXhvnA4/HUBsJ+/PFHzJw5E0uWLMG//vUvo5dfVVUFf39/jbXspirfUmFmZ6hQmkwbJSUlrEblOP8H0dCe3ysN1CUAAAAASUVORK5CYII="
|
<image>如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=40°,则∠PAE+∠PBE的度数为()
Choices:
(A) 50°
(B) 62°
(C) 66°
(D) 70°
|
70°
| 10,841
| null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAAAUCAYAAACah0+BAAADw0lEQVR4nO2Zu0vzYBSHf29iK0W0tildBKGjIAqCYy0KVq0giI4O6lJcugouBVELKg5u4m1zLILWyyCidRKX+k8IItjWwd6S8w3SaExbO9i8+TAPBMl5j+Rp+eXkUkZEhP+MhYUFKIqCnZ0d3ioAgHA4DACm8TErTfU0zc/PAwAODg4aKlMvjDGIoshbQ8VMLryYm5sDABweHlbtqStsLS0tpvpCHQ4HbwUNNpsN/+EF4ldpbW1FsVis2VNX2HZ3d2G32yGKIt7f3yHL8q8I1gMRqUFnjMFut2Nvbw+CIECWZeTzeSiK0tDjM8YAfEyw8mcvezU1NaG5uRkAEIlEUCqVQEQNdTITgiDA4XBgf38fs7OzNXvrCpssyygUCj8m9zcRBEH9KwgCRFFUp0c4HIYsy4b4iKKoBudr0BhjUBRFDXzZtxzI8v5fCF2xWESxWEShUKjZx2o9IBwfHyMQCMDlcv26oMXfQ6i1ODk5qZ6hvGhvbwdjTLeZiZWVFdVLkiQAwPT0NGcr81E1STMzM3A6nXA6nUb66Ein0/B4PJBlGUQEIkIoFDJF4PL5PBhjuL29Vd2enp7AGENXVxdvPcOoNBBubm70jVSBxcVFOj09pSrLhtPZ2amreb1eCgaDHGw+AUChUEhXHxoaorOzMw5G/PB6vZRKpYiI6PHxkQDQ29ubpkc32V5fX2Gz2TA2NmaKe7XLy0v4fD5dvb+/Hw8PDxyMPojFYgCARCKhW+vt7UVfX5/RSlx5fn5GT08PAKC7uxsA9Fef7wkdHR0lIiJFUbhPDiKiQCBA5+fnunosFiOXy8XB6AMAtLGxwe34ZuL6+pomJibUfUmSaHh4WNenCdvS0hIBULeRkZHGm/5AhfOBiIjGx8e5nQy5XI4A0P39PZfjm421tTVNbqqhvmfLZDLlSQcASKVSODk5aeDg/ZlsNovBwUFdvVQqIZFIVL4JNRDeT+pmYXNzE6VSCaIoYnt7G4wx5HI59WV3GQEACoUCfD4fVldX1YWrqyvY7XZjrb+xtbUFv9+vq3d0dMDtdmNgYICDFdQvMZlM6tYymQyOjo6MVuJGNpvV/MoTiUQAAOvr6/rmYDCojr90Ok1ERE6nU635/X5jZnEF8G0k5/N5AkBut5uT0SfLy8u6S+nFxQW1tbVxtDKeaDRK0WhUUwNAd3d3ul5zvNv4Rjwe19wDfN0qfQheJJNJjVsgEOCtZDgej0ezjxr3bTV/rrKwqEY8HsfU1JSuLkkSXl5eKv6PFTYLw7AepywMwwqbhWH8A2O+Y+WvmJIlAAAAAElFTkSuQmCC"
|
<image>如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()
Choices:
(A) 9cm
(B) 10cm
(C) 12cm
(D) 14cm
|
10cm
| 10,842
| null |
10cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAABTCAIAAADFpGTDAAAVeElEQVR4nO1de4xU1f0/9zl3XvtiYR9slwI+EHetYlEpWqKuYteIWYXaZHETlG3rBhURrGhjrUYaiBqCVoPRJtAKIrKKipQ1RCtK4hshyyMuK4+Ffc3MnXvv3Pfj+/vj+9ubjWUoO9xZRtvPH5u7M3fOnPs93/M93/cQyI7BwUG8SKfTAOA4zv79+x3HcV33e3d6nneacX6sME3Ttm286OvrAwBRFPGtVCqFbwEATbJAluVIJOJ5nq7rxcXFiqJomjZ37txs9/+3wTRNjuNc1x0cHGRZtqKiIpVKvfTSSxUVFTU1NU1NTddee+2qVasIISTbEiGrKoriv7J69erFixe7rvvvPPvfycWpVErTNLwWRdEwDMuyHnrooQMHDgDArl27pk6dqmlaVi4WRVHX9Wg0isuwbdu2KVOmfPDBBxRFjRqnFDI8z+N5PhwOe55HCIlEIqFQiOO4zZs319TUaJo2bdo0Xde7urqyknjMmDGCILiuSwjRNO3EiROzZ8+eNm0aRVH/ozIhxLKsSCRCCJFl2TRNnudd1929e/eqVatisVgkElm+fHlLS0t9fX1WQaGqak9PDwDouv6nP/3JMIxEIvH0009/7zZvCPnajQUM0zQNw/A8z3XddDptWdaHH344duzYiRMn/vznP//4449N0wSArCTGw1HTtNWrV1922WV1dXXjx4+/9957h9/jDUOeH6fg4DgOAOi67r+i6/pvf/tbWZYB4L333rv88svT6bQoilkFRUlJiSzLnudVVVV98cUX//rXv3bt2nXrrbf6NwDAaGzIQoVlWYQQX2batu15Xm9vbzweV1W1oaGB47ivvvrKcZysJCaEDA4OLlmypKmpiabpsrKykydP7tu3z7Is1OQAgKIo27Zt26Yo6hwxU96BpAAAdwi4ZcPhsKIoDMMoioI3bN26deHChYQQ1BG6urpUVS0vL88qKNra2iZMmHDxxRd/9913mUxm4cKFVVVVdXV1L7/8cjKZBADP82zbdhzHsiwUOj9K4GNaloU2l+M4+NSqqhqGAQCWZQFAMplcunRpIpGwLEuSpBkzZsyYMQNHoCD7fjcMQxAE0zRDoZBt27gvkslkRUXFwMDAuHHjXNfFZXRdt6SkJJANWGhACcAwDMuyhBA0F/CaEILE6enp+c1vfnPixAn8l+f5SZMmbdmyhRBC03RWEnueZ5pmOBy2LMswjGg0qqpqUVERIcSyrO3bt9M0fezYMUEQHMeprq4eHBwcraceVTiOQ9M0x3EMw6AKwTBMOByOxWKu6x4/fnzy5MmzZ89mGAYAQqEQHv6u63Ich4bF6WRxOBzWdZ3neZqmGYZBezqRSLiuO3bs2LVr1wqCoKpqaWlpJpMZtWceZbAsy/M8wzC2bRuGgRuX5/m+vr4NGzZ89tln4XA4HA4jlQghiUSCZVmkdTQalWU5qyw2TdNxHFQqPM9Lp9P4HfiuYRjXXHMNDGktvb29+ZSH5xIoGXBP+54d13VfffXVu+66q7u7G19JJBKKouANrusmEokTJ06gEM9K4kwmgxco6fFa13VFURRFMQzjqaee2rRp03Anxo8SeLgZhuEf6YcPH37zzTfnzJlz+PBhPPn7+vpQzcBlQMekZVmqqsJpjrv/XwFCotGoZVkcxymKUlRUhDsF/9bX1+/bt0+W5Vgs9mO1qvG5TNOkKIrn+XQ6vWXLlk2bNnV0dCARCCGu69I0nU6nS0tLCSGyLKPvIhQKKYrCZhua4ziO4/Ca53lCCJ51DMP09fVVVlY6jjN9+vRvv/12/PjxKIZ+0EB56DgOnmy45Xme9zyPoqhQKEQISaVSDz/8cGlpaUdHByEE6etfIH3JEKEQ8Xg8q6A4DXDLOI6zY8eORYsWwZA1+YOG67r+c+EGB4CTJ0/atu37Eq6//vqXX34ZTYEzH3nEJMblRfEPADNmzEin0z8O00NVVf9B/GsUsn19fTfccMPHH39sGIZt28NdE/8ROW5wNHUIIbfeeuvrr7+OkuQHDUVRIpEIRVFoEEcikUwmI0kSRVFdXV3z5s1buXLlFVdcEQqFWJb1TY8zwkiXGvVqVVU9z1NVNZFIzJkzZ6SDFCB8xtQ0TdM0Pz7Z3t7e2NjY29uLzhlfTzhzjJiLKYpC/sWLMWPGRKPRzs7OkY5TaBAEASkbCoUoiqJpWtf1zZs3b9y4sb29vbKykuM4AOA4Dhn8zEfORVCgOoLT8jzvjjvu2Lx5cw7jFBR0XY9EImhtCYJg23Z7e/tzzz330ksvocKQyWTQG0MIEQRhBEPnsKcwJijLMnqeAOCKK67IYZyCAppakiQBgGEYf/jDH+666y488TRNw0PP8zzDMFRVHZEGdTpP2ymBJgm6RCVJKi4uliTprbfesiyrtbXVNE1CCE3Ttm1HIhEAKDSTBCnFMIyu6xzHsSybyWQEQWBZFj2Lvb29zz//PMdx999/v6/qng1GLCg4jqNpGtcHD9Z4PH7ppZe++eabhBDLsnie5zguHA4TQtAFWlAQRZGmacdxwuEwAAwODkYiEZZl+/r6BEHIZDLPPvusZVmLFy8uLS3F6PJZIhdZzDDMcJuHpumLL744Fot9+eWX8XjcsiyMg7iuOzLlZlRQVlYmSRJqBRzHFRcX67ruOE5lZWVnZ+eSJUvq6upWrFiBj6bregBfOVKZhRqxHw/1xXFHR8c999wDALIsY1y2ME0+13V96ymZTKK0FUXx7bffnjt37qZNm3yH4ohMuNNgxCT2/ZlIQYzjmaapadp1112HCS4wdDL8e/bbOQfOHz2NACDLcjKZ/PTTT5uamr755hvXdXH+eOT43suzwYgFBWowOAnXdSmKQm9ROByeM2dOR0cH3oDvFqB7iOO4ZDJZXV1tGAb6CHfu3Pm3v/1txYoVl1xyCU3TgiAAAMMwFEVpmhbAV+awLCgELMtCgweGOLq3t3fhwoXI1KZpBrXRgoVlWcinmUzG87wXX3xx5syZhw4dwrds25YkSdd1z/OCcoXnchxZlsWyLMdxaEz7rFpSUnLo0CGMdKGuhmpQAIwQHFBRs22b5/knn3zyyJEj//znP2OxGADggxQVFeFxHYvF0G17tl8ZyEIhXNfdtm3bgw8+CABoCwU4+EiB/gQ8zQzDQM71HRG6rj/00ENtbW2pVAqGokd5QmCyEp+nsbHx888/l2U5Go0ahhHU4DmAoqhEIuEHhmmaVlUV+VTTtLa2tlgstmbNGjQuVFXN30yCPI7Q3PjZz362e/duAMB/zxVEUayqqmIYRlVVRVF4no9Go2jLzZo167zzznvwwQfxZD569Gg8Hs/jVILaDrjXEonE4cOH77jjjuEvnitgCjsMncaKouzevXvBggU7d+5EAfK9jJ48ITAupijKNM2SkpJJkyb19vZKkkSGcuvOFWRZLi8vR3Ehy/LAwMCaNWuamppmzpyJMYRIJIKajx+lzAuCWiv00AOAqqobNmxYvXo1DEX5zgkw3OmH3Xbu3Dlr1qwjR44g20qSNDAwgHfquo5h+TwhSBJblpXJZHC6N910UzqdPod5x7jelmWlUqm33nrrtttu6+/vx7fQATA823FEsbiRIjBBgTpyNBrFTTd27NgjR44E4qnKDeiBYll248aN69evf+yxxzDPEW1iRVHQZdjX10eGshjyhQCXa7hY6OzsxPi/nx0DAGg1Bc4ymLCDR6ufogoAiqI88MADy5cvR5mAeavBfvWZIDAuxiQPAEDO/clPfqIoSk9Pj6ZpxcXFfsBG1/VgPZwAwLIsZoURQhiG0TSNYZhMJjN//vyf/vSnDz/8cCwWI4Toun5O4gOBkRiNTkIIRrfi8fhFF130xhtvYGoMshUhhGGYYH1DFEVJkhQOh03TTKVShBBBEFKp1LJly2655ZaWlpaioiKGYVBt8PN3RhVBbQdULf2cGgDo7u5uaGgAgHQ6jbsYg37ohAvqe3HY4UmO6XS6sbHxueee0zTNV3gxKOcX0I4mAmMolmUBAKMhKPImTpx4/vnnv/POO4IgIOcigwcL27bD4XAoFMKw4fHjx+fOndvS0rJo0SI83PC2SCSiKMq5MTgDXC5kYdu2UWESRfHAgQNz585FDQkAMIsUArX6fGeTqqrbt2+/+uqr0TOJxVkAkEwmcfdgJfjoI0ix6HkePQRCiK7rU6ZMEQThq6++IoRYlpUPDz1KYULIjh072tvbt27dOm7cOADgOA7t47KyMsy0rKiokGU58An8RwR5uGNZMCEE0/DHjRunqmpjY2NHR8fll1/uuq5lWRh2DBA0TfM8/8QTT3R2dv7lL38pKysjhLiui0UoeA/P8+hux9yEUcaI8yhywKRJk7q7u/Ea3fm5sbOu6yhMMQWCEILq2qJFiyoqKh577DGO40RRxOB84cS08j4PAGhubt66dStq/sjmPn+dOfBYGxgYQBWNoijMymlqaqqrq1uwYAESvaSkBL0TwT9Jzsi3sLcs6+DBg/Pnz4dhOlMOBp7vrPHLLhRFWbBgwd///nfU2PxGJhhUDO4JzhZ552KKoiZPnqzruiRJWLpGCMlhF2NOVDqdxjrLb7/9trW1debMmfPnz0cJW1paats2Khj5dU6OEKNBYoZhGhoaNm7ciCXYhJDcSAAAJSUlAJDJZO67774777zzzjvvNE1zcHAQ9V8M0fM8jwtZKMj3NkHT+fjx47/61a9gmLo6UuAHDcPYs2fPzTffvH//fhjWMEfTNMwUBQDMMA9k8oEg7yT2rYxly5Zt374di0Ry8COjo2f79u3XXXfd3r17DcPAxRNFEUdDL7AkSRhULhzkncR+RlZXV9fdd98NADm76v/4xz82NzdjrxcAwJgQmpS4kFjxCgVWQTUaspgQwvP85MmTv/zyS9M0MSU52/0orFGYOo6DzjNFUe6+++6ioqJHHnlk/PjxjuOIokiGMnH9+mMsVibDKuIKAXk3PTA7i2VZ13Vfe+21/v7+pUuXnv4jjuMwDJNKpYqKijiOO3r06PPPP3/hhRc2NjZWVlZKkhSLxTAX6QfRCyrvXOx5Hsdxtm2bptnc3Pz+++//x7wQjGKUlpZyHHfy5MnVq1dXV1c3NTVVVFTQNF1aWoryATOx8z3/s8doWHcURTmOgy7NSy+9dM+ePachDQBgIz+apkVRvOeee2pqah544IExY8akUinMMOI4LpPJFGaK+CmQb2GPwTQ0wERR/Prrr++///7T3I+OR8Mwjh07dvPNN7/zzjtoqmHSiWma6FyHPIeNA8RoKG2maSI5MGX2xhtvPL3eqmna7t27Z8+evWfPHvQvJ5NJ3y+M3TvxuqA0h2zIO4kxjITdb/CVp59++h//+Ee2+z3P27Jly0033YQ0xT4a+FlsNwcAkiThtvhB1F7nncRIBdu2M5mMnzt9/fXXZ7t/7dq1bW1tR48ehaGSdgRe67qOO8B1XZ+XCxx5P+5omkbvLRZhEUI0Tbvqqqv27t2LNCKEoJps2/af//znQ4cOLV26tLa2VpZl3AFYNoQnmyAI2KkSB8z35ANB3knsO+D9gFNZWdkvf/nLtWvXRiIR5O5IJCJJ0iOPPJJOp5ctWzZx4kTUFsLhMMMwBWVH5IBRCg2ggcCyLFZu/uIXv+ju7u7p6WEYJhaLOY7z6KOPEkIef/xxTPw3TRPZ1jAMjNWPzjzzgax6ZVABecMwMNKBTR9t28Z+ZNdee+3BgwfLy8slSbrttttaWlrmzZsXj8exLwRKA9u2WZYtLi7GhLlA5hMURrC38i3sfU+bf4GFj7IsNzQ0HDp0aPbs2e3t7XiaaZrmJ7IYhuEnoPxQTrZTIisXB1W+zLIs2nLIzjzPO46Dxb01NTWtra0vvPBCbW0tvojlRJgOEAqFGIbBZn9YYxTIfILCmUcVsrqB1q9fH8hUBEHANBzc6SzLYpvDgYGB/v5+nufLysow1SGTybAsK0kSx3GCIHAcZ1mWpmk0TUcikcKJKCNaWlrO8M68czEAyLKM5f1Yx4vFePF4vKyszHEcbK2qKArLsqIoxuNx7LiRyWQYhsG4HOb9BTKfcwA/Lff111+vr6+vrq5ubm72PG/NmjVonqJldTYFzdl+/8J3paMKDMMKrAsKfpEshlqWLFlywQUXXHjhhZMmTZo6dWp9fT1GCURRPKVBTwCgq6tr+vTpv//979H6Onbs2DXXXPPaa6/h85/lw+PhZhjGwMAADphMJleuXFlTU1NbWztlypTKysoJEyZgFgD2RywomKaJ9qTfnq2np2fZsmVdXV3JZFLX9S1btsyaNQsP5FNmfhJJkq688spnnnkGj2/P8zRNW7Fixaeffup3a4Eht1ZujHzK37/43e9+5/uGjh49+uSTT/r1LYUGv32N4zh43dbWhm+5riuK4vLly1euXJktZkivX7/+ggsuaGtrwyMIAMLh8JVXXjlx4kTUZNFqwL85ZNlk+/0LSZJ4nk8mk2vWrKmtrS0uLsZC5MAl4dnDt5uwre6BAweqq6v7+/sJIZ7nYQr+Rx99VFpaeuomzg0NDa+88oqqqsihg4ODsixjlTsMay2LeySHWgms74Ah/gUAx3E++eSTXbt2AcC7776L4XrM9ClAQeHnDvix12eeeaazsxOGpaavW7fu9ttvz+ahZQcGBtDcAgBJksrLy7+3BgCA6Sa55eIJgoDLU1xcjF+Bronm5uZIJMJx3I4dO5BHsNf3yJksvwiHw+jJwsfXNO2LL75obW1NJpNFRUWoCFmWNX369FAohFHK741AG4YxYcIEnwqSJPmci3eg4UDTdG4tPFzX5Xke14mm6eLiYtd1N2zY0N3dvX///nnz5o0bN66/vx+JG3hq7NkD/Soo7liWNU3zvPPOi0ajY8aM8Q2lv/71r7W1tZjF/O8j0DzPi6LoJylhO6LOzk6U635vQZKTICbZf/8C25ZMmDABk6uxwVRhKr+e56F5qWnavn37pkyZQgjBjrDRaHTFihU1NTXz5s3D1vun+Pyrr75aX1///vvvo8Tcs2dPa2trgPVpfudUP39y3bp12F8ZhtTtF198Udf1c1IUdybAUCwA6Lo+c+ZMP2aIaeq//vWvYSi0eEpfCgGAzz///JJLLikpKZk2bdqSJUuCbdVhmubBgwdhSPVRVfWpp57au3cvErS/v//xxx9ft24dSio8RgoKOE9Jkj744INbbrmlqqpq6tSptbW1dXV1VVVV27Ztc10XW+n7panfAwUA6XS6pKRE13V0viiKEnh/hkQigd1LFy9efOTIEbSeT5w4UVFRcfLkyc8++6y8vLygMlZ9oB42duxYQsi+ffvq6+ux3R9KCcMw4vE4RVGe52UymeH9t338H5hcLKCItE8IAAAAAElFTkSuQmCC"
|
<image>如图,AB∥CD,点E在直线CD上,EA平分∠CEB,若∠BED=40°,则∠A大小为()
Choices:
(A) 80°
(B) 70°
(C) 50°
(D) 40°
|
70°
| 10,843
| null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABNCAYAAABgzdCLAAASE0lEQVR4nO1df0xTZ7//HHAvWezEzMOosQhI9TIPf5DAH87hZXeUyTvYfWuC0UXc8IZNpC5plN3MTISrGLN35cr1gmGrb9BY7/iDrTVq5JWadBlGF9zF3LfA3ruy4UoCrnrDhkuKtOd7/+gP2p7+Ak5rAT9J057n+Z7nPH2+z/f7fL/f8/xgiIgQZxARGIbB/fv30dPTg/Hxcfz+++/o7+8HANy7dw+//vorWJYFx3EAgFdeeQUpKSlYu3YtysvLIZPJIpYf6voZAEYMxs+lYe/du4cvv/wSer0eDx48QFlZGXJycvDcc8+hqKgIAMBxHFiWhc1mw9DQEACgr68PMzMzGBkZwZUrV5CVlYWdO3dix44d2Lx580L/wvIDxQE2m43UajXJZDKSy+WkVqupr69vQWXevHmTVCoVZWZmUmZmJtXX19Pk5KRINV76EI3xPM8L0qampqi5uZlSU1NJrVaTxWIR63F+GB4epv3791NqaippNBqy2+1R1W85I2YS397eTlKplCorK2PG8ECYzWaqqKggmUxG58+fj8szFytEZ7zFYiGO46ioqGjB6tyDSNIamG80GqmgoIAKCgro559/FqUOSw2iMr6vr49YlqW2tjYxi50TfDtBc3MzyWQyunv37lOrT6JCNMZ3dnYSy7LU09MTli7WY21g+d3d3ZSWlkbd3d1xr0siw8t4vzaI0B487/D5zZNaraa8vLy4jeVzhdlsJrlcTo2NjRFpl0tnSPK4dQzj8sfBExDMJScA4AHwYJhkb/KhQ4fw/fff4/bt28jJyYm5+zkfcByHu3fvwmQyoampKSztsgn0eHoAz/P0VUsdwcViQukB4mmQ6uo0bgLyfnt+arVaysvLo6mpqbj21vnCZrORXC4XqP3lIuW+cDF+UE8AqPRgizvZ6U2r0+iD3mgymUgqlSaseg8Fs9lMLMtSf3//067KUwWIhkgBxofps2hRlZLGYPZP5F0um1Qqpd7e3jhVU1zo9XqSyWRktVqXpbQTEUGvOUhACQ0Gsei+aqkjvdk/3eFwEMdx1NraGtEITGQ0NjbSli1bnnY1nhqgcKvzWR46iciHp7wrzSMZbW1tVFxcHM86igpfCc/PzyedThcV7VIDAJDG8D9hSJzeX1NTU5S+9qUlMz4ajUaSy+VBY/tLHW53LimEzc/75Wk0Grz2j/+EwsLCGPoZbrdSUI9gvxeGkpISyOVydHR0iFbmooHCx3L3U22Dej/DbmJigliWjbsVbzZoZl1MgBSqAPdygRgYGCCpVLrsXulC7/bd/+xmMk/uxlYc8CNUq9WkVqtDFjTf8TDcXZ8eKCGg1G14OomnQSpJAilUf57Xs0Khurqajh49KmqZiQ4QhZEqN5xOJ0mlUmppEbp8oiAI9zV1CkLpAUG6q66vB/VC5ouBgQGSy+WilbcYAF/jLRTu3LlDmZmZlJKSQmlpaaRSqWh4eFj0yni0hqcjBrqSRERDBo2PFhAPMpmMhoeHl7Ql74uk0IbdLAwGA95++20olUoUFxcjOzsbO3bsQF5eHj777DM8fPhwAVbGrLHGMAxAwNn2eihUGig5V9zc19T7+8iPENPA86C8vByXL19efrF6X/ABP3Jzc+nOnTtks9lIKpV6Y939/f20f/9+YlmWdu3aRXq9fp79z+l9Fk+DVAoII4bu6hxQCIciMdDT07OsAjrB38f7aDtPeNaDa9euEcuyNDEx4SLleXI4HKTT6aiiooKkUimp1er5q033O4Jgal4wBIiolR0OB6WmptL4+Lh4hSYwIk7E0Gq1VF1d7cfEmpoaUiqVQemtVitpNBqSy+WUn59PHR0dIV2lYB2Dp7+RAoxA4nkaJAVAJXWfuq/Fh1KppK6urhiUnHiIOMCPjIwgMzPTb+w7ffo0BgYGcOHCBQG9TCbD4cOH8cMPP0Cr1eLu3buQy+XYvXs3rl275kcbbDxlkIeyuhLUnz07mzhkQBLDASoNjO31bjrxkZWVhdHR0RiUnICI1DOqq6tJq9UK0k0mE0kkErJarYK8QEm22+2k0+morKyMpFIpffjhh/5eQRDxrSuFn4sZTPWLDY1GEzZWsZQQUeInJiaQkZEhSC8uLkZNTQ327dsnyAuU5JSUFOzZswfXr19Hf38/1qxZg7feeguFhYX4i/YcJn/9Pz96Hk603yDwPA8iAk/ktfDdnTW6Xj1HyGQyjI+Px6TshEOknsFxHA0MDATNs9vtlJubG3RWbTSGXV9fH9XU/AulpqZSVVUVXbty1XVvCPpYyLxvPU0mExUVFcXgKYmHiIxnWZZsNlvI/P7+fpJIJGSxWOYd/LDbn5BOpyOFQkEymYx27txJGzZsoPz8fMHcfNczIged5gOLxbJsIngRGc8wTMRCjh49Slu2bCGHwxGRNhKsViu9xKZ5x/YNGzYE9QpiEWGbnJyk1NRU0ctNREQc49esWRMxMtfU1AS73Q6NRrOAMcf1kclkeJFd402empqCXC7H3r3voufGX73psYiwPXz4EGlpaaKXm4iIyPj09HQ8ePAgZD4RITk5GTqdDqdOncK9e/fmVxMGXh+tra0NLMsiPT0der0eY2NjUCheR8unGmRkZKChoQEjIyPze04QkNtYnJiYgFQqFa3cREZExmdkZGBsbAxAcGvaI3kcx+HIkSPYt28fpqenQ9JHg5KSEhw8eBC1tbV49dVXkZKSgnfffRe9vb3o6+tDcnIySkpKsG3bNpw7dw6PHz+e13MC/8PY2BjWrVu3oLIWCyIyXiqVwmq1AoisXuvr6yGRSHDy5EkB/Vw7QSj6zMxMNDU1YXR0FM3Nzbh16xays7Oxd+9e3Lx5c0Gu3tjYGNauXTvv+xcTolL1Y2NjUTVocnIyzp8/jzNnzuDbb7/1yxNzTPbUpbi4GJ2dnfjpp59QWlqKEydOIDs7Gw0NDbh///6cyx0bG3um6j3IycnB/fv3o2ZcTk4OTp48ib1793pVfigEdqZopTWwLitXrsQ777wDk8mEr7/+GoCrU2zbtg0XLlyIeigYHR1FVlbWnOqyaBHJ7A98OxcJHjdLoVAEDX9G64Y1NjZGtcgxHIxGI1VXV9Pq1aupurqaTCZTSFrP2znPW8eljqgkfvXq1QLVHQoeaezs7ERnZ6dXAgPz51KWL2gOklhSUoLOzk5YrVZs3boVR48eRVZWFpqamgRDgdFoxMsvv4z09PSoy1/MiDz9BoBSqYTBYJhTwTKZDO3t7aiqqhKo2kDmhWLmXJgcDhKJBO+99x6++eYb3Lx5E06nE0VFRXjttde8Q4Fer4dSqRTleYsBUTP+ypUrgvRIjNmzZw8KCwvxwQcf+NEHSvJCtUAk+NYzJycHx48fh9VqRUNDA4xGI7Kzs3Hx4kWsX78+qjKCXUdzTyLBj/HkIMxMz34c7qltBQUFePTokUA9RsMErVaLq1ev4tq1awL6eDVMqI5WUlKCixcvwmAwYOXKlThz5gyysrJw8uTJiP81Glc1kefv+TGeWcHguT+4AmhJf2Cwwp27YsUK7N69G62trV7aaJnGsiy0Wi1qampgs9n88uLZMOHqe+7cObz//vu4ffs2jEYjHj9+jKKiIpSWluLSpUsC7ySwrERmcEgIzD2epxk7T44A4/vBgweUlpY275U0VVVVVFlZGTW9GFZ9NAi3kqanp4eqqqooNTWVampqRNvFKxEQhvGu7yd2np5M88QTUWPDcXp7516acfrTPrHzNDMjLOOJ+8OT682XTCajS7r/EuQFQ+Oxf6NjH5/we36osolm0/zq/YQn3ul/HYiysjLXku8wmJycJK1WSwUFBSSXy6m5uVkw82ixzccPL/Hu356/NDX1G61LX+deLcvTzLR/w7u0hL/G4J/MNrjRaKR0dj3d/9kqyAuoBB37+Dg1HmskIiLHNO/ubKHL9u0QvO/1tP+179OMRiNt3LhxTqtlLRYL1dfXk0wmo7KyMrp06dKiXG0bUdXzM87ZxnXy9J9n3OvjnbNS5/nMOF00wSSUd9+vOvABlZWVCfN84eTpWEOTUNWHKztwiIp0TbPr44PO9o1Cgq9evUq7du0ilmWppqaG7ty5E/GeREFIdy7Jba8wKxgwPOAkwOkEautq8fDhQ/zHmTYgCXguhfF+PMYgwth9J06cxIjFgnPnzkUwPkIYTAt1BNyGWVNTE55//nns2bMn+GzfEAYb+Rh25eXl6OrqgsViQWFhIVQqFTZu3IhPPvnE+0YzYeHpAV61yfuqcHfejI9EkyeMu45uXDfSjNMjHTzxPurYO+Y7eZqent0ya8bO09df91FqaiqN/jgaXNXzPB37+AQdazjmvS9U2YGqPhqJ/+qrr7x74IiN4eFhUqvVlJ6eThUVFaTT6cjpdIpiA4hpR8wyfmZWZQda9J4G9002mUyUnp5F3w9ZhIaaz3g7HdCJPHkf/WsDFb/6mk+em6nuztV47PiscRei7CfTQuPORRv6+t5/m+kllo3LNqd6vd5vKEiknUSi3NKUJ8dMQArPk1arJY7j5rXPnd1uJ47jSKMJvg4uFu5cqH3uFgKe5/0kMZhU2mw26ujooPz8fJLL5aTRaJ76y6CoGM/PBNMCLqjVaiorK5sX8wcGBkgikQRdci024ycnJ6m4uDgusYFwGB4eJpVKRVKplCoqKqirq4uczuhnDYul7sPG6mnGFbp1gkFyCFvr9OnTyMnJwZYtW6KaB0c+xlF+fj4++ugjVFVVwel0zs04mQMGBwdRWFiIbdu2RdzSdK6gCBHMwPzc3Fy0tbVhfHwc1dXV0Ov1ePHFF1FbWxvVfEXRooSidB8i+vzzz6PavToQDoeDCgoKBJIolsR3d3cTy7KCxZCJEnDhed47FHAcR7m5udTa2uo3FMSirqLvV79q1ao571c/PDxMEonEz/gRg/HNzc0klUoTyqiKBLPZTCqViliW9a7eFWO9QiAiMj7a3uah8z2hYi4BjdbWVuI4zhsFWwjjTSaT94SKxRxa7e7upsrKSmJZlvbv309ms3CziPkiZmfStLW1zflMmuLiYqqvryei+TF+qZ5JY7PZqK2tjXJzc71rFf28Am9fdu9KGkXnjunxY3M9hWp0dJQkEgn19fXNifHRnEK1WBHIRLPZ7N1+prKyMvhGDj63hOoECXfunFarJblcTkeOHAnLeKPRSCqVitavX79sz53r6uoipVJJLMuSSqWiwb+FHgoC2S/KSZMhvIWgrkekkyaJCKdOncKjR4/w+uuvo7y8HESEW7du+Z00mZ2djcrKSiiVSnAct6yOEQ38r7/88gu++OILdHR0IDk5GbW1tdi9ezdYlp29B/67iMSM8dEg1NmyAwMD+O2335CSkuJd4JCRkYHk5GS88MIL2LRpE1atWhV0JsxT/DtxQSDTiQEY919mGAbj4+P47rvvMDQ0hDfffBM6nQ4pKSmCcp4q44HQmuHQoUNYtWpVSFoiQlJSEsg1XPmlLxfJDwciwtatW7F9+3bvtW+7PHXGxwLPmB8EAbo+qunVC36mT9+KRz/zlf7lBtUbDBjG/9NiGBJsExYXxnu2Ko0kiQRg8HILDIPiMGx5Sb1rLnz7DUJdKaAxmEFEGLzcgvodnKBN48J4j5oJywgCgCGolfVxqdLSg4uVhCH8r1GBsn9+GQCwWb4hDHUsEehHhAIDnD7YDqa0FJu4WFdq6WLo8nXgwJvgGBdrVeodfhtCexBzxlOISXKB4+/l0wdBpQrwvbE5hmS54IeRH2E8ewgMkwyGYbD9tAO9bYcFdDFnvGDZFADXMaUMvIwdMuAGr8DhjQxuKjZis0dFRF7M+wwBctXbcxZ6Mw8iJ/QtdfhT3goYBoWCFveWZfwOOHKro/ZetB9WAgAU/yD3JX6GSPBtoyEDzuIAlJwrkKU8dBClAHp7DAIBjCvjXb3O/5GGfz+As2fPulwPbkc8q7PkcPmvRtRtfwOAW9MO/R29ADbINwpo48p4P/UOAEMG9NJ2b/TNbNBgU3Zinkid6CAAN663440/Kt3XQyjldgAowR//tFkwJCTxCD/XbaH5QtPO3deGDGDUN7wqHnAZJmI/f6nnA67YRxLD4GwvoORcQZukJA7G0gMgMrpspsBhM+R7u0jv9aLND3XCVMB25L7blAc9eiRW9Vsq+QKEn7m7JGP1zxAZz/ylZYpnjF+m+H9ragGC3ewIWAAAAABJRU5ErkJggg=="
|
<image>如图,AB为⊙O的切线,A为切点,BO的延长线交⊙O于点C,∠OAC=35°,则∠B的度数是()
Choices:
(A) 15°
(B) 20°
(C) 25°
(D) 35°
|
20°
| 10,844
| null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAABnCAYAAABPTqP3AAARCElEQVR4nO2dX2wTZ7rGnzFRITdNLKgI56IpJQSHqmB0KmGnVe0gASFhSYjUBiodSHoKgUpnidldKdFKUKgqVUdHcXK0woRWcdqjxXS3JUlLYlOp+dNTEvdmSVvYpHFI0t5gLkigF9j9k3n3wp7J2J5xbDL2jO35qSn2zHjm8/jxO8/3fu98ZoiIoKFiWAA6ybXkPgZd1fv882P9v6GTOYET6ETnPunXZRO58S4zGh1CQo6EhQ/tLzHQVTHoJxZEBCJCbV8edFW3saUUQI6EJ03EGQH3MbHh//vwvy+VwkZt8NElVIEBd0Gt7LyGY8xzMGxiQIxCzU0zeUo3QCMZQmK+03EUthtm2H2nUBJewzCcYktRZq9DFTEgEMBkv5IZzRNnFnwUfu4zUOd+8Y0IQPZrl0ezExkG0feYuAGYtm4RWN4oz5xDAgY0EWcEoYtlqPO26s40boWXM+D6buKdv1xBE7HKIXB+VweGYcCWbMbzALz/9AEQBt3QR+lpb8d0+pupKJqIVQ7DRVgKRWQdquEYeAN4rxrmDh+3ik+59Wz5faizR0CuRGetY6d6OCHqIjts0+14cbMNo/x2Zth9X+HUJkaQqcgNNBGrnehMg0jmYWlRaHSPiEJCzpEshSbibCBHxCqF5okzEoHXFYvMORaXNBFnJDq88847oYdMZOdtKZuRO2giVjkkyE4AgN/vxwsvvIDz589jeHgQ0R9hbsk3hOaJMwDuIxr+cgSnm23Ytm0bnnrqKXzxxRcY8LixYX3R0rYICzmHfLIWiVUOl2k4d+4czp19C263Gz/88AP2798Pu92Ow/WHIrZnYh5kP5qIVc69e/dgtVpBRBgeHsbq1asxPj4Oq9UKq9UKi8WCs2fPKt1MZSENxWFZVnT5Z599RkajkYaGhvhlTqeTGhoaIrazWCwR2+QamohVypkzZ2jdunX0ySefRCyvr68nl8sVsezu3btkNBrp7t276WyiatDshMrw+/2wWq0AgG+//RZvv/02/H4/v97j8WDv3r38cyJCUVER7HY7Dh06FL273EDpb5FGCJZlaWhoKMY+DA4OksViISKioaEh/rEYZ86coTNnzqS2oSpES7GphLNnz2JkZARXrlxBUVFRzDoA+OWXX1BQUICWlpal+ogw3PPS0lI0NzfjzTffTGv7lUSzEwrj9/tRUVEBABgeHo4RMACcO3cOIyMj+Pjjj1FZWQkgdlSOsyF1dXV47733MDs7m/rGqwVlLwTZhVSWQWqdmH2Q4uuvv6YnnnhCtPM2MDAQsZ+xsTGyWCwUCAQSbnsmo9kJBSAivPXWW5L2gdtGGG0vXryIgYEB/PTTTxgeHuaXt7a2Ynx8HE6nM2I/drsdP/74I+x2e0rfixrQ7ESaScQ+ALF24fr162hsbOQHN2ZnZ2E2m1FYWAi32x2zH5vNhrm5OfT29qbkfagKZS8EuUX0ZT9RgsEgFRQU0KNHj4iIyGg00ubNm2lsbIyIpG3M/fv3yWg00szMzIrarXY0EaeJlpYWqqysjPC00eKTEuPAwADt27ePfz43N0d+vz+h4+aCP9bshAxQnG6F3++H2WxGQUFBzGU/2jJI1QF//vnn2L17N/+8uLgY69evT6htJpMJNTU1aG1tTWj7jETpb1E2MzAwQAaDgbxe74r2U1xcHNcSxMuKcNTW1tLVq1dX1A61os3FJgMUlUkAlrIGo6Oj0Ov1j72vyclJ5OfnY+PGjZKvSeROjq6uLuzatQvbt2/Hs88+m3B7MgHNTsiAUETR9iEZAUfvCwDcbjc/wLES9Ho9Lly4gNdffx3BYHDF+1MVSl8KMhWxS7jb7SaDwcBnDeQ4htxllm1tbWSz2WTbnxrQBjtkgrMPly9fTjr6SrGwsICtW7didnYWa9asWfH+KGxVDh48iCNHjuDgwYMytFJ5NDuxQjj78OSTTz6WfZCCwndymEwmWQQMLFmVrq4unD9/PnvqK5S9EGQmnJXgsg9y2YdoGhoayOl0pmTfXq83a/LHmp14TFpaWvDNN9/Iah+i2bBhA27evCk5NL1SsqW+QrMTScLZB65mIVUC9nq9eOaZZ2IELFfMISK+vqKnpyclx0gXWp44CdxuN06fPg2n0wmTyZTSY3k8HuzZsydmuVyz+3D7cTqdqKiogNFo5HPRGTeDkKJmJkMIBAJ87cP8/DwRJTZKthJMJlPKvHY0XH0FV2CUaWh2QgIKX1Ln5uawd+/emOxDKqOV3+/H3NxcyqM9h8lkwoEDBzK3vkLpb5GauXr1KhmNRsmImKpoLDa3RDrI1PoKzROLEAwG0drairm5OQwODkp23lIVjT0eD2pra1Oy73hw9RVCf5wJaHYiitnZWVRWVuLpp59GT09PhIApDb32YDCIkZGRiLkl0oVer4fD4UBjY2NG1VdoIhbQ09ODuro6vPvuu7DZbDHr09Fr93q92LJlS8pSd8uRifXHmogRin42mw0ffvghBgcH09ahEuP69euyVK2tBKn8sWpR2pQrzczMDFksFmpra4tYnuoUmhQGg4EmJibSftzo97uwsJAx9+dltYiXE2J09kEp4XLMzMxQcXGxom0QInZ/ntLnSIystRMkcrcFh5R9UHqkSg1WQoiYP1b6HImRtSKWOtnxsg9K09fXh5qaGqWbEZGFyQh/rPSlIJ1w9mF0dFTppsQQCASooKBAlaWR8/PzqvbHOTHYkejgBRDfhqSSoaEhmM1m2Qrg5USYP/Z4PKprY9baCY5k7YNSnq+3t1cVVkIKVeePhWH5t0e/8X/ZgMvlkqx9UFsve7m5JZREeK7UWF8RYSdW5a/CYmARq/JXKfWdkoVgMIjm5mY8ePAAQ0NDKCwsjNkmXsSlNFuK8fFx6PV61dYrCM+FGusrss5OTE5O8kXeV65cERXwcqTbUng8HlWl1uKh1+vhcrlQV1ennvqK6NAstBLR9kLMbkjZj3jWJFHbIrWd1HLXBy4ymUz0D+8/ItqsdjLlJ7xYluX/lCoXFSPmRtFoOxHveSKPk1kn1Y7lXv8r8yv+8F9/wMOHD9HR0YG1G9ZiMbAIQP0WaWFhARs3bsSDBw9i1pFCmZJ4CNvU0NAAq9WKhoYGRduUlJ0QE8NiYJEXTKrgjkkipZBTU1OoqKjA8//+PD744AOs3bA25nVqhHsvahulWw7hl6qzsxMdHR2YnJxU9ObSZUXMRbJ467m/VBMdla5cuYKmpiY4HA6cOHEi5ceXE+69xBOxGqOwkNWrV8PlcuHw4cP4+eefFWoVwNsJLspKRVuxdUrZiV+ZX/nsw1/a/oJ1/7aOX6dbowPDMHGPqQRS1qCwsBCzs7OqGv5Olu7uboyMjMDpdCpy/IhILPVhS4mbWx69Trg8mXXCiC+176m5Keyx7sGO53bgr86/RggYANggK7q/VFue5RATsNfrRVlZWUYLGADvibu7u5VpQKI9QDX08l2uUPbh5s2bouvVNoCxHPF+ATTT3ksgECCj0ahILXRCIlZawIFAgJqamqi+vp6f9yEb2L59u+QXMhOZmJggo9GY9iKmuB27dGQeoqGozsPExETE4IVer8+4aZbE8Pv9uHfvHoxGo9JNkQ2DwYBTp07h5MmTaT1uXBGnM/PAIfSOH330ERobG2OyD2rrtScLEWXUKF0yKOGPVVmKydU+PHz4MKWT9ikFwzDo6+vDkSNHlG5KSnA4HDCbzTCZTDAYDBHrKBUDOGk1LwkwMTFBO3bsIIfDoXRTUkYgEKCioqKs8vdCWJbl/XEwGEz58VQlYqfTqVgPN50MDQ3Ryy+/rHQzUo7T6aSjR4/yz1OVcVFFFVswGERjYyNGRkYwNjYWcwnKBkjQGe3r65Ocpkq4HWV4B7ahoQEMw6C7u5t/Lyl5Tyn5aiQBd9mJN61/puVM48GybNy5Jbj3mi3vOR35Y0VFnCv2QYja5pZIB6nOH6fdThARbx++/PLLrLUPUvT29mbNT28lSrL5Y0rScsgq4kQO/v3338NsNsNisaCrq0t1d86mGrXMLZFukskfMwyTnJDlCumJeLhctA9C1Dy3RDp49OhRSj5/2QY74iWwg8EgfykZGxvLqehLguS+2+3Grl27cur9C8nPz+frj+XUQco98eTkJG8fnE5nzn2Awi/3p59+igMHDijYGuVJSX2FXCFdzE6s1D5kS5qJQ81zS6QbOX8tdcV2gsKXS2HEScQ+UAJj6Jle6CNE7XNLpBuuvmLnzp0oKysT3SYRjQAidiJen5BEeozCgxARbx+sVmtc+5BNAk2Enp6enLQSYpoBgDVr1uDy5ct47bXXJOeviK+RpTt4ZB3syPXsQzwyZW6JdJPo/BUhY7m49FxgNRmWZSkimgJINkYuLCzg5MmTyM/Ph8PhyLnO23KIzS1BKpxTQikaGxthsVgSn7+CJUDHnTs2FImju0/JdKdu3rxJJpOJXC5X1nXE5EJNs+WokeXqK1giYum78LPFSJ2xwtoJNvI+ukW6Rm3tU0urRQR64cIFMplMNDExoQk4DnL2xLMVrr5C6velrx0DAZF/jLmNpliWICa9RZoiezlDJoGIhczPz9OhQ4eoqakpZ0efkqGgoCBrC+ATIdEAt9wVa6rdTDjeT0ShIHscIBy7RryzEKYl7nQchW2UsK10U4wdGR8fR1VVFWpqanDx4kVJ/0sZXgsrF8PDwzAajVl3i1UyJFoLIV1fwYKFD/1/H8Px2tB9iTpUo+Y4AIaJzE6wLEvks9Mb7f3UXg46PhDZG3Q4HLx90EiMeHNLaMQi6Y+n/kQm/Cf1h3tsvo5yAsxk9y1GzorJoh8nyqfxx9ES/I/ubWydGkVziQ4LCwuoqKhAXl4eKisrkZeXF+pdE0BaBzsuly5dQk1NDdavXx9ewqXmWamX5Dz379/H1atXcfv2bej1erAg3GndhNJ3Z/ltTO1TGDu1GQB/RlkQAM/xXtSM/h6ld6bxHW1DaUlI37du3YLBYEB1dTXydKtAxGgCDsN9maOXcZh3mgQCBkLiZQWPc5toq8EwDNauXYvdu3fj1q1b4aXT6P//WRwfWAQRgXx2rGouhbnDF1pNFLIKU+3mUI8PIEBHwDE+dHP/LEYl37R8RHxYluXPETc5tcZj4LOTSahHIuo/Dl6jOgBg7nTgvxG6mW+RZcEOvA6Ul6GUG/ZgAICFLmoYRAvEYQSGTBhdGYbhozTDaIMbj4uv/2/wHq9FVVhxLHyYug1eo3mYbkf5EeDD0VIAoRPvm/oODPNc5MWOdJpqpWBChkwHXeyQJ/9YFTeWZxx8VuLPleDOsqepFLYbwBvuUygJb8f38hZpitpfEiSUmcgQriHNtabYZDwAPq+pIU08myV6TsN65Yj5zY6wqkWDbvTyx6mzyGYGmhhU32qD74YNJQhle04y+3HpxTb4vrLxUYODtPqJpCEiMGAihJfUNY5zJAj/q51+8H6Y82mmV/ejBKGTrUM1OqfbUX7jNP6D60kL0AScPAzDgEAI/wdAQsTxT60u6t8cJ3yydNP9+PsNM+qrQ0XvnEAXn92HV14EvP+MFbHG48EwoUjM6VRTogwQEaav/Q2j5a9gf0nkKRWPtlp+WE40EcsAMdP49OMxmF7dj00xI0BTmLgB7CyLdsQacqGJWAZCVsKE+upNYMKJYUK4E+LuxSWYcfh3m4Wv4LfRWDmqnGQ70yDfbXjLX8X/lejAWQUGAMv042TV+8Cxazi1iQmvW4obWrdOHrRIvEJY+NDxzvvY+Up1OIUWOqW+jnKsYn6Hb9unQJeqAQBEnJC1UlU5Ec0TayQON11BxGlkAJS3YforG2IrspfQ8sTy8C8+722ggqvgmAAAAABJRU5ErkJggg=="
|
<image>如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为()
Choices:
(A) \frac{3}{5}
(B) \frac{4}{5}
(C) \frac{4}{3}
(D) \frac{3}{4}
|
\frac{3}{4}
| 10,845
| null |
\frac{3}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAABjCAYAAACsYO9AAAALtklEQVR4nO2dT2zb1h3Hv3Q8VFiwRR2CRcUONQbZI7Kg5baiUCQUUQ9DlfQQnVLfLKMAZa8HO4cAKVDAORQwiqC1NAwQ4sMUn1LnYhVIRBTophRootxsYEbsWOyUFtuUm5ReFFsWfztQlCmR1D9Sf80PQAR+1Ht8+X3f771H8sf3GCIi2Aw1Y/2ugI15dEQUEfUxYJj6Iwyh9/WzqSBGfUda+KIQISAclhXREdGNhYcZRLxeRDIEIvlI8qu4ZAvZe8QofAyDySefVLWgNWCGuYTts5Pyb0iXJPHeCGVq0jIU8YLAJ/Wz2HSBJPHQt3mSBynJ+mOikMDquSm4axLdmDoHYHsPYpcbn42MGP0Uq+CRvHVRc27yLA/FEXU9Ua2ymkzES9B4qAzHcQTAPjo4OI4z9EJvRM/atYxr9ReQWOURvKU9k3nyCDj3SZ2HymxtbYHsu5WOYBhGmyjuYRvAuSk9a9ei7U7FPWzzQWgcWIzi01WAD2pd26a/aEQU79/FUWdbTUV0ZhGPvBFcszXsDe4pyFMQnRmIGEVUfZug7Ye9VNMNZyLkBQzHQgVNUTYtY2S7TMRLQN38JMlrtEDNSYOBt5W7ClvEzmlou3pddMRgKoWYhmEYe2LTIWZtZz87HQFsEUcAW8QRwBZxBLBFHAFsEUcAW8QRwBZxBLBFHAFsEUcAW8QRwBZxBLBFHAFsEUcAW8SBxyiYWz7CAmC/TxwAmttORNQ3A6w9xEI1bkpAmEkgSLdsTxwOMniCK3i/IqAQjULEJM7yZzEJuzsdDoQEtq+8L4eKilF8+mQKbrixcGsBbtgiDgXi3jYeLU7K4+DkoiYa0Raxjzx48ADz8/NNfiXi/l1UP27KRLyagGKdCHCbbpJIJPD1118jkUiAZVk4nc7GGcT7uIsrWKvo5p66ogkLtj2xByQSCczOzuLVV1/F2toa3nzzTWxubmJ5eRmFQqFhXvH+XUAZDwHg4oJqhlqhJ7GTx5CNjQ0KhULkdDopGAxSPB6nfD5fPV8sFonjONrZ2WlguwxFvHXB3DrYIlpEsVhsKpyaUChE8XiciAxsVxM03FhIW0QTFItFunPnDk1PT7cknIKSR8Gs7WwR26ReuOnpabpz5w4Vi8WW8mezWeI4rkZoW8QekM/nTQmnxuPxUDqdrkkzazv72akBhUIBiUQCX331FR48eIBAIIDLly8jGAzC4XB0VOaNGzdq/lUwbTtTTUCFhUX1jXw+T/F4nILBIDmdTgqFQrSxsWFJ2alUivx+v+45s7Y79iLmcrmuCaeQz+eJ4zjKZrO6520ROyCXy1EsFiO/308ul6srwqlRxlAjzNru2Dx2e/78ORKJBNbX17G7u4tgMIilpSX4/f6uXvf27dtwOByYnp7u3kVMNQEVFhZlGdlstsbj5ubmKJVK9ez6Ozs7xHFc01msWduNnIjZbJZWVlaI4ziamJjouXAKxWKR/H6/5nZCD7O2G4nu9NmzZ0gkElhbW0OhUEAwGEQ8HgfHcX2r08cff4zLly/D4/F0/2KmmoAKC4tqiXqPW1xcpM3NzZ7WwYhGtxN6mLXdUIm4s7NDS0tLxLLswAmnkMvliOM4yuVyLecxa7uB7053d3fx5ZdfYn19HQDwwQcfYGNjAyzL9rlm+szOzmJ5eRkul6tn1xxIEYdNOIVIJAKWZREIBHp63RoRiQ5wqHqGxzCvYFxn7bhusLW1hbW1NSQSCTgcjqERTmFrawvr6+tIpVK9v7i2hy1RqbxPh232y7pFNWFzc5MWFxdpYmKCOI6jlZUVw0dTg4z6LX0ndGI7NT3vTtUe53Q6MTMzg1QqhYmJiV5XxTKuXr2KcDjcv15Dq6viiWW69xHo5GnQyV8pIQL7dO+jD+mepP7tSzoovyTHL1BXhpx+UD6gf6ZSNDc3Ry6Xi7g//oG+iN6kzL+f0kH5gCRtBbRlSCXV72rLltPLlTS53kf5ynXllE21eD02NjYoGAyaKkNXhnbya5NKVNr7nHw/AyF8j0pVQ8lrgDvm71V+V6ZS1bhlcpxGpQsuU6m8T/+oCPfaxBl6989+isVilMv9t6arliQjw5ZVv5PoUHpJJak+vT6/IpZS38rf1TqWVP8Xa8jlcsSybNNwjGZ0QcR7xJ8G+SqROZK0f2SozBfERysRO9JBxRvk4+Rp0DepFM39haff/PYM+f2KcP85Mp50oONVOoaVDvTFbZi/fixv9rd5/H6/JY/0LBcxGQY53v2CnlZTlNYv0aHagHWGBkBvv/02xWJ/ox//96O+oaWDui60kYgl/XTD/L0VcWlpiZaWliwpy6yI40dj4z4O8Q0Sfwf+9PklHAUZj+EEAxxKB2CYV1C942BOgJFKOMTRbchh+QCFwk947cyvUSbCOMMARCDmhJyPOQGGSvrn1DAMGKmMMsYrZUsgGgPTav4u8/jxY3z77bcQhMHYJUQVAc4A4lM8OQX83v27GsN8/9d38cszDvx8jAHD+BAV5azjzBiI9lGS9nHyNPDdd2m8ePET3nnnAp4+/RdK0j5KYDDOjFUvNz52AqADnXMSDqV9HBIAjNeUXZLKkCtklF/CoVQGgSBJJVDTvzunUChgfn4e8Xi841gby6nxy8pS0drFbct0KGiXLTbqEtLpNHEcR8vLy6a6iUFEHfRrFfUytEvttxgGi4cTlfH902141d8ENMDj8SCdTuPFixc4f/48dnd3rWpzfeX27dsAgFAo1Nd6aNDIWgkf55OVKXz5JZWkvabfBOgVRTQ6XpnNZoll2Y5iTZthZLuW8+umKivwqw8Tq/EXi0W6fv06+f3+tl7RDArtvKXvhO6I2ElBLVQklUoRy7KWjyndxsrbCT2GSkQiOQYzFApRIBAYCq9s9y19JwydiAqCIAy8V+bzeWJZtuuNbWhFJBp8rwwGg10NKlYYahEVBtErY7EYzc3N9eRaIyEi0WB5ZatBv1YxMiIqKF7Z6NuFbmL2LX0nmLXdQH6fqDyfdDgcWFlZab5MiIVcvXoVr7/+OhYXF3t2zZH+PjEejxPLsiQIguVl6yEIAgUCgZ5cS41Z2w20iETy2/NAIEChUMj0G/Rm12k36NcqRl5EhW57pVVv6TvBrO0Gckw04vnz55idnYXL5bJ0rIxEIvjhhx+wsrJiSXntMtJjohFWemU6nSa/39+z2wk9zNpuKEUksmas7MfthB5mbTe0C/S5XC4IgoALFy7g/PnzePz4cdtlzM/PY2FhYWg+FTDEosbU1y+Fc7kceTweun79esvdYv3SXP3ErO2G1hPVuFwupNNpnDp1qiWvfPbsGT777DPEYrEe1bDLtCV5MmIYotFuUd1iZ2enqVfqLc3VT/RtJ0fcoy7CQmeH9nY8UUD40t1utCNLYVm2oVfeuHED7733Xm++pTeFGwsPM4h4AT4pLx1NSR6rl5SQURWttpYk7yWvlyedhtCgNfWXeq9Mp9Pk8Xj6XS0NxrZLEg+VzTMR8uqsfdqS5TMRL/HJugJbrkj/WV5eprfeeoveeOONgfz+0dB2SZ5Q7T8r3atOf9rc8pkI8ZGM3AoaRLw5nU5N/20frR1Op9PA9F7V74xDRpt8ZCoiehO4dssNiADOTRkGD+fz+cZF2bTJ0VYKC25AjPowOekDMg/bW8i9tiXou7JNl9D0fEniAfLquKPx7FSM4ibW5FlRZWbkrd+QYWhosPOZL4r6yd4goNlKQdzDNqDZ2AQw2hdDjMI3A1xT+a24t219TXuGMl33Vnd6URpmoyGif8hd6RVlhy8ICE8u4hF4BC/q/LzeNZN8/UBad9M5tF1qkvhq95SkSCSj+neAqNlKobXPKCx7nzjwCGH49q7h4YIbYtSHm1MPcUuvVQ8hI/HstBXUO5/pbHw21BwTEdU7n2UQ8Z6DzvxgaDkeIlZ2PpPnCW5MXTmLEXLE4yFi/XT94sIC3BARDQ/m7UW7HAMR66frclrUN4m7Z1v7fH3QGe3ZqRAGc2nV4KQXEb1HWEPI/wFhOBmTSHj8LwAAAABJRU5ErkJggg=="
|
<image>如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 10,846
| null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAABwCAYAAADWrHjSAAAVJklEQVR4nO2df0xT19/H3xcU3OzWEW9ijdenmxQpKyYoLnGTBdnK8JuxrIskmA2Xku+zsdEl62bNNLJoFv4gESfJEF2MGSYm40nYU3xk36HWWTN9ginLSJ4CZRSClm+oqWY66sRZ+nn+gF77i9Iftz+QvhJCe+6555ze8z6f8+Oeez8MERHSJAYCCASGYTBw9ghGZJ9DpWCSWqSMpOa+1GAABgwIg9CqdMkuDYC0ABKCj5FlgKOfHANTXo4NiuSVyUNaAHHHDYZh4JFA19caULkSboMrqaXykBZA3Jm9xAwADHbhAsqxJ4/BJeUGvIjk9v9AWgAJRXPsIto+V8HNAMoNeckuDoC0ABJG19catLW1gWEYZL74TrKLw5MWQCIY7MJFKoebCEQzMHc1Y8MLuUiFCfiyZBdgIYhm582pm64b87UjIgIzdBaM9gLoQttcaAZ+t44CyEUcflbEMKm4EBRr5dy7dw/9/f2wWCyYnJyE0Wjk0x0bG8PExIRPfI7jkJubCwBYvnw5tm3bBo7jkJeXh+LiYohEovnLCvBDOc+F9Hw/oimHrs0AANCb3VApGGjeYNB2MQMM3Hhd04yLrXui/p1CkJICiJSJiQn8/PPPMBgMuHz5MiYnJ1FSUoJ169YhNzcXL730El+Jzz//PKRSqc/5N27cwPj4OBiGwdTUFEwmE0ZHR2Gz2XD16lVwHIeysjIolUoolUqsXr06rHJ5xOEGISMFRvzBWFQC8BSVYRhYLBacOnUKXV1dcDqdKC0tRVlZGUpLSyGXywXNd2BgAEajkf9jWRZVVVWora3F+vXrFyg0kKJ1PwstIhwOB504cYKKi4tp3bp1pNPpaGhoKOHlMJvNpNVqSSKRUElJCZ08eZLu3r0b1rlut3vuAxHRTNzKGC4pKwD+QhHR5OQkabVaEolEtHv3buru7p43bqRpx0pnZydVV1eTWCym/fv3k8Nx53E+Qc9IfqV7k7ICICKy2WxUV1dHYrGYdDod2e32Bc8RsnLDSdNzxGa7QRqNhsRiMWm1WrLb7YECmHFTqgkgJdcBnE4n9u/fj82bN2PNmjWwWq04fPhwWIOveEwZQ6XpOcJx/4HW1lYMDw8jOzsbGzZswH/+8594+PDh48gZDFJt6SVlSkNzA7yuri7k5eXhjz/+wODgIA4ePAiWZZNcuvC5ffs2fv31V4jFYnR2diI/Px/nz5/3vSMYgnDjCUaSLRCPzWYjpVJJRUVF1Nvbm+ziRMzdu3dJp9ORWCym5uZmcrlcVFFRQR988AHJ5XKqrKwkh8Ph053Eo7uKlJQQgMlkIolEQo2NjckuSlQcO3aMWJYljUZDDoeDD7darcSyLN28eZMaGhpIKpWS2WyeN51kCCLpAmhvbyeWZamnpyfZRYmYq1evUlFREZWUlJDJZAoa59ChQ1RVVUVEszMGlmWps7MzkcUMSUIF4K1wl8tFGo2GZDJZyFaRithsNqqqqiKO4wIq078VT09Pk1QqpfPnzxPRrLXjOI727ds3b/qJtARJsQB3796lHTt2UElJic8CSir0ifPhdrtpenqaDh48SGKxmBoaGmh6ejqsc7u7u0kul9ODBw+IiMhut1NxcTFVVVXR1NRUPIu9IAkXgNlsJplMRnV1deRyufjwVK18T7k6OzuJ4ziqqqoim80WNE6o81Uqlc8YZ3p6mmpqakihUJDVao1DycMjoQLo6emhZ599llpbW+eNk2pCMJvNVFJSQoWFhXT16tWo0xkfHyexWEzj4+M+4U1NTSQWi8loNMZa1KhImAAGBgZILBanxGBvPpF5hzscDvrkk0+IZVlesLFO4ZqamkilUgWE6/V6Ylk2KZYgIQJwOBwkk8lCtvxUorm5mV/SDXWTJ1IRTE9Pk1wuD7iXQUTU2NhICoViwTGB0BYyLgLwH+0rlUrSaDTxyCoq3G530AtpMBhIoVCQUqmM28ykp6eHpFJp0AFkTU1NUAsRT+JuAbRaLSmVSp8BXzII1XKsVitVVlaSVCql7u7usLqIWPLftWsXHTx4MCDO9PQ0bd26NeixeBFXAbS3t5NMJvNZHUvWIC9YvlNTU9TQ0EAsy1JjYyM9fPgwZHyhsNls8/b5NpuNOI4jvV4ft/y9iZsAent7iWVZGhwcjFcWMdHe3k6rV6+mmpqasG4zC01TUxPt2LEj6DGTyUQsyyZkgSwuAvCoOBVG/P6YTCYqKSmh4uLimKZ1seJyuUihUAS0dO91B6lUylvPYBZJCCsluADcbjcplUpqamoSOumYsNvtpFarSSKRUHt7e7KLQ0RERqOROI6bt+tpaGjg7yPEC8EF0NHRQcXFxXEd9PkrP1RLcLlc/LROp9OFvXcvUVRXV897X8AzbQxmSYUaowgqgD///JM4jqO+vj4hk42a7u5ukslk9NZbbyV1uTUUdrudJBLJvJtbDQYDyeXysO87RErMAvBWok6no7q6uliTjJnR0VHasWMHyWQy+umnn5JdnAVpaWkhpVI5b6uurq4OulcipcYAns0PyTSx9+7doz179hDLsvyunMWAy+WioqIi+v7774Met9vtxLJsXGYrgglArVYndAHDn5MnTxLLsqRWq33WHRYLvb29xHHcvEvBn376KWm1WsHzFUQAHoUmo/VfvXqViouLQ+7KSXU8plytVpNOpwsaJ17XWBABaLXakDtc4oHdbqeqqiqSSCTU0dER1jmpdqvZH4fDQatWrZp3Aaiuro63sikzC3A4HCQWixOymubZldPY2Egsy1JDQ0PSd9QIhadCT5w4QaWlpUGPe8ZZQv7mmAXQ0tJCarVaiLIsiF6vJ47jqLKyMmBXzpOCy+WizZs305kzZ3zCvXcWCbmQFZEAgpmdoqIin90snjjRmqhg55nNZlIqlaRQKMhgMESV7mLCZDLR6tWrg/b3er0+qIWIlpgswG+//UZSqVSgogTicDj45+1aW1tTvg8Xkrq6uqCjfpfLRSzLBmwti5aYHg07ffo01Gp1NE8jLRjn2LFjKCgoAABYrVZoNBr+Gb1wzl/sNDY2oqOjA/39/T7hmZmZqKmpwXfffSdMRrGoh+M4wZ/PD7UrZylZAKLZtY2tW7cGhPf29pJcLhckj6gFMDQ0RBKJJKJzQlVgsIctFrrpsxQEsXXr1oBBn8vlIpFIJMjMK+ouwGg0Yvv27RGdE+wxa6fTiS+//BJFRUUoKiqC1WrFzp07g8Zf6PuTyPHjx7Fv3z7cu3ePD8vMzERJSQn/8qtYSKgA/Pnhhx+Ql5cHi8WC/v5+HDhwANnZ2TGl+aRRVFSEnTt34osvvvAJ3759Oy5fvhx7BtGaDolEQoODg1GZ4b6+vpTYlbNYuHv3Lq1Zs8ZnqVuocUBUAhgfHyeWZfnv4YrA4XBQXV0drVq1ik6cOBFN1kuWM2fOUHFxsU9YdnZ2zPcGouoCrFYrFIrHL7tfqC+emZnBkSNHUFBQgGeeeQajo6Ooq6uLJusly3vvvYenn34a3377LR9WUFCAkZER/jvNTY8pgmlyVAKwWCzIywvvbdeXLl2CXC5HT08PfvnlFxw+fBhisTiabJc8x48fR0NDAxwOBwBAJpPBYrEExItkcByxAIgIVqt1wZcxjo2NobKyEh999BFaWlpw8eJFwV/guBTwbs0KhQJqtRr79+8HAMjlclitVv54NLOiqC3AfJXpdDqxd+9ebN68Ga+++iosFgvefPPNaLJJg8BKPXjwIH788Udcv34dcrkcAwMD/LFITL+HiAXAMAzsdjvWrl0bcOz06dPIy8vDnTt3MDw8jC+++AKZmZlRFTCaH7MUEIlEOHr0KD766COsWbMGt2/f5o9FYwGiel280+nEM888w3+/fv06NBoNAODcuXPYsmVL0PP8C0gh3gq+FBZ5omXXrl04deoUenp6MDU1FVtiRI/fdllfDgJ8/5q7zAHTPIlEQna73edhi9OnT8c0HUkTGUNDQ5STk0MymSzw4Fx1dTXXz9VjBqH8YyL3ANXXN/tEzQAABm4AQOt5N+rLGRzRm0FE+D/9Yex9ZyPODrm9JOPGn3/+iba2NuTn54PjOIyMjOD999+PTYlpIkIul+Pdd9/F5OSkV+hcPQ11gWEYtI2tB815KaGWN8BkKID1uT7pzHUBc0MBZgjDF1/DxxdeBAAUbpDNmmnM9uME4F8//oS//voLX331FWpq3kVmZiaam5tnXaOl++2EkpWVhfv37+PatWvYtm0bgAwQBvGG4h0oNc047+2M4kUVmj9+HZD5Tt99xgC/6f8FRrMDuY8eAcuzoNHOJvT2rB7wv9d+gclkAjA7GuUVh/SgLRlkZ2cjOzvbxwPK2a+PwcCUYaD184D4ubJ8QPaib6B3797VXE/M8mV8/981ELz/EYlEQTcmLoXbs6mE5ylsD24aICVA9c36x2EL1EmG91j74oU2/Nev9+Emgv5IPVQKBl0DxPvC8fwXiUS4f/9+gMLSI/f4Q16W1ul0+vgzYgZ/hwHAei8z7+21NBiP1wEGu3CMPkalfPYV6G9/rsFry5ehp+e/Mf3obwDA9KO/8eDR3xA9J4bT6QQAPJgL88cTHumxcOKFCvcv00J5LDa8G5nT6cTKlSsD4rj9vodqlrwAunouor7iDf50ZuB3/PzIhRfWy/DU8iwA4P+LVjyFqan7ePDobzy1PAtPLc/yudDe4ZEc88Y73nzh3ud7//ec4/n8pInAw/379309mr2YDyWAcetIYOTBLhw5OxAQnOExKRd+asMb/1DBM5IsL3wHwOt4o/Lxku/sBV0GiUSCf//bxofF+wL7iyBUHO+44Zy3GPHU2cTEhJ8vhQJojtSjTfeOT2UPnD0CRnsBe94OdFeeMfg/X4NhGBw3ACoFg5UrVyKDUcBQ/jGIDNi0PNuvgjN8bkJ4t8Y0icHTDYyMjKCwsNDnmOrzYzB3NUOnKgTDMGAYBtqLAF1om10T8EtrmeLtPSD3Hjxw/Y0VyzLx4JELT2dlh5zWyWSygO3K3qZXaOKZdqpDIZbLBwYGoFKp5iKC7+wVb+8BkdcawFxVBkvHy7c5MO2awdNZ2Y8jz53o6Uc9lVCQL8fIyCgf7l9B3uGRHPO2NJGmHWzQN9/nxUSomZXVakV+fj4AgEKN9B5XZeAhIqJQ/m8BN4gYTLse4anlWSAAN2/cwJYtW/iNCWmSw4oVK3Dr1iSeffY5AEHEEobTygyff0HwVP6KZcsBmk1PKpVi2bJlQXejpEkM169fxwsvvACxOIfv6wH4NvUwlmVC7gd48OhvTLsezablt6BQWlqKK1euRFjsNEJhNBpRWloaeCBEpQfrBjIeh/ovHwSO8L0tTFlZGYw/C7AvPU1UGI1GlJWVBT/oX9OeQWCQqFE7j7ZYLCgrK/O7HRm76/c0vgS7njMzM3juuecwMjICiUQSU/pRPxkkl8t9xgEeHaUrX1iCXc++vj5wHBdz5QMxeg6tqqpCR0cHAKT3AySQjo4OVFdXC5JW1F0AAPT390OlUmF8fFyQwqQJxL8LmJmZgUQiQV9fH6RSaczpR/VcgIeioiLk5OSkZwNxxL8LOHfuHBQKhSCVD0S5LdwbtVqN9vb2oHHTXYLwnD59GrW1tYKlF1MXAAB37txBbm4uhoeHw3LvniZ6RkdH8fLLL2NsbAwrV64UZMAds/v4VatWoba2Fi0tLTEXJk1oDh8+jPr6eohEIsFmWzFbAGD2vvSmTZtgtVrTD37GiVu3biE/Px83btwQ9BrHbAEAgOM4VFZW4ujRo0IklyYITU1NqK2tFbyBxWwBPNOU0dFRbN26NW0F4sCtW7dQWFgIs9ks+DhLkC7Aw969e+F0OnH8+HGhkkyD2WcBN27ciAMHDgifeCz70v2ZmpoiiUSyaF/bnkp49vMbDAaSyWSp6zLGn0Q4jXqS8bi19bwZ3dtpVDwevIl5EEh+PUh1dTVycnLQ3Nwca9JLEs/mDoZh0NjYiMLCQlRUVPDHBEdwSVFqO45cLPg7jowXcXcdK/S7hJcCi8517Hx9UzDn0UuNSPvtRDuPFnQaGIzPPvsMZrMZPT09Pu8LSvMYmltLefjwIbZv346KigocOnQoIXkLIgAKsQ1sZmYGFRUVKCgowDfffBNrVk8ENM/uqd27d8PpdEKv1ye0MHHH4XCQTCaj1tbWRGSXsoTqDhobG0mhUCTcCVZCBEA06/dHLBanZwZB0Ov1xLJsUvwbx0UA8ym9p6dnSfr/CUVTUxOJxWIfx1uJJGEWwIPZbKa8vDzSaDQ0MzOT6OxTAs8qn1qtJoVC4dPyvRtGIhqJILeDwxhn8J8VCgVMJhNGR0fx2muv+XjCWIxQFGPoO3fuYNu2bZiamkJvby9ycx+/ui3R2+oTIgD/HyUWi9Hd3Y3CwkJs2bIFZrM54jSjufDxINIK6+vrw6ZNm1BeXo7Ozk7fN3zEmHZUxN3GBMHbtLW3t5NEIonrDY9UobOzk1avXs07xUoFkiIAf0wmE0kkEmpsbJw3zmIWhsvlooaGBpJKpWEt7ybytyakCwhhfQAAW7ZsgclkgtFoxKZNm3D9+vWAuIv1kbMrV66gsLAQ/f396Ovr8/G0khIkTGphotfrSSKRUF1dnc89hGCtIpWtwuTkJNXU1JBUKg177cN7L0CiSKoFCIZKpcLIyAhycnJQUFCAQ4cO4fbt20EtQCpahVu3bmHfvn3YuHEjZDIZhoeH+fv5C+G9FyBhJExqEeJ2u2liYoI+/PBDEovFpNPpBPGUGS8mJiZ4R9darZYmJyfDOi/ZVizlLIAHhmGwdu1afPvttxgeHobL5YJMJsPu3btx/vx5n7gU5pQw3HiRcPbsWezatQsKhQIikQgjIyM4evRo2I9uJ92KJVV+EeJwOOjEiRNUXFxMHMfRvn374rLhZKFWaTabSavVkkQioZKSEjp58iTvvy/ZLTpS4r4fIF5YLBacOnUKXV1dcDqdKC0tRVlZGUpLSwX3TjYwMACj0cj/sSyLqqoq1NbWYv369YLmlWgWjQAoxJ6DiYkJXLp0CQaDAZcvX4bdbserr76KtWvXQiaT4aWXXuJX3J5//vmAR6tv3LiB8fFxMAyDqakpfqn65s2buHbtGjiOQ1lZGZRKJZRK5bwPZ4QqY6qyaAQQCffu3UN/fz8sFgsmJyd9vGyPjY3BZrP5xOc4jl+Pz8rKwiuvvAKO47BhwwZs3ryZF89irOCFeCIFkCZ8UnYWkCYxpAWwxPl/k+juCG7lyVQAAAAASUVORK5CYII="
|
<image>如图,△ABC内接于圆,∠B=30°,∠C=60°,AC=3,则此圆的半径是()
Choices:
(A) 3
(B) 6
(C) √{3}
(D) 3√{3}
|
3√{3}
| 10,847
| null |
3√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAKIAAACMCAYAAAD/VHJdAABP60lEQVR4nO19d3yUVdb/d3ombTJJJoU0kkAoEQgsJYAQpUhfASkCKkUUXVFxDcJaXt+XXd11cVfXBr8FBVdERYrsAkpZIaGGFnpPISEhhdTp9f7+COdyZzJpEBSU8/nkk5lnnufe+9x77unnXAljjOEetBjsdjtcLhekUimcTickEgnkcjlkMtnPPbS7EuQ/9wDuNnC5XAAAh8MBuVwOhUIBhUIBALBYLPcQ8SZBco8itgzMZjOkUinkcjkcDgcqKipgMBiQlJTE72GMQSKR/IyjvPtA+nMP4G4Cu90OuVwOlUoFl8uFJUuWICUlBW+99RZyc3P5ffeQsOVwjzW3AKRSKUeyo0eP4uOPP4ZSqcTEiRPh6+v7M4/u7oZ7FLEJIJkQAGQyGex2OwBgy5YtuHTpEkaOHIk+ffogIiLi5xriLwLuyYjNBLvdDoVCAavViv3792Pq1KkICAjAF198gZ49e0IqvbenbwXuzV4TQBSRtGG73Y6lS5fi6tWrePnll9GlSxdYrVY3ynkPWg73ELEJkEqlMJlMnOLt27cPP/zwA1JTUzF69GhIJBKo1ep7FPEW4Vc/e82hZCqVCgBw8uRJ/O1vf4Pdbsdzzz2HgIAA+Pj43O4h/irgV4+IRMkYY2hIXJbJZKiqqsK//vUvbN++HSNGjEBaWto9TbkV4VePiAQSiaRB+5/dbkd+fj42btwIPz8/TJs2DUFBQZDJZDAYDD/xSH+ZcA8Rr0NVVRWsVisAwOl0wul08t9cLhc+/fRTXLx4ES+++CJGjRoFpVIJl8t1jzW3EtxDRNS57bRaLfcZW61Wbi90Op347rvvsG7dOiQkJGDQoEGQy+VgjHFX3z24dbiHiLghJxIl9PHx4ZSuoKAAX331FUpKSjBlyhQMGjQIjDH4+PjA6XRyhL0Htwb3EBFwo4QSiYQjpt1ux969e/Hf//4XqampmDZtGgDAZrMBwL1Im1aEe4iIOkrocrng7+8PiUTCv587dw6rVq2CwWDAY489hnbt2sFgMLgpNYTEre2g8mzvl+4AkwJ1wjhjDC6X61fpISAfssvlgs1m49937NiBrVu3YtCgQRg5ciQUCgVn3YwxmEwmPl8ict7KHNI6eGrwLYnouRuRllNEcfCixvhrAGLFVquVs92srCysX78e0dHReOWVVxAXFwcA8Pf3B1CHbDKZzKtHpbleFm8II4oGNwuEtHcTUfH6xr+2eDqr1Qq5XA61Wg0fHx/Y7XasX78ee/bswaxZszBs2DDYbDa+sCaTCTKZDCqV6qaVldsRPEvjo/93k9tRCtQJ5U6n0827cDftplsFhUIBmUyGyspKKBQK7Ny5EytXrkRKSgrGjRvHqZ9EIoFMJoOvry+sViuP1hbnynPezGaz23eXywW73e5GDcl+2RRLtdvtXIQQgZ6XSqX1NgbJu97W807ifHLAfefQLr0b5YybBavVCrVaDY1Gg/LycnzxxReoqanB+PHjkZKSwu8jtq1Sqbj/WWyDzDr0XSqVQq1Ww2Qywel0wmKxwGazwWazgTEGi8UCo9GIgIAAuFwubr+Uy+UICgpCQEAAlEolrFYrfH19uUuRnqWELXEsMpkMFosFLpcLKpWKh64BNwJ76e9O0vrrISLBr4k9E4tVKBTYuHEj1q9fj9TUVIwbNw5AHVIpFAp+HyEZZfHRby6XC2azGTabDXq9HleuXEFhYSEqKipQVFSEM2fO4Pz586isrAQAnvdiMpmgVCohl8uhVCqhVqvh6+sLHx8fSKVSaDQaBAYGon379khJSUFKSgratGkDhULhplxJpVJOsV0uF7eLyuVyLnvSdXH8dwJIGGOM0iFFuFMG+FMAYwwOhwPFxcWYPHkyTp8+jZUrV2LUqFGQSCSc4jgcDr6wRF2I2lgsFuTl5WH37t3YvXs3Ll68iNLSUphMJgCAr68vtFotwsPDERcXh9jYWAQHB3NklEqlcDgcMBqNqKysRHl5OUpLS1FdXY28vDwwxmA2m2G1WhEYGIju3btj2LBh6NmzJ1JTU92onJjSQLKo53reaXKk3JupAMAdtVtuN1gsFsjlcnzxxRc4fPgwpk2bhiFDhkCpVEIqlaKqqgr+/v5QKBTcpedwOGCxWGC327Fx40Zs3rwZu3btgl6vh1wuR2BgIHr27In+/fsjJSUFOp0OERERCAoK4uYfs9kMs9kMnU7Hx2K32znCO51O2Gw2mEwmlJaW4sSJE9i9ezcOHDiAvXv3IiMjA2q1GklJSRg9ejQmTJiAjh07cluoTCbj1FKU/RUKxR23thLGGBMF2TttgD8VnD9/HgMGDIBarcZXX32F3/zmN1CpVLDZbFAqlRwp1Go1zGYzDh48iO+++w4ZGRnIycmB3W5H+/btMXbsWAwbNgxxcXHw9/eHRqOB1WqFSqXiifgkBtBc06YntgncMJTTNYvFwimn0WjEsWPHsHXrVuzfvx8VFRWorq6GUqlEv3798Nhjj2H48OFcPhXD1UiZofYJYX92YL8icLlcXq/r9XqWnp7OALCFCxcym83GLBYL/038nJGRwZ577jnWrl07FhkZybp168YWLVrEtm7dysrKypjFYmG1tbXMarUyxhiz2Wxu/TocDmY2m5nZbGYWi4X/OZ1Oxhjj/+kz9S1ep3aNRiOrra1le/bsYW+//Ta7//77mUajYYGBgWzw4MFs1apVzGw2M71e7zYHDofDbTwtmavbBb9KRPSc5E2bNjG1Ws169OjBjh07xiwWC3M4HG6Lv379ejZmzBgWEhLCfH192f3338+WLVvGamtrmdFoZDabjTmdTrdnXC4Xs1gszGaz1WuPwBPxbDYbv5+esdlszG638+ve3kGv17P8/Hy2detW9tRTT7GIiAgWGRnJRowYwfbt28euXLnC22sI+X5O+FUgokjhTCaT229lZWVs8uTJTKlUskWLFvH7iFJlZ2ezCRMmsIiICKZUKtmYMWPY+vXrWWFhIb9XBE9kux2UxbNNm83m9r2yspJt3ryZTZkyhfn6+rLg4GA2evRolpWVxRirQ1qikjabze2zOD9Go7HVx94Q/OIRkRaN2J/T6XSb4DVr1jAALDU1lV24cIExVrdQBQUF7Msvv2SRkZHM19eXPfbYY2z79u2ssrLSjbp5o3K3Olbxc3PaF8cifi4qKmL79+9nDz/8MIuLi2NJSUls6dKl/LnKysp670Eb0BO5bzc0iog/tZxwO4GootPpZLW1tYwxxs6ePcsGDx7MfH192VdffcUpQ3Z2Nps8eTJTq9UsOTmZrVmzhuXn5zPGWD32W11dfdPI2JLnGlsLEZnMZrMb6yWEXLVqFRs8eDALDAxkQ4cOZTt37uRs3+FwsNraWjd51GQyMbvdflPvdTOA1tzRdyqI7Jaxuomurq5m8+bNYwDY5MmTWWVlJSsvL2eLFy9msbGxLCIigs2bN4+dOnXKrS2z2cyqq6uZyWSqJw96gtPpbNXN3Jiy5SlrEpKJrDY3N5e99tprTKvVsri4OPbJJ58ws9nMGKubG4PBwJHY4XB4FT1uF/ziWTNjNzRDkd2sXr2a+fr6suTkZJadnc0uXbrE5syZw0JDQ1lcXBxbtmyZm7ZcW1tbj9LQ4v/cnIPGISo4BKQwiYrK9u3bWZ8+fVhoaCh79tlnWWFhIb+fRA9qrzn9tgbcNYjoTX5q6HdvYDKZOCIWFRWxCRMmMADsgw8+YPn5+eyJJ55gANiYMWNYbm4uY6xOkaFnaEGJgojtesLPwWWIApJZyJumbjAY+OY6f/48e/bZZ5lMJmNpaWls+/btXtv7qTbZXYOIjUFTC08yEH3+/PPPWZs2bVhCQgL7y1/+wiZNmsTCw8PZ888/z6mDSD1FZHM4HEyv13OEvBNEm4YUDFEBqa6u5tdp7GVlZeydd95hOp2ODR8+nK1fv54/YzKZOCX9KeAXgYgEGRkZLCcnp951h8PBDcylpaWc+vXq1YvFxsay6Oho9sYbb3DWRotKVIGxusUzGo1ubLChhfq5WDWJC6I9UtS+SZkhqkj3rF+/nsXGxrKuXbuynTt3csSme34KuCsQ0ZuHwZNFlpaWMgDs2LFj/BopFOLELl26lAUHBzOVSsUAsK5du7Kvv/6alZaW8vbNZrMbwtH1n1sWbC40JcYQiBQzOzub9enTh+l0OrZlyxbGGONUlLRnQnCR+raWQnPHI6Kne4y8DIQsRLlefvllNnDgQDd7ociOGGNs7969rFevXhwJ+/Xrx9avX88qKyv5Pd6oyi8ZCBlLS0vZ3r17WVpaGouIiGD//ve/mdPprGfsFhFP5BC3Cnc8IjLG6tm3CAhJV6xYwTIyMhi5zgl5RLNGWVkZe/3115lMJmMAWPfu3dm2bdvc2jYajZzSepovmkMNPW2MP5X82NTYmkvJbTYb27VrF4uLi2PJycns7NmzzG6310NI+uxpNrqZPgnuilAbikgRKyuw63F2VLs6OjoaAwcOBHAj1o4CWS0WC06fPo2tW7fC6XQiISEBf/jDHzB06FAeVWO3292ilj1D65sTKCyVSt2il36qSKaGxsauh341NnbGGK/fYzAYkJaWhk8//RQlJSV45ZVXUF5e7paCoFAoeMqCv79/gzk7LQ6sbhHa/kzQGGV5+eWXmcvlYjk5OSw9Pb3eM06nk1NDAEyr1bIPPviAMcbcFBFvfYqy0J2gHd8uEEUQsi689957zN/fn82bN4+ZzWZms9lYRUWFm4xOyh3BrfjZ7wpEbAhWrFjBAPA/ERFF+XDfvn1Mo9EwAOx3v/sdZy2EgKRRE+sXkfin9C78XECI6HQ63fzP8+fPZzKZjC1evJjfV1ZWxhirU2BaMyjijmfNDWUTEktm1zMPMzIykJyczH+nwM8rV67gs88+Q01NDSZPnoyXXnqJ53T4+Pjw/BOgLjmKxAAqOkDt/JJBPEFLq9Xya/Pnz0ffvn2xZMkSHDx40O1go9Y+ZeuOR0SgPjLm5uZi5syZmDFjhts18X5K+czIyMDy5cvRpUsXjBs3Du3atUNNTQ1HPoqcBsATj2hRKCKagP1CMxtJlibEojyb4OBgLF68GEajEe+//z4uXrwInU7HMxVJVmwVaDXaehtBNKFQJDUAbrweOHCgG3smllFaWsp69OjBALDFixez6upq5nK53Oxh98A7iPLd66+/zlQqFVu8eDEzGo1usnNrmbfueEQkxGkp6PV69sILLzCVSsVGjx7N9u/fX+8eCtu/B41DSUkJ69WrF4uJiWF79+7l11vTxnrHs2ZKhWQtZIvnzp3Dtm3b0K5dO8yaNQudOnUCqwt744nsDoeDsxnP9hur3tDSsdztoNPp8Pvf/x4GgwHLly/H5cuXW72POx4RCZqyS4nIceDAAXzzzTcoKCiAUqlEWloaNBoNT4CnCgiUFO/ZvmcqrZht15yx3K3QkGJoMpkwadIkzJ49m9cEAupkarFsya1s2LsCEellPevIiCAix5EjR7BhwwaYTCaUlJTg448/RnZ2NmQyGfz9/WG1WjlVpAR5ERoyRP/SU20bej+VSgWpVIopU6YgODgY69evx5UrV3hRgIael0gkza+h1GpM/jYCKR+eMok3g2lpaSmbMmUKA8DUajVTKBRMpVLx9Eoy2HpGLzcX7pbAh9YE0Wb4hz/8gQFgX3zxBWPsV6SsMMa4Abo5Wu7atWtZSEgIi42NZZMmTWJarZap1WoGgMXGxrL/+Z//YdnZ2a0WT9iQb/mX5IkRA2yPHj3KdDodGzZsGCsqKmowTVaE5mzeuwIRGXOnYKLphVxMer2eVVZWsrS0NAaA/c///A/T6/Vs/vz5DACLjIxk0dHRTCaTsZiYGPbWW2+xwsLCW97RvwYKSXNEuToLFy5kANh//vOfVuvjrkBEMUiTdp+IQBSg+v/+3/9j/v7+LDIykmVnZzOTycT279/P4uPjWVJSEps/fz7r168f8/X15SmkW7duZRUVFW79MHYj9o6AKiaI8Yl3U4zirYDo8nQ4HOzs2bNMrVazxx57zM3NR7+LOULeig54g7tC+qa6MFScyLPwpFKpxL59+7B8+XIYDAZ06dIFHTp0gFqtRqdOnTBhwgRcuHABpaWlmDp1Kp577jmMGTMGly9fxtixY7FgwQLs37+f18jW6/Ww2WzcpWUwGODj4wN/f3/IZDLuVqTIHQL2CzXr0Ds6r9fJCQkJwUMPPYQTJ07g8OHD9e4XrQyec9KQxeGuQEQqtSaTyepVsmKM4dq1a/jyyy9x6NAhhIeHY9KkSVAqlQCAgIAADB8+HPHx8Thw4AAKCgp4yNj48eMRFhaGL774AlOmTMFTTz2Fs2fP8sMeqTor1c02m828gDuFjFE/wC/XrOMZGqfT6TB9+nRcuXIFO3bsgMVicbufkI/80c2xNtwViEgvRovOGHMrD7dnzx788MMPAIDExERMnjwZZrOZ+0EHDRqEuXPn4tKlS8jOzoZCocC5c+dgMpkwatQoTJs2DREREVizZg1mzZqFDz74AIWFhRzpzWYzLBYLL6BJpd5E08UvGcQjPAgZhw4disTEROzfv58XHiUgDtaSjXlXnN8lvhS7XlSTJqe6uhq7du3i1v527drBz8+P17222+0oLCzExIkTsW7dOmzfvh1JSUkYO3Ys9Ho9jEYj/P390b17d6xbtw67du3C8ePHcejQITz77LNITk5GQECA28kDADiSUom5XwNQUKxcLoe/vz9GjBiBzz77DDk5OYiIiODzQfUZxXlpqt7mXUERPWsJsuvn4Nntdpw8eRLffvstACAsLAyDBw+GzWbjdQhlMhni4uIQFRWFmTNnQqvVYufOnTAYDLBYLPDx8UF5eTkYY+jVqxdmz56NHj16YNWqVXjsscfwf//3f8jNzeUI6FlplSJVCLwZcD2r/d8M/JzyJ727TCaDXC7n7zFkyBDY7XYcPHgQer3e7ZmWnnBwxyMiLQC9kCiXXbhwAV999RWuXr0KuVyOjh07YsCAAbxyP7FmvV4PxhgmTpyI0aNH48yZM9i1axcsFguOHj0KqVSKiIgIxMTEoHPnzhg5ciRSUlKQl5eHDz74AFOnTsV7772Hy5cvQ61WQ6VSwWKxwGw21zudtNFdfwuemabSARr7fKtArJY4Eyl1HTt2RIcOHbBnzx7Onj3f0dnMkwvueNZMlI3qQosHOJ44cQJr1qxBSkoKSktLER4ejqCgIKjVav683W6Hn58fpFIplEolZs2ahS1btmDLli3o0KEDAgMDUVlZCZVKheLiYgB1cmb//v1hs9lgMBhw6NAhnDp1Cvv27cMzzzyDQYMG8UMhSZBnjZyb0lIEFNmYJ0trjMWJ/bem4kSIZ7fbeT1x0p5TUlLwww8/oKamxq1f+k9zdNdTRKCONchkMjfyf/LkSfzlL39BREQEHnnkERiNRgwZMoT7kkWgHa1SqdCzZ0888cQTKCwsRE5ODtq0aYPw8HD4+vpCoVCgqKgItbW1CAsLw5AhQ/DQQw9h5MiR6N27N/bv34/p06cjPT0d2dnZnEo7hWL4dM1b0Cj5t+mPqAVpnYyxeueoSKVSWK1WLpKQ+Qqo0+J/CpYtnjMjkUjcfP6xsbEoLCxEXl6eW+llUiapDjm105B4csdTRKDu2DFCJKDOrrd06VKcOHEC//jHP1BRUYGQkBDEx8fz3SuCGG3t6+uLESNGYMeOHdi+fTsXqM1mM4xGIwoLC6FSqRASEoKIiAiEhoZyk05KSgrWrFnDgygefvhhjB07FklJSTCbzVCr1W47n844oWviaQRA3cIYDAb4+/tDr9fDx8fHTcAnKkvvzRjj1IXmQ6RStwto/IT0FLUklUrRrVs3hIWFoaCgAFarlSMeiUdiOkFj4Xx3BUV0Xj8Vi8L6t23bhq+//hp9+vTBmDFjUFxcjNDQUCQlJQFwt3vJZDI4HA63xRw8eDDGjRuHCxcu4Mcff8S5c+ewZ88eOJ1O9OvXD3FxccjPz8fRo0dRUVGBgIAA5Obmwt/fH+PHj0daWhoKCwuxYMECTJo0CR9//DGXkaqqqvi5LDQW0vLps5geSzbKgIAA/kxGRgYXQyQSCebPnw8AXBsFbhwo9FNp7KJxmlIpAKBbt26IiorCkSNHcO3aNX4/WTc8oSGR4a6giCaTCQEBAQCA0tJS/Otf/4JUKsVbb70FhUKBo0ePQqPRIDw8HIB7MpBCoeATSPFzCoUCjzzyCDZs2IATJ07AbDajR48eSE1N5Wfs0dEQCoUCpaWlCA4OhlqtRklJCUwmE4KDgyGVSlFcXIz58+djzZo1WLhwIUaMGAEAnNKRzZPGJJ6E6g2J0tPT8be//c2NctDiLV68mI9fKpXWOzHgdoKnDEybS6fTISYmBllZWSgqKkJYWBifu5a0d0dSRE85go4Iq6qqws6dO7Fz50489NBDGDx4MIqKinDhwgWe1CPuQjEpiuQXOiLsvvvuw5w5c6BQKFBcXIygoCD+XFBQEAIDAxEUFASXywU/Pz/ExMTwI3LpuLRx48ZhxowZsNlsyMrKwpNPPokXX3wROTk5UKlUMBqNHNlMJhMsFgukUilHdE+YP38+Dh06VI99ZWRk4N133+XvQhS+MZmrNYE4i0Kh4Mer0eZyuVxISEjA5cuXcfXqVX4/QXO0feAOQ0SR9IvX6MUqKiqwbNkyAMDs2bPhdDqRm5sLu93OU0nJD0xAlEc8uoz6GDNmDIYNGwaj0YjMzEwcOXIERqMRFosFOTk5OHToEE6cOIGQkBDU1NQgLy8PSUlJmDJlCvr06YO2bdsiIiIC06ZNQ2JiIsrKyvDBBx9g2LBhWLp0KUc+hULBKZen/Epj3b17N959912sWLGi0TlSKBRcWfD19W29LLpGQOQo9J04DWOMi0S08egdRSXOEzy16DuKNXsbNEX52u12fP/99zh58iSmTp2KQYMGgTGGsrIyaLVapKSk8J3rGdJP8g1NJPmRo6OjMWvWLBw9ehTl5eUwGo3YtWsXdDodUlNT4XQ6ceHCBZSXlyMwMBBOpxPbt2/nR5lZLBYUFxfjypUriImJQUREBKqqqpCbm4sXXngBmzdvxvz589G1a1cEBgZyim2xWOodVfb6668jPT0dCQkJ9eYgJyfH7TvZUW8ml+dmQFwX0p7pulQq5ce5EcWnzdeSvGd5Y/avOwVkMhmysrLw2WefISYmBi+++KIbZdNqtYiNjYXD4YBSqeRuKKpFY7VaueGZZDfS6IYOHYphw4ZhxYoVkMlksNlsKCsr46w6MjISBw8eRFBQEKqqqpCXl4fy8nKUlJTg2rVrqKioQGhoKGpqaqDRaJCYmIiQkBAcP34cmZmZOH78OH73u99h1KhR6NGjBz97z3ORMjMz8cc//tHr+69cuRLp6ekAwE+xov90nJq46W5HSgP1RxRPVF4CAgK4DA+41yoSobFx3hGsmZKa6DPllNB3u92ODRs24NixY3j22WeRmJgIl8uFmpoaXLt2DTU1NdDr9ZxSkDJAioFo3iAtlRLp/f39MXr0aAQGBuLIkSNITU3F+PHjkZWVhW3btuHSpUtQKpVQqVTo0aMHOnToAJ1Oh6ioKO5zJQ9DWFgYNBoN2rZtizfeeAPTpk1DRUUF3nrrLQwfPhx///vfUVlZyU8dJSCKFx0dXW9uMjMzkZmZiWeffRYAOBLS856subWRkBBGnEOihBQSR2LP/v37UVxczJHSc2xuysmdyJrJ6yFW8SJEJHa4atUqjB8/HmPGjOHs12azIT8/H76+vvXOLG7JgowePRqTJ0/Gd999h4KCAvTr1w95eXk4cuQIYmNjERcXB6AuLs/X1xdyuRxlZWWoqqqCn58f2rVrB5PJBJVKhbi4OEgkEiQmJsLf3x9VVVUoKCjA6dOn8e6772L79u0YO3YsJk6ciODgYAB1nhygrjyKJ2tOS0urx7JFMUNk77cDvM2j5/nebdu2hb+/P/Ly8lBdXY02bdoAQIOmJW9c+I5gzZ6uMuCG5lVeXo5vvvkGJSUleO6559CmTRs3Q6lMJkNAQAACAwN5Wy0tDSeRSPD4449j27ZtWLNmDdq2bYuoqCgEBASgoKAADocDLpcLQUFB6NatG2QyGXbu3AmtVou+ffvysRgMBly+fBkymQwRERGIiIhAr169MHDgQBQXFyM7OxuHDx9GTk4Ojh8/jtGjR2PkyJE4duwY0tPT8cYbbyAjIwNAHZVs164d0tPT8de//pWPlQ4Mp6CP5rgYbxcQtYyIiIBGo8HVq1e5ckklBMXoJLrubZx3BEUEbgySDKHkItq6dSu+//57TJw4EWlpaTAYDDy90el0uplaAHCnvGe7jYHVakXv3r0xadIkvPvuu9iwYQPeeustjBo1Cjt27EBCQgKuXbuGixcvori4GL6+vsjNzYVarYZEIoFSqYRer0dhYSEqKyshl8uh1+sRHR2Na9eu8ZqMAQEBUKvVOHPmDP75z39iw4YNmDRpEl566SUsXrwYaWlpbouUk5NTj0Iyxri8K9oiCRFvJ0ISkaD2xXkNDAzkSp24STw9Kw3BHYGIMpmMJ74D4O6rvLw8fPzxx7DZbHj++ef5feTyo9PfKYxfhJbY1/z9/WE2m/HUU0+hoKAA33zzDU6fPo1u3bqhU6dOcDgcCAgIAGMM+fn5SEpKwsiRIxEREQG1Wg21Wo3S0lIEBATA398fcrkcFRUVqK2t5f5xm80Gi8WCqKgodO3aFSdPnkRGRgY++OADXLhwAQ8//DDatm2LjIyMRpFJLAqgUqnqHQzu+VxDARQ3o9Q0NCYKShHjRsWY0eaAOyK6hGAB6e31X3oDUizIR/vdd9/hyJEjmDdvHvr37w+LxcIpn8ViQUBAAHf8iyH74o70ZNUNQUVFBRITEzFhwgR888032Lp1K3Q6HeRyORQKBfz8/DBhwgQ374her4fZbEZpaSlyc3MREhKCzp07Q6PR4PTp0ygtLYXdbkd8fDzCw8O5QkXxkUFBQdi6dSt++OEHXLhwATExMQAaj5yRSCTcPEIJ7t4WnBC0IQWhNZUahULBxZfa2lo3JG9u4LA7IkpVdcj4MyChWq12Y7uHDx/Gl19+iR49euB3v/sdly3EQAIK9zKZTNzeKMqYzd2RVqsVoaGhkEql6NevHyZPnowDBw7gzJkz8PPzQ05ODhwOB/r374/g4GAUFxcjNzcXJSUlCAkJAQC0b98eHTp0gFarRUBAAORyOaxWK0wmE44cOYLg4GBER0dDJpPh6tWrqK2thUqlQkBAAK5evQqVSoUrV640OVbyudM7kuImBiZ4IuCtQHMoJwWVaLVa2Gy2eiWcPcfvbWzSn1tRAcDZlxiOn5WVhSNHjmDSpElITEzkdiy6T6VS8VwSk8kEp9Pp5rXw5qVpDHx8fFBTU4M2bdrgiSeeQHl5ObKysuB0OnH+/Hnk5OSgoqICV65cQW1tLRISEhAUFIT8/HzOclUqFXbs2IH169fj0qVL3CapVCpx8eJFnDp1ClVVVXzjhIaGIiwsDIGBgXj++efx+eefY8CAAQgKCkLnzp3x5ptvumUJms1mvgklEgn0en29Rfdcz9u5viQiUJR6ZGQk/Pz83H7zBDHlQ4TGV8llvfHn7bt4ralnG/mN7E7k8SDf6tjfjsCMJ6ZACjv3c9rtdsBlhc2ih4TZoNPpYDAYcOLECShk122HVgMkrG4BreZa3m1DXgiFQgGTyQSNRgMA6NmzJ+bMmYN9+/Zhx44d6NSpE3r37o3q6mpUVVXxINDi4mLExsaiY8eO0Gg0OHPmDC/2WVxcjL179/KoHq1WC5VKhZKSEkgkEkRERCApKYlzgbi4OPTv3x9r167F4sWLoVAosHjxYvTt2xdbtmyBwWDgHIBcZ6IR2bOOD32/Vc+LZ1Cut7QHMvAHBwcjNDQUQP3in57guUGaCJtVNf6f2DixdD5i4XozfiPDp1QqRXl5OZYtWwbmtOCBQcMQHhnLf1MqlXXIpvCFSh0I/8AQtE+MrfOemOtkE5fDDIXKn/elUPnz/hvze5Iv2OVyITQ0FA888AA6d+6MY8eOISoqCpGRkSgtLcXly5eh0Wig0+kQHx8Ps9mM4uJiHD9+HEajEYGBgUhMTETnzp3h5+fHFRqpVIqEhAR07twZPj4+KCwsxNmzZ1FaWsoDCJxOJ8LDw/HUU09h5cqVmDVrFqqrqzF79mzMmzcPWVlZUKvV3AMkFpKSy+V88SmQtjXlQG+5J/TZYDDwJDSSzwm8+cK9UcuWsWZv8mNDVK8FQG44p9OJLVu2YO3atXjooYcwduzYui6g4BoZLRh9DwsLg8vlwrXK69Hb0hvsG1JVixaDwuGlUinS0tIwYcIE2O127N+/H4wxREREwGg04uLFi9i3bx/sdjsYY8jOzsbOnTtRWVkJjUYDlUoFuVyO++67D2+//TamTJkCPz8/lJSUoKCgAJWVlTwRKTIykgftkhIEAN27d8cf//hHrFy5EsnJyVi1ahUef/xxfPTRRyguLoZcLodareaKSz0Kc7291mDNIqHwnC9SUEwmE4KCgrgCRb97mtIa2iBNm2+aUmBaQbEhgbu0tBQrVqyAr68vnn/+eURHR3OzDhm9nU4nIJVzbdjPzw9Wq5UHZVJECC1qS0wIIhvRaDQYP348Dh8+jC1btsBms6FTp06orq6GXq+Hn58fOnTogOrqavj5+SE/Px9AXQSK1WpFUVERbDYb5HI5OnTogPLycoSGhiIuLg6RkZHQ6XSoqKhAQUEBrl27BrPZzBfWZDJBLpdDq9ViwIABWLNmDVavXo0vvvgCr7/+OtauXYsXXngBY8eORUBAACwWC198SnkAbrhLxaDgm0FMT08ViQbUVkVFBffhO53OehYM8XNDsqMgANwaVbvV52UyGTZt2oQjR45g6tSp3IMhkUgghZ0L5RQXR1RAq9VCKpXyen3k+qP7WxqvR/GKdrsd9913Hx5//HGoVCqcPXsW/v7+SEhI4PJdYmIiYmNjYbPZ0LZtW/j5+aG2thZXr16Fw+FAREQEysrKsGfPHshkMnTv3h3JyckICgqCxWJBVVUVamtrUVNTg6qqKh5nSGKC1WqFwWCAVqvFc889h6+++grp6em4evUqJk2ahPHjx2P37t3cjurr6wuj0ciVt6YUmZsBkUXT36VLl+B0OhEYGAiVSsUR3xtbbohD1bcjeqNwDVFFUf4Tf/OUC5vx24kTJ7D0k38gOjoaL7zwAiBVweUwQyZxAlJ/2K+HTjmZHFLXDRkoRNcGERERKCqsO1VACjvsTgAKWV0/suuliZ0WSGTuqZ+AdypBwadqtRp9+/bFqFGjsHPnTk4VlUolQkJCUF5ejnPnzsHhcMDf3x8ajQYdOnRASUkJTpw4AafTydknseDjx4/j6tWrsNlsYIyhpKQEdrudKzO0kShtVqVSoby8HEFBQYiPj8frr7+OwYMH44033sDGjRtx+vRpTJ06FSNHjkSvXr0QEBDgZj0QqfzNyo2iLVZ0x9L3w4cPIyQkBG3btnUzLbUE8QW6qbo5NtvQc6JC0sRvNTU1+Pjjj3H67CU8+eST6NKlSx07kKvhwo2wI6DuBZ1Mzp8PDQ1FYmIizp7PRWl5NSQyHy4fOlwy/tkbEgL1SxYDNxL6SS6cOnUq/Pz8sH79ely9ehXt27dHcHAwysvLceXKFZSVleHAgQO4cuUKfH19kZSUhLi4OBQXF+Pw4cMwmUwwmUzIzs7GhQsXoFarodPpEBYWBrVajaioKK5t2u32OqXsejBvVVUVdDodFAoF9Ho9ysvL0bdvX+zYsQOrVq2CTqfDokWLkJ6ejiVLliAvL4+71ihyiU97Kykv1I7D4UBNTQ0uXbqErl27okuXLm7z6ufnx+XoJttsVs+3wcgtDu7YsWP49NNP0a1bNzz55JNuOScUVu8p9NKuDwwMRExMDEpLS7mcSDu2sfrO3sAzA488PSNGjMCAAQNQXV2N4uJiFBUVYd++fSgrK0OnTp2g1WoRFRWF8PBwHDp0CFu2bEFNTQ2XVamt3Nxc1NbWIiIigtvczGYzKioqYDQa3dgeyYxarZazaD8/P+h0Oq4tT5kyBevXr8c///lPmEwmzJ07F/Pnz0dmZiY3MYk5O41BY/MjzotIDY1GI6qqqmAwGNC5c2fExcVxrd3hcHAHBPnAPaPn3fpofHS3rhEDcLNvVVVVAbiRw1teXo5XX30VSqUSc+fOhU6n43m/nogBgLsA6buPjw+6deuGwsJCHDlypF7qI3/RFlIDMhdRH3PmzEFSUhL27duHDRs2YP/+/TAYDDCZTIiOjoaPjw/OnTuHqqoqXLt2DUVFRUhMTERUVBRiY2O5HBUcHIyioiLo9Xrk5+cjNzfXzVAvvif1r1KpuGlEnAOKfHn88cfx5ZdfYsGCBfjxxx/x29/+Fm+99RZyc3PdorgJSTzzqQG4OQScTidMJpNbqRGgzkxD5hmLxQKNRoOsrCyUlpaic+fOfGxUBcyz5nljHp+m7Yg3y7IFEPMYtFotlzlcLhd27NiBY8eOYfjw4ejXrx8fqEKhcKN8jYG/vz+0Wi2OHTvmFiFCbdwqSKVS9O7dG4MHD0ZZWRkKCgrQtm1bJCQkoEOHDggODoZCoYDRaMSZM2e46y8kJAQBAQEwmUxo3749EhMT3Uq1Wa3WBhenJfKVQqFAfHw8FixYgA0bNmDYsGFYsmQJpk+fjhUrVqC8vJzfR9SZkFAsKkXmFZlMBrVazd2povlGTI0F6k5w0Gg0PAaRgpK9BdMCDTsVfpIIbdpFZGgll1BeXh4++ugjqNVqTJ8+nQeIEngLqReBXio2NhYdOnTA999/j4KCAgAt8zU3BeTVoCSpc+fO8YUsKSnhtV86d+6M7t27Iy4uDjKZjMuPRUVF8PHxgc1mQ3Z2NrKysrjL0GKxeF2clnhECLG1Wi3S0tLw0Ucf4bXXXoPJZMLzzz+Pp556CqtXr+buQQol8/Hx4UHIVHmCEr4oood8/9QPjcvhcMBsNuPAgQOIjY3lCVSeMqm3Uxu8wW1HRJILlEolT5SneLp///vf2LdvH2bNmoVBgwbxXSPavQjEgAYCuj86Ohp9+vTBuXPnsH37dm5vFKlhUwvbGOUkm2TPnj0xc+ZMOJ1OHDhwAMXFxTh37hwPgrh27RqqqqpQVlaGy5cvIz8/n7PX06dP48yZM6ioqMD58+exf/9+XLp0ibOvliCetzRSSloyGAzQ6XRYuHAh/vGPf2DKlCk4ePAg5s2bh2effRbHjh2DWq0GY4z76onVi1VxuTtVeH+KRKLxZmdno6SkBN27d0dsbCxfEzGBzVMk+kkqxnpOjhgJIpVK4ePjw4X3gwcPYvXq1UhOTsasWbOg0Wjcatu4XHWnhzaWI0uLp9FoMGDAAADAjh07uL2RWERzTAmiLOUJPj4+MJlMkEqleOSRRzBw4EDk5ubi4sWL0Gg0uP/++9GpUycEBQUhPDwc/fv3x8iRI9GnTx+0a9cOUVFRKC4uhtPpRKdOnRASEsKN7RQkQAJ9c8DTPki1gciGR0g0cOBALF26FB9++CF69OiBL7/8EtOmTcOf/vQn5OfnQ61Wc/++KBMS6xURXjTb2O12+Pr6Ys+ePTAajejTpw9P9aCkNZvNxtm8CA2JWq2KiGLQJeAuF4gJP6WlpVi2bBlycnJ4MhRww8MiCtQNuZc8oUuXLkhNTeURLiJiNVdRaQhZKQrbarUiPj4eTz/9NDQaDfbs2QODwYCoqCi0b9+eR2qTthsZGckjzePj45GcnMzZVc+ePTFs2DCet+Kt/+Yiplwuh8Vi4bZJosKEoBMnTsSSJUvw5ptvwmKx4O2338aCBQuwbds2lJeXu8mOpK2LZaJFhCLxCgAOHToEjUaDHj16AHCPPaSCUZ5z35CodVtYs2fnjDEezuRyubB582Zs2rQJ999/Px5++GH+sr6+vm7xdk0thEhFIiIi8NBDD6GsrAz//e9/AcCNRYhjaSmQGYfea8iQIXj44YdhNptx8OBBbNq0CdXV1YiMjETPnj3Rvn17OJ1O1NbWorCwEBaLBZ07d0ZCQgKnPEFBQQgNDW2VkiFk/Kbi8iS/0iYA6uTo3//+99i8eTNefPFF7N69G08++SQWLlyIS5cu8flXq9XcXUgmNJEaSiQSyOVy7Nq1CydPnsTgwYMRFxdXz1iuVCpblNfcKojY1OJSdAtjDJWVldi7dy/Ky8sxadIkHixKwjJNAnkYaDIb6oOoiI+PD+677z4YDAb8+OOPDUZm34ybi7RHohoajQYPP/wwoqOjUVBQwFMCamtreZ1th8OByMhI9O7dG2FhYbzSV/v27REfH4/8/HxkZWXVqyd4M2MlrqFWq7mrT2SjwA0Zu2PHjvjzn/+M9evXo2fPnvj6668xYcIEfPbZZ26ikchRiMqRnCiTybBhwwYUFhZi5MiR8PX15QEOxNFIgWpuJYpWQUQqpimCOAHl5eXcrpSRkYF169Zh2rRpGD9+PGfBZLgmNxcd2ijuxMaAZKKOHTtiz549PGCVJlSsR3gzQKfbk+w6YMAADB8+HCaTCXa7HUFBQcjNzcXhw4eRlZWFrKwsGAwGbjelrL6goCBERESgsLAQ58+fR2FhIZ8nT2iuSOFZ7o6eJfZK80nFBwCgb9++eP/99/Htt99CoVBg4cKFGD9+PLZs2cJNMBKJBA6Hg4s61dXVkEqlKCwsxJ49e9CxY0fOlsXgZlpDT4WxMWgVRCTqQ2FUVFIDqKNkOp0OTqcTxcXF+Pbbb6HT6TBt2jRoNBrvYeONhJp7fYnrhmDGGMaMGYOCggJ8//33XDunCaXxEUI2V6t2Op3QaDR8ozidToSEhGDcuHFITk5GdXU1qqurodPpeJtRUVGcpZ84cQIOhwNhYWFo27YtunTpgsTERK8usJsRHZrapKJtVXznuLg4pKam4uuvv8acOXNw9uxZzJgxAy+99BLOnz8PoI5AaLVa2O126HQ6AMCSJUtw8uRJpKen85xvyiUyGAycTXvaEhuDVqOIDaUOEqutra3F1q1bsXnzZgwdOhQPPfQQgPpa1M0YoEm70+l0ePzxx9GmTRssW7YMly9f5vISD6wVjOtk8qB3aAgJxANvgLrQeMYYBg0ahJEjR6K2thYHDhxASUkJSkpKUFNTg5CQEG7bCw8Px7p163DgwAEEBwejsLAQmZmZsNlsaN++fb25bG3wlNVE7hUcHIzExES89tpr+PDDDzFw4ECsW7cOo0ePxqJFi7j8SMlR5Ffv0qULBg0ahJqaGlitVu6i9PX15dzDYrE0mwu1mrIiBgyQ4AzciEGrqKjA6tWrERkZidmzZwPwrsrfjGOeMQa9Xg+ZTIaEhARMmzYNJ06cwLp167jYIO5Mxhgvr9acutPE0ugdlUol16SpYuzly5dx7NgxHrBqtVphs9lQVVXFw9ny8/OxceNGZGRk8NIk5PW4VWiuL53kPYvFwg3ZVLfnkUcewZIlS7BgwQJIpVIsWbIE8+bNw48//shtj//85z+xc+dOPP744wgPD+eBwHQEiGimo2jy5kCrISItLHBDSyYB1ul0YsOGDbh48SLmzJmDHj168PM4WiMihKgxiQXjx49HfHw8PvvsMzdbosFg4CYGxpjbwjSnfZK3SIOuqalBamoqZs6cCbVajatXryIhIQGJiYnclldSUgJ/f39MnjwZGo0Gx48fR58+fTB79mzExMS02qFBjc0jReHQXJDxmhQPX19fuFwuWCwW6HQ6LFiwAGvWrMGkSZNw5swZPPHEE3juuefw73//G99//z26d++Ofv36ufWxcuVKbjMeOHAgAPBKt80a/829tkcj1wVjkcLJ5XJOYXJycrBs2TJ07twZkydPBnBDE7sVBQK4If9Q0j1Qd+jPo48+itOnT2PNmjVcgyPhWSqV8jyR5shkogZuMBj4M4TMEydOxAMPPACTyYTy8nJuuggODkZUVBS0Wi3MZjNqa2t5jemioiJcu3YNkZGRt/T+zQExltCTcpL8TJSMZLzu3btj0aJFWLlyJSIiIvDJJ5/gmWeewb59+3D06FH07t0bAJCbmwuJRILTp0/zciOElFSzslljbK2XJTcRsTuihMXFxVi6dCmqqqrwzDPPIDo62u2QnFuViSjhnIBC5SdMmIAePXrgvffew969ewHUeWA8Q9ebQ5E8czBozJRF16ZNG4wfPx6hoaHYdf0ULIlEwksuX716lSdJGY1G7Nu3D6dPn4bJZOIpBrcbyFtCChsFXJD3i9ZEPJVBqVQiJiYG7du359HmgwYNcms3MTER6enpWLx4MYC69UhISGiw1mND0CqIKAq/olfEYDAgOzsbn3zyCXr37o1HH30UALgRt7WODxN91KQV9+jRA6+88gqOHz+OlStXcjMKsWnRnUXQkPZKG4xODiA2r1AouCIzcuRIdO/eHXl5eaiqqoLFYsGhQ4dw8uRJaDQadOnSBZ07d0ZKSgp++9vfol+/fny8txtE7xR5S0i8EGU6ArVajfLycqxatQqjR4/Gli1bUFJSAqCuchrBypUrAcCtSBRBcnKy1zJ7DUGrICIZeilKhcrrGo1G/PWvf0VgYCBeffVVt7qHFPTamgtBiE0UbNCgQZgxYwa+++477Ny5E8ANBz4pL6JoIGrOnjY5StQioM9KpRKMMbRp0wbPPPMMtFotNm/ejHPnzvGzXEJDQ5GTkwO73Y7+/ftDpVIhMDCQFxYlliaKCq0VTS2+M7FlmUzmRjCAG7ndTqcTmzZtwiOPPILXXnuNRzMBwKRJk9xEiZkzZ2LFihVeudqMGTN+eooI1CGBeJysWq3Gzp07cfToUUybNg1JSUlu0cLipNwqkPeFbHJE9UJCQjB06FBUVVVh6dKlOHfuHAD3NEfP/puqOwOAG489a0s/+OCDGDp0KCoqKnDhwgWeDHXmzBmcOXMGNTU1uHz5Mj+ul+TH2w1U8xqoS4avqqrizoKqqiq+AS5cuIA33ngDs2bNwu7du3kFXLvdjvbt22P69OlISEgAYwy5uXU5Qt6Q7WZsoa2CiGLsH7mBrly5gk8//RQBAQGYMWMGdDqdW2ZdawSsEoiRImTTJAVjyJAheOmll5CRkYHVq1e7adHkm23q3RoCQkwqBKXVajF9+nS0b98eJSUlCA8PR1hYGAoLC1FdXY2ysjKeXpCamorU1FR06NCBa5u3qx42yYAOhwM6nY4bqK1WK7RaLc6cOYNFixbhySefxLvvvova2lr06tULWq0WV65cgdVqxYgRIzB48GBuuiLwNuabkftbzbNC7JgiNZYtW4ZDhw7h+eef52Hk4hkhxHpagzVTG7QZxDTSsLAwzJkzB8nJyfjkk0+wefNmHqQqkUjqHeroCZ4RRZ5AiE32yv79+2Ps2LGoqKjAuXPncOLECRw/fhzV1dU4e/Ys8vLykJKSgpiYGNTW1vJxAO6F0lsbKX19fSGRSNxk4+rqavz4449YsGAB3n//fRw9epSfzNWjRw9UV1ejoqKCV5pQqVRISUkBcIMS5uXl1esrNzcXmZmZLRrfTddHFNMwRQqjVqtx9OhRfPLJJ+jSpQtmzZrFo4DFoFigfsrhzSaAE4KTrCra/IA6P+///u//4oUXXsAbb7yBmJgYpKSk8MoMnuzZW9ql53dPNxZFnms0Gjz22GP48ccfsX//fqSkpKBfv37Q6XTQ6/VwOByw2+04deoUzp8/73aqZ2Oxly0Fz3cQHQ52ux2nT5/G559/jrVr1+Lq1avo1q0bYmNjYTKZIJPJcPLkSRQVFaFr16549NFHERcXV299VqxYgZkzZyIhIYHbDnfv3o3XX3+dV75tLtw0IooDIlaoVquh1+uxcuVKXLt2DX/+858RHh7uNsHiAnrWNbyZyRflH9FlR2NSKBTw9/fHb3/7W+j1ejz99NOYN28e93nr9XpehJPG0JSi4G2Ra2pquIzcsWNHzJgxA/v37wdQZzYqLy+HwWCAUqnEtm3beEKUGErviYw3MxeexEGUZ2UyGa5du4aNGzdyjiWXy5GcnIzBgwcjNDQUJ0+exMmTJ3H8+HEeOtanTx+vZ/6RQpKWlsavpaencyQkj01D8yZCq1SMJduUQqHAf/7zH2zatAkPP/wwxowZ4xZdA4CHU5Em15Cy0lzqKMpXZL8kRBdf2mAw4NFHH8WRI0fw2WefYdWqVZg7dy63BbYoGdwLtSTTCFGU3r17IzU1FdnZ2RzhbDYb4uPjwRhDfHw8dDodIiIiOFWk9/YEb4gvigz02Vv9G6LUtbW1yMrKwqpVq7Bx40Y4nXXnLffq1QtKpRL+/v4oKipCUVERL5D/xBNPYPr06QAadjwMHDiwQTFCo9Hww9nFefOGkK2CiC6XC0qlEhUVFdi4cSOKi4vx17/+lSsontE4oubc0KS2hE1LpVKuqYt1X0hhoYJHMpkMCxcuRGlpKf785z/DZDLhxRdfrFf22Fvf3iaP7qPQeQB80lNSUvD6669j0qRJKCsrQ5cuXVBVVcVj92pqalBUVIRLly65bUZvG7MxMaGp+ZJKpbh48SKWLl2KVatWwWQy8ejxpKQkREVFISEhAXl5ediyZQs/zuOZZ57B888/D6BOBicLQEvMShQy19Q8As1EREIYuVwOs9nMXVhUjIcmb8OGDVi3bh2mT5+O4cOHc3+sSJ7FgXmSem8T3Fwgp7y4GKKxmkwVYWFh+Oijj/DYY49h0aJFMBgMePXVV3mpDlIYiGXT+4vtUgCvaCAWiz4R9bj//vsxe/ZsLF++HADQu3dv7mkho7vdbkd2dnY9wz6ZVEj5o/kgVi7Wl2GMca8NbSq73Y7i4mJ8/fXX+PTTT5Gbmwun04nk5GTEx8ejtrYW165dQ3FxMU6ePMkrNgDAa6+9hvT0dPj6+rod9NNSEMUD8Zo3aBYiiqS3oRDwwsJCfPvtt0hOTsaUKVP46U4iEt5uEE0gnmyZcp/p85tvvomgoCC89957CAoKwrPPPssN7D4+PjxWEADfhKJ2S3NAlBi4YVAn5NFoNHjggQewceNGHnF+5coVHpuo1+tRVVXFA3epL0/5WyqV8uQt2sg1NTU8YZ+A7KlUf/zTTz/F9u3boVQqERoaCo1Gg27dugEACgoKEBQUxCOXKP/kxRdfxOzZs7mYQe/WGDTGvZod3NucTgizPV1yJNhbLBasX78eO3bswGuvvYYhQ4bwCWlqJ92sptwQeGtLVIgIUXv37o2nn34aJSUlWLhwIT/HJSEhgY+bTFJE8QiZxBIotPg0P8ANz4VKpUJaWhruv/9+/PjjjzCbzdBqtVCr1bxMClEqon6e+SFAHQX28fGB0+nkxmja4DQmxhjUajWys7Px/vvvIyMjA2VlZQCAAQMGYODAgcjPz0dJSQlUKhV69+4NnU6Hffv2ITMzE/7+/pgxYwaeeeYZRERE8ET65srpNLcN3d+YogI0w45IyoBndC+ZYxhjOHfuHJYvX46kpCRMmDCBd+zt9MyGcpNvF5D8ajAYYLVa3dhtamoqli9fjpkzZ2L16tWYN28ezp8/zymj6KMVPUEi0lE+CwA3oZzeMzg4GC+//DLCwsJw6NAh5Ofnw2q1ory8HNXV1XA4HPW0XVHuoz4B8JqJJGeK/V64cAGLFi3C5MmTsXbtWpSUlPAMvoSEBBw+fBg7duzAtWvXEB4eDrVajStXrsBkMvEa3unp6YiMjITZbHar2eM5nw1BY2vZFGVsEhFFVifWUCHZ0Gg04vPPP8eZM2fwwgsvICUlhaeOEiVp7mBvB1ACDxl0RU1dpVIhPj4eS5YswdNPP40DBw5g6tSpPI9DoVDwrDbKTaFcGuBGgAcpReIZKKJ/t3v37pg4cSJqa2tx8eJFLiIQmyYrgmfeCX0Wo8gplEtk2Vu2bMGECRPw5ptv4urVqwgMDETXrl0xatQodOrUCfn5+SgvL0fbtm3hdDpx6NAh7Nq1C2vWrMGpU6fwt7/9DfPmzUN0dDScTqeb8dubJn4z0JA1gLfbVAOelJBILCVUHzhwAF9++SX69OmDRx55BMANJcFgMNzUoFsbqKCTeJK80+nkObxyuRwLFizghzbOmTMHixcv5sdNUGaeN6Hb85wTQj7Rtul0OjF9+nT069ePm2okEgnKyspgMBi81r8RF44UIwC8MoTdbsfevXvx6quvYty4cbh06RLi4+Px4IMP4qGHHkJcXBx8fX0RERHBFUwyHR09ehSnTp1C9+7dsXbtWkydOpWXgKZ4RAqvE1NSbwUa0uiB6zJ4cxqhHS8K6y6XC+fPn+cHXc+bNw9hYWFcNiLkbWwHtbZ82BD4+Phwuc/zjBKijmQ3S0xMxCuvvIK3334b+/fvxxNPPMGPnCBWRcqLSqXiSEKynVwud9N2gTpEio6Oxvjx47Fv3z6sW7cOnTt3Rnh4OEpKStzSaAlEwzrZIYnq5ufn4/PPP8fnn3+Oy5cvQ6FQICEhAaNHj0ZcXByOHDnCFZSNGzfC398fcXFxMJvNOH36NABg1qxZePTRR/Hggw/yvsnoTcnxTbk/bwVo7el/s803nmCz2XD+/HmsXbsWw4YNw6OPPupWr5micYgVerN3/VRsWnRBkrmDIqU9zz/u27cvVq1ahXfeeQefffYZzp49i6eeegpDhgxBSkqKmxsRAKeoBoOhXj4x1ZNWqVSw2WyYMWMGMjIy8M0336Bz5874zW9+g4sXL/J7RdunCBaLBUqlEjU1Ndi2bRuWLFnCvRcJCQmQyWQICgpCdXU1goKC+JnQVCjJ4XDgu+++Q2lpKTp27Ii5c+di4sSJCAsLA3DjCDrxKDniHLcaM9oQsfEUQZpNdyl+EAAvVr58+XLI5XLMnTuX293EoxaISogT+1PLiMCNs/2A+qV8ye5HZgqXy4X4+Hh8+OGHSEtLwz/+8Q+8+uqr+PTTTzFu3Dg88cQT6NixIwC4bTwKklWpVG7UjP7TSVQTJ05EZmYmzpw5gy5dukCn0/FTPUmuFk+4J1vt9u3bsWLFCqxfvx52ux2pqano27cvfHx8UFVVhSNHjuDUqVOQyWSIiopCZWUljh49irNnz/KyIiNHjsS8efMwePBg3g/VF6Jz/UTzEc1Vc92O3gz+TXE9Ev2ahYhiCRDyOa5duxabN2/G2LFj0alTJ7fDZzxf5HZCc7PXGgNyy9HCk6IyefJkdO/eHZs2bcKmTZvw4Ycf4ocffsDUqVMxYsQIXoqN5DkxREpk+7QhAwIC0LdvX4wcORLffPMNfvjhB07txE1Orkq73Y7CwkJ8/vnnWLVqFXJzcxEcHMzDx7p06cI1Ygo2OXPmDCorK1FYWIhTp05BqVTi/vvvx9ixYzF58mQeNU2l57zNT1OmFk8gzd+TmlP7JKOLZh4Saei6hDUj3ogWm0KWSkpKMHz4cNTU1GDr1q1ISkriE2k2m7k7rbHdcDvj71oKnh4As9nsFiJmsViQnZ2NLVu2YMuWLcjJyUFUVBQmTJiAUaNGoWfPnnxySX4kwzbFZ1IfMpkMW7Zswdy5c5GXl8cjnpctW4bhw4dzKm2327F69WosX74cZ86cQWRkJHr16oXk5GROvSkt9sKFC9BoNLh48SKOHj2KiooK2O12dOzYEWPHjsXjjz+OmJgY+Pj48KMwSPnyZusVq7g1Z41aJZqcNQMcDgez2WzMZrMxi8XC/vCHPzAAbPHixYwxxpxOJ3M6ncxmszGHw8Gv2Ww2Zrfbm9PFTwpOp7PeNYvF4va7xWJhFouFmUwmZrPZ+G9ZWVnspZdeYl27dmU6nY7pdDo2adIktmTJEpabm8ucTiefLwKHw8GcTifT6/XM5XIxk8nE5s2bx9RqNQPAEhIS2KZNmxhjjNlsNrZ582Y2aNAgplKpmK+vL4uNjWXvvvsuO3v2LNu6dSv7+9//zlauXMm+/PJLtmjRIpaQkMD8/f2ZQqFgarWaJSUlsYULF7LTp097fU9aFxonjc/zr6Hr3u6jP8/vdM3lcvH7aY7F3xuliOz6zhA14IyMDEyfPh2dO3fG0qVLodPpeEI5+V6BxoMEPD8TNMQSWsoqvD3fGJBQTiDKtWJOsOjePHnyJNauXYtt27bh7NmzkMvl0Gg06NSpE4YOHYrBgwejbdu2kMvlnLKKMZnHjh3Dxx9/jOXLl0Oj0WDdunVISEjAO++8g3/961/c4N6+fXt06tQJwcHBMBqNyMrKwtGjR/k7lZaWQq/XIzQ0FAMHDsTIkSMxYMAAxMfHA6hLDfDz83NzDwI3UkvFMnKtIb97m2tv5inxPqfT6c6aXS4XHnzwQezevduNJKenp+Ptt99GVVUV5s6di61bt2Lt2rW8yqtEIuGH7IieBtFU0pKXbS5LoPaayo1uColFWdZ5vXwvacCiQkJylRisQYpCfn4+Dhw4gMzMTOTm5kKr1aJ79+7o2LEjIiMjOUJptVoEBgZCLpdj1apVSE9Ph4+PDxITE1FdXc0LvYeEhOCBBx5A79698f3336O4uBhVVVXQ6/U89TMmJgaRkZF48skn0b9/f0RGRkKpVPJIIL1e7+brr6mpgc1m4wfzAOAE5FY2e2NadXOIAADvMuL8+fMxZswYHmsmlUqxbNky7o8MDg7GokWLoFarERERAQCorKx0i9AhzZl8s6JnxhOaQrrGnm3oZRuK0/O2GUhZ8fHxcdNaSRMWPURUqJJqEkokdeeJGI1GlJWV4fz58zh69ChOnz7Nj9ugKHA/Pz/YbDb4+fmha9eucDgcyMrKarDsiE6ng81m40dVkGbrdDrRvn17pKWloUuXLtBoNIiOjobRaER1dTUCAwNhNBphMBgQGRmJ6upqXvCKql1QEEdT5pnmEA9x/mmdxPUSo5rE0D+5XA65XI7Bgwd7R8S0tDS3UO/58+fzUKN33nkH4eHhsNlssNvtvCYfeQyosiodc1BZWenVMHorrMDzWU9NzfOVvCGq2AYdWg6AmzMI2UgjpMkT80rItEJzQ6y7pqaGl2kjdx4tuHh8BfmzKaCB7jEYDLwUCJ16T0letCECAwMREBDARYaamhq+uDabjQcsUIoviRc0fjJiN8ey4XkPzR39J8W0obn25Dh0TaFQQC6X4+uvv75hviHkoTRBEQ4ePIiZM2eioqICI0aMAGMMPXv2RHh4OIqKihAeHg6Hw8GPbhWrjIo2NXbdrkSDoe9SqRT+/v4IDAyERCKB2Wzmvl3RvyoWdiLNXC6Xw9fXF7W1tdz9pdVqefRzQEAALl++jOLiYthsNmg0GrhcdQdQSiQShIeH88Bao9HILQMNybKe3yUSCTQajVtxI6J+RFHNZjNqamoQFBSE4uJiBAUFwd/fnx+PRiXt1Go1SkpKuD3SarXyyv82m43nQfv5+UGtVnMvjkwmQ1hYGAwGA86dOwer1YqYmBgAdace0D1EkQipqXio1WqFRqPhx3TYbDae4wzUiQDFxcWcwmq1Wn4QZHBwMBc1GGOora1FRUUFP0LOz88Pcrkcfn5+vJgVte3n5wd/f3/Ex8fXUUQKwpTJZDx7f8aMGQDqqOG7777bJGv0rEwqIqA3WZE+u1wublilIFOqUkXteD4P3KitIwaMihExnkG3xFLFmD0S4KXSuuLjIhumHU/z0hiQ0M8Y43ZA0UAulUp5tTIx2LQxqKqq4vNBUUxEnT2VKbGtmpoauFwuXl6F6u2IxmkxoJkik8TgVzHqSHzOZrNxjxTd542ti25QkrPFWkeE4GLReMl1VZovalpaGjIzM/lCDBw4sFkZWZ4k2TPHgsCTrJMBWaQ0nsgsRiuLYWnUjxgHKPZLiycey+CZetrYuMWxiN897xE3hGf7IisiJaimpoZT/+aCOCfegMYoUnLxuwjimETvDbtuCwVuIKFUKuXBxMANhU1cM9Hi4Gk5EYsZ0Li8jUkO3IggIbYsCpzNnayG3DsN/e55ndiGKHd43tMYZSL2TbsQcD9pSWzL03TQUDqpt4n0NgaxPfF32jxWq5WXfnNerz5LG16EjIwMnpZptVp5+JdYQq4hE5hITDzfg35rCIgqid4gsQ3PnBrPDd8Qdad7KKjDcwNQ+3K5vA4RyfJ/5coV9OnThzd0K3YlQkSSARuLxqEFonvEknGkCHgDul+sdEXOfnIf0R+1J0abi8/T7zQOT/GB3qkxCkP3iO8P1EX2ULApLSoh3Z/+9CcMHDgQmZmZeOCBB3Dp0iUkJCRwtkwynNgunWFC8+mp1QM3kvW9ZUp6IiuNX4wNoOt0TVwj8s97hsCJ8yFuTm+ikidw1iyTyZCWloYVK1a0qHhOc9X71jBIi/Yut6BKL+xUHJ+Y6CXuxIbkP8/+mgvUnvi+9JlOeKLNALhr+Lm5uUhMTEROTg4SEhLczsrzzA2mvuh9RKpO1F/MsWkMxLGKlNPbnHrmNnuTdT2VSgoQFjeLiKiE+HKaBHLgJyYm8l3ZEopIO9EbG20OEnouuMjWvbXlKQuS89xTBhVZPu1gskuKTnnPNum55ozdkwLQNWrHaDTyvBkKDMjMzER6ejq/f+bMmXj55Zc5ESDzBi1kU/PpGW4nsmygYVsr4G6Qbog6EuUV34vaIO5BYyQRgr6LAQ/Up6gMOhyOG3ZEsmm1xgE03l7Ym5unoXsBd9nN0/xDL9mQm9BTaxfbakxEaGxMTVF+T++Et37E31euXImZM2fy34gS0ntKJPVTWr312RBQQhXQsAxHbZLTQUQ8kRA0NJci225oTN7uF/snGVxOHYrG1taGliy6N4pH4InM3hBDfK4xxYegOVSvOeMXF05kvwRkjiHtc8WKFRz5Vq5c6caWJRIJqqur3bIPWyraiM82BNQmGfEbcvU1pIx5EgpvIK6RJxISlQUAaXMpVXOgJfLUrYA3N5I3aM57NbXATfmxRTOJN5citaHVajkSetYWJJttZmYmby8oKMhrFqTYZ2sAtdUYAbgV+d7TPevZH7/P88HmIJOnaUbstLnQXGTyBrTQLdlATfVDbj3P+zzNMQ2NpTGgIIXLly8DqEM4kS1TQXRRLicXoVjVrKE+vfl6mwutRYSa20eD8amevubmsKqmTDG3soOa08at+KmbasvTsN5aHMPpdOLq1auIjo6uZ50Q7YJkngEalu08QWSrrTXepoznN9NHY3JzvdVuCAGIYnjeR/7dpp5vCTTVRmvuYs+2PIMpWqsvh8PBKV9mZiYSExM50ogVtchrISahNQUiW22t8TbWzs32IcqE4jWggTAwTxDDhjztSc3xm/7aQazZ2FyFkHzhnl6MXyo0CxHvwc0DsTHiKKKXqCEWR0jYXKP0LwF++VvtZwaJRMKP6zUajW5RQkQD6Fw8AnKjSSQSt+u/ZPj/7yImJro/jysAAAAASUVORK5CYII="
|
<image>如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为()
Choices:
(A) \frac{π}{2}
(B) \frac{√{3}π}{6}
(C) \frac{√{3}π}{3}
(D) π
|
\frac{π}{2}
| 10,848
| null |
\frac{π}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAALgAAABlCAYAAAD+kyk2AAAf8UlEQVR4nO19f1BU1/n359xd8Z286ThN1kprHFQgKvj9StLkjZnYLySiwYiI1ejb1mlJNEElnRpZAnYQ0KBBgZRO/AFqv3WmpqMVg0k0ImgDTTpSkxkwghp3l5j4TaKkk8ro20HYe573j7v37r27d5dd2J9xPzO47rnnnvvcc559znOe85znYUREiHBwEAQwEBEYYyAALNxEfYfwymKG6nd0LuSYQW9Xh5yeQEIINwG+gJHE5IxJbB1j7sBix9uEDYuBUxYOURRBRLjSshM505PDTdqoER0MzhgEirF1sMBhwWUqxLxEAIINu/a2IDEzCwumTA43aaNGVDA4ABAiXpOKWlhaWzBjQSYYYzizrwGGxMkQWCJeXDMv3KSNGlHB4JxzSfcmAsDBY8weUHxx9TPUrl0Ixhjmv1iLqQnJ4JxD+A4og1HB4IIgkWk9vQstVuE70fGRhFPHa3HKYgcRoWjRIkxNIqXPox1R8xYcFmx4+tdATHoHFNz6HmqZGfOTJOtU4sKFSIIAIgLnPNzkjRpRwOBSJ+8r3guWLUkX5cp3YADCjTPv/xXmBZkgEsEA5OfnAwQUFxcrVqtoRkQzuKRrC2jdZwbNzQQ/oWXokUyjUWD2DzC4y6cWLSdqMW/ufBBz9mXREgZKnBsRDK6Ml4dhK8xlYMz1LxtWeaVGEQouf1pPkrm+mfiV9wg5RVIZl66Kohgm6qILoiiSqPSohCstO8nBNtIfg+b7KQt3uydSUZjjoNfBD3tKsglYSBYiikgGlxhYGpSiIompRdtJWvDKLpc6zs8YPEHUfHrqr0juRc7tLt8l/iAiEukKPZNT6HZPYQ4o55UGiggVRaVVS+KDJNXkzL4iVFdXgzEGQ+ICjIFRqansavowjXrS1e8uHV4eag5w564CqVU2HnnqG5EIxgwgEpUyacylhbCttQXG6Q8CADhE5X2SUrLxzqeWyNDBZRaV5kfJRMV7m9HK54GkWQaW1l14MHGSVI9IsYV7Y1L5ZT3p6t8VU5h3aN+RMQMgMKXPNe4PglZYRMJ+A2MGxyfTMDk5yk6fOYkF8zPACRDAlPeZOkVieqNbi2EEc1i4eW8zDBvOgI5Jjj5EhM8+6wVHolSPOQdIZtK///3vaGhowOTJk3WlunOj6C4FMwAqBoFAAA//InJYOOickZqC/7t8hVRGAGMAwYoT1UBdVRIEAogY5KG32i4iZ9qSyJDgasarL86GIXEB8HYNTlkk6WxeLGD+i7V4PT8Li4v3qu6TBkwURfzyl79EW1sbdu3ahY8//hhDQ0Men3E3gRgHwAFmB6BS6TjTCIKvvvpK+X8kWE9kcLuIrVu3Yvz9JmehgzzqtUIoXIREYgADZLHHe5tRsKMFC+ZnRK4VhYhIJGllzGlQ97q8MDpw4AClp6dTWVkZrVu3jlavXk0mk4kKCgrIZrOFjuAIhWwN0S4wpUXa9evXaeHChZSUlEQ3b94MA3XeIY+tDKflTKSWvYVkrm92u6cwB4RFZiKKUCuKHjyZBAcGBuiHP/whnT17lsrKyqisrIyIiPr6+qimpoYeeOABys7OpuPHjwedlkiFJ8tJbW0tmUwmKisro4GBgRBTNTzsdjslJSVRW1ub2zWRrlAOQK29zh+vaD0lLeMWm5V6Ec/gwzFTXV0d5ebmEuecysrKaNOmTW51GhsbKT09nZKSkmjnzp1069atYJEbkXDtw46ODkpLS6PMzEyyWq0e64UbBw4coP/6rzlu5W42fNXfnlaL5gcd8QzuDTdv3qT4+Hjq7OwkIlIkuN5AiaJI3d3dGvVFPbh3A7799lvKz88nk8lEBw8eDDc5HiGKIg0MDFBCQgK1/fX9Yfc6vF2PiEWmN3DONaZA9f9ff/11ZGVlIS0tTXOP2vynrp+amop9+/bh4sWLmDJlCtLT07Fo0SKcOHEieC8QYpCHxfThw4eRkpICALDZbPjFL37hdxvBBqnMuvX19XjooYeQ/mSG10UvEYEx6T4CdzcbB/CHF3Sody/7+vrIZDJpFpFlZWVUXl6ukeDDTbtHjx51U1887ZJG2hTuC6xWK82dO5fS0tKoo6NDt044d4P1+nRgYIAmTJigzMz6N3qjWd7l5JEvwUklTWRbNmMM27Ztw4oVKzB16lS3+moJ7rqZ4/oL/+lPf4q2tjYcO3YMnZ2dmDJlCl566SXYbDY3yRGJG0OeNrru3LmD8vJyzJ49GwsWLEBnZycee+wx3brq96QQS2+9Pq2vr8fjjz/uNjM7wd02paRSmXbB8S+LLgku4/r16zRu3Di6fv26plxtRfFFKunVCab1JVR4//33KSkpibKzs+natWuj0mFDjYGBAc26yt9ZU6nveKWoZPC8vDwqKSlxK5cZ3JcB86Xj9NQXf+4PNfr6+mjlypX0wAMPaH6YI6U1HIxfVlZGK1ascCuX38GpPtrd6ihQkR1VDC6KIlmtVjKZTLqbEmoJHkiEyvqiZqjhmEvNtJxzqq+vJ5PJRCUlJVFrBv3222/JZDKRxWIJWJuRp1R6gSAIKCkpwfr16zFu3LiQPdfV+pKRkREU64vaX2a47XJZd+3q6sLjjz+OAwcOoL29Ha+99hruvffegNIVKtTV1SE7OxtJSUmBazRgP5UQoLOzk+Lj4z3uugVLguuhsbGRMjIyFPXl9u3bmuuuEjjQ0/2tW7eopKSExo0bR/X19bp1Ikm39gR5Jrp586abVSwQ9EeVBN+0aRNKSkowduzYcJOCpUuX4v3338exY8fQ1dWFKVOmoKCgADabDYC7BPbXb93V/q/GiRMnMGPGDHz55ZewWCzSOUodRJLTlCfIM1FNTQ2ys7M1VrGA0D/qn0iI0NbWRomJiV59JkIpwV0RCuvLtWvXaNGiRTR9+nRd/wyi6JDarpCtYl988UXA244aCV5eXo5NmzZppDdFkAvs/fffj8LCQly7dg15eXmorq5GcnIydu3ahdu3b7vV9+c0kSiK2L59Ox566CE8/PDD6OrqQnp6um5dxljUnVSqqqrCc889h0mTJgW+8YD/ZIKApqYmSk1NJbvd7tXkFU4JrgdX64u/1gHOucYxypf7I9F86Q03btzQ3dMIFCJeghMRtmzZgldffRUGg0HR2cIlpUhn1vBEi9r6MnXqVDz55JM+W1/+9a9/Ye3atcjNzUVJSQlaWlp8si5E4m6rN1RVVSEvLw8TJkwISvsR3xt//vOfwRjD4sWLNeXhGki9hc9wtIwfPx4bNmxQ1JcdO3Yo6sut2/92q3/wz3/Cgw8+CKPRiMuXL2PFihU+L7iiST2x2Wz405/+hI0bN2rK9YTIiBGUeSFA8ObwrodIU1E8gXOuqC/jx493qC82slqtlJ6eTmlp/0lnz54NN5kBg6eFb15enu54BXKhHDESXE/y7N+/HxMnTvS4oIpWMMYU9aWnpwcPTErAj3/8EGbMmIHk5GR0dp7H7Nmzw01mwOA6+3DOYbPZ8O6772LDhg1BfXbEMLjrNH/nzh1UVFSgrq4uPASFCOcvdGH/vgY89dRT2LVrFywWCxKTHvRofdGDWjiQanqPNHVFpkcQBFRWVqKgoEB3R1r+QVAgVJWAzQUBgjw9yUfR/EG0qChEku13xYoV9MCkBDrZ3KK55qq+fNdOHlksFo/+RIFGxEhwGYwx3Lx5E5WVlaisrAw3OUFBQ0MDZs6cialTp+LSxW5kPa3NpJCa4lRfgun7Ei6YzWaYzWY36U3B2NcI+k9oBCgrK6O8vLwR3RfJEryzs5Mee+wxmjNnDl24cMHtunNp5W7L9vXgdCTawdU0efInChbdEcfg169fJ5PJNKJpOVIZ/NatW1RUVEQmk4n27dunubbbnENS+CbpVHjzFZHqXzHTFa4fC8Z18yja4r7k5uZSXV1dyJ4XcSpKVVUVVq5cicTExHCTAsDdAcofEBGampqQnJyMr7/+GhcvdmP16ueltnqbwZgBzcJCEIngdhEicZwuMuA9JCOZGXSn7FAcnPb1PfXo0yuT0dXVhY6ODqxZs2bEtPmNkP2UfMDVq1dHtW0bSRJcdoyaNm2axo7PiUjkVsoBdKMyiTYpHrqneMZ6U3mo4754CssxXP2srKyQSm+iCFNRPBn+fUUkMLjdbqeqqioymUxUWVmpO/C7i7I10ZfUEEXR7XiWLwhW3Bd/dGNvddva2igpKSnkEbTCzuByp1y6dEkxHY10JyvcDP7hhx9SamoqZWZm0tWrV3XriHSFsgF6uf7kMK35xlhy/6mZS3bdnThxYkBdd12PyfmD9PR0OnDgQEDo8AdhZ3AZubm5VF1dPao2gsHgnmKsqAe4v7+fXnjhBYqPj6dDhw55OFvpYETbSQJA9a2fOstFTi17zZo0IqcsvjFQOOO+NDY2+lSvra2NkpOTyW73clA4SIgIBh/uKJqvCIcEf/PNN8lkMtH69euVjQsNo3Dtpxwgcs/pTzXtcLsoxdyTVZcRumN4YtLu7m5atWoVmUwmWrdu3ajVl/7+frrvvvvovvvuo4KCArp06ZLHuuGS3kQRYkUpKipCaWkpxo4dG3Hby55w+fJlZGRkoLa2Fu+99x5+97vfKRsXGrcDhxuGnTmCzycmIAdAr/UzAE6rAzMIuHrVBvOCTOW+kWx7qJ9NKotGamoq9u/fr7jujnbzqLe3Fz/4wQ8Ua86SJUuQmpqKhoYGfPPNN0q9EydO4MaNG/j5z3+uS1fQEZaflQpykJpATF+hkOADAwNUWlpK48aNo5qaGqXcVXJ601Hl6KiyFJdjfMjZwgKBQMV98dTO6tWraefOnZqyc+fOUX5+Po0bN45WrFhBAwMDlJaWRm+99dYo3mR0CCmD6zHB7NmzlelrtG6SwWbw06dPU0JCAuXm5vplyhRJm5JPJE5cjmWt/sspIpHswzJXoOGv9aWvr4/i4+M9miPtdjs1NzdTU1MTzZo1y6f30R17r/EHfUNYJfhbb71FaWlpRBQYH+BgMbjsGJWQkEDNze6268Bh5FaKQMDXg9NVVVW0fv165bunhbgsvTV5JVyYfEj9wxe1Eaw8ZfbwB2Fj8KGhIZo1a5bX6ctfCRYMBq+rqyOTyUSlpaUhseFGypl417gvsrS22+00adIkr1Kec06NjY2K8PIZLi8fiBksbFnW3nzzTXzve9/DkiVLPNYJ5rE0ckSp1QPnHJ988glWrVqFe+65B+3t7Ups7UCAcyk6qgD350dKJJOlS5di6dKl6O7uxu9//3tUVFRg+fLlePTRRzFr1ixdVwrOuZQCknOUlJRg165dXvvZDQwAuCNbGgMLwPiHxYoiimLY3GFJJzQaqVb1t2/fRnFxMebNm4e1a9figw8+0GVucuTvHA6++3VISUzVLUZCnsqZM2dqDk5v2rQJoigq1hf1+8kC6eDBg5g4cSLmz5+vBKeXMfwbCdrcnaOEhsFJHMTgoPPPHiSLnZzPMhxH0fSkicyosmPUzZs3cfHiRaxatUq3ntyOL5JJbxYSBMFNejNm0OT/BKAr4cOF8ePHK3FfVq1apcR92bNnD27duqXUk4VXRUWFo0SAeTEDExgEQYBBEJS+Y4yh/swV5V4O34SGX3DXg4Zo6M4dsgdJGXSN/6zGaHWu4XRwTzt3V69epaysLJo+fTp9+OGHw9Iz0gWg3n3OMMDhXWCOBD09PYr1Rd48ck37RyS9j2QCdb6vSFdooWERXSbP5mGvIZJ9RMhVlLq6OsyePVuJ3q83xcmgAP+a1RKXcw4iwvbt2zFr1iw88cQT6O7uxhNPPKE8W9YnvbUzHDjnSg51jVqkNGaQnkGCpKao2g+HguJPn6ekpGjUl5/85CdYu3YtSktLNe0Qs+IibcC8JGmmamjYAwHJmLEhBdNg8ExLACYwL4tMDvugHRwAmIAxY4yAOIghERCMcTAKAMgO+xAHByAYxsBokFPQOssBAcY4IwQA/f39qKmpwQd/+xsGBweVa/pvZ4cot+F4PvPYtkQrcREQBNgHB6XrghFxBu6sLxgRZ5R+RGfPnkV+fj4mTZqE8+fPIyEhQfN4mclGu9BV7ncZLKb6lBdTzGWww6GgjCTg5f3jTSgsLITRaMShQ4eQmZmpud57uhWp2ZlKmvaTNgPyAWyv2ua1XcEL8/sKL6MnwDhGgAABRgdzMYMRgmCUmBscdjtgiItDXJwREIcgkqN8iIONiUNcXByMAofdoczX1FQje+EzSJ4+w+2aFuo2xsAADpF7a1uAIPcFJwhxcYgbI0DgdgzKNI4RIHCOG998gxdeeAHLli3Dq6++ipMnT7oxdwy+gYjAQRCIY2DwDqqqqrBnzx63We+zz3pRk/8MGGMwJC5AcmKCYnEJNrw/gRlhMKiYkHNAJopzcOIYGhzEoEPSEznKmaDkCBIMEmN9feMG3nhjJ8ortrhdc2NxzsEFI6QJgcEwxjFjeGibQyUpBUHzUgajUZGE//3f+/GfKSm49957cfnyZa8myhiGB2OSqZMzAfV79iqqpyAImgXjqeO1OGWRVMKWvYWYmjg5ZJHJPOgHAuSZihmMEAbtEGkMwAGD+g7VlK+AAyBJf5QZi3OOHVVVeP65PMTH/1BzzSOIg/TsCC5tq8EY09VbL1++jPz8fPy/27fx7nsn8X8efcRjjEF5dR8qCRNNUPeP/F0QBAzdGcT2qm04efKkUlcAAxjALa2oZRtQkyTdMzkhETwhOWQ0KyPI7YMYlCU1UzOQAIMBEIeGQIJTGkKQVACnhsHBuaMcHFzSV8BFjt4vPsfBgwdRXPIKjAKUayCAu0hc+fkCyWqJ57Zd73dl2oE7gygv24Q5c+bgp0uWoOPsWfz4kUc8doY8ePICMwYtBEHQ6OhyH23btg1z5sxBWlqaYs+XcaatBeYF85XvyfPXYl5i6BbQijxmDIBoxyAHDGPiNBKSGYwQRA7tmAswGgUM2gcxKH+PEyDr7vahIQyKAJiA7a9tQ0FBASZM+JFjkei8NmaM3Ki0UIQxDkbBCKPR7lPbY8YI4NwOrlKjODia32vGr18qwMM/fhQXej7B+O+bJFVoyA4WZ4Sgs5hSNhiiIDNCuOA6s/X392P37t3o6OhwlAhQW/NPHa/B/NodkvrKAEahDZzqZHBDHOK8LFqZweAuaQUj4uL0KhthdJT39PTg+PHjsFqtbtdcGoNR3ZgPbStFghFCHMAEA/79739j6ZKl6OzsREPDXjz99NO67+NqtovBN7gy5+uvv47s7GxMSZRSj8h9amnZgwefXgcAqH1HwCkLx/wkjWoAD0poYOGLsZzbh0a88bNkyZKQnaTOysqie+65R3GMcj1i5umoloyRHPa9m+C68SUnjpIdr7z1m3JwTzMmwT/C5pXBxaE7dOfOHRryk7vllzh37pxPR9FGy1Dnzp2jhx9+mBISEmjdunW6dTYsguPMo0A55vqAPPduR2lp6YgikIUSXr0JBWMcdLUJ7zOCMo0VFRVhy5YtiNPVNZzwV1WQ9cD+/n5UVFTg4MGDqKmpQW9vr4YOxhhE4hBAqHlHRFJJDnqn/BrV+U+P6LkxONHX14c33ngD58+fj2h1L+Davvyi7e3t+PLLL/H888/rvrzeFjj5uE0sCAKampowffp03L59GxcvXsSvfvUrTUfLnwYmSI5MENB7SUB+/jy/nhWDPl577TU899xzSEhIcHOBiCSM2h/c1TYqM9n69euxdetWGAwGt/qCIOj6nfgiBT7//HOsWbMG165dQ2Njo+I7AmgzBbu2y3ubUcOmoRoCRFF0oysGfejtB9y4cQN//OMf8emnn7rVjzTz6qipcbWNMsbQ1NQEAFi+fLnW6cbFvkwu7qfeIIoitm7dikceeQQZGRk4f/68hrk9QW639a+nUZg1FwAU5o7J8OEhj5d6rOS0f8FKHBVIBPxEjyiK+O1vf4uamhoA3hnXk2+2a3l7ezvWrFmDyZMn4+OPP/bJd0RuR971bH23FvNrq53tkwjGYlLcV8hjYrPZFOkdybq3jIAz+MGDBzFhwgQsXLjQ7Zq3DpGnQvX1f/7zn9i4cSOOHz+O3bt3K74j6nY8tSmXyx5stcysbBcDUNxUI21KjXRs3boVv/nNb6JCegMBZvA7d+6gsrIS+/fv170u+1d7OuWixv79+7Fx40bk5eXBYrHg3nvvVa65qkSeniXDZrMhZ5q7/0OMuf2DnDhK2bSLAvjF4MNJvPr6ekyfPl1zFE2+R5ao8v8B9wMIgiCgp6cHa9euxdDQEFpbW5WDEaNBw86XUFCrXd1LPhMsxuQ+gnOObdu2Yd26dbqJoyIWgTKoux5F8zew48DAABUXF5PJZPJr51P9nLKyMiqr2KR8t7TuIiadevUroGUMTsj9a7VayWQy0bfffhtmivzDqFUUckjmbdu2IT09XZG4rqqDN0l56tQp5OfnY/bs2eju7vZLv5NNg8rzuPO5SZnrwPk6F4Kh+EP45LZ7l0Pu18LCQqxfvx7f//73w0yRfxiWwdVqiZqR1IvC/v5+7NmzB2fPnnW7F/DM3Ddu3MCaNWvQ3d2NP/zhD3jqqadGuCrnAAxgpD3HJzGwdOJHduwhEBgxF5fgGADPC/auri589NFHOHz4cBioGh2GVUDVzKnnCwwAlZWVWLx4sVswGNcNHVLZUmtrazFt2jTMnDkT3d3dmDt37ohNTsxhEXE9pOo4VQmCMwQDYzHO9gS9jTIA2Lx5M8xmM8aOHRsGqkaHUasofX192Ldvn2ZXy3Uxqpb2H330EV588UWMGzcOHR0dmD59+mhJAKDakFD9ZhWpzXlAoiTdDXAVMnLiqEOHDoWJotHBr1HX8zMoKytz29VyVUlkx6iXX34ZzzzzDMxmM9ra2gLC3ESi5jsTRCUilEZqxzAibNy4ESUlJVEpvQE/Jbgr4/b29uLo0aPD2kUPHz6Ml19+GTk5ObBarW5mJld/FnX5cGY8Yi4u89w95h9jzOF/whCmaHVRifb2dly6dAnHjh0LNykjhobBnQwlLcwA75aGyspKFBQUeLSLfv7551i9ejW+/vprHDlyxKPviCcm9sVG7euJED3nqthOphaui8zy8nJs3rw5aqU3oGZwAhgjt0FXsw+p/De6urrQ3NyMS5cuuTUqiiKqqqpQV1en5CX35DIbDAYrLy/XfJcXT5s3b1bKKHawWANX5m5ra8OXX36JlStXul13VQEjGRpOlgJAevaxY8ygeODJK2tX6d3e3o6ZM2eio6MDnZ2dKC4uhsFg8Gl7fjQgL56JRIT29naF8T2Zw+5GyOsqOVSGjIqKCpSWlipjpPQXRQdjK1Cfi3s52yWlhiaPjPM84wftf6OJkx7QHEXr6+ujlStXUnx8fMDyMvoLb8E3w51DM5pw/PhxVd4kkXzN2RmJENQuozXvchTlAPWtkivklZY3sDZzGlqsWolXWrYJW1+tVHSz/fv3Izk5GfHx8bBYLLqehKEE+ZlDPQYtSktLsWPHDse6RYCyHnOxWEUDjNqj+1ZcPL4QL76dBABITEzSVCYitLa24n/+5wusXLkSPT09WLNmDex2O9ra2vxyjAqG/u22bQ+V22xMJfEJTU1NICLk5uYC0Kpz0diDglqfsrW2wLBhEaY6dLFXXl6AHHO9FM8CAIGhuLgYlZWVKC0tRUZGBlauXImzZ8/67fUXjAWenpRW+43H4A5yyVSxZcsWlJeXu/Vb6z4zmGCUhEVuETgseKV4d1ho9geMVG93ar8ZWS/UgkFSwE9ZOOYlMiVOYVNTE372s59h7NixmDRpEhYszMI9/+t/e2ycHJaKUDFXe3s7ACAjI0N5piyB5GvhyCoR6ZBnvhs3buAf//gHOjs7lWvcehKGB59BTlED3t7+IgAO9LaCJWbBXN+sRCiIVBgBx9lEIrS+W6tEIGrZW4ink404ZbEjc6rEqIODgyguLsZXX32FH/3oR8M27sm3wT84bfLDPUsG6VhU1I5Y5AghJrUbWafAwwG5vyZMGI/6+nqlfIiuYFnyM8gubsCx16R0LpwDwtSnsfuVRcDUJN32IgryalO0nXTmSScpxUQOQOZ6KS+kfvqNEPhX+/MIP+rGgv5ooRfVq2VvIQELyaJOr6JcM0eFf70RADhEtJxp1UQBRa8N7zAD9iRNAaDvzxGShZvyCHdJLs08ooMOAeTqKOhlGza26NRC3v9wbuZYsPPFWpjrm5FIpPSj3GvzXqgOA5X+Q5D+MeDMu69jfqakT3FYsCRxAUBZeHKu5AIr54/hoLCktyNimjgPBODIcgZBMCoZypY32gEAf1ku51mUPpc2cgA8FifCC1wjDJD1Kt4BkJg0BURMGfNISG3oF6607HTPmQ6BsNjsEqxSm29cDHFOXk8qxYXNqYTUMrrgQs8nFSmOchWl3EWLifwZNmwQbScJANWfueJxrAORiTjYEJLnFSimIjnzGJEIOlatbN/KKgCHCAhOP4SQhunS2X4HOHou9CDl2WcxU6WLELrReOQSlpWXY6bKyk8grcYS01I8Y2oicgBYLVelHiSn9Oa2FtSfuRIVap6gnnL0CBYEQakhgAUk89VI4EoZYwwcjTjSmIJnl6U4zYIA0HMEjT0zkJrifk8MvkFAMl7aW4iaNfPR8FeLErz+SstOGApbsWbug2DRICE8ifbhY2gHP7az44n6xZyI/2WZjnrl+NNRW2LwHZxz4naRLisqrEAAKOeVhqhQTWRoNnoiFh6sIX95VsCW/7iA7rJUVdVulKf+B44uv4Ce8pmhozGGiER0OEQ7lWhFXeI4hMbGGVi2dIZ2M6nnCI5elNSWGGKIDgZ3QL1IZEeO4ghmICWVaXZMWc9FXExdhmWpUaAfxhB0BDz4ZjDhzOHejYrNjUipuIDlDv1FutaD8i2NSHn2Ama67frEcDciOnRwF6jdN+nZQ6C/rAAdeRbC8kalTmrFBXTHdPC7Hv8fOuqfZ+PATOoAAAAASUVORK5CYII="
|
<image>在▱ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()
Choices:
(A) 3
(B) 2√{3}
(C) 6
(D) 3√{3}
|
3√{3}
| 10,849
| null |
3√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAJQAAABWCAYAAAApHL9rAAAPM0lEQVR4nO2dbUwc5drH/wNPQj9gtkZO2SbURUDdZjFuYlsxILNok0KKSiIN/YCypD3n2NNWMeliE7XoJ4m0kUSeA0jNLikmmDQWExogKXFZIEH7gSZClqSyA6IRW43UJecsT5a9ng864+zs7LIL87K73V+yaeeee+65ZvjPdV9zvw1DRAQdmZycREFBAR555BE9zcigEFl6G1BZWam3CRkURFdBtba2gmXZjHdKIxi9qrz+/n4UFRWhsrISOte6GRREFw/FcRwAYN++fWBZVg8TMqiELoLq7u5GU1MTiAgHDx7Uw4QMKqG5oPr7+9HR0QGGYVBUVASGYbQ2IYOK/I+WJ+M4DgzDCDHT5OQkfD6fliZkUBnNBMVxHJqbm+F2u4W0jJjSENIAh8NBAAgA+Xw+IiJiWVZIczgcWpiRQQM0bzYgorC4SbqdIbXRvaU8Iyb14X2GFr5Dc0GJBXT9+nWMj49rbcJ9B3/PtXh4dfVQHR0dOHr0KMbGxvQ0IyUhIqyvr8vua21tBcMwwo/jOLS2tmpil26CWlhYwI8//ogvv/wSDQ0NEaLSOLRLORiGQU1NDaanp4U0vlkG+OP+8b/m5mbtDNPpZYBOnz5NFy9eJCKi0dFRMhgMNDo6qpc5Kcfs7CyZzeawNADkcrki8vp8Ptn0UCikuF26CMrv95PRaKS7d+8KaSMjI2QwGOjq1at6mJS0hEIh2T/8yZMnqaurS9h2OBzEsqzs8VqimaDEF9bX10eNjY0ReaamprYUldY3SGvkri8UCpHf7xe219bWyGg0hqVF805ao4uHeuqpp2hmZkZ23/T0dMZTSRgeHqZjx44J2+3t7XT69Glh2+fzEQDyeDxhx7lcLqHxGKJGZTXRXFAzMzNktVpjehreUw0ODsYsK929FU8gECCj0Uirq6sUDAbJZDLR7du3hf3RBBUKhcjj8chWhWqhaecwAPT09OC1116L2SZSXl6OsbExHDlyBIFAAE1NTQAiW9XTpVFUel3S9JycHDQ2NsLlcqGkpAT79+9HSUmJkI8f8erz+fDss88K6QzDwOfzpe9bnrTuF3sYOW8zOztLBoMhamxwv3goIiKv10smk4kOHz5Mw8PDYft4TwQZL8WyrCZVHY+mgrp48WJY3R8PW4kqHYn2oBw8eJD27t1Lbrebbty4Qe3t7WH7+apP/NOyuiPSWFDFxcU0Nzcn3LBobzRSeFGJX5PTFfH1BwIBeuedd4hlWaqoqBBEUlFRQSzL0ttvvx1XOVp6ckVjKIoxcmB8fBx79+6FxWIR0uTyyqVZrVZ8/fXXsNlsCAaDeP3119MmfpIivq6cnBxkZ2fj3XffxcbGBux2OwDg6tWryM/Pj7scLe+V6sNXeJEdO3YM9fX1aGho2HZZCwsLqKqqwvnz5/HGG28oaGXyc+nSJdy+fRsPPPAA8vLy8NZbb+ltkjxauMGVlRUyGo0UDAZ3XJbX6yWj0Sh029wPBINBKikpIa/XKwTnRMn5UrLjKo+2eOUFgMuXL6O5uRnZ2dk7HlBnNpvx1Vdf4ciRI/D7/Xjvvfe2XVayIb03/Pbo6CgKCwthNpsBACaTCdPT0ygvL9fL1OiorVi+IW5paUnRcpeWlshkMlFbW5ui5SYj1dXVdO3aNWHb7/cnpXci0qBhc2hoCE888QRMJpOi5ZpMJkxMTAgTRdPFU5HESy0sLMDr9eKFF14Q0nJzc/UwLS5Uf8vr7u7Gm2++qeRpBMSi2tjYwAcffKDKebREev+6urpw9uxZZGdn62RRgqjp/hYXF8lkMikSjMdidXWVzGYztbS0qHoetZFWY3zPwtramk4WJY6qVV53dzdOnTql+tOVn58Pt9sNm80GAPjoo49k81GSz7CR2jYwMIDa2loYDAadLNoGaik1EAhQXl6eMIhOiyBSzlMla/AaDyUlJTQ3NxeWluzXo/iYcvqznXRwcBDPP/88HnroIQDatNbu2bMHbrcbbrdb6GFPZo8ERB87PzY2BqPRGNazACT/9SjmoaRPTllZGU1NTSlVfELnX1tbI6vVSna7XbPzK01tba3sIMNk91CqVHk3b94ki8WiRtFxs7a2Rk8++WTKiEoslO+++44KCgpUf5lRA1WmUfX29uLUqVNqFB03BoMBExMTuHXrFl555RVsbm7qak8i9PT04MyZM8jK0n1id8Io3jl87949mM1meL1e7N69G4C+b1fr6+uoqamB0WjE4OBg0rfnrK+v49FHH8W3336LvLy8iP163st4UPwRGBgYwEsvvSSICdA3kMzNzcXIyAhWV1dx/PjxpPdUn332Gaqrq2XFBNxHQTmP2Wym2dlZpYvdMX6/n8rLy6m+vj6pY5PHH3+cbt68qbcZ20YxD0VEmJiYwO7du2G1WpUqVjFyc3MxOjqKtbU11NbWYmNjQzYf6TgFfnx8HA8++CAOHDigmw07RTFBMQyD7u5unDlzBkByrU3A25Kbm4vh4WEAQF1dnayo9KxSurq60NLSotv5lUCRoJyIcOfOHVitViwtLSEnJ0cJ21RjY2MDdXV1YBgG165dSwp7l5eXUVFRgaWlJUXGjemFIh6KYRhcvnwZjY2NSfHH2YqcnBwMDQ2BiFBbWxt1WRwt4ecr8m+hqSgmQCEPtbm5ieLiYoyPj6O4uFgJuzRhc3MTx48fx+rqKkZGRnQbZ7SxsYGCggLMzc0hPz8/Zb0TIPFQgdCG8EuE0dFR7N+/P6XEBADZ2dkYHBxEfn4+ampqdPNUV65cQXV1tTCTRbz0dsohfe3772Yg4VfF6upq+uKLL7b7pqk7wWCQ6uvrqaKigtbX1zU/v8Viibp4SKqx4xhqeXkZ8/PzePHFF6VC3WnRqiG1jfdUhYWFYFkW9+7dU9T+WGVNT09j165dePrppxU7n57EFJS0CpSrEv+37984+a+/R3RpbND/Ra0+461ao+WLlS7eL04TIxefZGdn48qVKygtLYXNZsPvv/8e07ZEkM5kEdPZ2anaEGldkLosaZUnt833jK/9556wzIw4X6wytip/q2OiHf/fzYDwE2/HOocU/rrsdjtZrVb67bffhH2rq6txlZEIKysrVFBQQIFA4mFGspJQlRcIbWBXVo7wxA0NDaG8qgKGv+1WQ+sCu7K2borg84jzxnOcGP66nE4nrFYrqqqq8Msvv2B5eRkHDhzA4uJiQuVtRW9vL+x2e0o0tcSNVGHSpzkUCkV90iuee5bGx8cjVKq0h9pO2bHOSRTfQLWWlhZ67LHHyGKxUE9Pz5b5E4FfRGxlZUXRcvVG8FDR4hlpvEF/xgDz8/P49ddf8dxzz8U8XgnUKLuqqipsLW/+x090AP6a7PDDDz+grq5O0fMPDg6CZVkUFBQoWq7eRLRDyVUTu7JyIqq7rq4u/LP5H0IALK1qxIFzvPvEwhHni+d4uSA82v8BwO12g2VZ+Hw+YT1vj8eDQ4cOCXkuXbqEPXv24NVXX4XNZsPPP/+s2Nvfxx9/jLNnz0akK1W+bsTrysTVht/vp7y8vJSaL0YUWc3ZbDbh//yCZvy/c3NzZDKZhCrp/PnzVFJSosiUen6d0XQkLkFJY5Cenh46efKkKgZphcfjEcTT398fsZQgEdFPP/0Utt3W1rajdRp4QTc0NFBfX9+2ykh2YgpK+irOY7FYUm4QmNQ7bXfJ5QsXLtDDDz9My8vLCZ87FArR6uoqGY3GtGoqEBNz5rBcPMW37KbaIDDpy4XT6QTHcSgsLITNZhNW0qUtOmbff/99AEBlZWXcneHir0F1d3enX1OBmHiVxz9ljY2N9Mknn6glcE3w+Xxhi5luZ0HYzs5Oys/PJ6/XG/cxwWCQCgoKFF/aKJlIaEz53bt308Jdu1yuCBGFQqGEP1Xb2dlJRqNxS1HxD+PAwADV19cnZmyKkZCg2tvb02KFE5vNFhEzsSxLTqcz4fKiiUqu4bSsrIxu3LiR8DlSiYQEZTKZEnLxyYbH4yGGYSLW8kaCgTkPL5qenh4yGo0xZ/skw2xqLYhbUKOjo3T48GE1bVENLdYDcLlcZDAYBFFJz9nY2Kh4900yEregoi3ecL8jFo5UVDxqxZ5tbW26rTEa7SGNaDYgmdfm77//Hrdu3VK8PysdEN8r/iNHNpsNbrdbmJ/Y29ubMhM44iVa00qEoOQy9vX1wW63J/26AHpDRGhqakJubi5sNhuuX7+OsrIy9PX1hX39nf7sr0vViQix2HJJxM3NTTidTszMzGhhT0rDC+Tll18GABw9ehQXLlxAaWlpWAPodoQkV3MokVdpO7acRvX555/j3LlzOHHihOLGpTuffvop7ty5g4aGBhQVFQHY+YwW8fFutxsAhCE3Ws2WibWEd9jwlWjGnDhxIq3dtFoUFxfjmWeeCRv2sp0/uFgosY4X59Hr75TQRE89DU1l1LpvvKdIpkX/wzyU3CjGyclJYX9GTNvjvrpv0nYElmWFsUH8Z0e1/MRouiAeHsN3RCfaV7hTlGrQZVlWtmdBjohZLxMTE8KHkPnxzpTqw1I1hOM4MAyD+fl5YWix0+kEwzARS0QrcV9tNhuysrJkx8dPTU3tuHzgr+HSi4uLwjU5HA55zytWl8fjCXuKWJbV/KlKdQDQuXPnItIdDofsqFAlkPtQNaJ4kJ2cQy5Nqo8wD8VxHDo6OgSFO51OfPjhh4qo/H7A5XKBYRh0dHRE7LNYLIrMcKEoXo0fINjf3w8AcDgcitUsk5OTwuQNcZmHDh3CN998E2GgrNL5GCATP8UPwzAxB+up0UktHhvv8/lkveNOieZdXS5XhOcSPBTHcWFK5/ulPB6PIipPdziOAxEJDZhy8DEHKRiT+nw+2O12MAyDoqIilJaWKlY2T0dHhxBXi5mfnw+bdgaImg08Ho/wfRTgL4HJ3SDaQSNduhJtQmysvErcP6fTKcwtdLlcgkNQCo7jZKtPPjwSfxgSEAnK6XSisrJS2MELSU6Z4kH3Gf6gsLAQwB8eAwi/NxzHhbXn8ez0/klrlaKiIuzbt29HZUrxeDywWCwRtjY3N4Nl2Uh98G1N0p9cVJ8hNnzcKY43PB6PavdSbmy80gCgxcVFYdvn88XUh+ofsU53pIG29AFVs9mFZVniOG5Lm7aDnKPhh0/Hav5Q/FsvGcIhFfrxPB4PWJYVOo19Pp/isdN2yQgqg6Kk3vezMiQ1GUFlUJT/Bw5pw2U3bGltAAAAAElFTkSuQmCC"
|
<image>如图,以△ABC的顶点C为圆心,小于CA长为半径作圆弧,分别交CA于点E,交BC延长线CD于点F;再分别以E、F为圆心,大于\frac{1}{2}EF长为半径作圆弧,两弧交于点G;作射线CG,若∠A=60°,∠B=70°,则∠ACG的大小为()
Choices:
(A) 75°
(B) 70°
(C) 65°
(D) 60°
|
65°
| 10,850
| null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAFkAAABLCAIAAACUd7xoAAAW20lEQVR4nNU8a3BV1dX73nPvue97ueGGyEdK0BQNhpoETSqJVdqRhNFGZApSCAZ1xJbRwaGVAcQpihmpKDOlDCixpdRamCrVKTAdbEEcHjqtRb5UoNIaE8A8yH2f93t9P1ayORJyQ0IC/daPzLn77H323muv91o7DgAgowwcxwWDQafTaVmWJEnBYFAUxUAgQAgxTZMQwjCMpmksy+q67nK5HA4HADgcDsuydF1nGMblco32IgkhztGeIJvNhsNhTdMIIU6nMxgM8jzv8Xiy2SwhRNM0hmFSqZTD4SCEuN1uXdcRQdjf4/EwDKMoymivk1wDXITDYZ7nvV6vKIqGYRBCFEVxuVyRSIQQ4vP5OI7Ly8tDLEiS5HA4GIZxOByqqmJ/bBntdZJrgAtN00KhECGEZVmXy9Xc3FxdXb1v3z6kC0JIIBBIpVKEEMuy/H6/2+3GdoZhTNNEgqKNowqjjgtFUSzLsizL7Xbv3r17x44dO3bsaG1tnTlz5uuvv55OpxmGycvLS6VSHo8HaUdRFMMwXC6Xx+NxOp26rl8DoUYIITD6IIoiADQ3Nz/44IMoFDOZDMMwn332WSgUamxs5DhOFMVUKoX9LcvSNI0+m6Z5DRYJAA4YZZRrmmZZ1osvvtjT09Pc3KyqqsvlikajPM/Lsuzz+QoKCubNmycIQmNj43e+8x1JkkKhkNPpNAzDsiyXy+V0jjrxIoy6rnI4HGvWrEFJ4XQ6kS7wr67r+MwwjCzLN9100x133FFXV/fd7363pKTE5XLpuo6I0HX9WoiMEaQxy7IAQJIk/MnzPMdxCxYs+MUvfoFsgjSING+aJpoVsixjO8/zAHDu3LmCgoInnnji2LFjOASFiGmadmZRVRXlCAAYhkF5yjAMVVVVVR3G+kcMFzg98ryiKIIgCIIwb968rVu3dnd3h0IhACCEWJbldDp5nsdj8Hq92A4AkUhEEIRAIAAAbrf77bffLi0tbWpqQhzRWTKZDKIPAERRRAQZhiGKIsXI8GAk6UIQBHzgOK6trW3x4sUbN27UdV1RFAAghCiKgkvHzXMcR5/T6TTto6qqJEk+n09RlBtvvHHChAkvvfRSa2srpTg7mKZJCQQAeJ63425IMGK4kCQJccHzfDqdvvvuuzds2CAIAm6VYRgAuOGGG+LxOG4YW5BlXC4XALAsq2ma0+lEuxPf/uxnP0skEj/96U9vvvnmhoaGPXv2IGY5jqN6ByeNx+OUXoYHI6xTJUlqa2srLi5++eWX6XERQgzDwNVHo1FsVFUVhSLtk0wm6TMAXLhwYeLEiefPn0dy4Hn+N7/5zYwZM26//faNGzdio50i6AIEQTAMYxiLHzFcZDIZURQ//fTTysrKdevWAUAoFLIsi56wZVkoEQghsixjO+oRfGZZ1t5/69atK1euvGQWTdP+9a9/LVmyJBaLLViw4Msvv1RVVVEUXddVVUV+6Y+gK4SRpIu33nqrrq5u8eLFAKAoSk9PD26M53lFUaLRaCaTAQDLsliWhT4bDPvgK3wWRfHjjz+eOnWqoihI9qZpZrNZ+1yKomzbtq20tPTee+/94x//iI2CIKA8Qo02VBgxXDQ3N993331Tp05FFNhPGABYlkWmUBQlEAjgs10uAAD6Y4SQ9vb2G2+8saOjA/rUE1UQpmnatammaYcOHZo9e3ZxcfHatWt7enpwyAjzCM/z9Iv9DWFN09CgBABZll966aUnn3xSVdVTp07NnDkTfXDoOx9qxXAch8/YjiITf2J/wzBOnjwZiUQ6OjroCeu6nuOccZEdHR3Lli3Lz89/5JFHjh07ZucUqlaQ9LAzPmSzWfvWBqcLZEX0l0zTRNuZvuU47vHHH1+7di3+TKVS//jHPwoKCk6dOuV2u9HpBoBwOPzVV1+FQiEqKS6hC0VRfD7fjh07SkpKzp07hygGgO7u7txWg6ZpqI9N07Qsa+fOnaWlpeXl5du3b0c3DwAURUF+pGIVEYQCGG2TwXFhJ4dLDkdVVVEU58yZs23bNk3TkD4ty8pkMl1dXVOmTFm2bBnLsqlUCiceM2YMACQSCcMw/H4/fsQwDKSItra2O++8c9asWd3d3QDQ1dWlaRruBPpMuNzrRELQdf2uu+6qqalZu3at3+9/9tln29raUNnjWSLicIimaYZh0KPNhYvLOojUahYEobKy8p133qGvEomEffUbN26cNGlSLBbD8EQmk6FUoKqqw+HQNC0Wi/3yl790u92lpaWHDx++ZOdI1dR+vyxQ8sGf7e3tiGic64c//OGECRPmz5+/Z88eaqqZpilJEkUBz/NIeoPziGVZ1MhH0QUA586du/322z/55BNEgSRJFAvI3ngU3d3dK1asiMViY8eO/clPfvLCCy8QQg4fPvzmm2+++OKLPp8vGAw2NDTs3r0bvwkAHMdhgIsSsN3d6A+6riPdiaIoSdL27duXLFkiSRIGgXDDp0+fnjlzZnFx8auvvopWDH48k8lQWzkXLihR9NfYra2tVVVVp06dgj47GiGbzabT6cvKudbW1tdee+35559fvnx5RUXFo48+2tTUdPTo0QsXLgCAqqq4RErniHE0Ya/EXqB2WkNDA2ox6gEDgN/vFwRh/vz5P//5z/Pz8xcvXvyf//wHmRr63LkrwoXd5+N5/siRI1VVVZ2dnWCTzPb9Y/+2tjboE/JdXV34CkfZHVk6SpIk7Iz8LMtyNptFchAE4bKeiB10XUdJWV1dffToUUKIIAiog1iWbW9vx26EEE3TDh48OGXKlG9/+9u7d+9GhYhTD4gL3J5lWRQX8Xj8o48++t73vpdMJjVNs68PZTh+0bIsPG27kqdGAdKkrusoFNBzQ7z337CmabmFBc5iZ8+KigrccDQazWazfr/fsqxQKIQsY5om0ktRUdG5c+fmzp2bn5+/YsUKXEyvtjdNE+NIdG90JuoU19fX19TUIC0gH6qqynEcxcL1AlwMYi0cDp85cwYGjo9An1jF42lsbKyvr49EIp2dnQQDswBAHyjQwZZlvf/++4FAoKamhrIZVU4wmKgfbaCUK8vybbfdZrd6+8dHCCGiKGLLuHHjLMuKRqNIrcS+//7oAABRFN98800A0DTN7XbPnz8f+oxiSZIucROuC6CiwfOfNWvW3//+9xzxEToKDbwjR440NjZKkmRZ1sV3SOrIKYiRdDrN8/xvf/tbv99P7cVAILB+/Xqq5PBMri9G7EZNY2MjyoWB4iOEkHQ6jXG2adOmTZw48csvvwQA0zS/hgs7UWQymWQyeeTIEfyJiJBluaurq6ioCACy2SySFlUT1wWQ7SVJQlXS0tJSXV0NOeMjiJpkMtna2lpdXZ1KpXLpEcMwUH3aLUWGYZAP0QFBmYouHD2Z6wKogKj5xDAMjaf2j494vd6Ojo5YLKZpWn19/Z///GcAQDPyoteIYBhGMplsb29Hi9iyLI/HQ4UTfrSnp2fy5MlgM5avIy5QbFMbQVGUp556isZB6JppfAQppbOzc/PmzTfffLPdxnESQjDHjSBJUjweP3/+/N133w0ATqdTURSPx6PrusfjAQCHwxEMBhOJxPHjx6PRKMoRj8dzhSmIEQdajsAwjCiKHo/nBz/4wfTp0x0Oh9frpbmYSCTidDpVVQ0EAul0+rbbbstmswsXLqT5F0KICwscsAkA9u/ff9ddd02aNMk0TbfbTZ1Fh8NhJ7zHH3/8+PHj5eXlPp8PBc21KZHoD1jWgcfp8/kIIRUVFRUVFQ0NDYFAgIYFKLMIgoBRtcmTJx84cAA7GIbhdrsJagRUP01NTZ2dncQWa8qhn1evXo2Eh1bmdQSqUJHtAeDMmTOFhYWdnZ0+nw/6hKXP50smk9iyYcOGRYsWUZOy1x4DgHQ6ffLkyVWrVsmyjKoBMZdDPx8/fryoqIga3VcZjL9KQFMAvh4WPXbs2IwZM5D4aU+fz4c9y8rK0Mk2DIPqQYJn+6Mf/QhPG3OcWC4DA+hnbJ86dSoADOSYXjNQVdVuN2OwU5bl7u7ubdu2oR0RDocTiQTygt/v37dvX319Pcbo8Owv+qmiKB48ePDEiROyLOfn50NfiJUMnL9oa2srLCykLcNOVV090LBoJpOhq6XYaWpqqq+vV1UVmR3ba2tr33rrLeizni/6KbIs4ydWrlxJCJEkyS4vLpu/UFU1EolUVFTgt64yi3mVgC4y2PT6JaHzP/3pTyzLHjp0CHexefPmkpISfEUjRolEApAukNsfeOABOgEZWD9jh/3796OJgWPtEZ1rDLqu2z1Dy7KoyKACNR6P19XV3XvvvaWlpU8//fSWLVv+/e9/Yx/7QfZGwTRN27lzZ2FhoV0iXDZ/gTUUhJClS5fC18MH1wtwCxjspmyC1IHuFQqFd999d82aNRMmTEATMR6PY89sNoujnLRErqqq/JlnlgWDLADouq5pWjAYhD5/DuvsMOXjcDgWLVo0c+ZMlEbX0dBC8Hq9hBCPx+P3+6mZQzna4XAEAoFsNjtnzpxgMLho0SK/308IGTt2LABkMplQKNSLBLAJj8mTi6AvFUz6ZEcmk8HIMsMw6XSaEKKqal5eXmtrK1IEVrBeMyq4ckBvDcOF2FJVVXX06FEAMAwDacEehXIRQtC+JIQsX74cKYeaWJZljRkzBr+VTCYnTJgAAJs2bbrnnntuuukmnuexKBcNvv8qoG671+tlWTaTybS0tITD4erqakIILTwmpDeCwzAMAVui5fTp/92wYQMhRBTTLEsSiU6WZXk+ybJEkjL5+fmWZUUivsrKss8//5wm0zguoeuirotfPxOxf2OOt5dtoe3055UDjVrSkqhZs2bt3bsX31KrBGPOvT47BosBIJvNplLd06ZNg948QG8gDNdBeiNFiX379tXU1Oi6iAIpnb4Y5qXL7b+lSxAx0MMlKLhKdOAKs9ksz/OiKE6cOBFDzdQ4pJyCQOwKSdfFZ599FkkrEvEh41y4cD4QCOBzJtMzbtyYrq6zkpTBqg9dvyi6h4qLy7bkwNRQcWHPZixcuHDTpk3QZ0YiIqjrcJEu0KHgOE6SMh988MG7775LCFFVFQ+fZXupQ5bl8ePH/vWvfwWbyEkkOnNsY9Cd5+h/lbiwewY8zwcCAbpmmkZF2U9j/b21YorCAYAopgEALQin05lIdBYUFKRS3W63G+Nau3fvBABFUXRdtCyL4zhdF23piRHjkavHBSUKTdNefvnl1atXI8vYUzkIF3PLOEaSMqrKAwDHcQ0NDchXXq9XVXnTNP/2t7/FYrH33ntP07QrFJMDyUL72xz9B5IXV44O3CHu+Zvf/GZ7e/ugvkKv7ERZing5cODA3r17UdmwLFm9enV5eflnn30G19v1GBIg2eu6/vbbbz/88MM0TZdjSO8lHjTXZFlmWba0tHT69OmHDh1asmRxLPY/DMMcPnw4FApdo0LkEQKM1DEMs3379ieffDIcDg8+xp5Gp1w0ZUrxDTfk/epXW9GgtKd5R/MsRxI0TVNV9fTp03feeScuG7PNOYa4kCIURXE6nfTYV6xY88UXXyxYsNjn86mqikiNx+P5+fmjeJQjCgDAsuzmzZtnz55N77bZo9yXHwMAiqKgOlBVtaenJ5FIoBmOEI/HkS6GXTp5XYDjuKKiou7ublz2oPdQXFhGQ31NhmFisZjD4bj11lvb2tr8fv+4ceNisRghhOd5vC31/wW2bt1aV1dXUFCAl1awujrH1TUHAEiS5Pf7aYWCz+eTZXnz5s09PT2vvvoqIQQAMGqOVf7XbjdXB/n5+f/85z/Hjx9P+u4n5F6/ixCC/jzLsrTV5/Pdf//9CxcuRGEjCMKJEyecTideeikrK8vPz0ccoxliT5GgukGzH788VEACxFtHeG8Vr59hJAmpGN/i7IQQfIV3Wwkhmqa98847tbW1BQUFWPEUDAYH14MDMY+qqrFY7Fvf+pbf7w+Hw7W1tYSQmpqavLy8vLy88ePHL1269ODBg3ofmKaJ4hodHFRAw84VyLJst2XQCKJxlhMnTqxcufLWW2+dNm0aniXDMCUlJXPnzn3jjTdOnjypaVptbe3+/ftp6RtWMOaeNFcd38MPP/zJJ5/Y8YXJAY7j2tvbCSEPPPBAaWnp7373O+iz/zHSkU6nr/LCHGp3tP2o92ia5vr166PRaElJSVNT0+HDh3Ft9KJic3Pzj3/84ylTpqxataqiosIeDabueA4YEBepVOrIkSMFBQXQF+8kffEue8vZs2e9Xm9lZeXp06dxID09LN8fBiLOnz+P3xEEAUMkALB3796ioiKfz/fFF19gfhczYMgRkUiEpji/8Y1vLFq06PXXX6cfRGwOWjyUiy44jlu1ahWG8OgJYEAYy0UpUlpaWu65557f//73qqoKgoAsOrwiLhwlCAISBbrYjzzyyLx58wi5GGEghNCCZkII0iOKRgCYNGkSchmGqZA7aJHckHFhWdb58+fvu+8+APD5fPSGkP0vXowJBoOSJDEMU1dX99xzz1HKtBfAXjmoqoospihKR0dHOp2uqanZtWsXnReTWJijoStB5sXnpUuXrlixAr+mKApmM67ExBikvnPXrl3jxo2TZdle8Y/JZEIIVvfQdgCYPXv2xo0bBUHIZrOX3AS7cqAEJQhCbW3tBx98QPpuL9KUBQDgLXDoC08hswBAcXHxhQsXkGxpnQD+HCYucLyqquvWraP1kZfcColGo3YJYhiG1+utr6/ft28fYmEYdyNR4CMvlJWV7dmzxz6j0+m8JLPn9Xqz2SwmwwkhBw8efPDBB2nUEr9JJVduth281vXRRx/FTSKx5aibxBwKAIwdO/bzzz+H4fr4iIhNmzYtX74c3WhJkgat10SNfsstt5w5c2aE76divaKmaVu2bEHOtPPkZesy8D82JJPJcDj80EMPDc+4QDL+y1/+MmfOHKQ1mvEfaF787ximaT733HPl5eW5a+lzwIC4oJ9raWnZtWsXANBahkHrJi3LmjFjxvvvvz+MBeGRzp07FzcJAPSyxUDz4mWYaDT62GOPvfHGG3C5cuorgQFxgRPH4/FUKlVdXY3/3gT6Ku/J5eoyEFmCIDAM8/HHH0+aNGl4euTDDz9EDYVMF4lE7NTRf15BEILBYE9PT2FhYe4LWcPEhb0u/amnnkKng+f5geoykEFwHXh5pqysbHi10d///vf/8Ic/UPsF5dRA89L82GuvvfbCCy9gzxHmEQAQBAFl1fHjxw8cOGCvxehflxEIBFDC4xkiD2/ZsmWoCxIEIRwOBwIB/D9C9vtpl50XnysqKqLRKNaqDzvvPyAu7KXvqqpihQEZuC6D6nMqO379618/9thjQ13Q2bNnp06dmkqlwuGw/S78QPOifPnwww+feOIJAEgmk8N2hQa5Y0WrWZctW0bPZ6B7pbIsow3qcDiy2azL5br//vuHuqDnn39+1apV6PXTWZA6BprXMIxbbrmlpaXFfo11qPNCblygPYeqcdeuXV999RWa9PTkqaEFfRRx8a4nIZ9++mlFRYU1RHjooYdI3/0O6Keh8AFLE9FwMgxj6dKlVVVV9J4Lx3HDc4UGDPJgYbXL5cL6vvr6+sLCQo/Hs2HDBgDAeNe6des0TVu/fr1hGK+88oqu62vXrjUM4+mnnwaA995774477nAMEaZPn66q6kcffcQwTFNTEwA888wzlmXV1NQAAGq0yspKrArhOC4SiXR1deH/VMC6XZZlh/k/qHLgiVZhYWlXeXm5fSDO5/F4aEAsGAwSQtxuN8Mwbrf7KiuBcTgGYvHLLpcrLy/P3icajVZWVpaVlVF3wzTNYQeQ/g+/+XvE/bZ5JgAAAABJRU5ErkJggg=="
|
<image>某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()
Choices:
(A) 6πm²
(B) 5πm²
(C) 4πm²
(D) 3πm²
|
6πm²
| 10,851
| null |
6πm²
|
"iVBORw0KGgoAAAANSUhEUgAAAKgAAABUCAYAAAAWG3zWAAATAElEQVR4nO2df3AU1ZbHv7eD4K5orHKQeWHYARkMJiOQqFvzlpThLSCBjJpV0D+sgsgCQYK+1EIQ1xRaZVjyA957VQ80+HxlqIdb/oG4FpMfSJaAQm1MuYat/ECLQWIGNMAfTAxChOl79o9J93TP9Mx0kklmJulPVSrTfW/fPt19+p5z7z33NiMiQtLDAQiqPdWbV2D7e43+jQVPwXf2NTzjrEOd692xF89g2AjRsyQDAohEAAA1VoExhv/stoKIwDmHWL0Yk5gTZJkVXzENhsy4UFACwFgKRNRhwYodsOcXoa2+xp9GBGHZGyhaaccM26MYB+ZiQjEp3gLEAga/Iv6heB/aYUf90T/LaYIggIgwx5oG8dFlYPET02AYsKT3QTkBAgNHAxaylbAUVaK+Znv47JxDECTDEeq7GiQWyf90BAYiEayxHe0ALHPnA/DXqBI0uK1WTnUeg8RkfJh4lgKwFAABpWMsYMyZf4dqH+c+CMK4uPxxTfLXoPArpbh8HuxguOxuH9wnBtIbq7Cxug5EJCuwIEwC5764yGswBGgcwEkkHxep6pU8AkDrq+uJiEgkTnWV6wkLnpLzisT9x3AeF1kNhkbyN5Lgr0EZGMCA+qoNyH/9AznNnl+Edpe/y0nyQYlEMJbiP05h9pXbwf6qQXwYFwoajhMnToCIsGTJEnUCibLPapDYjFsF7evrQ0ZGBiZPngy73Y4//OmPmDvHFpLPqCkTm/GjoAQQ8/9nDFi3bh3+7u+n4s7tAfT29uKLL77AltdexRuv78A999wjH2YoaGIzLp4MEUnDSWAMcLlcOHHiBCoqKuDxeFBcXIxvvzuPHy9dhs1mw8GDf5OPNZQzwYlL0yymiPIvTkRer5dmzpxJzc3NxDmnefPmUXt7u5ynpaWFsrOzyeFwUGtrq7okUVGW0cpPCMaBgqopLCykLVu2kKRekydPpuvXr4fkq62tJbPZTIWFhdTb2yvvNxQzsUhK+8Y519xfX1+P5uZm7N69GwzAlStXcPfdd+P+++8POWbt2rU4f/48TCYT0tPTUVlZCc65qttJgpTDpsNw2ZXHBOTgxlCrHuL7fsQOr9dLM2bMoJMnT8r7WlpaaOHChSF5g2tJt9tNTz/9NNlsNnK5XKMqZ6QaOjjNqMuTtAbVoqSkBM888wxyc3Plfd3d3Zg1a1ZIXqmWpMEAkjlz5uCzzz5DTU0NSkpKsGzZMly4cCFGkqlrSlU8wGB0Kg1uKeUCYIQGIola8RTBHLpcLjQ3N6OqqkqV/9KlS5oKKsEYgyAIsmlfsmQJvv32W+Tl5cHhcKC0tBR9fX0jlFwIkX9Ftj9wJUUQwAQGgTEwloV6+GS5DPwkjYIG1y6SL9fX14dXXnkFBw8exNSpU1X5oymoFikpKdi6dSu6urrQ398Pm82GDz74IPqBUWRXKl3DN4S8LGB3wx2InIM44V9XcuSzx9AIX2D6iuGjJr8PWlhYSMXFxaouIiJ/l1FBQQEdOXIkJG0otLa2Uk5ODmVnZ9OZM2eGXY5SBh+5aP6Cp0Py5GWBMldu9G8YDigRESV1QGRdXR2am5vR0dER0uEuCAK6u7sxe/ZsXZ3xNBiKF5z38ccfx5dffolPPvkEzz//PHJycrBv3z5Mnz5dv6AkDQhwEDF8vuczcEuanCyNZlnS7Gj0XAQI4MQhsKQxcKNGUt0BZVdRX18fNm7cGGLagYBpvHjxImbPnq2rbC3lBAKuxXPPPYfz589j3rx5sNvt2LVrF3799Vd9MsvWXQBjDEdOtcCx+NmQvHNnzvCP0zJjhEsi4e9CuD7PkpISFBQUqFrtEowx9PX1QRRFpKam6jpPNIVgjGHq1Kl455130NbWhrNnz8Jms+HTTz8dUrki6vBVHfD8tqcAcLl2JSKc9/wIe1rghSLDB01OH9TlcpHVaqWff/45bJ62tjZKT08fVTmOHz9OmZmZtHTpUuro6AhJF0WROOfEOQ8ESjdUBvxMBbyhUhVsrRzCncgkvIIGd157vV6yWCyqDnktjhw5Qnl5eSM+v9S4idTQ2rdvH5lMJtq8eTNdvXqViDQ63TknHxepevMKWlFU6S9T0RLKWwhV5L+Bn4Q38cF9giUlJXj22WdDTDsFmcOenh5YrdYRn18y0cGmmgY7+QGguLgYbrcbjDFkZGRg//79IXIzxgDWgIPvNuLJf/k3f5kgeSWURnoKdPZYoHyNa5qQxPkFGRKSae/v74+at6SkhCoqKsZAKjWdnZ20dOlSyszMpKamJrmWrK/aQBjUu+C/DXsaiEhZo4pGN9MgSaOg169fJ4vFQqdOnSKi6FFHq1evpo8//ngsRNPkyJEjZLFY6PnVq8jj8RCRX+e05FYppoGKhDfxEpJpf/LJJwGEHw6UzO6lS5d0dzGNBgUFBXC73chasBBZWVlYt24dfrlxw9+NFIQANjgubywqEUK83xA9DMW0E/lrKbPZrIrzjDV640ZbW7+mJ554glJTU2natGl0+PDhwQKUZfmCd2luT0QSRkHDPXC9rXYlAwMDNGXKlFiJNiw8Hg+tWrWKzGYzvf/++0REdPr0acrOzqacnBz66quvQo4xIvpDibuCRhsnf/nll6m4uDhsuvQgRVGUy+rq6qKHH344dkKStsJo7fN6vbRt2zZKTU2l8vJy6u/vD7nG2tpaMplMVFRUJHdLDfXcE4W4+6CRFvOqq6uTJ79pQYqFFgRBkMvq6enBQw89FFM5g31e5bkBQBRF7N27F1arFTdv3sR3332HN998E1OnTg3polq7di3cbjfuu+8+ZGRkYO/evRBFMaR8yZ8O528H369xSVxfjwgMx7RL1NTU0Jo1a0ZBKm0OHz5MFouFnE6n5ohSMMoa0e12U35+PtlsNmpqahpNMZOShFVQKYxOQrN7Jox7sGPHDtq5c+eoySYh+ZTZ2dkhysU5V7kd0XC5XGSz2cjpdJLb7ValjSRcMNlJSAUNbrVHe0DByvviiy9SbW3tqMnndrupoKCALBYLHTp0KGbl+nw+2rNnD5lMJtqxY0fYXouJ5JMmnIIOx7QHPzCHwzEs1yAaV69epeLiYjKZTFRRUUEDAwNyWixrud7eXiosLCSz2RzyoinPMxFq1oRT0GDTTjT0GsNsNlN3d3fMZBoYGKBdu3aRyWSikpISzZZ3rGs1zjm1trbSokWLKDs7m1paWiaEQgYTFwUNd6P1hNFFw+fz0ZQpU8jn82mmD1WRamtraebMmVRQUBDiG44Vhw4dkheZuHLliu7jol1rMih8wtSgI2m1K+nu7iar1TpieZqammjhwoXkcDjo9OnTIelj7Qf29/dTWVkZmUwmKi8vp9u3b+s6Ltn91YRR0DVr1kTskNfLyZMnKTc3V1derYfX2dlJTqeTrFZrYFgygfB4POR0OsdkkYlEYMwUNNKbPNSx9kjU1tZSYWHhkI/r7e2loqIiMplMtGfPnrAughQlH2/z2NTURBkZGWGj+ccLYzaSFG5eu9frxaZNmzQnvw2H77//XlegsnT+Gzdu4K233oLdbse9994Lt9uNrVu3IiVFewVmQRDkBR/iyZIlS9DZ2Qmn04nFixdj+/btmotMUJKPNqnuMvEB+W+0UA5NAuEj5IdLT08P0tLSoj4YQRBw4MABzJ07F11dXWhra0N1dbXuSXZA+Al9Y4F0fa+++iq6urpw8+ZN2Gw27N+/X5Uv6VcpCa5SuXhrzKrvaKZ9OA5+bm4uHTt2LKpLkZGRQTk5OSFrhGqRiH2PWnJ0dHRQbm4uZWdnazbskpExVVDlTfV6vZSWlqbZah/KEGEwVquVzp07p5nW1tZGS5cuDdvASBTlC4de+aTYgFWrVlFPT4+8X/nSJkvrPqKCcvGW/Ke1rdynVQ4Xb5Hvzi/yPukGc/EWbVi/hn7/2qaIwmmdT9rvu/NLyP47t29QSkoK3brpVcns8XiosLCQTCYT7du3L+I5kxEtxR0YGKDy8nIym81UXl5OAwMD8hToZCJqDRppW89vrTRlh3y4GlurPM552LK5eIu6L35H1n8wy9ve61eorKyMpj94P5WVlcWklyDZkAKnLRZLSLdZMijrkBRUKy1crSr/DlIq7/Urqg55PQqqRz5RFOmrli/I4XCQz+ej9979E5lMJv8S3z/9EFpOEjycWCJFXuXm5mp2SyXq/YjaV8KEuyO26plwt/ynmR7UiiwtLY1pq11qSQuCgB9++AGTJk1Ceno6jh49iuPHj+PDDz/Egw8+GFWu8c6iRYvw9ddfY/Xq1Vi8eDG2bNmCa9euaX58N6GQNFVpKoMJlzZUE+9yuSj94VkqUzsUEx+p7NbWVkp/eBaZTCZqbGxU5RN9NzXPMZFQ1pDStJRk8MlVChqpBR9JkSI1kqQ05bx2Lt4i0XdTl78brWzJx5pl/Q399YN3/fsH3Yrgxp2BmnPnzqkXmUjAXgzdQ50jfcBr166NyVi7hNbkNIOhI4qiKprf4/EklD+qS0FHqpyxHGuXos5TU1OpuLh4RN84SsQaY6yR7pnP56OKigoymUxyj0e4eISxJKKChuuH1MwbYV57uA55vUhlR5qclpcVuuaRPb8oqByf/F8kLm9PdJTBL8pofr1LB2m96LF6+UcczRRNEK0I+aESaXLaoBRERLQ+307rq+v9Sx2Si+YLkJc61DpGNNbu0EQURWptbSWHw6EaDo6H6Y9puF3wBYzUtAdPTgt+GaTzSf/zF9ipge4Qkf8mr8+3kz2/SKWGhlkfGspPRupZZCLW9zemMWPKvrS+vr5hh9Fdu3YNW7ZsgcPhgMPhwIULF/DSSy+FhLgxxuSPYFFjFeqQhuXE4P8oFuHSjx2YaXlIXiLe/3mX+EUgJQPhPhlpsVjCLjKhJNJCHMMipuquYDimXc/kNIng2rrqlTxavqlSXnFrfb6dgPlyjRrpWAN9uN1uOZq/sbFxTM45Kgo6HNNeW1tLFotFnpym31T4fcmQRlKY5bQN5Rw5TU1NlJmZqbnIRKyJuYJGm/wWrCDKyWlnzpzRVMxwSiXtv3Nsd5BCRlNuww8Nh541+aX06upqmjZtGpWWlpLX6x0VeWKuoHpNe0dHh2pymhQDGqyMeoKF66s20IKVRVHzcZ+hmMMhkrJKi1koF5mQv2wSgwZTzBSUc051dXVRTbvW5DS9FxIunjEvC7S78Y6cR5nfYGxoa2ujnJwcysrKiuk0bX0jSToKj9Yh39/fTzt37iSTyaQyCeG6jiQiKm9DlcrvrDhmKGc8UN5raTClsLBQ1wrXWuv2K7eHXYMGFxppodmamhoym820alXggwL6zyON/nC6Q1xzv/JDWeHkMxg7BgYGVItMKNew0oXi0cXExCtb7coab6iT0/QolS7FM3Rz2MTyxZYizaxWa8gcMHn6D/m/cjK4TrY6D/GRK6hWq105Oe3o0aNRLzpSup4bJoqhfZ3GMGbicPr0afmTke3t7fJ+znnYpyQ9vxErqLLVPlqT05SNo4DCKj44ELMzGSiJtZskfTJy27ZturuloiqoniVrLl++TGVlZZSamhoyOS2WY7PBNaVmn2nID4NEQorjfeCBBzQrMU5EPi5SQ/VGqjjmI0Y0vAHTvr4+PPLII3jhhRfw0Ucfwel0oqKiAtOnTx/5+GsUOOdBY74iGAssVUO4A4a7Qj50YBA/3n77bdXYfFdXFw4fPozMzEwcOHAAv/3tIkiPVEQdFjInXmq8A4WCckT/fDwffOgpsNvtcLvdmDFjBpYtWwaz2Zz06wAZjD2nTp0CAGRmZsrL9mxyrsD/XP4Ju9u+xiQpIwfTVE91LSSAMf/nYTo7O7Fz505VPoOhwxib0PcueHZv9eYVwOLfgUoPQQACCiqAYeVjDA3fqAtYX12Pv2xbEdjBCT/99BOIE2BYT4MRonTXqLEKJ8TFqLcDwoLfII8mAcFtibws0Ma9/lCq+j3rCQgMIxqMLRNtsMHpdBIREW+olqfrTAoE8xI4q4en7VH8/pslICIsnx/6tTYOgmBUnWPCRGrgVW9eAZerUb5mu3MDiCjgdjLG8Hn1Z2D5/4TllALGGPJf/3csWFmEHcsHPQEerJzq6GuawL6UwfChxio089/5K0ki1FdtwMwZNjDGBn1QToDA0NF9ER11TRCEAwADdjeI2LFcCPgJAvOHZcg6GjoFw2B4kEaXWHB32niEN1Qi5Y0ToLPHAACMEzouekA0ZzADkdypLYWtcc6psiifAEHlf/qn6k4svygeTKR7jKBINP/MCIHA/NPGmUicBDD4Pq/CXa//N6jtmOyPZjEnLEWVqHuvFGAM/uloye2DkqKm0qqhjPQES2eDbuMf/+sU8v7xnwH4TTVr6EA7gBm2R/3bADj8s/k4ovuaUl7lieOZLiF/zAHa5tNIT6x0eSRpRTbDk/9xG2/k3QURdXiMOfF/mI8G+l/kYVLA9VT5oAYGowurr9pAK7f/JTRlwVODjqueIVBtKMz4lFSNxys9mnxGeuKk/z8Ucm22UiFHYQAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若BD=6,则CP的长为()
Choices:
(A) 3
(B) 3.5
(C) 4
(D) 4.5
|
4.5
| 10,852
| null |
4.5
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAAByCAYAAABk6j5+AAAV2ElEQVR4nO1dfUxbV5b/GUpQVTLeTl8WVzU1rU1i4hmVrJMp3bAybExKFFbrluyk0jJTsmJEBmdbMkQapGkURaK7zAaajIbsRNt0kqpVk1GdMR1FTdTCxt2hI6amk3SwgRlMQ2WyMSLSwNpRIdjv7B/GD3+952f8/EHCTzLY795333n33PNxv86VERFhDWJ+fh43btzA2NgYPB4PbDYblzY5OYnp6emI/CUlJXj66acBAAUFBdi5cyeUSiXKysqg1+tRVFSUSfIlhSwbTCQiyGSypPJMT09jYGAA/f39sNlsuH37NqqqqlBSUgK1Wo0dO3ZwjCgtLYVKpYoo76uvvsLU1BQAwOfzwW63Y3JyEm63G4ODg1AqlaipqYHRaITRaERxcXHK7yXmPaVAVpgohPAXHx8fx1tvvYW+vj74fD4YDAbU1NTAYDBAq9VK+lyn0wmbzcZ9GIZBQ0MDDhw4ALVaHUNb9O9MMSwuKANgWVZ03tnZWTpz5gzp9XpSKpV05MgRGhsbSyN18eF0Ounw4cOkUCioqqqK3nzzTfrLX/6ScTrEICNMFAOPx0NtbW1UVFREjY2NdPny5ZTKCzWc8AYU3ZjENi6LxULf/e53SS6XU0dHB83OzqZEm9TIOhOnp6eppaWF5HI5HTlyhDweT7ZJ4oXb7Saz2UxyuZza2tpiaGVZNimtIxWyxkSv10sdHR3EMAwdO3YsYetOd+UkwwCPxxNB+8LCQlppS4SsMNFqtZJCoaCWlpacUE1CzBNK83g81NjYSCqViq5cuZIO0kQho0x0u91kNBqpoqKChoaGMvnotIFlWbLZbKTVaqm+vl6wUaZLm+RlygseHh7Gd77zHVRXV+P69et49tlnM/XotEImk8FgMMDhcKCiogLbt2+H0+nkzZsWpNoKxNiS8+fPE8MwdPXq1VQfl/OwWCzEMAxZLBbuWrrteVrVqd/vJ7PZTBqNhhwOBxGl/4VyAXa7nZRKJXV0dGTkeWkbsZmfn8dLL72Eu3fv4vLly/jGN76RjsfkLGZmZrB371489dRTOHfuXMTYLEk8upMWm+h0OrF9+3aoVCpcu3btgWMgABQXF+PTTz/Fww8/jMrKSnz55ZdcmuS2UWrRvnr1Ksnlcurt7Y2wlw+CGuVDV1cXyeVystlsaSlfUiY6HA6Sy+WiHJj7jamJ3sdqtRLDMORyuSR/tmRMnJ2dJY1GQ729vUR0/zFJCnR2dpJOpyOv1xuTlkp9SeLYBAIB1NXVYcuWLejt7ZVCy9+3+N73vgefzwer1SpZmaIcm0R8bm9vBwD87Gc/S52i+xxnz56Fx+PB8ePHpSt0NeIbLvrnz58ntVqdE2OguYzwOnO73aRUKslqtUpStmgmxpuXGxoaIoZhsjJpu5bBsizZ7XZiGIYbBEkFq3ZsQq3pQRhKSxcsFgupVKqUtVhSjg2FjTTU1tbCaDTixz/+sXS6/QHE0aNHMT4+jvfff3/1hayG8xcvXiS9Xk9+vz9u+nr3QhxYlqWFhQXSarUpabSkmej1ekmpVJLdbl/1Q9cRif7+ftJqtateIZD02Onx48exd+9ebN++PWHXYx3isGvXLjzzzDPo7u5e1f1J2cTJyUk899xzmJiYgFwuX9UD1xEfMzMz+Na3vgWHw8EtXCaRsx1JSWJnZydaW1vXGZgGFBcXo7GxEV1dXdw1sbMdoiUx1FJcLtc6E9OE1daxaEns6upCc3PzOgPTBCJCcXExGhoacPLkyaTuFSWJd+7cgUajwZ/+9Kek9fU6ksPk5CQqKytx8+ZN0Tu1REnie++9hxdeeAHFxcWcR7rOwPRArVajqqoKly5dEn1PnhiTeO7cOTQ1NQHIPvNC1PLRvXKVzQA16cHLL7+Mc+fOic4vY1mW+BhDRPjiiy9gMpm4vX2ZBgFI1GxCqj08r5j7chWBQAAKhQKff/45nnzyyYT584QkSyaT4e233+akMBuQIfF8Zugdwt9krTKQiJCfn4/Gxkb88pe/FH2TIJRKZVanmtjlTxAB4byr3LqWi/j9739PWq1WVF5Bx2Z8fBx+v1/yXbnJQEbhUhVNbqTdi9Yq2bbfqUCv12N6ehozMzMJ8woy0WazwWAwxE2jTI2bCvGBpw3eD85Nfn4+qqqqIgJK8CEhE2tqauKmZaqVCzWVsd/0QCaTcZ/aQz1B2rgcGdsvJBnChaO6uhrXrl0TdRMvFApFji29WLGJ3a1GAnaRc9lisuQkI0BGc3e2iJMcQ0NDtGXLloS2nZeJU1NTxDCM5IRJgW7z3xNqfxju8RARkaOvO4Kx9wMKCwtpbm5OMA+vvnG5XNDpdJKoCCkx+ps3cOT0f8N68jSvvZTdR9Oc5eXlmJiYEMzDy8SxsTGUlZVJTlSqON3bDqO5GyadDBTUJMEEljAxGdy0Qhxz165jE0JozBrgdyZ5mTg5OZnVrkU8EEbx54+Buto6AOAcGgBAngwfX/0FjOY92Lpmu/qx0Gq1nCTyOZO8TBwfH885JspG/4x+AGrN1hiv1flBD/7zY4L5hz/KBmlpg1ar5d0+HgIvEz0eD5544gnJiUoFtHUzjAAmXaMRskYYRZvpCKdmV7D2uhjRUCqVmJ2dFczD+5Y+nw8bN26UnKhUIMNW1LUaceT06ZUO5Ggf8mQ6wPwf+Li3ffni2reFITzyyCPw+XyCeR7iS/D5fDkZPrL99Mf4crcMsrxfBC/IAKuDxT9uDc+19iUwhKKiIty9e1cwj6AkPvLII5ITJQVOf0ScZ0oswaSTRUQ7BICBgQGUl5dDrVZH7Nbi8/ByFUVFRQklkbezL5CUFSQ7I7F582ZCUOlSYWEhGY1GSTavZBpzc3Mkl8sF88RIIuVoS5XJZKJpGx4ejpjErqioQH19Paqrq3Hw4MGImYFcfd9kEMPEkFoSJcYZhphB95/+9KeoqalBc3MztFotKioq0NPTg1dffRUulwsbN27Eli1b8Prrr2NxcTHnp6u8Xm9iB5NPRB9//PGcCFuZTORDg8FAOp0uodp0u93U0NBACoWCzp8/LwWZacPY2FjCyWFex0aMa5sJiJGUvr4+bNmyBdu2bcPnn3+ecMz3iSeegMVigcViwdmzZ7F9+3YMDAxIRbKkEOVg8nG3oqKCrl+/LnXDkhRer5eam5tTjht36dIlUiqVVF9fn5YQJanAZrORwWAQzMMriQqFArdu3ZK6YUmG4eFh7NixA9PT0xgbG8Pzzz+/6rJefPFFTE1Nobq6Gnq9HocOHcKdO3ckpHb1mJ6exqZNmwTzcEykZS8t9F+r1cLlcgneTBJ6dsmUFXJeDh48iCtXroBhmJSfn5+fj/b2drhcLhQUFKC8vBxdXV1YXFxMuexUMDExkdA8cEzklv0t/9doNHA4HBlzwcWckzEzM4Pq6mq88847GBoawquvvio5HQzD4OTJkxgaGsLvfvc7aDSapFZjSw2n0wmNRiOciU/P9vf3J9TFmYTVauUCqGcy5vbg4CDp9XqqrKykwcHBjD03hIqKioS7snN+eYZUzkuqePfdd0mpVNK+fftoamoqY8/dsGFDwuUZEUxklxbJv7jAfZ4szu5CKbvdTlqtlurq6mh2djbri4EXFhaos7OTO/4hUeWmiqGhIVELiCO8U9lDG5BfkA9AhryCQjxXbRC17jEdCHdePvzwQzAMk7bRFUpg90PphYWF+MlPfgKXy4Wvv/4aGo0GPT09CAQCSZUnloZPPvmEW/dL4UtR4txMRGEjI+wS+RcXiWWJzpw5Q/v3709DG1tBtHR5PB6qrq4WNfKSbTgcDqqvryeNRiNZiK9w1NXV0cWLFxPmi7WJHBMDNPrHL6i0uJj8i0vBPRHL6jYQCM+7rH6X2KgyQmr5XuQCQoG0COfla19YvqWVfHHvD1BgcYGjO8DRFIiiUXgvx2rR399POp2OqqqqJAsN4/f7qaioKO7QZ3TDF2Bi8Lu6pIRGObsYoABXEQEKcJUboEDonojvROxSeOXFT4t1XsLzscRyDUegbI5Zy4zlfi+F/b4n+YrU6GCFCoWC9u/fT263O6VyxdpDokRxbGQP4R9eNOH99y4Ef7MBIC+P+04IgL23iMC9JRAIRKHredyaUFl+/vK1+Gl/sH+GyuiRFzYAynsIQRMog2xDYfCxQmUHryCvoCBs/Y0MeQUPhf0m4X0Bq0C4nX755ZcxMTEBrVaLbdu24ejRo5ifnxdVDkXZu4sXL2L//v3iiIhtWpEt9g9/GKay0tJgPO+lMLUWuBdfPQXuRbb4UHksG5PW9e//RsXyjXTq1KlIFRG4F6lCE5XNfV+R0oS/04yZmRlqamoihmG4aMzxEO9cEb/fTwzDiO7KrDg2S+E2JLIC/2bbM3Tt449WbCERhezQyrUAsYGV65yNDNyjpXv+iHtu3bpNBoOBtpZraeTGH+O82VKk7RUoO1KdZp+J0QwZGRkho9FIWq1W9HGCVqs1qYGWMCaG+oixL3rq1En6l+9/P0YyWP9iHCeDopyPpSjn5RI9/k05/eiVf6W7Xl/QYWJZimkUgXtJlB3mzCzeIzbh78zj8uXLpNPpqLa2NuHskMlkSmqeU9RCmtlZD/21XJ7SJHHIedm0adMDHSO1t7eXGIahpqYmun37dsyREy6XixiGiRvsnQ+i1vY99lffxD8fOJB0kJwQwqeNRkdHU5o2Wuswm824efMmlEolvv3tb+P48ePw+Xycg3TixAkcOnQoueWiQhxml1b6gG63mxiGSXqoqauri4qKiujUqVP8z1nDe+tTgdvtpsbGRm6ZiMfjIblcnvTZxVFMjPU2w6u3qamJjh07xps3HMmseXnQYbfbaeff/S099thj1NDQwF1vrQW37DL06e6LrcuENpFl/TH6en5+fjktvgSJnTZ6UCUwHHNzc9RzoptKSkpow4YNdO7tSIemtXaFccFNtCCrI86IDV9Vhl8PVXh7+2FqaWnhPMpw5Mq00VrA2NhY0NF7jKGWlhaqr6+nzs7OiDwsOWlX+M5np5UA0K9HIus9RhKDnXL+h3u9Xip+XBEzRjg8PBwxbSSEB0kCo9/VYrGQ0WgklUpFvb29NDc3R/39/aTRaKK0VoBGrD0RMQjMxvgxCSKZGLMH/o0Y0SUK0IULFyICuYtxXvhe6kHA3NwcdXd3k0qlorq6uohO/8LCvTiB3INSZO1pDdrCYMSzOLwIIlYSlwthaYyMAjcajUZ67bXX1p0XAYRUJsMEVWa85ZCvvfYa/VPDvpULgZX6NhtX6j/E0A8cbIyw8Upij7mVdu/eTSM8FvPs2bMEgEwmU9bPmc81xFOZ8U74ETzcxGkNRghZzh8K8dLabaVoexfXsbH2tFJ336+pFjW84URsNhuVlj5JhYWFMcetP6gq88SJE6RSqWjPnj2C46Thxww5R+JrMGv3oWWGLcNpJcjEdjGc1uDNzktcS+DD14sLZDKZKD8/n3p6ejgCHySIUZnRcLvdVFJSIrgaoLV2RZWyNE5GgIvRE13DMUw0m83BL06r6OhMBw4coEcffZSeffbZ+9o2hjfQeCpTDBYWFqiysjJs0CQSwb5gXkwnX0igltVppDckk8kIYSG2EsmW3+8no9FItbW1pFAoqKOjg7xer6BUrkWJFfIyxaKxsZFMJlPctOiQoGJrKA8AZMgDRvvwEWrBsgSWZeHo68bmp9QIpocGWuOPv+bn5+PChQu4efMm2tvbcefOHZSXl+Ojjz7iHbPNpX2BlGB12vj4OH7wgx9Ao9FgYmICAwMDuHLlCvbu3Su6DAB4/fXXcf36dbzzzjtx06MDC4quISIKGs3dLRHctfa0RhpWERgZGeEOhh4cHKStW7eSyWTKiX2Oq8FqVWY8hB8MHauFhMahl6WSuyc2L4LRCrHSByGig7tXdHGyUQuvXLnCHdHu9/ups7OTGIbhHJ9cR7jKNBqNSavMeNGPc+yI9tBSCOFcDoeDNBoNmc1m8vv9NDU1RXv27CG9Xp+zp72Fe5nNzc2S7FNcWFigpqYm0ul0vOUJ+gYijaLgALjoh8XB3NwcPf/882QwGDg19Ktf/YoUCgW1tbWlfQm8WISrzFOnTklG1+zsLOn1etq3bx83S78aZy565j8e0hbnhGVZ8vv9ZDabSaPRcF2Pubk5MpvNpFAoRK+ajvcCqXi3IZVZWlpKRqNR8tXbn332GSmVSuro6JC0XD6kNVhNqKJDi2qvXr0acah0RUUF7dmzJ2O7jJJRmattJBaLhRQKBVksltWSmTQyFnHIbreTQqGImTPr6uqiTZs2UVdXF+/xtiGkUrFSqEyh5/v9fjp69CipVCoaGRlZVfmrheRMFHpRt9tNRqORKioqIsZb3W431dXVkU6no9/+9reS0BHtZYZUppSDDKGybDYbabVaqq+vT/mk7tUgK7G/rFYrKRQKamlpiXjp0PXm5uaE0sLHjHR4mXzweDzU2NhIKpUqqysZMsrE8Ir3er3U0dFBDMPQsWPHOGZ6vV5qa2sjhmHo3XffFV12urzMePB4PBG0Z3sqLmtMDMHtdlNLSwu3+3ZmZoaIgjZUr9eTwWDg3a3MpzJToUcIbrebzGYztwgs0UhUpsaH087EZMJ6tbW1UVFRETU2NnLqqbu7O6bFS6Ey403S8sFqtdJLL71EcrmcOjo6smL3hJD1eJjRFTg7O0tnzvwX6fV6rq/16aefkslkIrVaHaUy/090ucnS5HA46PDhw6RQKKiqqorefPPNnBmgiEZSR7RnAhR2zO34+Djeeust9PX1wefzYfPmzdDpdHjllVckDzLvdDphs9m4D8MwaGhowIEDB6BWq3lpzAXkFhN5Tq4kALempzEwMID+/n78j+0T3Lr9v6iqqkJJSQnUajV27NjB7V8oLS2FSqWKKOOrr77iYqD6fD7Y7XZMTk7C7XZjcHAQSqUS1dXVqK2txa5du6BQKNL7rhIit5gI4VbOgpC3zOX5+XncuHED4+PjuH37Nmw2G3fv5OQkpqenI+5VKpXQaDQgIhQUFGDnzp1QKpUoKyuDXq/PyXjnYpFzTAQgfJbsWj5nNk3Ietj6eC2o76R5+fSZfMh2t4IwjkOH3sg8bQLtO5faftaZGCFUo32QyWQ4/eXTIAoEPyd3I09WDnrq6Tg3pJm2BOct5wp4z8XINAjj2K17AUZzN3dICRFBpjOhu9UIaMpWpUrDbWy0vc01L3O1yAEmsgDy8MEbP0c/dsHZu3LWU6iCn1ZvBsq2rkoKw5l0P505HI6ccGwIo9gt02FztxW97SZRvFr3b1aQdZsIhJ3GVrYZIAKB5Rwe4jn3aZ2BK8gBJoaYlMfZKBnXG2SDa2KjkAPKI6eQA0zMWz5Sj8WXruhjV4OLmns+WDk/kHD/2LJkINhwMzdMyw+WZbktBOG7fkasJwT3IKy9jQCpI97AftaZyHJ/VgILIGzhMt9sxFrcy5Eu5IR3uo7UkAM2cR2pYp2J9wH+H4EVdU2gUgpqAAAAAElFTkSuQmCC"
|
<image>如图,已知圆周角∠ACB=130°,则圆心角∠AOB=()
Choices:
(A) 130°
(B) 115°
(C) 100°
(D) 50°
|
100°
| 10,853
| null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABjCAYAAAC2XA/OAAAQI0lEQVR4nO2df0wUV7vHv4Pewh9NTJppXQOWQrfXtZpIU43ciMEE6GujS+n7ksp9Q+KkxS7UNqEtWP8wF29MWiLYbW9IZRebwhua8AcNpYspzWKzXrT1By00Qqlx11+YuEQbUex1ics89w+YYWZ3dnd23d0ZcD8J0Zk5Z+bZeZ7n/HjOOXMYIiKkWFKUlpbC4XAoXnM6nWBSSl+alJaWwmq14vnnnxfPMQwDIkKahnKlSABSHxYUbrfbAQD19fUAkFL6UoNhGAwMDGDnzp0AAI/Hg0uXLgEADh8+DCCl9CXJ5cuXYbFYwDAMjEYjXnjhBdn1lNKXIH19fXC73SAi2Gw25Obmyq6nlL7E8Hg8ABbq89zcXOTk5ABYqO9TrfclhtBoe/vtt0OmSXn6IiPQRwOP+/r6UFRUFPYeKU9fIgwMDKCkpEQ89ng8eOaZZ/Dkk08GpU15+hKhuLgYRCT+3bt3DyUlJTh79mxQ2pTSlxi3b99GRUUFXn31Vfz111/YvHmzeE0o1FNKX0REqok7Ojqwdu1a5OTkYNOmTfjwww9l1xmGmfs3Vacvfq5du4bq6mp4vV7Y7XY89dRTKCoqgsfjwbJly4LSpzx9kXPkyBFs3LgR27Ztw9DQEDZt2gSr1Yr33ntPUeFEhOUayJkiDoyNjaGqqgrp6ekYHBzEmjVrwDAM7t69i2+++QZ//PGHYj6GYVKerjXR1q6zs7M4ePAgtm3bhsrKSrhcLphMJrG+/vTTT1FRUYEVK1aEvEfK0zVGUFYkiAjnzp0Dx3EwGo0YHR3FypUrxWsMw2BmZgZfffUVBgcHI94shcbwPB/2+vT0NO3du5dYlqXu7u6Q6dra2mjXrl0Rn5dSus4INID+/n7KysoijuNoamoqbF6TyUTnz5+P+IxU8a4zhOL+9u3beP/99zE4OIjOzk4UFhaGzXf8+HGsXLkSGzdujPiMVENOh3z99dcwmUzIysrC2NhYRIUDQFNTkzgdKhIpT9cRN27cwJ49e+D1enH8+HFZCDUcIyMjmJycxI4dO1SlT3m6Tvj888/x0ksvoaCgAENDQxEVTpKu3pEjR4JCroFppKTCsAmC5rtRkbh48SI4jsPy5cvR1tYGk8kU1XOuX7+OgoICXLp0Cenp6arypDw9QQgKD+VTPM/j4MGD2Lx5MyorKzE4OKio8Eg+abVa8eabbwYpPFy+hNfpUotXa/1aIbyoeMqodK+zZ8/irbfewurVq3Hx4kUxyKI2PwBxzLyrqwsXLlxQnU/InHScTie53W4tHq0p9+7do9ra2ohBlkBCBW+am5vJYrFELYcmSgdAbrc7YiRKa8xmMwEI+jObzVHf6/vvv6fs7GziOI5u3boVdF3pXYR7Pw8fPqTs7OyYnCfpSq+vr4/ppWmF2WwWXyzP8+R0Oqm+vl51/lu3bhHHcZSdnU0DAwMR06t1hM7OTiorK1Mth5SkKt1ms5HT6SSNapWYkBpoa2srEc39DjV0dXURy7JUV1dH09PTqp+pRvF5eXl06tSpmO6RtOCMMAk/JycHZrM5WY+NGpI0NqVrwux2O3Jzc0FEYeeUA8Dk5CQ4jsPExAT6+vrEPjepbMhGSnPy5ElkZGRgy5Ytsd1DtfnFgNTahCLR7XZHVTxqBc/zZLPZZHV5uPpT+K0tLS3Esiw1NDSQ3++PqzwC27dvp+7ubuJ5XjwfTfsoKeVs4Mvbt29fMh4bE9KXaDabyePxEBFFbIeMj49TQUEB5efn0/j4eMLkGx0dJaPR+EgGlfDgjFCs0/x8bKfTKVsorzeEYvHy5csAIC7+E4r5QISZLFu3bkVFRQV+/vnnqKNq0dDc3Ix3331Xcf6bauJmgvNIixm32x3kITabjWw2m267a4Jcra2tig02adV05swZysvLo+3bt9PExETC5fJ6vWQwGGSNwljeY8KUXldXF1QXSvu9eq/XpV016TmbzUbT09NUV1dHLMtSV1dX0mQ6cOAAHThwIGK6SIaQ8Dpdrx4dCqFLGeqvo6ODsrOzqbKyUjHIIiWev93n85HBYCCv1/vI91o8HeYEIVVMOCXduXOHOI6jrKws6u/vT4ZoIjzPU0tLC3EcF5f7PfZKV0N3dzexLEu1tbVRBVnihd/vJ6PRSKOjoyFDw9GQ0PF0IsLZs2fR39+fqEckDIZhcP/+fXz77beYmppCWVkZMjMzNZHF4/FgbGwMv/76K4gIr732muxzYfv27UNTU5PqOfQJ7bIxDIOamhrcvXs36kn9iUKNHAzD4Ny5c/jiiy+QmZmJd955B5mZmQsLAOe/x5YsHA4HDh06JD6bYRhZt/fw4cMwm83Yt2+fqvslNAx74sQJZGRkwGq1Kl4nnY2vExEuXryI6upqzMzM4Jdffklon1sNp0+fRm9vrzj/zel0Ys2aNUHpTCYTxsfHxeNw7zahnn7o0CF89NFHoedq6Ujhs7Oz+Pjjj7F161a8/vrr+OmnnzRXODAXjKmrqxOPnU4nXnnllaB0RqNR/WSV+DU35LhcLsrLywubRi/dufPnz4tBlqtXrxKRPmRzu92UlZUlC7kKKguUr76+Xox9aNZPLysro87OTtmggN64d+8e7d+/n1iWpc7Ozqjzx+t3hbqPxWKhzz77TDwONVjldrsJADmdTlXPS4jSh4eHH3lQING4XC7Kzs6mXbt2RQyyaIEQcpUuZRJC2IGYzeaoJqYkJAxbXl5O7e3t8b51XJiamiKO48hgMCQ9yBINDQ0NVFdXJzuHgOFdwcOjnYkUd6UL9ZDP54v3rR+Z7u5uMhgMtHfvXk2CLGrgeZ4ePHggC7mGCw2rLdKlxF3pHMfJ6iGtkNaTXq+Xdu7cSWvXrqUzZ85oKFVk4h1yVSIuShcaaxMTE2QwGHTl5a2treJMFj3JFQoh5Do8PJywZ8QlOCNEqI4cOQKLxaJ6eU0icbvdqKqqwszMDFwuF9atW6e1SKpwOBwwGo3Iy8sTz1G8F4xILYDnefLPLvzNRtEjUWptaoHf76fGxkZiWZaam5s1lSUW8vPzVU2VJoq9yyjzdIZhsAwEnoQYr3rjaWlpAcdxYT9wk2h+++03cBwHlmUxNDSE7OzsoDSks9CvlNOnT8Pn80X8oK/wG2L+HQrmQ7OzPEVjRFNTU3Eb4I8Fn88nBlmi6SrqLWhUVlYWUf54yBy2Tud5ghA1T0tjAFooBdIYiMef/08L/vnP/1xYiDd/XppXtMlw1+TWqJwu4Pypwf/F7t1vIX/Lf2B0bBzPPM0uyC0pucRjycP05PEejwdDQ0Po7u4Om04qM8VaaimY0oKnC/+XXJbW87OzPD3w+SgrK5euXLkqlg7SkoLnefIH5Al1TYosnaR9IZyfmpqiPZZ3KPfZ1XNBlnlZ/YK8IY715dsLWCyWpLVBwo+yzdfrPIkWIrUWEIA2+zFs316M1c8+O+dNJHjZvCUCYIRzkmvCP+I1uSWCJG0KJm2hZCEAvb3fYu3atXji35ZjaOQCXvnb38SsaYy85Ag8Dn6Y9kxOTqK3txdVVVXJGacPMgMl7573Lp6XnOd5mnnop6ysLFloUOgB8Er3C3ctQAa/wnnvTS/9o7yc1plMc+u4Au4ta4tEOtYRSiHXRCIqXSxqFRQhKDKwC/evf3XSP/5eJkk39++sNK1C8R7qmvRGswHPazvWRiy7iv6r4b/p/x74gvMvUqULs1yvX7+etGfKlS7UgQEvhlcwBL/fT8Z/X0fDw78t5JtPK61Pgzw2zDW/P8AgZnm6cuUqlZSU0Jb8/LkoVYj8s7M8PfQvnAtME1IejQkXck1U70J1GDbw+V1dXbRz584QaeMj7CeffEJPP/00NTY26q57FQ+SEXJVQpXS52Lr8nN5eXnkcrniLhDP8zQ8PEwbNmygwsJCcSbLUqSnp4eKioqIKLkxg7BKV6rLeZ6nnp4eKiwsDClorD9AGmTp6OiIyz31TDQh13gS0yhbQUGBbAJCpDXSahTmcrnIaDRSeXm5LmeyxJtTp05FnEOYKKJWusvlog0bNojHapcFheLOnTtksVjIYDBQX19f1PkXK2pCrokiaqUXFhZST09PXB7e19dHBoOBqqurNR+dSyZKs1yTSRStd16c8PioeL1eKi8vJ5PJlJDGoN5JZshViag8PR5FUnt7O7EsS/v3718UM1nizc2bNzWfdxBx5gzNj+SMjY1hdHRUHAWiKEd4rl27ht27d+P+/ftwOp2ymSGPE62trRE31kk4aq1DOuEx2gabMJOlsbFRVfql2D3jeV4Mud64cUNTWVQpPdZpzcPDw/Tyyy+rDrIsRWVLaWlpocrKSq3FkCs93PKaaBoePp+PDhw4QCzLUltb26NJqHPUGqpWIVclgubIUUBdPTk5ie+++062DDYcJ0+eRHV1NdavXy/bO2ypovTOlHA4HHjuuefEtoyaPAlD0H6ohYa1tbV08ODBsGmI5may7N27lwwGQ9z68UuJ/Px86u/v10UVFrZOn5qaIpZlI3YvfvjhBzIYDFRVVfVYBVnUomXIVYmwXTar1YrKysqQ3Yvbt2+jpqYGIyMj6OrqUrWV1HzpoqtJiYmmubkZtbW1WouxQChrmJ6eplWrVoWc1tze3k4rVqwIG2SJ9OF6PRR1icbtdpPBYNDVsu2Qnv7ll19ix44dQQ2xa9euoaqqCn/++SdcLlfI5TeA8hTjSNeXGk1NTairq8OyZcvE9xP4npKOkiX4fL6gCY9Ec3uGCEGWR7Hcx8HDifSz1CsQRU9vb29HcXGx+NmqkZER1NTUID09HWfOnHnkrzg/Dh4OAEePHtU+5KpEoBVIgwg+n48aGhqIZVk6evSoFka5aBFCrnqc7rVconwwDIPOzk6sX78eMzMzyMvLg8lkwoULF2AwGLS0zUXHsWPHUFxcrLiIUnMCreDFF1+kN954gwwGQ1R7h6VYIFLIVes2jaxO7+jowO+//44nnngCHMdhdHRU3N0v2Z/GXKwwDIObN28iMzNTcfiYtG65I+AzoRkZGbBYLFi5cmWQklMKD4/0SxGrVq1CdXV12HRaovor0HqwUL0S+G70/q5SW2k/hoRcqpyyheix2+3iZ0FKS0sBQPY5br28U5nSS0tLRaHT0tLAMAwGBga0km3R4PF4wDAM3G63uBWZ1WoFwzAwGo1iusAiXzMjCGzOm81m8SuEwpcKH8dtr6MBIXafqq+vj+mLjokmqHh3OBwoLi4GMLcvaorw2O12AHO7KwBy7zUajfp8h1ILCNwm2mw2B1mw1oEFvQGA7Ha76vR6GFqWKT2aDWUfVwJ3mEQMH+XV2nHSSFIcORwOeDweEBFsNhuMRqO4V6pCCZGEcmhxEO270LoPnyYIILRAhQ1l9+zZAwD48ccfFTNqLbhWSH+3MMR85cqVoHQej0e3PR+xIXfixAnZzsHCrsKhGiIpT5/DZrPBYrHIFOx0OvHBBx+IDWLdIZTzgRvKIoad/R5XAj/CX19fr3m9HQ7G6XRSSUlJkDGUlpait7c3uRaYIin8P9CEQgSCyEuSAAAAAElFTkSuQmCC"
|
<image>如图,▱ABCD,AB=6,AD=9,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DF的长等于()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 10,854
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAABaCAYAAACv1SSdAAANRklEQVR4nO2db0gb9x/H39cW+mAMH+zGzpmRWq9Mlg5Gw6gMwULjEEym0EhhKIusnQ/yRJlxbgh9oAWtKbOQjUb3wG1uE6ZbaTMoy8kcjVSw+wMqFnapluyBorB0KSwdyX1+D/rLzZhEY3LJJeZeINT78/1+vL7v7nOf7+f7+YI0NP6P2+0mAASALBYLERE5HA7F2j8EjZLH7/eDYRiIoggiAhHh448/BsMw4HlesX40sWmA53k4HA5cuXJF3lZVVQWHw4Hjx48r1o8mthJndHQUAOKEFoPneVRWVirWF0NEpFhrGkUHwzAYHR3FxYsXc96X9mQrYfx+PwAo+vTaDU1sGsjXy00TWwlTVVUFAFhdXU3Y5/f7IQiCsh0qFkTRKEpisTWv1ytvEwRBjrMpifaBoAFBEFBfXy//3tPTg6GhIcX70cSmkTc0n00jb2hi08gbmtg0kvLw4UPF29TEphHH9PQ0LBYLIpGI4m0fUbxFjaLjyZMn+PLLLzE0NIRAIICff/5ZjsEpifZkK2G2trZw+fJl6HQ6TExMYHV1FZOTkzh9+nRO+tPEVoI8fPgQFy9exKuvvopgMIg7d+5ga2sL165dQ3Nzc+46VjxMrFGw+Hw+amlpIZ1OR06nk4LBIEUiETKZTNTb25vz/rWgbgkwPT0Np9OJUCiEjz76CG+//ba8r729Hf/88w8mJydzb0jO5ayhCuFwmFwuF+n1empoaCBBEBKO6e3tpbq6OgqHw3mxSfsaPWBsbGzA5XLhs88+Q0NDA3744QcYDIaE49xuN27cuIH5+XkcPXo0P8blRdIHGIvFIs9I2v6Tb/x+P124cIFYlqXu7m5aX19PeazH4yGdTkdra2skSVLebNTEpgAWi4VEUZT/4xwOBzEMk5e+fT4fmc1m0ul05HK5KBQK7Xr8wsICcRxHCwsLebFvO5rYskSSpKS5XxaLRdE5lzuZmJggo9FIRqORJiYm0jpnbW2NdDodeTyenNm1G5rPliUzMzOorq5O2F5dXY379+8r2tfjx4/x+eefw+l04uTJk7h69Srq6urSOvfRo0doaGhAX18fGhsbFbUrXbSgbpb8+OOPePPNNxO2nzhxQrE+NjY28OGHH+LYsWP4/fffIQgCbt26lbbQwuEwmpqaYLVa0dHRoZhd+0UTW5YMDw/DZDIlbP/jjz9QXV2d1WSS5eVltLe347XXXsORI0ewvLyMsbGxfY9btrW1obKyEv39/RnbogiqvLwPCH6/P6lfJooiMQwTl9e/HwRBILPZTHq9nlwuF/39998Z29jZ2Ukmk4kikUjGbSiFJrYscLvd5Ha7E7ZbLJaMJoxMTEyQwWAgo9FIU1NTWdkmSRKNjIyQwWDY8ws1X2hiywIAJIqi/LsoinEVgHYjFiYJhULkdDpJp9PRuXPnyOfzKWLbd999RzqdjgKBgCLtKYEmtgwQBCEugMswjPzvdF+dgUCAuru7ieM4evfdd+NEmy3z8/PEsiwtLS0p1qYSaGLLM4uLi2Sz2YhlWbp06RJtbm4q2r4oilReXp50LFRtNLHlidu3b5PJZCKe52lsbCwng9+bm5vE8zyNj48r3rYSaGLLAbGhoEgkQuPj42QwGKi2tjZrp383QqEQnT59mgYGBnLWR7Zo+WwKs7GxgTfeeAOHDx/GX3/9hTNnzqC7uztnqdYAEI1G0dzcjBdffBFutztn/WSLFtRVkD///BP9/f149OgRnn/+eUSjUTz33HM4duxYTvu12+0AgE8//TSn/WSLJjYFuHfvHtra2vD666+jvLwc9+/fx9zcHFZXV/Hss8/i5ZdfxuXLl/Hvv/8q3vfQ0BDu3buHb775BocPHwaQvxJY+0bl13hREouReTyeOKc/VZR+dXWVrFYrVVRUKOq8T05Okl6vj8tdS5Vfh32EZXKFJrZ9Eo1GaXx8nHiep7q6un2l6/h8PqqpqSGj0Uizs7NZ2fHTTz8Rx3G0srKSsC+WX7edQniuqG9BkbC5uUn9/f3EcRy1trZmlXw4NTVFOp2OzGZzXNJluqysrFB5eXlKwW4fwYgNp3V3d2dsr1JoYtuDtbU1stvtxHEc2e12xYZ/wuEwDQ4OEsuyZLfb0w7urq+vk16vp8nJyaT7vV6vLDBRFOVEgXymf6dCE1sSJEmihYUFOnfuHHEcR4ODgxQMBnPS19bWFtntdiorKyOn07lrdkYoFKKTJ0/S4OBgSvFsX6UFQNJEAbXQxLaDqakpqq2tJYPBQOPj4zlPzYmJRhRFamxspJdeeilp8Dc2mdhut+/a3nZ/ze12q/5RsB1NbPT0lTY2NkY8z5PJZFItR5/o6SC/0Wik2trauAwQm81Gzc3NKc+TJIlEUYzz17xer6ID/NlS0mLb3NykgYEBYlmWWltbaXl5WW2TZMbHx4njOGppaaGuri6qqanZczw1VX5doVCSQd2dhVV+++03fPHFF3jllVfUNk3mnXfegSiKkCQJIyMjMBqNCIfDu57j8Xhw9uzZPFm4f0pKbHNzc2hpaUFtba08+2l4eBg6nQ4Mw6htXgLz8/OYm5vD3bt38eTJE/A8j08++QTRaDTuOEEQcOjQIdy6dQs8z8srtxQcaj9a88HU1BTV1NSQwWBIe46l2iwtLRHLsnT37l152+LiojxioaZfmSkHUmySJKVVWKVQiU0m/v7775Puv337NhkMBqqrq1NlZnumHDixra+vU19fH3EcRzabjRYXF9U2aV8Eg0Gqrq6mkZGRPY91uVzEsizZbLaCmmuQigMjNlEU5cIqDodj18IqhUo4HKa6ujrq7OxM+5xQKER9fX1UVlZGfX19BTOTKhlFL7Y7d+6QxWJJu7BKIXP+/Hk6f/58RucGAgFqa2ujF154ga5fv66wZcpQtGLLpLBKIdPb20tnzpzJem7CwsKCPAJSSKMHREUmtlAoJDv9ZrM56zSdQuH69etUXV2t6Pirx+ORR0QKZUpfUYhtfX2dent7iWVZunDhQkENwWTL9sJ8ShOJRMjpdBLLstTR0aG6H1vQYltaWiKbzUYcx1FfX5/qF0tp8lWYLxgMUnd3N5WVldHAwEDeaujupKDEFsuA2FlYpZid/lSIokgcx+U1OLu2tkZWq5V0Op2cnl6yZU5jhVVOnTqV0zmWahObTKzWV+Pc3Jxi6en7QXWxbS+sYrVayefzFURWaa4Ih8NUU1OTl0Uu9uLbb7+liooKamxszIsfrJrYthdWOWhO/240NzdnHEvLBZmmp2dC3rM+YtUUT506hWeeeQaLi4sZVVMsRrq6uvD48WN8/fXXapsic/ToUXzwwQdYWVkBAPA8j6tXryZklihCzmS8DUmS5MIqer0+Z4VVCplCK8yXClEU5VL3U1NTiro0ORObJEl5LaxSyNy4caPgCvPtRar09GzIidiCwSA5nU45rXl+fj4X3RQFs7OzBVmYL11i6elWqzXrm0VRsQUCAers7JSdzdXVVSWbLzpWVlaIZdmiyqVLRigUooGBASorK6P3338/42E1RcS2sLBAra2txHEcDQwMyF80BzmEsRexycSFWpgvE9bX1+U0LpfLte9pjlmJLVlhlVIWWIxQKERGo5EuXbqktik5YWlpKaP09H2LLeb0Z1JYpRSIRCJkNpvJZrOpbUrO2W96elpikyRJnmOpRGGVg0xHRwc1NDQUxCIX+SLd9PQ9xbazsEouUmEOCkNDQ2Q0Ggs+lpYL0klPTyq2WGEVq9UaV1glU3+sFPy4iYmJhMJ8pUggEJA/FncmGiQUcJ6ensbIyAh8Ph/0ej3a2trk8pkaiczOziIajeLXX39Fe3s7WJZV26SC4JdffoHH44HBYMC1a9dw9uxZyGKLRqP46quv8ODBg5QNMAwj12slooKcRZ5vZmdnATxd8rGioiJuX6lco3T+zvr6emRVmr5ULmYmaNcmEW0dBI28sWuKkSAIhVukRKNgSfX82lVs9fX1hVtTX6PgeOutt8AwDA4dOgSGYcAwDARBkPenFFtPTw8sFgt4ns+LoRrFz82bN2GxWCAIAogIXq8X9fX18tsxqc82OjqK48ePa0+2faJ9FDyNWEiSBIZh4Pf7wfM8RFFEVVVV4pMtFvqorKyExWLJu7HFQOx1sfOnqalJbdNUg4ggCAIcDod8w3V1dcHhcPyX8r8zAhyrm7+9hr5GIjtXUfF6vSV/vXaWxd85iSnuyeZ2uzE8PAyGYTRfLQ1id+zo6ChMJlPJXzOPxwNRFEFEcLvdCSVXZbH5/X55hID+79yV+sVLhSAIMJvNAP7zbwHgvffeU9MsVYmJKnYDxq7FzMyMfMyR2IFdXV24efNm3Mml7uym4sGDB+jo6EBHRwcAQBRFlS1Sn5mZGfkGBP4TX+xGBAD09PQkvGO3LyNY6n5IMrb7a9sXuShldvqwMf1sJ2WKkUZydq6iUsiLXOQDr9ebdG3TZDehNja6T0ZHRwEk+mc9PT24cuWKGiYVDSW16IYSJFtFpampCSdOnFDJouJBe7KlARFhZmYG9fX1KY+JRck1UvM/t9Smcfjxwl0AAAAASUVORK5CYII="
|
<image>如图所示,∠A=28°,∠BFC=92°,∠B=∠C,则∠BDC的度数是()
Choices:
(A) 85°
(B) 75°
(C) 64°
(D) 60°
|
60°
| 10,855
| null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAEkAAABtCAYAAADtTkz8AAAJdklEQVR4nO1dT2gTTRT/TZp+8aSXHlNoggcxnksv6ebgwUvgu2i9NbWKFcUqmODBUm+WNj1KlYrZlB4KFjyoh4KHdFfBiqKFFnMxEbxY8YOCOTQ07XwXZ9ndzG72X7JJ6g9Cs7OZNzO/efNm3r7pLOgRgCAIFEDdRxAES/kDOAIoFAoQBAGlUgmUUlBKIUkSBgcHLeU/EiQxRCIRUEqRz+cRj8cRi8Us5Qs2uV6+g1KKt2/fIpVKAQCWlpYQjUYBAKOjo5aFdD1EUdTYolKpZCv/kRhuuVxOsUeCICASidjK3/UklctlAFCIGRsbsy2j60mSJElDDLNDmUzGsoyuJ0kURQwPD2vSEomE5ZkNQOcb7sPDQ266JEmUEMJdRMKm8SaUUupZt3Upun646eFEJ44cSYQQ23mOBEnb29uu8nc9SWtra3j27JkrGV1NUqVSwfj4uGs5XUWS3ihPTU3h169fmvQjb7jVRvnDhw9YXV3FtWvXNOl/DfcfHBwcIJVKIZvN4sSJE67ldSVJ2WwWAwMDGBkZ8URe1z10+/r1K7LZLD59+uSZzK7TpPHxcdy7dw/hcNgzmV1FUj6fR7VaxY0bNzyV2/HDjVIKQgh2dnZw9+5dvH79Gj09PbbyNoLvmuT2IQRr5K1bt5BKpew9J7II3zXJybpFj7W1NXz+/BmiKDrK30ijfCfJLSqVCi5fvozl5WWEQiFbeRkxjTrK9+HmBpRSTE1N4ezZsxAEwfR3btAxmsQbEh8/fsTq6iq2trZM8wYC9nRBX5YrTfLiya9V55MQornPXI/5+fmGrofdeuo7oyFJsiwrsatGwpyAEAJZlkEIQSAQ0PwlhCCRSHDLy2aziEQiuHDhAgD7RCQSCaUM9YeHhiTpwzHNQDwehyRJSKfToJTi8PAQlFKIosgNJjLXY2FhQUkzaqARebydJul0misnYCYok8lowsLNDKyUy2Ukk0nluyzLiEQiyuYGddl2XI9G2q4Oec/OzkIQhLrAZcBIUD6fRzKZxPr6uuUC3eDp06eIx+MAgIWFBYTDYQwPDyMej2sMqVeuhyzL3P1Jg4ODeP/+vSaNO7t9+/YNANDf3286tXqJ9fV1BAIBRWNmZ2eVe4ygnz9/2nY9jPDixQskk8m6mSwWi9WRVGeTKKVYWFjA6OgoKKWWd4O5gSzLSKfTii0y6pibN2965nrMzc0hHo/XjY7t7e26NteRtLS0hNnZWRBCEI1GPR9iPLvGepWBZ6zX1tawubmJ+/fvu65DuVxGOp3mps/NzWnqAuhIYlM9s/aSJOH06dOuK6UGj3TWqwz6HWjM9Xj06JFt14MHSZK42jg2NgZBEDR1AVQklctljI2NaSpYKpVcV6gR2FBjYJqm1ji96+F2lk2lUpqlTblcVjqvUCjUZ6CU0nQ6rezAYLstBEFQ0tLptOkODqdIJBLKLg9Whh7v3r2j4XCY7u7uOipjenqaTk9PU0oplWXZcJeJJEmGMky33nhNil3UajUai8XoysqKYxlqkpzCdMXdzHWRFWSzWUSjUSXqQX3aJdS2TwGKxWJd1MNJp+kdYycwJMlvLWJ16O/vV747bez09LSrepgON7a4a/VHFEUMDQ1hf39fSXNaFy9gOtz80KadnR3cuXMHhUJB43pQi5GNZkDRJL+Moh6Tk5O4cuVK3WLPz+GvaBIb835W5tWrV9jc3EQ+n/etDjxohlurCOJ1RqVSwcTEhKOoR7NhuEXZi6nTDm7fvo3d3V3kcjlP5TZ1CdBKbGxsWIp6+AajpbjJLdswc2+8cD3M4EU7WhKcNLN1+qhHW6KZPdAIX758oX19ffT79+9NKwOAa0fdlzA3/WNIJyYmPN9wxYPbWdsXkggh3KgHbZMFrR6+LAF2dnZw5swZFAqFpuwnUsOLdmhIqtZqyo1jvb1NI+nixYuIRCJ48OBBU+Sr4Uln643U3v6+YvCagZcvX9JTp07Rvb29psjXw4t2tJSkSqVCw+EwLRQKnss2ghftqLNJ1VoNoWAQhBDs7e8r6aFgUDMcQ8Gg8nv1tVoOwz89PSCEKK7Ho8XFOjk88MprlK6uZygYRDAUQq1aNSzDEvSs6TWJXevvW/3OrlnU4+d//xnKs1uO+npvf1/5qK8BGJZhFbaWAKyn9GnqnuXh4OAAly5dQjabxfHjx+32o6m26X+j/q2VfFbQkCT9MOPdZx8jzM/Pa6IeDLRN10V6KC3jaYkdGOUvFot4+PAhPmxs1N2zuhJ2Wze3UAy33gDr1xdGFa3WaqCU4lhvb106AJw7dw7/JpOYnJysu6cuj1eGlUlBP4GwNHZ9rLdXmYAcE21krPS3nBi/xcVFOjQ0RGu1mu28XsGkidZlWBHuhKAfP37Qvr4+urW1xb3fqhC6FySZ+m76dZIdjIyMIBqNtsT1MENT3BIveuD58+ctdT3M4KYdigyvhf/+/duy69GKIecFSZ4/KmlW1MMp2i5asrGxgZWVFRSLRS/F+g+v1LTZUQ+nsNsOHjx7fDszM8N1PboCXvRAK6IeTmGnHUbwRJNaFfXwC7ZJorr/T3vy5Ikm6kE7xLO3A1dLgFZGPZzC82iJFeFUtW1GHfVQp7cTfHVLeK6H3/u+eWjUDksynAjnuR7tSBClProleteDtulQA3xyS/SuhxFB7UycbdhR03Z1Pcxg0kTLsLVOmpmZ8fSEq46B1R4oFosNXY92NN4mTbQMy5p09epVTE1NmboeXWODdDAlif6ZFR4/foxqtYrr16+3pFJth0Zqyot6tOOwMoJJEy2j4Trp/PnzOHnypO9RD6dg7aAuliSm66Q3b95ga2sLy8vLjoS3E9zYS1NN6hYYNNEygkyInhS3grsJhge68HBUieMuAYzI6MQhmM/n6w6symQytjpcQxI7nUp9EpYsy55WulVgp0Zsb28rs1sulwMhBLFYzF6H69cEw8PDymkLkiTZfsdHuwAGp1ZkMhnT0yS4snjCGUqlUseQpF7gsrdw8SCKou32aCRJkqRhXxAEwzNE2hkAqCiK3slTX7h9D1o7gGm/3SFlBs2/vKvfg5bL5RCNRg2PT+wkUJdLF4Ukdo4bOy0vlUqBEAJJkrgFuS24WRgYGACgPfuJzWTlchmSJCl1t9wGZvBEUdSM42aobavAzIa67pIk1b3S1erTDMUmCYKgsUH4Y5c6FWz5wj5uJiCsr69zT6ay+iLdboGZVv19v5sFdPR53K3CX5Is4H8vdZ3kn2DwPQAAAABJRU5ErkJggg=="
|
<image>如图,已知E是正方形ABCD的边AD的延长线上一点,BE交AD于点F,若CD=6,FD=2,则ED的长是()
Choices:
(A) 2
(B) 3
(C) 4
(D) 5
|
5
| 10,856
| null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAF0AAABiCAYAAAAyXd+7AAAP2UlEQVR4nO1dbUxbZRu+jxg3t7qD0qQlKytKF4sdrku3iFJWtqHjdWWBWcMSSeQHCyr+IJEiZon7ISYQ+WEyTEhYQhfJK8QStqxz/GBvoEBW7ZQpYJtYClkhslC1rLB1Wnq/P+Zp+nHO4Zx+AtuVNBvP532u5zn3fT/PeT4IRER4jJTiiXQL8CjiMelpwGPS04An01k5IgJBEKxp3G43TE9Pw40bN2B+fh6mpqYAAODWrVuwvLwcllYoFIJCoQAAgAMHDoBEIoGDBw+CUqkEkiST8xAxgEiGIeVCJlu+mZkZMJlMYDQawWq1QmFhYRiJAAAKhQKEQmFY/jt37oDdbgcAAIvFAvPz8zA5OQljY2Nw5MgRqKioAK1WC1KpNP6HjANJIT0W3Lx5E/r6+sBkMoHH4wGtVgsnTpyA8vJyyMjIiKvsBw8egMlkCv5EIhFUVlbCW2+9BUqlMjEPwAeYZly4cAElEgnK5XJsbGxEq9XKK38gEOBd59jYGDY0NKBMJkOJRIK9vb28y4gHaSPdZDKhQqFAtVqNFotl3fSxkMsFw8PDqFKpUKVS4dDQEGs9iZIh5aRbLBZUq9Uok8nQZDIxpksWyUwwGo0okUiwtLQUJyYmaGXYdKQ7HA6sqKhAsViMHR0dqao2CmzE+f1+bG9vR6FQiFVVVehyuZIiQ1JJpx5wcHAQMzMz8dy5c+j1emMuJ1XweDzY3NyMJEni2NhYwsuPi3QmMkLDW1tbkyZ8sjE4OIgkSWJHR8e6Dc+nYyStp/t8PqyurkaFQoEOhyPlvTVRmJqaQplMhnV1dej3+xEx/jcvKdMA8/PzUFRUBB6PBywWC+Tl5cU0WNoIUCgUcPPmTbDb7VBSUgJ//PFH3M+SENLx3/EVIsKtW7fg0KFD8Prrr8OVK1dAIBAkooqUAWnGiiRJwvXr12H//v2gUqmCo162POtVkjC4XC4Ui8XY2dmZyGLTikhV0trailKpFJeWlmJWMwkj3efzoUqlwubmZsY0m1Gvh8pM/b+urg41Gg3+888/MZUZ09wL0kxonT59GlZXV+HKlSt8i9t0WFtbg2PHjoFcLofOzs5gOB0vtIi39RERW1paUKFQ0Prgm7F3c8HS0hLKZLKYBnpxqxeTyYRCoRDn5ubiLWrTwWazYWZmJg4PD/PKFxfpDocDSZLkXelWAtXpZmdnOeeJS6dXVlbCwYMH4ezZs3yL2FLQ6/Xgdruhu7s7GIYh+h0jdX2sLTw2NoZisRh9Pl+sRWxaRNopj8eDQqEwODu5HmImXa1WY1dXV6zZtxza29tRq9VySsub9EAggAMDA6hQKNDv929Z74QvfD4f5ubmcrJvvEn3+/0ol8vx6tWrMQm3ldHT04MqlWrddLznXrq7u0EkEsGbb74ZvwXaYnjnnXfA7/dDf38/e0I+Len3+1EikfD+ePwo4fr16yiXy1nVLq+ebrFYgCTJ4NqTkIbj3SsSAbp6Q8PSIdfRo0dhZWUFfv31V8Y0vEi/dOkSnDp1Km7BEgW6eY7QsHTN4Z88eRIuX77MGM+LdJPJBCdPnowK36wfKJKFU6dOsU78cR6R2u12OHLkCPz+++8JE24rAhEhEAhAZmYmOBwOEIlEUWk49/TLly/T9vKNgnTZlUgQBAEZGRlw4sQJuHTpEm0azqRvNH0OADA6OgoEQQBBEPDEE09AU1NTukUKorKykpF0VpeRcnsWFxeRJMmYv5QkA3q9HiPFBwDU6/W06VM5cg4EAuj1elEgENB+Y2Dt6ZSBvHHjBhw6dAiefDKty9mDaGpqgh9++CFKpZjNZvjiiy9o86TS2BMEAQKBAAoKCuDHH3+MiuekXmZmZmDfvn0JFy4WUMSGTqNuVMjlcvjtt9+iwjmRPjk5GdzhkG58+umnoNfr4fnnn4+KczqdaZCIGQqFAqanp6PCOff0/Pz8hAsVC0ZGRqC8vJw2rru7G/R6fYolYoZcLgeHwxEVzklJu1wukEgkCReKL2ZnZwEAaGUZHR2FkZGRDaV2du/eDfPz81HhnHr66uoq7Ny5M+FC8QWlUuge5PDhw4xqJ13YtWsXrK6uRkdwcYGYXJ90QK/Xo0ajCf7tdDpZXcV0wuVyoUQiiQrnRDrHtkkK6PxrjUaDABD8OZ1OXvlTBY/HgyRJRoVzmnshCGLDDLM3E5aXl0EqlYLH4wkL56TTBQIBrKysJEOuuDA+Pg7j4+PpFoMRXq8XnnnmmahwTqRv374dfD5fwoWKB1999RXodDrQ6XTQ1taWbnFo8ffff8PTTz8dFc6J9J07d9Jb4RQgUq2tra3BmTNnoLu7G6xWK0xOTsK1a9fgjTfeALfbzZo31bh79y6t18eJ9JycHFo3LRUItSdutxtKSkpgeXkZxsfHQSKRQFZWFgwPD4NGo4GCggIYGRkJy5tOLCws0I4pOJGel5cHNpst4UJxBUEQMD09DQcOHACtVgt9fX2wbdu2YBwAwNmzZ8FoNEJ1dTWcO3cumDedvd1ut4NMJosK50R6QUEB7RxCqtDf3w+lpaVw/vx5+Pjjjxl7cFFREUxMTMBPP/0ExcXFcOfOnbT29unpafo5Ky7+5sDAAJaWlibMf+WDlpYWlMlkODU1FQzj4nu3t7ejSCTCwcHBZIrHildffZV2xVcY6ffu3w/+QkF9xKC29KUCXq8XdTodqtVqdLvdMZVhsVhQKpVic3Mzrq2tJVhCdnD+iPH09u1h/1IQiUSQn58PQ0NDKdGR8/PzUFxcDCKRCIaHhyErKyumcl555RX4+eefwW63Q1FRESwsLCRY0mhQ/Hz33XegVqvpdxdGtkJoL4/c+VxXVxeWNhlDbGoJNt22knjq6+joQLFYjAMDA3FIxx1VVVWMuwxZSQ9VNzabDXP27IlSP6v37kWpo8i8XOMMBgOKxeLglnamdGzhofGRzzMxMYEymQwbGhqSuq7e7/cjSZK4uLhIG89KeuTfcrkcx8bHo+ICgUBUYzGVQRfn9/uxvr4+uKWdLc96RK9HvNfrxerqalSpVMG6Eo2hoSEsLCxkjOe1wqvsP/+BwWvXwvTXfZ8PfA8exKwD7969C1qtFhYWFuD777+HvLy8qDSRNoYOdPZo+7++fCgEAgF8/fXX8N5770FhYSH09fXFLDsTBgYGQKvVMieIbAUmdYCIeP1//0OlUsmali6cqadOTk6ibO9e2g2/8ZbN9nYgPnw7p6amUKFQYG1tLfp8voTZKKlUGubiRiJIeuSrGCrA6r17iIjoXVkJWyrNVwVQ/w8EAjg4OIhisRj/+803tIJF2g2uZVOyr0c6Ba/Xi2fOnEGFQoE2m40xHVcMDQ2hXC5nTRNGOptwVFxXV1fYlxu+xhIRseXzzzFnz54w+xBaRyxlr6fTmbwyCj09PSgWi9FgMNCm4foWKJVKNBqNrGloR6R0FVBCU9tf2M7fYsL9+/expqYGCwsLcWlpiXf+RILuGR0OByqVSqyuro7p8yTX7S+M0wChQkX2ttCNXlzyIz4c1apUKqypqUnrNsj1eqzP58P6+nqUy+WctyhS+aRSaXDYz1YP69wLm4rgs6XRarWiRCLBL7/8klP6dCGUqP7+fk7HqFB5mLY00pGf9M27lK5km3jaaNsiKXnm5uZQpVKhTqdDj8fDmP6vv/7CrKysxG7eZSKloqICW1paGPM1NzejTCZL2iAkFfD7/djY2Ii5ublhG9xCOfnoo4+wpqaGsYxI/pJyIIPX68WysjIsKyvD5eXleKpIOyjCTCYTisXiKBUZyykgvEgfGRmJWmMSWanD4UCFQoENDQ20wm9muFwuVKvVqNVq0ePxoM1mC+t0ketxAADNZnNUObxOwSAIApxOZ9TSNZ1OB7/88gucP38eqqqqYPfu3fD222/HNITmIkOkyMlcl0NXdkdHBzz11FNAEAR88skn8OGHHwbjSkpK4LPPPoPi4mIYHR2Fw4cPR3HGee6lqakJNBpNFOErKytAEATMzc1BeXk5yGQy2LdvHzyIcT6GjTx8+GbyyhMrGI8NAYD6+noAeLhA9PTp02FxIyMjUFxcDAD0C12pQlkRCATQYDCg2WxmXV7n8/kwPz8fjx49iqWlpQgAwYPUhoaGwsqLFXSHmKUaS0tLuHfvXty2bRv++eefYXFmszlsTaVGo6FdYxnFYuTDOJ1ONBgM6HQ6w4b/dAg9ItDv9+Pg4CA2Njbi/v37MSMjA48fP47t7e28Bh1cEQgEkt4Qvb29uGPHDiRJEm/fvh0VbzAYwvQ502lH6/Z0qqWcTienlbETExOYnZ0dNXO4tLSEvb29WFtbi7m5ucGTmy9cuMDrKCYmJJPwxcVFPH78OAqFQszOzka73c64sJVyNKgGoFvcykp6aMsRBIFNTU2chHS5XKhSqVCr1TLOYTgcDuzs7ESdTockSQbPszUajVEDkXR6Ph0dHUiSJEqlUnzttdcY54woTRAqKwAEJ9BCwUj67OxsWAaz2UxbABMiDzimQ6iAVqsVW1tbWe1BKmGz2VCj0eDLL7+Me/bsCTvgmA4GgyGMH2rdPJ3LSEs6nf6OLJQNoWS2tbWhUCjE0dFRTnkRkdYelJWVJc0eRNbd2tqKQqEQ6+rqUCgUcjp7MVS1IGJQQ9AhKpTaFBuqj0Kdfj6bYxN1aL3b7Q7aA6lUGrQHXV1dUSNBqs5YVNLExAQqlUrUaDT4/vvvczr3nfLqIn9sTsemvJ6BsgcVFRUoEAhY7QEX+Hw+bG5uxqysLKyqqorregYujZ22i0hi/RASiUAggBaLBVtaWlCtVvO2B8PDw/jiiy9iYWEh5uTkhF1Ekiys66cnC8m6csfn86HJZMKGhgZ86aWXGO2B1+vFDz74AJ977jmUyWTBK3cSgfXGDGm/XKqrq4v35VLUQ3FpiMXFRezp6cGamhqUSCQoFArx2LFjuGPHDty1axdmZ2c/OpdLRcJqtWJjYyPK5XIUiURYW1uLAwMDCVm06vP50Gg0Yk1NDT777LMoFouxuro6bjUSq1bgfdYucjgjnEsaNszMzMDVq1fh22+/jevCwNu3b8PU1BSMj4/zujAwXvnXA2fSky0IE6irMUNvXQRY/2pMpVIJOTk5MV+Nmczn3TC3NKYC6xGZqo71SNy8S/UritCLFy8Gj6EqKSkBgIffC1L1Jj8SpFNkzs7OBjeN4b8fRLq7u4EgiNSeZxOX+d6AYPWPAWhnSvV6Pe3EVLKw5Xo6k4q4ePEiAAC0tbVFfd5TKBQpPc/mkTGkBEGAwWCAd999NxiGEYYz8u9kYcv1dDpQJyK98MILYeGRBD82pHFiI7/AW5b00F5LLRtxOp1RjTE7Owujo6MplW3LeS9MoL73Ul5KIBBAs9m87gqHZOCRIR3x4bJACPm609jYmNT6mNzXR8Z72UjYsjp9I+Mx6WnA/wHUqKfTA7D84gAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是△ABC的外接圆,若∠AOB=130°,则∠ACB的度数是()
Choices:
(A) 115°
(B) 120°
(C) 125°
(D) 130°
|
115°
| 10,857
| null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAACDCAYAAAB1JgJEAAAbaElEQVR4nO2dfVBbVfrHvzfQ1lbWWCdd4hKEkts2DJ3duKzb7kqlWLB0bCndrUNnZH6CUqlLf9M4lpauuNgRp2847Y5UaFmndNad4vSFqszIm5qOnZFdmIJrECyhshKHIJ1ZEOov1ZDn90e44Sa5Ny+QkATymclAzj3nnpN7nvucc57z8jBERAgRurq6oFarA10MlxAAJtCFCEIkgS6ApwwPD2PLli3Iz8/H2NgYACAY35GwkAkTMoIWHR2Nmzdv4v777wfLsnj33XfBMOFqDRWYUGo6Of75z3/iueeeQ2xsLGpqaqBQKAJdJLs2M9x8OhMyGo3PunXr8PnnnyMlJQW//vWv8cYbbwS6SHbYhCzkXmH/EXIajYjsmsze3l7s2bMHP/74I956662gHywsVEJOozn2y1QqFbRaLZ599llkZGTg0KFDuHv3boBKF0aMkBM0MQoKCqDT6aDX67F27Vpcu3ZtTvK92VqN1lu8ABL5f6FDIYTFYnH5naOxsZGio6MpLy+PRkdH/VYOC/VRFkDNevdlXeiElEZzbDbFzBubN2+GXq+3M4V4A4l0W7lwLt+zB8+Ctm3DSqXFbVkXOiElaN4QFRWFkydPoqGhAa+99hq2bNmCb7/91qO0YkLCD2+pKQbS04EGq/CFW0nXzFtB4+CbQtRqtaApxJ0GA+w1Fulb0UIZeD4B+GBbIlgAoEknaRO770Jk3gsaAERERODll1/Gp59+ig8++AC/+93v0NXVZbvuXoPxHhMBB8824/juJwAAWSoWgAQME+EifZiQGgz4ipqaGpLJZFRSUkImk8mrtC01xQSr7iIAlHXgDBFN2sUJDwOcWRAazZGCggJ88cUXTqYQctOEUn8zmi1PgIhAROhrrsIa9iE4NgxhPeZMZKAL4I6xsTF0dXWht7cXQ0ND0Gq1YBgGRIT+/n4YDAbbdwBQKBRQKpUAgEWLFuHRRx+FQqHAqlWrkJycjKioKACAXC7HxYsX0dTUhF27dmHz5s3461//CqlU6lQGhmFA/c2QvNQCunrCFv71QD9ACdNzm+FJTlGCbgrKYDDgo48+QmtrK7RaLYaGhpCSkoLY2FgolUo88sgjNmGJj49HXFycXfqBgQH85z//AQBMTEygvb0d/f39GBwcxPXr1xETE4PHH38cmzZtQkZGBqKjozExMYFXXnkF77zzDiorK5GTkzN9QwKqS7LwwvEPAADNekKGEjiwncGJ961Rsg6cwdWju8N9Mhf4XdDIYW5SiN7eXrz99tu4evUqJiYmkJqairS0NKSmpmLNmjU+rcDu7m5otVrbRyaTYefOncjLy8Pt27ftVoXExMSEhcdXBKhvSCMjI1RdXU3JycmkUCho//799OWXX855OXQ6HWk0GpLL5ZSSkkJnz56l0tJSkslkVFFRYR+Z18t3ZfkPzwo4M+eCZjQa6cUXX6SoqCjKzc2lhoYGj9P6uwIvXbpEOTk5JJVKaffu3fT73/+e1q9fT52dnV7eadJ9lAWGzwTNnRAMDg5SYWEhSaVS2r9/PxmNxoC++a7yHhwcpKKiIpJKpZSenk7Lly+nffv2eW0KCTON3zXa+Pg4lZSUkEwmo1dffZVu377t7yzd4qmAG41GKikpoaioKFqyaDElJCSQVqv1MI/ZlHD+4VdBq6+vJ7lcToWFhTQyMuJ0fS40mlAe3uZrNBopJiaGli1bRsuXL6e8vP/xy6qQ+YxfRp0GgwH5+fm4ffs2qqursW7dOp/clzwYwfoazjRmMHyDtWt/ifvvfwASCTD6/RiqTr9lM4U4li1sUrNnxjMDYvLZ0dGBRx55BBs3bkRnZ6fPhAwIzNwhA+tvVSgewuHDhxEf/xCefvpp3LN4CUpLS7Flyxab0dgxHR+h5+WHdzxombGgCVX6+fPnsWXLFtTW1uLll1+eVcGCCe637t27FxMTE2BZFm+++Sb++9//Yvny5Xj44YfdbpARel4Lykbni/bXbDZTUVERsSxLOp3OF7cMKvh9uvb2dpLL5TQyMkIdHR0UGxtLBQUFlJqaSuvXr6euri6P77WQmPWk+tjYGLZu3YrPP/8cHR0dSEpK8oX8BxV8zfOb3/wGu3btQnFxMZKTk9He3o7Ozk6sWLECubm5SE9Px6FDh/Djjz+6vdeCYjZSqtPpiGVZKiwsJLPZ7CvhDzoctdD4+DgpFAqbqcNkMlFubi4lJSVRW1sb7dy5k1iW9dgUshCYsaA1NjaSVCqlyspKX5YnZKivryeVSmVnxD127BhJpVLSarXU2NhIcrncaYPMQm063Qqa0IPR6XQklUqpsbHRL4UKFbKzs6msrMwurL6+nmQyGen1ehofHyeNRkMymYzq6uoCU8ggwWuNNjIyQizLCmqyhfa2Dg4Okkwmo56eHrvw8vJySkpKovHxcSIiamtro6SkJMrMzKTBwcFAFDXgeCVoZrOZ0tPTqaioyF/lCTlOnTpFqampdmEWi4Vyc3MpOzvbFmY2m+n1118XXhWyAPBK0DQaDaWnp8/rjr+3mM1mSk5OptraWrtwk8lE69evp7KyMjtN39PTYzOFeL8qJHTxWNBqa2uJZVnBOcuFDt+2xmdwcJAUCgXV19c7pZnNBplQxCNBa2trE+yLhJlGo9FQXl6eU3h7ezvJZDJBQ7bRaFwwphC3gmYwGEihUCz4EaY7HG1rfC5dukRxcXGirYGYKWQ+4VbQMjIy6OjRo3NRlpDnypUrTrY1rn9WWlpKO3fuFE07Pj5O+/btszOFzKdRvEtBq6uro+Tk5HDn30MsFougbY3IOjhQqVRuW4b5agoRFTSuKWhvb5/L8oQ8YrY1IqLW1lYnjSeE2Wym8vLyeWUKERW0/fv3U2Fh4VyWZd4gZFvjyMnJofLyctG0/Obyyy+/tJlCbty4IRgnVIBQofV6PclksnnbMfUlQs9vcnJS0LZGZB1pymQyMhqNHucxH0whghotLy9PsJ8RxnPEbGtEVlOIRqPx6n7Dw8MhbQpxEjTujQtrs9njaFvjtJ+rZ+yuWQxVU4jTwsejR4+ioKBA8LCTMOKQw/p/IsJrr72G1tZW22lF3KLH6Oho/OEPf8DJkyed7uNuYeRsj00NGHypGxkZIalU6lX/IYxrhNatEU33g7kVHmK40nChZAqx02j/+Mc/sGPHDvz85z8PlNzPO7Kzs6FSqXDkyBG78ISEBKSkpODy5csu07vScPxjUz3ZIBNQ+FL38MMPk1arDcnhc6Dw5FmJ2dbq6+tFzSDeEuyrQmzmjc7OToqLiwtsaeYxQrY1s9lMMpmMBgYGvL6ftda4w2SmD5URMoUEg+KQcKr5/PnzyMvL42u6BbXB1d9we0LPnz9vC4uIiEBubi5qa2sF07h6/vYN6nQPqKDgWScPMvwTMfn3nNM65iQuNjY2vAzID4jtCeVoa2sjlUo1s3u7uT4bU4ivtaAEsJ64+NNPP0GlUs2NdC8gxPaE8sMMBgOMRqMHd7P6OyDOg4ub2Js3b0ZfX9+MTCE+339KRFRdXU05OTl+legwVoTWrWVmZnq+S8oi8r8b+KYQg8EwfQtePfuzziUA8MknnyAtLc2/Eh0GgNV10Jtvvok9e/bY3D1u3LgRn3zyiWc3YET+dwNnCtmwYYOdBxl+Pfu1zomI5HJ5uH82x/DXrc2mn0YW7x1o9PT00MaNG+fUFIKBgQGSyWRzktlCh980OdrWFi9e7LbDbqFJaj5zYNpzy/YDZKE+Ki6u4iJ4xVyuCpHo9frAHsziweiaiEA0OaO0wQS/aVIoFCgtLcWePXsAAElJSejr6xNNS/3NkDARqOxXgqz2T1je2ASJZBXAJljjePlAfO5M1zF73ndJb28vVq1aNbsMZoMH3QKGYXhOvXie5hzSUojZ/fi2NaVSiZs3bzrFISIQbiKb3YysA2fw3rHnAUw9E2U6qoq3gZ3yFGPXx/LwUURHR+PixYuorKzErl27kJ+fj7GxMVveXsHY50u84kj0en1QmDWEfpRjmPWb+ElboTaAiYiIQFVVFUpKSvDQQw8JChrDEFpravA+tuGNYwUOVyVQsmuwMl45HUTcH/JK43OmEKlUajOFzOh5TiUhIns9kJmZSQ0NDcFhzrDY/RG+PMPhfTDz4osvUkpKiuAuKQv10XYGVHymac7K42pViCs52b9t2uuf9SOhbcXVREQEtVodZJOw4i4JJ8kiaPcJipfEQ4TKPz4+TitWrCC1Wu0cX99EAKi6pc/DHHzjTOOnn37ycIPMVH5TP6vqwDaqbukjC037nC8+00SSiYkJ/OxnP/NeRfoBrmkkXpPZ3/oWJAwDhmEQwUiQXVJju8ap9lBqMoXsVkuXLsWSJUtw584dl2mJ/49As0hEgI88Y0ZGRrp0pjud6VR+Uz/rVg+wKT1hKojFlgPbcFM/AMmdO3ds3uICDVcFXAWcObAVqzI+xE2atI60qA84XojtB8+GXMffFefOncODDz4IiURASJQJyALQf+vWdJ+HsX6ovxlnWvW2qAzD+PzMeZVKBa1Wi+eeew4ZGRk4dOiQzdBsKwuHvhEnGBVYSGzBt3o/wGo2HoiKiqLvv//eJ+p2Njg2f9XFTxK2H3CK19dcRWCyqG9KZXN7JdVqNV2/fn1OyupLTCYTyeVyam5uJoVCIRin+ex+p+azr7mKkFXMi8VrMmfYk3DXBeHOComNjRW0+TWf3W/Xl6w6sI2A7dRHkwQEgbdrx5/X11xFAKhF7xz3q5YqArbZBE2lUtk6n+vXr/d/YWeImAeXiooKys7OptHRUZJKpaJpbjZX2jrYsLnY9l8Zhco7MjJCOTk59OCDD9oEjT9AK84CgeENBqZehEkyB4egOXIwC7S9mHuQ9p1b69sdeoImxOjoqO0YUiFB43Cs8kAMferq6myzCEL7HCb7Gh007FQ4WY/TiIyKisLExIRdP40C4ArHljf0+LIBePJ/H58Kse+3tDRUIOvAGbBT4ZWVldi7dy/uueceVFRUzHFpZ8fJkyexdetWKJVKGAwG0UGZY00wPvb/46q+h4eHkZeXB6PRiIaGBlFPOLe+/hpZKpZ3U2sZJZgytMvlchoaGrKTwoC6N9Q3kQQMNQs0m1yTKnQt1DAajSSVSm12qp6eHruJdbs6sIiH+QMun8rKSpJKpfSXv/xF9KAfLm5x1nS9CBUt8t5778UPP/wAAPjhJ5NNIJctuscXL4uHWGDTXMoEbAXh1td6QDn9hhD0eOmJF5B14AwyEjy7KwVQM7vj6NGjyM/PR0xMDACr//d7773Xdt2u3IxAmB/56quvbMuY2traXM8c3WoBw24GwzA48T5j8zlvBwFOBts7P/6fD9+NmVFdvI2QVTz9ZvQ3+60DHAi4PZ38Jd1ardZnO6JmitlspqNHj5JMJqNTp07N+n4W299JipTL5fj222+hVqv994p4SeHx99G/nYGEOWELs74pFvC1X6i6KiwvL0dRURFkMpktzGAwYMWKFQErU1dXF/Lz8yGTydDR0YG4uLhZ39NmF4UEkSqVCnq9XjCiY1Mq1LRyYY5Nratm2JMm+vh7hFft4gGcgIml/+Enk105uf/nthvgmq6uLjQ2NtotCSIi9PX12S3XInfNPllXR8z2Rbt79y5effVV/O1vf0NFRQWeeeYZ74zhTm87rxvEQ8KyLLq7uwXvwVWQ2F+uEh2FkB/uzTU+/Hhi4fz0/L+O5RPLIxAcPnwYJSUldqN8hmHQ3d1tt1zLbX/MB0J27do1qNVq6PV69PT04JlnnvEsb4dy2CM8BRapUqlw8eJFjzrOQtphLirRE40kpL2CSZMB1orV6XSCu5H0ej3WrFnjs7xc1eedO3dw8OBBXL58GVVVVcjOzvZZvmLYNJpYodxpBL52CeOasrIylJaWYvHixXbhRISenh6sXr3aZ3lx9UkOm4SbmprAsizu3r2L3t7eOREyAIiMi4tDZGQkurr/DXXSL2d8I3/2hYKtnzUTrl69irGxMTz99NN24USEf/3rX1i5ciXuu+++WeUhpMW477dv38bevXvx2Wefoa6uDqmpqbPKy1skRITU1FR8+umnohUq1qnmwoWaLC7cm2tCgw9P0zv21Vz9HwgOHz6MsrIyREZGOl3TarU+qXihVomI8O677yIxMRHx8fHo7u6ecyHjCkJVVVVOG4gdCQb7WqhSW1vrch7Wqw3EXmA0GikzM5PUajW1tbX5/P7eACLr9IdcLheNFBaymWM2m4llWbp27Zro9aioKJ8ffshNH5WVlXnkJ8LfO9YjAevitsjISPT29tpNNwS6uZkPVFdXg2VZPPbYY4LXOzo6oFAoEB0d7ZMps97eXtv00WeffYbExESP0vl7x7rN6PHUU0/hwoULdhfDI8rZcffuXZSXl9tOeySBY6Lq6uqQk5MDwPsK5t9rcnISx44dw4YNG7Bjxw6vhGxO4FRb+CA+31NeXu7y8Byz2UwrVqyggYGBWTVXnZ2dpFarKT09nb7++uug3Kxjt+pRrVaH5Bn2wQh/UaMY/KNFvREOLq7JZKKSkhKSyWSCzjOCCbv5gry8PNHTB8N4R3l5Of74xz9CqVQKnrYIWE/ZzM/PB+Bds8kwjOj0EYdjXgGHL3Xh4999w9DQkNvnONPj38fHx6moqIjkcrmgZ2NXaQOJnUaTyWTIz8/HqVOnAiT284NXXnkFu3fvRnR0tGicEydO4E9/+pPTVkdy0ET8qaSmpiasXr1adPpILG1Q4Ch53HFKoeT+JZjwxGEbt4zb02fM7T6Ki4vzqg8ddBqNeG+CQqHA1q1bBd3HhHFPSUkJNBqNSxdH3DJuT9wgcdNHK1euhE6n82r6KCg1Gl/6w24UZ0ZnZyfJ5XIymUyi2oTvRtGVxgmm6SNfYOuj8aVfqVQiLy8PBw8eDIjwBzPkYjRXXFyM0tJSLFmyxEmbcOn27dsHjUbjsv92+vRprFmzBuvWrUNHR4foFreQgki4LR8fHye5XB52de0hWq2WlEqly3nF1tZWYllW9BhPvpud+XamsMtt6nV1dZScnOzRpOxCZ926dfTOO++IXjeZTKRSqaixsdHpmq93HwUjbs9DSE9PpyNHjsxFWYIWsb4UF15fX0+/+tWvXN6jtLRU8KA9/vTRTHxChQqCPtX5DA4OkkKhEHwTw1i1UVJSEjU0NIjGuXTpEsXFxdnt4+RPH507d24OShpYPDrhpa2tTdAN4EKF/3LW1ta63Pjb3t5OMpmMdDqdLUyr1ZJKpaKnnnrKJnwzmesMJTw+Sqi2tpZYlhV0Rr+Q4FeyyWRyaUTlWgNuqog/fXTlypVZ5x9KeHVmlUajofT09PDgYIpTp07Rjh07BK+ZTCZav369zTsK52muoKBgQdonvRI0s9lM6enpVFRU5FH8UH37PGF0dJTkcjnduHFD8Hpubi5lZ2fPePpovuHVyboRERG4cOECmpqacPr0abfxg2oKxMecPHkSmZmZgmeWvP766+js7MSOHTtmPH0075iJdOp0OrrvvvsWzEjUUTMPDQ3ZLWrkX6+vr6cHHniAHnvssXkzfeQLZnyuaGNjI0mlUqqsrBSNM1+bTo1GQxqNxin86NGjtHTpUoqKirLtPpqvz8BbPBY0oQem0+mIZVkqKipaMAOEwcFBp0WNJpOJsrOzadmyZaRWq8NmIAFmfVLy6OgoZWZmUmpq6oIYTeXn59tGkkRE3333Hf3iF7+gxYsX0/HjxwNXsCDHJ0dyT05OUlFREbEsa2eYnG/09PTYLZ+6cOECLVq0iOLi4mzTR+6ayoXalPr07Pfa2lqSy+Xzb5AwJRvZ2dl08uRJW1MJwMnUY3H4G8aKzwSNe1Pb29tJLpdTeXm5z+4ZaCwWi+13NTU10QMP3E/Lli0T99TixkvfQoQh8v2+LIPBgPz8fNy+fRvV1dUuF+5REJ+czWfDhg2Y+OEOvvj831Cr1WhsbLQ7g9aJUD1g11/4U4rr6+tJLpdTYWFhSM+RlpaWEsMwdO/SZXT58mX7i2G15RF+988zPj5uWw5TVlYWUgLX09NDiYmJBIDS0tLo/+6KOLgXEbawDE7jG+eOLoiKisKRI0fQ2dkJo9EIlmVRXFyM4eFhf2c9YwwGAzIzM5GYmIjJyUkkJibi448/xj2LlwgnYITdcodbTh7+lmTHDr3RaCSNRkNRUVGUm5tLH374oWjcuebKlSuUnZ1NERERtGLFCmpqsroE5LRwcZbVuRnDMMQwjJeegRc2AXNt991331F1dTUlJydTTEwMlZSUBMSirtPpSKPRkFwup4SEBFq6dCmVlJSIznQUZ00L11ctp519U01a3XGHm017/DLq9Jbe3l68/fbbuHr1KiYmJpCamoq0tDSkpqa69kM0A7q7u6HVam0fmUyGtLQ03LhxAwzD4Ny5c/Z58tpAwk1sk7yEU5b3wEIC6m+GhN087f+Ie5LhNtOJoBA0PgaDAR999BFaW1uh1WoxNDSElJQUxMbGQqlU4re//a3NOVd8fLydKxkiwjfffIOBgQEAVkde7e3tuHXrFr755htcv34dCoUCaWlpSE9PR1paGv7+97+joqICpaWl2Ldvn+0+QiYXfUs1XmqV4L1jzwMADmxn8JXqjO17GHGCTtAcK3lsbAxdXV3o7e3F0NAQtFqt7Vp/fz8MBoNdeoVCAaXS6l5t0aJFePTRRxETE4PVq1cjOTnZdqgK3/dRTU0N4uPjXRQKAAO01BTjiec5n6ASNOsnkaHklTk8AhAnUG22N3g6SPAknqvD67j0YvcpzgI19VvNFi01xdb+Wf+0h+Rwv0wcv5s3ZgNNKVtPZw7cxXN3eB2XXvC8/v5mnEAxnkgAGFiwqeB5bAPQ0to6nV6k/GEAZ+8KQQS/wkmg3+QYJhQHAMbHx/HnP/8Zly5dmrHvo9aPW1D8ZMbUNwnQfwsfAHgyIQGABQSJVdB4zWcoTK3NFUGt0fh4UmlCcbjD60wmk6jvI080T0vDG8jY9IQ1PvTIZjcDTBY2pSfA7jGGZUuYQLbbRP4z0vpq9xHnx53/YRgQsoqnYkzaxQ+00TlYCbhG80RTkZd9HU8Pr/PkvmzGHpt/AO5jsRDoveNTMewfYbi5FCao+2gcnlbe8PAw8vLyYDQa0dDQ4PZcsbBQzB0B12i+Yl4eXjePCAmN5gq+76O2tjaoVCq3TSKFyGLL+UTIajSLxeLk+4ibowwLUfARkhqNP33U0dFhN9/pCm8HFWF8R0hptLt37+LQoUPIyMiARqNBS0uLx0IGWDUd9wkzt4SMRtNqtXjhhRewdu1a9PT0uN4YwiPcHwsOgl7QJiYmUFJSgsuXL89o+igsZMFBUDedw8PDdr6Ptm/fHu5nhShBtx7Nka6uLsEzyMKEFv8P3CQXuPmEO0cAAAAASUVORK5CYII="
|
<image>如图,PA,PB分别与⊙O相切于A,B两点,点C是劣弧AB上一动点(不与A,B重合),∠P=70°,则∠C=()
Choices:
(A) 110°
(B) 115°
(C) 120°
(D) 125°
|
125°
| 10,858
| null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAABxCAYAAAAwLkaIAAAYMUlEQVR4nO1dbVCTZ7q+EnTdsbjpLLGk3WC6EDSIrZRWpRaJFLDa0l16ypT+oLvY2o2KZ4uzseVMW5ye4ZxqhZbp2i0ejy7OujN0imhX29GWrcGhI9LOwdUg2ALihq0QfxQMbWnN+17nR0jIx5uQQICgXjMa3vf5ut/nfu77uZ+v+5GRJCIEJCGTyfyGX7t2Da2trejo6MDXX3+NxsZGV7ru7m709vZ6xFer1UhISAAAzJ49GytXrkRcXBwSExNx//33Izo6OmjaRFGEXC4fx1eFF7JIYpg3LBYLPv30UzQ0NMBkMuHKlStIT09HXFwc4uPjsXz5ckRHR0Mmk2HBggW4++67PdJfvnwZPT09AIChoSG0tLSgu7sbFosFTU1NUKvVyMzMRFZWFnJycjB//nzI5XIf5ozVkKYSU84wURQBwG9r7ejowL59+3DkyBEMDQ1Br9cjMzMTer0eOp0urLS0tbXBZDK5/imVSuTn56OoqMglmREHRgCuXr3K6upqpqamUq1W02g0sr29PeR8RFGcEB1ms5klJSVUqVRMT0/n3r17+c0330woz3BjWhjmrNi+vj6WlJQwOjqahYWFPHbsWMB0giCEXJZ7mlDS19XVsaCggAqFgqWlpbRareOmIZyYFob19vbSYDBQoVDQaDSyv79/OsgICGejslgsLC4upkKhYElJybTTOukMc2+RNpuNL730EmNiYlhWVuZqtZONiapK0qENSktLqVQquX37dg4PD4eBstAxZRJWX19PlUpFg8FAq9XqV7WEo3LHg2BVXV9fHwsLC6nRaHj8+PFJpsoXk84wi8XC7OxsLl26lM3NzZNd3JTBZDJRp9MxNzfXR006mT8ZjW9SR4Kff/45li1bhtWrV+Ps2bNYsWKFy6yfKfBH76pVq2A2m5GSkoJly5ahra3NFeYcskzK2C3sTWAENTU1VCqV/OijjyariIhBXV0dlUol6+rqJMPDKWlhYZg7QXa7ncXFxdRqtTSbzeHIfkagpaWFd911F0tLSwPGm+iwIKwzHYODg3j66acxNDSEo0eP4vbbb3dKccRM7Uwm+vv78eijjyI+Ph779+/HvHnzwl5G2PqwtrY2LFu2DBqNBiaTCT/72c9cYU5mzbT+KxCkviU2NhafffYZfvrTnyItLQ1dXV3hL3hC8jmCEydOUKFQcPfu3SGlmy4TfjwIpMqkvmPHjh1UKBQ0mUxhpWPCDDt//jxvv/1215hkuqduIgn19fVUKpXs7OwMW54TYpjVaqVWqw1Zsm4mlJeXMzk5mTabLSz5hWR0OKPKZDJcv34djz76KBYuXIh33nkn/Lr6BsIzzzyDoaEhHD58GMDEjLCQjA6ZTAaZTAaSePHFFwEAb7/99rgKvpmwd+9eXLlyBdu3b5+4xTwesaypqaFWq42YJYeZAIvFQrVazfr6+gnlEzLDmpubqVQq2d7e7sGomWTxTRfOnDlDpVI5oQmFoBkmCIKrlUzHLPWNgrq6Omo0Gl69enVc6UMyOnJycpCVlYXS0lJ/6vWmmNEYD9zr5tVXX0VHRwfef//9cWUUEE61V1tby9TUVNrtdsnwWwgew8PD1Ol049JUQalEm81GtVrNlpaWWwwKExoaGqjT6UJeuZY06+mlJV977TU89thjWLZsmWut50aaF5xM0CEUPu+zsrKwdOlSVFRUhJwhSf+qrbOzk0qlkgMDAxNoT7cghb6+PiqVSvb19QWdxiVhTsmhV2soLy/H5s2boVAoXO9uSVd4EBsbi8LCQuzYsSPoND5WIt2smb6+Ptxzzz3o7Oz0YNgtBA+OYTn39/djyZIlPnXsL50c8JQY90g7d+7E888/f4tZE4A/ZjnlJDY2Fk8++STefPPNoNL5HYddvXoViYmJuHjxImJjYydC8y1IwP3ARVdXFx588EF0d3ePeaLG7+TvX//6VzzxxBO3mDVJcD8MkpCQgIceegiHDh0CMCp9UraCK5W3oB04cABFRUWTQeu44EcReEAU7SHFjxSQxG9+8xv8+c9/BjCqDqVO+EiqxLNnzyIvL891tmo6QQAI0HGTAmSyKP+JZ8hMmSAIUKlU+OKLL6DRaPzGk1SJBw4cwG9/+9tJIy4UEIGtLJksCiMKBD4tb4YwCwCioqJQWFiI/fv3B44oNTj7xS9+Ma7zWZMBQRBcSzf+lnAE2kfC7Z7Hizizlnyam5up0+kCxvGRsI6ODgiCEPbTjuOFux53rnYDnp2xjHKH9pPJPOLLZ5KIAXjggQfQ29sLq9XqN44PwxobG6HX6yeVsFDhqRJFmP/2FmRymWvLQs7vKyCDCHI0HmeQ0eFEVFQU0tPTcfLkSb/0uxjmNCFPnjyJzMzMqaEwRJBEZfEjuOfXH6JNFEASItshf+dF5Py+apSxnJkMA4DVq1fj5MmT/vttbx2pUqkipv9yhyiK3LUpi8jZ5BN2/oMKAlk0iwJnWLflg9OnT3PRokV+w2e5M+/y5cuw2+0R038BI5Y5gQtHK7Ht3b+j/vzHIAUAcshkMgi0gxQBCA51IXNLN11ETwBpaWno6enB4OCg5JSgRx/W2dmJ5OTkKSMuGMhG/vvT7m3I2lSJJ5bIIZNFuVRGlGwWOju7AMhA2ahxPxOZ5URSUhK+/PJLyTCPyd+Ojg4kJiZOHWVBQkAbvvwEWLNmDQCMSNgoGk7sQdaWx7AYcshmMKucfNBqtYEZ5jSFOzs7odPpIm69K+rCRfxdJkOidjEAeMxsmP9WgT99AhQbtjrCpoXCiYOkiw86nS4ww5zo6OhAUlJSRPhUcoewOBFZJLq72gEAIhwSdl08j5IntiFrSwWeWBJZNIcKki5B0el0uHDhgmQ8j6/s7+/HXXfdNfnUhQg5l+CRTVkwvvNHxzOigAv1+EnUvcDmCjT8catH/EjTEMFALpe7+mW1Wo2rV69KxvOwEm02m8dBvEgBSRj/1IBLa+SQyfZABoCQo/68gDw3yeLIJLFroxA4o2Y7nAybO3cubDabZBwPhg0NDYXkkm6q4GTAOx+LeAdOk12Eu4IQRQd7otz4M5OY5Y558+bh22+/lQyT021GYGhoCHPnznU9M0JnC0ZWizzeyeVymE7+HUlJSbjvvvvw2WefBcwjUr8NAG677TZ8++23kqpdJooinaI4OrkauQjkaDIpKQkdHR0AHAPQ06dPTyVpEwLd1vwGBweh0WgwMDDgE08+0/bCB2vBXrt2DUBkS5I7vPngj26Pr4+OjsbQ0NDkUTXJePvtt/Hzn/8cP/nJT9DX14eNGze6GDeTEMj4m5EMk2p9XV1dKC0tRU5ODqxWK7q7uzFr1izodDqcOHFiGqgMHc7vGhoawm233eY3kgsJCQlhPfE+VTh48CBVKhX37t3rE2YymajRaJifnz9l7v4mipaWFqampkqGeUjYvHnzPFQII1z/Dw0N4ZlnnkFFRQVOnjyJ5557zieOXq/HxYsXodVqsXjxYrz33nvTQGlo+O677/x60fFgmEqlwpUrV1zPkWyQfP7557jvvvugVCrR3NyMRYsWueil2zQPAMyZMwevv/46jh07hh07dmDdunXo7++fLtLHRG9vL+bPny8Z5sEwnU6Hr776akqICgRBcMwV+pPwyspK/OpXv0JVVRXeeustzJkzx6Nxee/tcOazYsUKfPHFF1i+fDmWLFkSse4qvvzySyxevFjy+z0YptVqYTabXc/TpRKjohyz8d4SfvXqVeTk5ODYsWM4e/YsHnvssaDyc88nKioKr732GkwmEw4ePIjVq1fj8uXLETX/2N7ejoULF47NMG8Jm2qVGKjSPvzwQ9x7772uPQ/j2ULunn9ycjJOnz6NdevW4YEHHsCuXbsmTGO48NVXX2HhwoXSge4WyOWuS1Sr7iKvC9PqxsG5t1AQBA4PD3Pr1q3UarVsaWmZlPJ6enqo1+uZlpbG8+fPB6RpsiEIAufMmeP3ACVIzw2av4zTRMQmHFEU2d7ezpSUFBYWFobNV1MgVFdXuzx+ux++n8rG69xM6q9Mx74VN9W3atUq1yU004l9+/YhMzMTRqMRf/nLX6ZkFeH5559HW1sbzpw5g6VLl+LMmTMAprYvN5lMgfeFenPwf6v/hwUFBY6H68LoP6ln93fekIobRNjAwAALCgqYmprKrotfUfjhum88f+m96XR/FyKcfnxLS0un1Ef92rVrWVtb6zfch2EX29qpUqlGX/irlGD/DiGsubmZGo2GRqOR9uEfQ0vvr3FJpQkSVquVBQUF1Gg0YXdUKQW73c7o6OiAh9R9D0NcF6hWq3nhwgXXs3uYd1y/Uucdb4yw8vJyqlQqNjQ0SMcLNe9AZYaI48eP884776TBYJhUbwrjOgwBAPn5+aitrXU8zJIDdtGpPn0jz5KP/hsH/vWvf2H16tVobGzEuXPnkJWV5TKdI2Vs9Mgjj6C9vd01mfzxxx8HpE2ynoJAbW0tnnrqqcCRXKxzUx+tra3UaDSUCvPABFVifX094xfczaqqKt+mNFF1G0YJc4dzMvnpp58OeCVJqLDb7VQqlezp6SHp3zIdNetH1JozYkpKiktvC4If44Ecl2Hxve1b/vumYqYsuZetra2eaUbgTlNQeY/Vh42TaVIVNzw87Lo4x9/lAqHkL4oi6+vrqdfrx4wPUnpQWFVVxfXr14++CFMrNZvNTE5O5oYNG8YcW0W6D8bm5mampKRw7dq1IXmzkUJeXh4PHDgwZjzJE5iCILC/v58KhcJBiASzxqMKqqurqVKpApqtMw12u51lZWVUKpWsrq4eVx5O91DXrl0bMy7cW7E3E176wza++h8vT1i6BgYGmJeXx7S0NJeO9lfmTIXZbGZaWhr1er3PN44Fg8HAsrIyjyk5fwjofu+f//ynX8dgTt07FpqamqhWq/nyyy/7+FqcqQj03Tt37qRKpeLrr78eVF59fX1UKBQcGBgIqj7H9JdYVFTEsrKyoAp3h1NVqFQqj0FnpPdL4cClS5dck8nnzrf5jSdQZMnvt/KFrSUe75yQEooxGTYe93s9PT1MS0tjXl7ejNlHMRnYs2cPY2JiuH37dklPrlf6+zh//nwfgyVQow7KI6nRaOTvfve7oIisra2lSqWS7IBvlP4qFPT19XHt2rVcuvQe1w2FToYUFBSwvPw/SQaqF8+woF3I3nnnnZLrUU4m2Gw2btiwgcnJyUG5+b7RVaO3AVFXV8cYpeOK4e+//54NDQ1MSEjwmFg+/NYmwnF0gMgx8EeauXHLTo98g3aD/t5770k6aSbJ1tZW6nQ6GgwG/vDDDz7hNzpzpCD1zVarlU89lU+NRsMFCxbw+PHjFChSNNcRkDNryxuOdCLJtkME5Ny8y/NigpAuGsjOzvaxfqqqqqhSqXj48OGg8rgZ1aI7qqurOXfuXD788MMkSTvPMRtg1pYKn7rZtSmLlR94Gi0hMcz9ogGr1crc3Fymp6fTYrFM8DNmLoLVHoIgsLi4mHFxcVSr1Q5jTCTr39xIYDXbJPqx+jc38sj5cfRh7mhubqZCoWBMTAw3b94cavKbCoIgUKDIbwYHuHbtWmZkZDAmJsbRxwsi7TQzG+CmN9/3m4d3g/BaExF9lgYEei4jpKam4sknn8R33w1h3759ePDBB1FZWek65hMMnGXQj4vwUPKYbgSiQy6Xo7u7GyvTHkS8NgFdl7qxd+9eh2sNuQxRFy6iAcAv45N8PdGNwHvnmhfDHOds6fHGM6vZs2dj3759MBg2YdVD6XjxxRfR0dGBzMxMJCYmYuvWrWPuCXE/j+a+W9cd7utNUpUSKbuSA9HR2NiIVQ+lY+sfSvDF5/+H59Y/i7y8JwA4vkkYqX1CgAxu38wRU1GqMZC+o2vSYahIua8TRYeVaLfbmZWVxeLiYldYa2srX3nlFSYnJ1OhULCwsJC1tbVh3/EU6VanIAjcs2cPVSoVm5ubWVhYyLx/+7VPPJdK9LIESZJth1hxxHd45NOHCYIwpiXnnDIJdKViT08Pd+/ezdzcXAJgdnY2d+/ezZ6enpAq3JueSGeW3W7nli1bmJycTIvFwvL//q+AVyrW7yomAO46PLof8tyRN4gcg2R8D4Z5V8a5I7tY77Wv0ilhTpjNZioUioAXv9hsNtbW1rKwsJAKhYLJycksLS2dtI2h04WBAYdx8fjjj9Nms41eWtp1ieRoQ/cWiHNH3hgdMI+Y+I4EvmX4ShhFivyRAtuZDfgwTArHjx8P6VrgpqYmlpSUUKvVUqVSccOGDTx8+DB//PHHsRNHKDo7O6nT6Wg0GimKInfu3EmFQsGTjZ+64gSjG9wFQqpL8mvWVxZv4po1a3iOdr8q0j1Ds9lMrVbLLVu2hLSM0t7ezsrKSqanpzMqKop5eXncu3dvUCu4kTIIN5lMVKlUrKmp4fDwMIuKipicnOx5OFL01U6BIUjG9zE6SMeAreJIPbPl0gM6Fw1eGTpVQkZGht81tECwWq2sqalhfn4+58yZw9TUVJaXl9NsNkds3+VcRW9qaqLVamVqairz8/NdfZZnoxIoCNcl8/H2a+zPXzF8ZorbDnHTriOO+S0/Hd9o8b6Z2u12bt68mVqtVnISWEqH+8OxY8doMBioVqup0WhYXFzMjz76yG/8UGYd3H/HA+d3Ll68mJcuXWJLSwvVajVLS0t9ygkn3FSiI3OXmd52aLTzCwLexNXU1FClUvHEiRMB0wWqZPew1tZWlpWVMSUlhdHR0SwoKODBgwddkixVOROVSn8VPjg4yLVr1zI3N5c2m411dXVUqVQT3kEVDEZUokO1Ha7c6GWtvOEg3FuSRI8fHzg/tKWlhSqViuXl5WEh1pmvxWJhdXW1a8iQkZHBqqqqgAfqw9Xau7q6mJSU5NhObrfzlVde4YIFC6ZMbTv2JZIOVVh52MEckTz/wS7Hc6APFcduxRaLhdnZ2UxJSXEt4JG+6bzVlHe4v3KGh4dZV1fH9evXMyYmhosWLaLRaGRTU1NAusYDk8nEmJgY1tTU0GQyUafTMTc312dVPRwq1x8cKrHtELHGc0W5/s2NrhG4e2X523wzFuPq6+upUqloMBjGdWF3sK23ubmZRqOROp2OSqWSRUVFrKurm/AJlHfffZexsbE8evQoCwsLqdFopuV6ZOzalOVSgR+Y7aRIGtZIDOLcMN6WY7PZXDtmy8rKPFpmqOokGBq6urpYVVXFjIwMAmBubi6rq6tDWg6y2+0sLi52LdA6aZ/KI0ju8DsOk5Yi/2Oysa7bcIfFYqHBYKBCoaDRaBzXrlm/13r4oW9gYIAHDx5kQUEBo6OjmZKSwrKyMs+t4l4YHBykXq/nggULqFAoWFJSwr6+Pr/Td/7UeTjhMDrE0Ny9i6JIQRz9O1Q40/T19fGFF15gdHQ0CwsLJ03FSFXu8ePHWVxcTI1Gw7i4OBoMBh47dsw16K+urmZ0dDTnzJnD0tLSiNn9FfIC5mTAarWyurqaqamprrFMe3t7SKo30KR1oHxEOmZpysvLuWTJEspnRXH27NmMioris88+K7nBczoH8SFdbT8VaG9vx/79+3HkyBEMDQ1Br9cjMzMTer0+7BcgmM1mNDY24mSjCSaTCfNjlFi3bh3uuOMOZGRkYOXKlQBGfRk6f50I5LtxshBxDHNHb28vPv30U3zyyScwmUy4cuUK0tPTERcXh/j4eKxYscLl9ezuu+/2uSjt8uXL6OnpgUwmg81mQ0tLC7q7u2GxWNDU1AS1Wo2HH34YWVlZyM7OxvzYOzzczrrfLjEdzJFCRDPMG4ODg/jHP/6B9vZ2fP311zh16hREUYRMJkNXVxd6e3s94qvVaiQkJABwrJSvXLkScXFxSExMxP333+/yTOB97Yd/587iiJT5uRFwCjAjGOatisZ6HypEUURmZiZOnTolWUY4y5oopl3GpfZueP+OdRfyRMuWyWRobGxERkYGurq6XJuDjEajR9mR0LannWHeN/B5/wY6/D3RFu8s2z2f+Ph419+7du2CXq/Htm3bPDYMTSemnWETQTgr8NSpU1i+fLnP+2XLlqGlpcX1PN1SFvEMmyrL7OjRo3j88cd93ntfzzXdUjYjjI7Jgrsh4c9n/7Zt2wAAO3fujAizftbYUW4seDMJALq7u2E0Gn0swe7ublRUVKCxsTEimAXc5BLmRE1NDQCgqKjI473Tq5pzJ7Nz8DyW9TqZiIxmM81Yv349MjIyXM/d3d0uZkhtO59Oi/GmkjBvlXfq1Cm/vgmd47Kx8phq3FQMuxFwSyXOMNxi2AzD/wMVYbcnJXA/4wAAAABJRU5ErkJggg=="
|
<image>已知:如图,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为()
Choices:
(A) 55°
(B) 110°
(C) 125°
(D) 72.5°
|
125°
| 10,859
| null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAIEAAACECAYAAAC3bUjjAAAdS0lEQVR4nO1da2wb15X+hjIqyzAqGws0bJGCVmxJdJLadH84Izs1rV3sgpJTmywQyy12awW1xARYRPTCXagIrGy6mzhIGop2fsiPYFWnPwRnt4rkmJTSBULJSCyhaCs2TiyJlCkHBSJ5gUou2op0a87ZH+QMZ4Yz5MxwSCrSfoAg3nncx7nfPffcx5zLEBFhDYMAMKIwh1mce9KOkx/Jn+xAkC7ABcAieWPtw1LpDJQa8upk0IjnP4yid98TeGMuBSICESHYeQmHGC9GK5LLymLNk4BXdLy6YwAwFMUtasPh7XzxObguRNG7/xIOPTua8+5ax5onAcMwOV0CRodw6RuN2CFcsMCCejQ8BuCTGcwBADgwzProFtY8CYDcLmFk6C14j7RmQpxwvf7RJoD459eFaACsp5JmQBTE0KUTEDggQuzWBPB4I7aXP1sVxfohQaZ7Z27HcLPDjRbhRkYEcwG8cgnodLsqkLnKYv2QINMnxILvAI82SG49QAy9x0/ioyY/fthiyVqR6wRrngRiC58oiNd9hLZD27P1PHcOTqYB/4KfIPbRybSxqGAPKo0U1srogVnLk0VEJLHw1az9zlAKF1py24P8/bWKNU0CZXDIKkDxb2NYC0RZ891BuqI5UThdZAJAlKk8vhmQfhX/RScAAGyodAZKDwuSySQmJycxMzODzz//HLBkK+694as4fPiwEOZJ0Px3f4uvPmSF3W4ve47LjTVBArFKnp+fx/j4uFDpkUgEyWQSLMvCbrfjoYceklj/kUhEQgI+npde/Dcs/u9dzE7PwOFwwGq1Yu/evWhubsbBgwfLWbyS4wtvEywvL2N4eBjj4+MIh8MAgObmZrAsi8bGRuzevRtbt24FwIGIyVHfDMNkWr+6fRCJRLCwsIDJyUmMj4/j+vXrOHDgAJxOJzweDxwOxxfaNvjCkuDdd9/FlStXMDo6Co/HA6fTCafTibq6OtmTvD2gXMFpEqRU7isTBwDGxsYQDocxPDyMP/zhD/j+97+P9vZ2SfpfGGJQQaQKPyIGpxzkOC7nUT5u5Xu5WFhYoK6uLrJareR2u2lgYEBf3hSgSQQFEI/Hqaenh2w2G7EsS/39/UXHqQmc7L9BGJBASqg0edpaK1OOQu8tLCyQz+cjm81Gfr+fFhYWDKWjBDNIIMbExAS1t7eTzWbTRAajMsuNiEh3g81AvwTy5Fn9lrHMySs/kUhk0zJJeGaTgEc8HhfIwGss0yo8B8bky6MoCXChEwSAsM9PMf4ar+L5h0Y6CAyIDUSl74oEoiScM2fOkN1uz6l8s1EKEgiakuMoHo9TW1sbsSxLU1NTmt81Mx+FYFgCQkFDJwjooCBxOYmm6Bp1AtQZ0s7UUChEdruduru7aWlpyWj2NKNUmkCOiYkJcjgc5PP5csqlpbKUGhwREcV6aV9m7kt6T7vMi5bAbKCDmvZ1UpDkBIhS4EkQ0+SnWQ3xLC0tUXt7O7lcLpqeni42W5pRLhLw8Pv9ZLfbKRQKaXo+TZB0haboGnWApd6YzKCO9RLbeU30kr48GZs2zgwqOcQQvEXYRTcRnZOONOfOvo5PdjaBPfoU6gvEE4lE0NraioMHD2JkZGRNz9KdPHkS4XAY586dw49+9CMkk8m8z0uHmBYwmMSV4G3+JgCAi3I4ekq0D4LRtxpujAQM/3IMePRfcfgbE/h0TjQ/PxfA6zgFDzOBbzRuV9/AzQDnz5/Hc889h/7+fhw/flzT3L2WZ1YzrFYrRkZGUFtbC5fLhfn5+QJvpKuJGZnBzlgQj518DaMgMBkxvB+z4Nv1VZI3dM1O6FMc0n6GC/mpN5aiaKCJ2ECUOCJ6wL1HHU1+mqVr1MGckHYTMjV1/Phx8nq9guFntvWsJT5eBKWz3PODtxW0dA+hQC/FiCjYmbWzUnSN/DKjWy90agKLRM2MRhk8tSMbBQPgfe8w3Dd8qB8ZxKXO76AVTLblZuiZTCbR0tKCgwcP4vz589i4cWP6tsHZNVLRDHriq9TMHsuy+OCDD3Dp0iVcuXJF9TlCCDM4hO1EaD1yAheH0lvjmZEhzDRsV1wBVZNLbuRaIZqM4DhOwkAudILQGaRooIlOjKSfueaF8FuMpaUlcjqdmg0jI9DTqrWIoBxaIpFIUFtbm8IEU0aGc37qDT7IXIlSb1PaQAx2nKBrXKqoWUPjQ8RMV0BERLE3aB9Ae89GM5lU6AqIaP52nJxOJ01MTBjPsTwfKhWkeYwsIkE4HJbck4fHxsby3heHOY6jcDgsyUeh+MPhMD3zzDPU09OTk89ooDcrT44oGmiiJ85eI38gxF8yDEMk6N2fGZeiKU2EzBCF4ziKBpoy9yDMHxClNQDL7qWGhgbR/dw/hmHy3jfrr7a2lmprayW/q6urdcfDMExOnostw0MPPURnzpwR5M1xUfIHQsRxD0jQDLGztE8+B2OQCeauIuZ86pNGMpmEy+XCq6++iqampoJ9FWVW36iIVbjFxUWMjo5ieHgYQ0NDkj0BAOBwOLB161Y0NzcjHA6DiBCJRHDv3j3cvXtX2ItQW1uLhx9+GC+//LKwjyC7/IyShdvb2+F0OtF+vB2MhQHDAE/0RjHRlR5wc4jh3P7X0PDRxbTdBbHodW6bK8QSTkKw3D6e43JnCsVIJBLkdrsFG0AtSTP63Xg8Tn6/n5xOJ1mtVmpvb6fBwcG87+QTAT/tK45zz549NDg4KIxo5O+bEeavuVyuXNspZ9WOKFsvJVxAKlhBqkuaKWpvb6f+/n4hDoZhjKejgnA4TCzLks1mI5/Pl9PX5oOGdiBgYWGB+vv7yePxCF2IeArYLELw/xOJBLlcrrzlSUtMXvn6yFDSOVO/308+n0+aoInTtFNTU+R2uxWNTSOGoR4kEgk6c+aMsMJppkYQ/15YWCCHw2Hq8rkcptWIXOgTExPkdDpzVgDNIAG/TOtwOAqq+0IoNj9LS0vU1dUl2T9gdhfxwQcfkNPpLCqf+VASTbC0tEQOh4Pi8XhugkUKvbu7m+x2u2m7d8zSTIuLi9Te3k5f+9rXJEvGxdgEYvT09CgOHc1ASUjgdrtVW6hRofOTTGfOnDF1f4GZ3RNRuotiWZYGBgaKtgmIpBrW6XTqsne0wnQSDA4OktvtVk/QgNCnp6eJZdmcyRoxjBqVZpOAKDv7J265ahXO51vNJhBjenqaHA6H6ZtsTJXAysoK2Wy2vEaMXqHzln+p9hgYIUEhwvH3T58+TceOHaPq6uq8aRYKi9Hd3S2ZSDIDppKgUAY5jtMkdF6I/Pj897//vWl5lKMUmkCMgYEBYllWsI/kql6rTcAjkUgUbGh6YZoEbt26pUlVFZqc4XHmzBnyer0Fn83XKvUsJWuFkW6HtxO+/vWv501bySZQQqEuVy8MkUBJEPmMQUmCGoRudiHzodSagId8yKx1nkANDodD08ZVLTBFAlNTU+RwOLQlWKCAvBFYyi5AT37MxMDAALW1tVFbW1vePJS7oZgiAa1agCh/AfPNL5QK5SCBWHP6fD564403VNMvZBOIoaYN9HZZxX13wHG6tABRfqErLpiUGOXUBHzl8OWUT3hptQl4mKUNipaAHi1ApF5An89Hfr+/2OzoRiVIkN5bIR32MgyjOGdQqFXz2kC+mqtrd5XWB5UiXV5eJqvVqjgiUMuEktDl2qScmz7LSQIxBgcHyePxKOZBKU9qMunr66POzs6i8lIUCc6fP593GKeYoEIB9WoTM1FqEuQjtFL3p8cmIEprFbWGqBVFSYBlWbpx44a+BGUFDIVC5HK5islGUaiUJiDK1YBabQI5sdra2mhgYMD41Lmhtyi9nGuz2fQnKCugmePdwsj1h1BJEhBltaB4allvnoo1EA1LwOjSpriA/Li5HNBjo5QT8Xic7Ha7RJ3rzVMikSCr1Wr4A17DLuzGx8fR3Nxs9HUkk0l0d3cjEAgYjkMMIlL5/i79edxqdRtTV1cHl8uFvr4+AMbyuXHjRrAsi7GxMZCBfcOGSJBMJhGJRMCyrJHXAQAjIyPYs2cPrFar4n29hWEYBgz/Hv8qATDO87Lh+PHjePvtt7FlyxZDlQgATqcT169fN0QiQxKanJyEw+EQPh/LB7VCXb16FUeOHFF9z2jLZRgmu/eagfDbvH315sPhcGB5eRlTU1O63+Xle/DgQYyNjRlK3xAJwuEwnE6npmfVKnN0dBQuV/ZzaqMtIBdp9U8hb1o7ZP4s3qBJ8ZcGHo8HQ0NDut/j5etwODA/P4/l5WXdcRgiwS9/+cuiuoLJyUls27ZN0hWY0Wen7QILQl4GlkOEIHEgInAURMfFp8B4Q5C6uF09OHLkCIaHh7Fz505BFnobBv8hjV5oJoE4Q5FIBHv27NGdGI/h4eG8XYFRMAyDES+DQ5/8BDG6iNZMJ8CgFReCncDFIYxm+ofV1j0cPHgQkUgEN27cEGStt2HY7XZEo1Hd5NFMAj5Dy8vLSCQSqgadFgwNDcHtdpvYBaRBIx04dLEJvZcz5xaIi8dwkk/kVuNYwePx4OrVq4bfb2xsxOzsrO73RFJSV5PiypqdncXOnTt1JyRGIpGA3W43ddjGIYazL78FdLwA3w5LumsQ5Xsu+ilAq7UzSOPw4cOG7AIedrsdMzMzErnyMsjX3LIk4IdSwtNZcYkjnZmZKdqnUDFdiSIIAKKY/gjo9KRPN+INQiBNkNB/TwCdbrSuSh2QhsPhwNTUlOHG0djYiOnpack1Pi5JjCT6g5gEomEVEYFGziIwl9tuZmdn0djYaCiTPIrVJDlgAEsshptows763B6OGXkNvg9Z9P5w9R1yJdZWdXV1WFxcNNxNbt26FTU1NVhcXMz/IAPJ8FkqsUzaxITgbX1HcIwkzuzi4mJR9sDmzZvR0NBQ+EGdoB31eBwTmI5JicthBM+2vgV0noZvx+qbOJKr7mIbSHV1NRKJRMHnxJNqilIZ8f4HPtm3C431hc8P0ouqqips27bNlLjEYHAI3+kALv77m5kTTgHMBfAtphUXO0ZAFxQOQlxlFgLDMEVr2W3btuGzzz6TXOMQQ+BJRjJvUlVVBe9ouvxSw5ABYmf34ar7NB6f4BRFtLi4mD44Qgfk6m3Lli263tcEBviHi1H0WnyoZxhYLBYw9e/g6VgKdNGlYhitPs1QU1Oj+x25fOUN1oJ6/POHUfTuTx/6RURIBX+Ai61PIjDHZaVAxABzAbyKt3Ghfg6fNj2OBgUjamVlRXdGxZlKpVKora3V9b5WWFAP34fpUQHHcSC6AV/mUOzVaw6mwVdkdXW17nfFnk5qamqwsrIifYAjWDCHWzdO4EhLxlCsfwxNosSJKOMRq9NPcxwRzQUyblJznR1s2bJFbFuumT8lP0Pl8p9kdt537tyZU2+p4A8InUEiIvorzaX9TmXC4NfZeYdTDB9p5gE5nE4nXbp0KeeaGKdPn5aExV/Sbt68uaxbygsBQM6XvvJ9EuUMv/jiiyRqm7oh9wyTRkrmUKwp63mOiDYwDAPcPovX8J8gSo//aaQD+2eVPRIzDIPt27dLwiTqkwqF+WtIl7Ti6/wMw0gOtiqHUyqlMC+LgsO7AlhcXMRXvvKVrFwJ4JjbCF4h9MZS6NrOYO7cfjTUPwnEPoRvhwUWzAXQ9I8curvswktz0U9BKnWzceNGwSmzkQJXVVXh3r17QrjSUMsvXynlIgRPxvv37xdVhkQigU2bNmWvMYBl7j28gzY8tcMCBgy2d72ATkwIjrItTP1JTE7+F67GUumhxLcYNPgmMOlryKy6SWG1WnH37l1NBeQ4TvE+T4LVBHn+LRZL2TXC2NiYpjG+Ut7zXYsFB8Edbc2spwCWuRg+AbAr4w53gzgjlHoYXeMr6ALAWGpUTeqZmRnNBSQiiUBTqRTu3Lmju6ClxIsvvliRLkApHI1GiyrLnTt3YLPZhDCHGIJXUjj2dpoCxITwbP1J3EAHXsiMFDbwXhAJAFNVA0olwFSpDwGtVqtkiFeogPIW9ac//cnQSlcp8dJLLwHIJSxQfkLcunWrqLLcv39fMoSvYjKzs/VVOMmn2eRH7MZJQTMIJ6QqN/pcz5iNjY0YHx+XFIDvP7UUGEDOIkclIVablSbAm2++CavVmjPjpxVKy/xyo5xv9NkgB0u+WRRK3QelEqBUIhNOYGdjHeZvT8Pj8aQJkEoAXDKnQJs2WsA9WBHeFd+fuRUBpRLgHqzkJipJPyFJX8t18X3xNdU0RIZZpbuE3bt3F7XCKl/mzyEAkNPaGVjyz5vy3YL4f0NDAyIfz+Ddd98Vug7Lhk2SCt200YKVJAemqgZMVQ02bcy2sJpqBkxVDWZjn8GyYZNqJfFxy7sm8XW+++Kvi++LfxciwmqxCfr7+3XvuBLHI1/m1zr6Kjh5LjUcE9j6N1+VLFfyLV6c8J///GfVMAAcPXoUAwMDmjIIIK+NIn9G/KyW94CsTQBUViMMDQ3pJoG4omdnZw2t0BYkgVJr5Tc/PPLII5IWr8VIBICWlhb84he/0J3ZUqOSBLh586bocG9jMLrhJ7uAVEBlirF3715MTk4iHo8L18QqH8g/b8CyLO7cuaN5dkxP3oyi0jbBhQsXit58Gw6HJbOfWiHRBGrDQ/nQsbm5GePj48J13gYQIs3YCLyBZtmwSSBA4n7amPz2ob/H/7z/niQ9cWXzccvzJL4u7//lcaj9lqPSNkFLSwuCwaBgbAMqRl0eRCIR1NXVGVumJ43gHqwIvxOJBNXW1lIikSB5FFrDlf4knYfR/JsZvn37NrEsK7mm9zNzJY/yWqFpV4W8NW7cuBEOhwOTk5O6WwCP5uZm3LlzR8OZgOVDpbqEvr4+HD16NCcvenD9+nUcOHBA1zsC8jGEe7Ai/Mkh/zRdHpVaWHy9nP4K1aCUr3KGf/e73+U4/ipQLTkQf5puxFGFvtREEDup0FJgJadMROV2UpELADnr++UkxNNPP53jqkcvCX7+859XxkkFUa7rdTVfvfnC4XBY2JRSiVNKy60BGNHxP/F4XNFhl/ydQnIp1udTUSTo6+uTOK7SIhAllq8Wx1WlJIBSA1E7v4B/Tos39Yo7rhJnQK5SGdmBV0p9L19IvQ4xzUSlbAK/3y+4sFPLkxbIG2JZbQI+Qd5zliTSPAJQK2AlnVmW2ybo6enJe4aDHhKY4dq2KBIQEUUiEUU3bErhQucdrAa3tqUOu93uguXUSoKyu7XNxyy+T5fvIlYSiLybEEPJ3WupUWqbQCw3h8NBp06dKqjxtJJArgXK7sdQDKU+Xcs8gRJ4i9moOza9KJdNYLVa6Wc/+5kmD7BaSLDqXN0TEXk8HsHC12MTKLF3bGyspOcAilEOm6C6upp+/etfk8vl0mTFayHB7t27V9ehF0RZp4wXL16UJiBTiVrHwH6/n9rb21WFZtacQjk0wM2bN3Wd5VSIBGY7ATWNBETappL1WL79/f3kdDpLe0RsCW0ClmXp8uXL5HQ6dXVv+WS0qg/CIkpn0G63UzweN2wTyDExMUEsy5pywocSSmUTtLW10alTp8jr9erWZvm05ao/Eo8obbBs375dmoiGeYJ8iMfjwqmjZqMUNsErr7xCTqfT8LyHmoymp6dp9+7dAqlM6xJNiUWGI0eOaDIS9YA/dbS7u7ukx+QWG758+TKxLFvUcbZKMlpZWSGn06n7aAFN6ZkeI2UPtHr44Yeliem0CZSYzh9X39fXV3Q++Twp/dYbXlxcJI/Ho2meo1ALVpJRKWdUTSGBUqHUzgE0qgnEWFhYIK/XS3a7XfPCkzyP4hU7I6uffHhlZYV8Ph/ZbDbTFsHkaSnNCZi54loSTSA+5pYXkJCgCSTgMT09TUeOHCGn00kTExOG4uBtgnzDWKWp37/85S/0+uuvk81my2mhxVaQOL1yTJ6VhARitLe3009/+tNsgiaSgAd/qLbNZqPOzk7N6w96NcDS0hKdO3eO3G43VVdXU3d3d0kqh08zkUiojoxMTa+ksWfAry3YbLaiSZCvlcXjcerr6yOXy0W1tbV07NgxGhgYyFtR4vzIZykHBwcpGo1ST08PORwOslqt5PV6S773AQAlEglyu91lWVBjMomWFMlkEt/97nfR2dmJ1tZW8EkSlc5TyfLyMt5//30MDQ1hdHQUNTU1aGxsxJ49e/DlL38ZQNp55DPPPINwOCzxDv7xxx9jcXFRONfh8OHD8Hg8cDgcJcmrHAzD4OjRo/B4PDh27FjpEyw5zTJYWloip9NJmzdvXjUOoTZv3kwAqLa2tui4CpVJz/0vfelLOaenKmFVzxOogV8qLoWKM7yMKmsH8i6hnOFEIiE4nionykoCIhL6OjMLWkyLEJNATohyhkshF60wlQQcxxFHRCnKXyk8482a8CkGfEXIK0htj2Qpwp9//nleDZmiKPXul3YZ6d8Wwj4/xdQKpxGmkSBva+Qk/wQ82+mltrY23cMsPi2zFpAqqQHC4bDk0Gs1POBmqbdpn8T/IBc6kfY3yb8mvJ7rhDQfTCJBSvQrzVqBsZk/MOlwZ+ivwrMcx9HAwEBZxsJqqCQBenp6NC+Vp+gadTSlW/0Dukb+QJRSmf9ERXaJht8UZU8eTlGU/PvYDGtTmavXqIM5QUHKnb6dnp4mlmUrttuYz0e5CLCwsEAsy2o+YZbjOOJCJ4jNVHg00ESdIX2tPR/MtQky/8WsJSIKBXopSjHyd7yh2n8lEgny+XzEsqymKWCzdxaVwyZYWVkRFsCUypivTPnc0qqB4x4UfIaoVKODYJa1FOvNOMtWh7jw/CYSr9dbls2m5bIJQqEQ7dmzR9NSuJwMKYpSb1Nas6YoSr37cjWqYjwabQPTScBxHEUDT0gmQgRCaHyfKP1ljc1mo56entIunpSYAN/73veEbw20bKVX1AaxXmpq6pVoViWNalQ3mkMCUepi1qYJkaf/KpDrpaUl6unpKSkZSjVPMDU1RW63mxwOR9FrDdFAE7GBGcm1FEWp1/sTZTLo7CrN7w5krOVCfhIUgUGqisnQ3d1tqqt8oLj9BDzsdjsRZdf+zah8InmjepC9tl+fhs0H04eIadZGM9eUNIBxq3ZpaUkwrFiWpf7+/qK0A1/5xRLg+eefJ6/XS1ar1fQvrNXXG/ZrMg61oOhVRCICg/RJ5RxiOLf/n4DLN4STx8jElUJxXJOTk7hw4QJGR0fBsiwOHDiA5uZm3St9ai5k+LSU7i8tLWFsbAzXr1/HtWvXsHnzZni9Xrjd7qJOilMEQdXRuFkwdSk5KzQWvbEP0bUjr9dcU5BMJjEyMoLr169jbGwM8/PzaG5uxq5du9Dc3Ayr1arq229+fh6PPPKIUMlKFZ5IJDA5OYk7d+7gwoULSCaTQhoHDhxAS0uLavxmNgDlBGAKQUwjQaH8ZAWS6zTbTCwvL2NsbAy//e1vMTY2hrt372JmZgYOhwO1tbXYunUrdu3aJTz/4x//GD09PcL/P/7xj/jNb36DX/3qV9iwYQOSySRYlkVdXZ1ALK3apuQkMAll2VSyGhCJRHDv3j0sLy8jEokI18+ePYuuri4hXFtbi29+85sgIjgcjqI8jH5RsG5IsFZQCu1igl6WH6Gp7dTR/+eefhD0+zfUAhNIII9CW5Tl6iulVOM031uNKJXEVt85sSZDfmCsAFK7xwG0vjTVmicBIKvQzE9igLlz+4VhLbO/FzGE0NGZdsH/RbDqzcK6IIG4QokBMHcOTzIM6j99QZgYossM2plD+OSx7WkVsX4UAcxfO1ht4IikO5+uUQf4c4Kl067BTlBnKFURz6qVxJrXBASCWOHdPvsyLqEDwQstkCvCHY92YGd9VnOsF2WwruYJOATxHPMUPg5EMdElPwu6tDOZqxnrotREBJDseFjJA4B85LCesKHwI19skJYZtvUzEFDEmtcEYgJwO+rxOICPo7dzH5wLIBBKZV4qT95WC9Y8CcSw4BBOBZow6bOjYzQ7Q0gjHWCOE55qrapg7iqHdWUY8qCRDlha38pe8IZA51sql6EK4/8Asq1VldPcAvUAAAAASUVORK5CYII="
|
<image>如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()
Choices:
(A) 4π
(B) 3π
(C) 2π
(D) π
|
π
| 10,860
| null |
π
|
"iVBORw0KGgoAAAANSUhEUgAAANAAAABqCAYAAADN9d9nAAAN/ElEQVR4nO2dTWgbZxrH/+9IpJB1SQ8OubiktuRiNin0kLL9uLjEzqbRaOqAu7iXUpbU7q1xWxlKcyjYYZe4jSntRa6hUAohG3tla0aJHY3TQEnbQ7Z1aYIdPDIEfGjALG3WPQQ88+5BmvGMPJJGtmV9zPODiaX5fBWe/7zP8348L+OccxAEURaqqqK1tRWMBEQQ5cMYg6ZpEKpdEIKoN4aGhhCNRhEKhagGIohyiMfjCIVC6O7uBuecaiCC8EomkwFjDK2trYhGowBAAiIIr8TjcfT39wMAOjo6AJCACMIT4+PjGB0dBWMM4XAYjDEAQLDK5SKImieTyQAAzOYCVVWxsrICgAREEEXJZDIYHBxEMpm09pniAUhABAHOueWS2RkaGsLo6CiArJBCoRAkSYIsywAATdOoGZsgvFBIZNSIQBAFsNctbuIBSEAEUZBCorFDAiKIHUACIggPFGoqoFY4gvAAYwwPHjxAMpnEwYMH0dPTA4BqIIIoytLSEi5evIhjx47h8OHDOH/+PBYWFgCABpMS/sbultk/37p1C4ODg2hvb8fLL7+MxcVFnDt3Dn/88QfefPNN6zzGGLlwRGOQ309TqN/Gfsw8/ujRIyiKYm3Nzc0QRRGXLl3CsWPHij6XBETUNfliMCnWBM0Yw+rqKhRFQSqVwrVr1/DCCy+gt7cX586dQygU8vx8EhBR13jpqzG5e/cupqenMTk5CU3TEIlE0NfXhy+//BLNzc3bej4JiGho5ufnkUgkoCgKDMPAqVOnMDIygkgkYsU9xURYzBUESEBEnZNv4Ovr60ilUlAUBbIso6WlBadPn8b09DSeffZZx7Veaq9S55CAiLrGjGdM0SiKgq6uLvT09GBkZASHDx92va5UzeIVEhBR87gZ+927d5FIJDA1NQVN03Dq1Cn09fXh66+/xoEDB0reczfEA5CAiF1it97obpj3vXHjBhKJBGRZhq7riEQiVjxTLUhAxI6phHg453j48CEURcHs7GzJeGYvyuQGCYjYMaU6MMsx5vv370OWZczMzEBVVYiiiJMnTxaNZ0qVqZKQgIhdo5BQShnzwsICpqamkEgksLq6img0ijNnziCRSKCpqcnTM/aqxsmHBETsGuUYdiqVgizLSKVSCAaDiEQi+PTTT3H8+PGyn1Fsf6UhAREVxTTs3377zSGacDiM3t5ezM7O4siRI1Uu5fYhAREV4/79+1AUBdPT01Y8I4oiPv74Y7S0tAAoPFGtXiAB+RQvw1i2QznxTCWev9eQgHzKbhmuruu4du2aNbI5EAhAFEVP8UwjQAIiymZtbc0x3uzo0aM4ffr0lnimWi1jewkJyKeUa9yZTAaKouDKlSv44YcfEI1GEYlE8Pnnn+PQoUOu15S6fyMIjATkUwp1fto/3759G5cvX4aiKFhbW4MoihgcHIQoinjsscfKel4jiMUNEhBhGbZhGJBl2RrV3NTUBFEUMTExgZdeemlXnlFqX71BAvI5+fHMM888g76+Prz33nvWIlJEYUhAPsHuQpnxzOTkJL777jtIklQyntnpMxsVElANUUmD+/HHH3H58mXIsuyIZ1RVteKZ3e7UbHTxACSgLVTzrbmbz81P1fTEE08UjWf8UFtUAhJQHvVsRA8ePLDGmsmy7DlVE4ln+/guM6nppkiSZOUTs2+SJFW9bOWwtLSETz75xEo9Ozc3h56eHvz666/49ttv8c4772xLPPU+Rm2v8J2ATGOZmZlBNBqFpmngnINzjnQ6XdWWJy8dj4Az9WxnZyeWlpas1LNXrlzBG2+84TnPWa1ND6g3fOvCmQZivp3Hx8fR39/vWEB2ryi1Elp+PHPw4EFEIpGCqWfJ+PcO3wrIHF4PZMXT1tYGAHjrrbf2vCxuBr/deKYYpWIdioXKx7cCWllZwcDAAAYGBgBkV1wGqvv2XlpaQiqVwqVLl3Dnzh1Eo1H09PTgiy++cLhk2xVCqd9G4ikf3wpIURRommYtXb7dt/pOMVPPzs3NYX19HaIo4sMPP4QkSQgEAq7XkBBqB98IKL8nHtiMf0xXbqf39bK/UOpZt3iGXKraxzetcHZDnJ+ft0TDOUd/fz8AYGhoyNO9zKC/mIHb96+uriIejyMajeLxxx/HxMQEnn/+efz888+4c+cOhoeHqTGgTvFNDWRHURSMjY0B2DRSSZI810TmNcUMvNBSGl5TzwJUA9UDvhKQqqro7u4GAMiyvOW4Kap8vBqyfSkNXdchiuKOUs+SeGofXwmoq6trWz3shQx5fX3dygVQbupZojHwlYDy2Y6LVGgpjeHhYTz11FOVKShRs/haQF7Fs7CwgOnpaSSTSSwvL3uKZyh+8QcOAXGDwzA2vwsBBr/aQCqVQjKZxNWrVyEIAqLRKIaHhz3HMyQef+AQEBMYAgwwdA7mM/F88MEHuHfvHvbt29dQqWeJylLXLtxO3aT81LNPP/003n33XUfqWYIoRlEB8Q2OrEfHIAQB5Fw8y7Xj2dqKI1t7CWa3rG0/AAhBBsvMix1zPNx+Xu75nIOB5V0PMFtZhQAD9Fy5GUNAsN2HMfzyi3vq2eeeew779u2zxsZ5geIcoqiAWICB6RwsZ6QQGAQOy7XjOsCCDAKyBsxZVlg85wIKuc+GDpjDuoods+M4b4MDPDvhjW+4X2+W1dA5hCBDICdAXWeYnbsKWb6KG6oKfeMRXnFJPbu4uFh2EzeJhyjuwjGACdg0cs4BwVRP7i2/sXm6YO1n1mlMyBo2BwMrdsz+XM5hsGw8BmRFilL3NssQYHj4++9QlBSuXZ3DXOrfaGkNo7f3b/h3IoEjR/8MYGsiQa+1SaWSshP1SWEB2YxU2ODgnAEGA+y1BWNbaw9u/lPIwIodc57mfqb73pWVFczOXsfM9BSuqypE8TSikVP4xz/P48knWyyXMFvszeu9DMuxQ8Ih7FgC4nr27R4QgC0GmosjhICtpmAMAs8Ki21WEGCMQQAHN7K1F5B17QTzmkLHHDAwZN0284Hc4Fkx266/ffs/uPKvy0gqMtb++z9ETv4Vfz9zBlOJBJr+1GS1JrrhpeahGIcoxWYNxAAYHBsbQCAvsGcCg2Bwh64452ABQNc34wYhmDPIAAPXOfRsJJ9tADDvlTu2oefEZjvGNziQa6AQXO5tGAaSioLZa3NIz6rYvz+AE6+cxMTEBF78y4sw7OXYyDYc8FxMBN353UvNQ+IhSmGZLxPM2qcAQp6ocsYVCOa9qXN/hWAB42PZY26PYvZrGEMg6L6Uxuuvv46zgzNbEoA4vMkgK/6dIHaB4s3Ypptj2JreXNjtN7U99ez3339vLaXx2Wef4dChQ1QzEDVD8VY4A9B5LvYoYrOFlscoh/ylNCKRCM6ePetIPesVil2IvcIhoFdffRXJZHLLSWbeNC+zL70arq7rVtaZvVhKgyAqgSMUcUs2GIvFrKydO2VtbQ1fffUVXnvtNezfvx8jIyPo6OjAN998g+XlZYyNjTnEQ9kxiVrH1YWzZ6i5cOEClpaWMDQ0hAsXLpT9AHuqpp9++qmspTSoJiFqnSCwGTOoquqa2rajowOLi4vW91Ixxq1btzA5OQlFUTynaiKIeiQIbL7pr1+/jhMnTmw5KRwO4969e9b3fPE8evTIEc80NzdDFMWCqWcJolFg3BZomD3z+ZjpnuwuXH7qWV3XceDAAUSj0aolKdwJN2/eBAB0dnZWtRxEbXPz5k10dnbio48+yu7gnHPDMLimafz999/nJoZhcM451zSNA+DpdNo6pqoqR3ZQGm20+XIzsWqg8fFxcM63zIcx18vJb94uVFvVax+M+Uax3iyo399CVA7OOQRBsGzfasYeGBhAV1eXdWImk7FE4tY3VE4623qlkX4LsT3yK4l8mxBUVbV2hsNhq88nHA4jnU67JiB0u7HbzesV6n8iTErZdNBrssFGq12K4ZffSewcz8nlyzUqeosTjQ7n3F1Au2H89BYnGh3mOhkUZPwE4RVLQPZah9wvgvCGJaDtTEkgCL/jmxXqCKISuApofHzc6g+SJAmcc8/LHxKEn3AIyBx9YJ9QNzY2BkEQ0N7eXq0yEkTN4hBQOBxGLBZzjLoOhUKIxWJobW3d88IRRK1jCWh8fBwAXGedhsNhEhBBuGBN6X777bcRj8ddTzKXgQcae0gPNd8TxXC1/UJzfvIx5weZoAbmZNBGW7U2k20tsGU2MDQKjVyrEpVFADaz8KysrACAQxyZTAb2KQ9A43W0NtrvISpHfsVhNSLE43EMDAw4xKKqKgYHBx0T7QjCz+S/bB1JRVRVxYkTJyyV5TdpEwThxCEgigUIYiuSJEFRFIf7lk6n0dXV5exI9ZN4JEmyhivlb6qqVrt4RA2RTCYhiiLS6TQ450in0+ju7s6O3OGN1JxWJpIkYWxszJHHrlC2IcLf2O0ik8kgHA5D0zQajW2KxxyJEYvFqlkcogZRVRWxWMwS0NmzZxGLxRAKhUqsD9TAzM/PQxRFANk3iqZpANyHMhH+ZmVlBaOjoxgdHQUALC8vIxwOA/DxfKBMJoOBgQEIgoBwOGz9hxBEPoqiWDMU4vE42tvbkclkAPhYQIqiIJPJwDAMxONxtLW1NdwIC2LnmEIxXX1zXOj8/DyAUks8Niimu9bW1mb9bW1t9VUrJOENu6sPbArKtB1ftsKZDQb2UeYE4YYkSbh48aLl4tvXAgZ86sIpioLjx49XuxhEDaOqKgRBgCzLaG9vt/oIo9Gow833VQ2kqiq6u7ut75qm1eVaRkTt8H9fstfZKYozGQAAAABJRU5ErkJggg=="
|
<image>如图所示,在数学活动课上,几个同学用如下方法测量学校旗杆的高度:人站在距旗杆AB底部40米的C处望旗杆顶A,水平移动标杆EF,使C、F、B在同一直线上,D、E、A也在同一直线上,此时测得CF距离为2.5米,已知标杆EF长2.5米,人的视线高度CD为1.5米.则旗杆AB高为()
Choices:
(A) 16米
(B) 17.5米
(C) 20米
(D) 21.5米
|
17.5米
| 10,861
| null |
17.5米
|
"iVBORw0KGgoAAAANSUhEUgAAAO0AAABxCAIAAAC2i7PgAAAbBUlEQVR4nO2deXAbd3bnX18AGvdNEMRFECBBipdESRZ18JIs2Y6P8RnZcWZ2Zmt3KpVJUknVpJLUHrW12drZVFLemanM7K63Jp6Vx45nxrLGtiRKsqmTFEVJvMQTvEASAkkAPHBf3b/eP+iRdVCXBd79+bPR6H5AfX/v9/r93u81lkqlgIdnnYOvtgE8PFmA1zHPRoC895BAIFh5O3g2Iel0OluX4v0xz0ZgCX/8DUEsZFIpjGQJgQgHHMvahXnWFRwAm46G49FYnMVYBBhwHAAAYDgulKposVhMZl8e2dNxbB4mOtykZUZVtF0FSiprF+ZZV7CInR46feT8Zye+mKICSY7kGJYDlmGFMnX5az9seLr2aRPQ2dPdIlmJKziAeMw/1HnsYufVMW8C0lw2rsqzPsGAEEhoikiGB855hoc9aa1AYTDKMUV8qOPsl5+e7OrypyIoyzfNyrhgAUYnhq4e/bAn82xRWT3gfNS9eSExQu889JY4Rw+h/9KjOCB89e//sFxcmbk8feXXf/XT1osfJp2Vfy1TC7eIsnnXLCiOQ/hMc1tfU/OgSJAxSjVqoLI9a/CsKwgAjqLFqelKjaikcrvKkickzGZDod1EgGphIZlmU9n2x0+s41QoNn5lYGiibxoypFIsp6U0nwTZ5CBgvdGAvw+vQJqiCh0oALjZ6ZGRybBAKTfbbHJKle3Hpyf1nAlvp+/yLwckzqmCevV5tyJ434HGcRxCiOP42HkDguM4fiua5DiY8IR9o1e3FO3KzzGlkwJBdLTn2rmjpzvFTyura6tNdP4a0jGXgaTbNxtsni/XFsqqLOx5vQposeI+F/X5fI2NjUNDQ+FwGAAwbONk5giCwDBscZQ+eKBiGIZhGEEQCCGWZVfMwmWC4ziKonQ63c6dO+vq6r5aQeMwLrywMN4913OjcfA0atPipEImF+v3/ulh49Z8u8usyP5C2zfXMcfE4uN9N+fxQO4Lu/S9aWa0sUCPqeU6gCUHWzQa7e/vv3btWjAY/MY3XWtgGMaybCgUYlmWpmmRSESSJADcq2YMwziOYxgmkUhEo1GJRCKXyxcProbh2YHjOKFQaLFYcnNzEfpqKuYgFQxGZr2BnGRqYgadm8Iy82Tujv27d7zywk77VoNAuAwe7BvrOJ5MBq80pxYITe0hnZWiB4MCMOhkcqnmPhe1WCw/+MEPotEowzDf3N41BkEQ0Wi0qalpdnbW5XIVFBRotdolpbnosGdnZ/v7+1tbWysrKw8cOLDomFfe7GzBcRyO40KhUKVS/b6cIcNxwXH3/EzQ2vAn/6bAVVSKvNEr7zVebPvdj6Lx73+PfXnndinQRJYt+aY6Xhjyt5/8vLFjJEI5JlrPMB7vvGAQHaoXCu53RZqmbTbbN7zd2kYikXR0dMzMzMjl8oqKigecmU6nSZJsbW3VaDRbt25dMQtXkChERkcC2GimpGrbzuoKvQ0skDca8PsvNF3sv159rbKitFhAE1n2yd9Axxyg1ML40Ehb8/DU8DVPvHvwEpacj6lLktX7E5sv5cZxnMvl8vl8J0+eFAgESqXSbDaLREtnRymKwjBsYmJifHw8Go1KpdIVtnbZSYQyvt7JNO1V2J+XkloAAA5sZZbC6+WijqFA0OuLM04ShFl2yI8vOxSDUNvgLHdN8r0/+kvRnysFbCpOjZ/pCTC/pfKkYjq79q19MAwTCARlZWWvv/76lStXPvjgg+9+97sWi+V+J8tkMpVKlUqlbt68abVa76f4dQoTnp8b7AjTRVhpsVZCSwGA4yAVTccjc8AIZDK1QkksQ172sXTMAbeQDox1to0ORI3q8uqaKlXuokPp9clvjLdElBLRptPxIgaDYe/evVNTU4ODg5cuXdq1a5fdbl/yTIqiFsPiTCazrh/yliQTjUzcCFKy7fYqh04pAuAg7fWcvNB6emQwaS425ditGLUMtTePo2OO42Z7Bq63/fwDNnd7wVsvyhQSAA4lQ4G54VH3qDdKBiPR3HiaoiliA2XVHgmCINRqdUNDA03TTU1NLMvm5eUJhcJ7z8xkMqFQCACUSiVJkgAcx2ZSSQYBToqEJIGt01UkjmMzyD82PtHRmUZVYFZmYlEmTfhmxlo++b8nT55cCOUdshWZikxLp7OekMfQMYu4D4+1/OLdI50DedUqw1NRziiJx3rPtv76yOmWy82TiQnKNzrwknvqmb9osNk0G2q6fBQoirLb7clk0uv1jo2NNTY21tTUqFSqu07LZDLRaBTDMJlcTlIUQJCb6fj8vRvj6ZziP/5WuUViWp+lgolE8v+8+8vP/vVDv/smMzAlaT7zuZATk+F4Ijbg1uYefPYHf/Rs7T5HAcBybNN4vPg4nJalqdyyCqPDpsAZAGDZdDQZno8LzZIcopyABJ6Yi2UyaKNNl4+ISCQqKCjYvXt3W1vblStXDAZDaWmpRCK5dUIkEgkEAjKZTK3RigUEFp2cHmlpvfjlkX/pm1PvyDzzrMW4XnWMEIQWUnGQqMvLMQ5BdCYcgRDHglBt2H2w/tn6w2+U5uHLNdtg9+6XfsC+poWFhUgkCkAKJVKJXCIiOS4VS4TD8TRKI8AwjKPEFC3RSARUthMr6wWO4+Lx+KlTp5qbm61W61NPPVVVVbW4OMIwzJUrVy5fvjw5Odlw4OBLB3bByLGPfvPJf/5/7WMeSVHtK2/9w9+8WK4qWZ8zGUJofn4+Ho9/tVR7K/bHcCDFtESskAqpO0WRxX1Nj+ePlUqlUqm87QAGQplMJ5Nly5z1D4ZhEomkqqqKZdnLly8DQE5OjtlsJggiGAy2tbUNDQ3V1taWbtkCJA3asuKa+NugazkySrCIBFi/ExmO4xqNRqPRrMrdN126d2WwWq0URQ0NDd28ebO1tTWTyQiFwp6eHp/PJ5fLKysrrRYTkCQYdpYbrM5tVu31j3rnWApgHS/urSq8jpcLrVZ7+PDhxsbGo0eP+v1+oVB49erVsrKy2tpai8WyGGkAAMCGy72tBryOlwuBQGC327dt2+b1ent7e4VCodPp3LVrV3Fx8Z35OA4hhHgxPxnrNFm5blhc5yNJMpFI7N69u7CwcMmkMs8Twut4eZFIJPn5+YcOHTKZTCdOnBgcHFxtizYmfFyx7Mjl8p07d2YymTNnznR1dWk0GpvNRj3K4iybhvDwyLCnpT+QTjOYIldorXiqQOvQ3O3REUKLNdAymYyiKHzzbfTldbzs4DhuMBgqKipmZ2fHx8dPnTr16quv5ubmPvyb6QU0fLbl6Kn/+psbkUiENVYKdn7vP7y1L7/GfFd2nmGYvr6+ZDJZXl6uUql4HfMsFyaTqa6u7vjx4x6Pp62traqqymQyPfAb/nBy9GyHNCZ97m//7gVS4B3uHr7ceKQ3V3TCbK4xwe2bgxKJxJkzZ6LRaEFBwWplcFcXXscrhEgkcjqdlZWVyWSyvb2doiiFQimVSjGMIEkCx3AMw3GC/LqmkYsxyWSALjRUWb71TB5AcPzse/IvfzQw09A+DdtzvtYxy7J+v9/tdi9u+NuEzhh4Ha8w1dXVIpHoyJEj7e3ter3eVeSSyphUMsOwLIuYTDqZyci+qqMJySSMueYZjVAi4wAw0IrkZsdu6YKZFOBwe1gxOzs7MjIikUjUarVssy6t8jpeOTAME4lEhYWFBw8ebG/v/N0nH4lf3InCM8d/e+JMe89EUtzxTmL6xW/79+3ZlQsykZTCRSaZhMQwDIDzNLmH3CfoF+22igYbyG970puZment7VWpVEVFRZs2qbcZ56DVRaPRHDx40JafP+4Z7Wz7oq3pwo0rN+NaOWXC48PXvGOTE2FIIwCRCJdLxRgL0dnp3parx3/x+YXrnyQaRDnFOwwgvs3/TE1NdXd363S60tLSR0qDbER4f7wK0DRdX18rlQjPnv40V2f6ix//qUihQBgAYLQmT6G+FfuyACFfxydn3/3no22Dl/DK1B6GvKeQ0Ofz9ff3NzQ08DrmWVEwDLOYzQihkdGJaCw6OT9fX1GhuqOQ8KsTAQS02mKu3LtHpocJpre/seuy+EtD3U4zLRNimUxmZmZmbm5OKpXqdDqxWLzyv2WNwOt4dSAIwpib+8yhp5uamo5/9plcKq2pqVncTX3bWTiATL/lYEPhngPhttbf/fqn//B5e7MhYy53aHJkQiqVSvX29obD4dLSUq1Wu2o/Zg3A63jVEIlERUVFCwsLoVDo6tWrDMPU19ff+6CGAWCUBDRPFW0NvPliz09nmSFfMJnRAFCpVKq/vz8ajZaUlGzOtPEt+Oe8VQPDMLFYXFJSUl1dHY1G29vbh4aG4vH4fU4Xq8xFu3cVavXSSCLFAQYAyWSyr68vGo2WlZVtcn/M63iVycnJqa6uttlsoVCoubl5bGzsrmYACKF0JpNIMalYnMWlBE6SKJVOJQEgFApNTEywLFtYWKhQKFbpF6wJ+Lhi9ZHL5fX19QKBoLW1VSwWq1QqvV5/q9A+Gon29N7o7b/h67264O50J/NEdqa/I84GtJNen0KhMJlMG7Av0WPC63j1wXHc4XAkk8mxsbHh4WGapmtra1VCZn5mYmQ61uv2dHZ2dHbe8PvnaLFUlUuZCP9g93VPHxGLxw0Gg9PpJIhs9/1bb/A6Xis4nc633377vffeO3HypMlkykn1dX354c/PTHZ6IhyL4jFJbvG2yjeeL8+TSWLBIffgwMBAKpWqq6srKCjYnDUVt8PreK0gFAqtVuvevXuvXrvW2NgY991IBucKS7dvrTMr5Eock6nybPZtpUYZRcQWrBZzMBjs6emx2+0Oh4PXMa/jNQRJknv37hUIBD/72c96e/vNFvNf/fu3a/btE9/WyQUAWFavVKtbW1snJiYsFssmz7gtstnH8ZoCwzCpVJqXl2ez2bQ6rUQi0ev1d4kYAKLRaE9PTyaTcblcyiVWATcjvD9ecxgMhkOHDslkskAg4Ha7VSpVfn7+7SdEIpHOzk6GYcrLyzd5uu0WvI7XHAqFYv/+/VqttqWlpaOjI5PJqFQqhUJxa8k6Eon09vZqtdqysjK5XL661q4R+LhiLYLjeHFxcU1NDU3Tbre7tbX19pcDhUKh8fFxgiCcTqfknqhjc8LreI2y2Lpz+/btIpGopaVlcHAwkUgghObm5qanpymK0mg0arWazxwvwut47ULT9P79+0tLS30+X1dX18jISDKZHBkZ8Xg8drvdZrPx6bZb8PHx2gXDMJqmt2/fjhC6cOFCJBI5fPjw4ODg6OhoYWGhzWbbSO/SfEL4Ab3WycvLq6mpMRgM09PTzc3Nly5d8vl8TqfTarXyOr4Fr+N1gFwuf/XVVysrKz/++OMvvvgiHo/n5+frdLrVtmsNwccV6wCKovLz8/1+v0ajMRqNZrOZT7fdBa/j9QFBECqVymg0ikQil8u1aff33w8+rlg3RCKR8fFxlUpVVlZG05v0PYX3g9fxOmBxh8jc3NzExIRcLne5XBvsLahPDh9XrAM4jguFQoFAIJlMLu4WWW2L1hy8P14HMAwzPDzs9/sdDofBYFhtc9YivI7XASzL9vf3z8zMlJWVGY3G1TZnLcLreB2QTqcHBwcDgUBJSckjNQDffPDx8VqH47iFhQWv15tOp51OJ7/8sSS8P17rLCwseDwehJBGo9HpdHyB25Lw/nitMzU11dXVpdfrCwsLb3t7JM8d8P54rbPYplutVrtcrk3bFvah8ON7pWBTEJ/1BkKBUBIwDMRqWqG1qkU09RBX4vf7PR7Ptm3bCgoKeH98P/j/ZaWITWZuHH3v/fPvnxslCDJT9Jyz4Y3//rKr3HjfjUksy0aj0UAgEI1GdTpdXl4ex7++9z7wOl5+OAbSkz7P4IV2LiMr2V+j4WJj1yeu9x9jj+n+mKstLdPhOL5EJXE6nR4eHg6FQmazeTFNwRcc3w9ex8sPYmC+f9Q380W46vmXtnxrB8FOn/voJ/9y5JNPPz9bgatNjlqVZCkdJ5PJrq6uSCSydevWTd4W9qHwz3nLDkLYvF8qE5tffrmsojwHBHrCWLentvrlBk1iytM/4PEjxCz1xVQqtdjeuLS0lG8a9GB4HS8/GAESc47JUV2iM8pwAABSb3UUVlVaiHR8fnY+xgG71PdCoZDX6+U4zul08v1WHgwfVyw7OEkqbRYOAOC26EFIS2VqkUQqEFAkBvdGFaFQ6ObNm8lkUi6X5+Xl8YXzD4b3xysBRhA4QeDwtV5RPJxMhTT5JpPVrMVwwT1fmZycdLvdBoPBbrcLBPd+znMHvD9eeRBAxDuVGJ0Ul5TkbynNVdzzSjwAGB8f7+vry8/Pd7lcfJriofD+eOWJcqi/b5LsnthRW2LdX0YTv9cxx3EIIQBgWdbj8bjdbovF4nQ6+X4rD4X3xytNOpScaulI4FLjK9Uuhz4P+8qXJBIJt9t98+bNYDAYCoXOnj0bi8UMBoNer+f98UPhdbyypObmxoa725NYZeG2Pyg2AOCIS6SSCwvzo6Nj3d3dk5OTPp/P6/XOzs5arVa1Ws0740eB1/HKwSEm1vXxxOBQV/6bJRaXC0ACEE8khkeGjx07Njg4qFAojEZjUVERQRBGo9HhcPB9Kh4RXscrBRPGZjo7fKkeVOKqKtnqEEoAwUx79/W+z9u84VDY6XAUOBx2u31ubm5gYECj0VRVVfE6fkR4HS8/HEKZRHri6vT1Y595CiekJX/O+sTz4vGFqXjnb89d6G4akxz+1vMvPl2TazQKhcJr164FAoHc3NySkhKZTLba1j8WiE0nkuFQLM2mEAZ3VDWROE5LVRKxmCJhiXz5E8LreNlB6Xi068NzJz/5+add14NiRqgd+xUhFhBshkGhBamjcPsLB3fs22U2mwmSjMfjwWCQZVmlUmkwGNZV5hgBxOdGL17+5f8+0xfoDgsBMcBxiAMAxLIWmXrPa3/93NM1djNA1ve08DpefjAcp8QirV1fotwbTwsIYFiOYdn5+XD3ZPSpEtUzdXuLHPkESSKEPB7P+Pi4TqczGo3rrWkQBoATAoFIJkxPTwbGUshRrtUo9RTCcYj4grH+o1/8Fk9wzz5fbTYJyOwO0MfTMcem2Uw6mUEs4jAM53CKogihAGMZ4BAmEBB8guhecAEtKXutzvVS9bcR4r6aUmOxWGdn5zvv/M9Ss3qv2SynBACAEHK73WNjY8XFxfn5+RzHrauMGwYgVtufqvkzDQe/sl6bIv/tD7duLdohTVOkwH/9X69/9Pf/q/E3vxplFT95s96utWT13o+nY+zmpYHmE+823RydjlG0gtHX7juw5Y0/kA+1MqkFSW29RSpdR/PgioFhpFBACm//a2KxWCQScbmKyku3yH//dmiSJBfbzb/99ttbtmxZVyL+GpEMWNqKiw2ltrwSo0gJIgDIr9pHEd/3+D9t8p56//NS0cFtFlc2K58eTccoFJ/1D/dNTA419w8Me7yh2VCKECZZNDTcPX8BR529Fpm4+Km93ANe1x2JREZHR+fm5tLp9HrzNNkEwzCO4/r6+m7cuBGLxUZGR48fPy4QCDAMSyaTzc3NQ0NDAwMDHMet/eCY4ziCIMRisdFotFgsBEEAiqD54bE0OSw2NtD418WmYruh6rU9Vec8c/0ftLj3FthSLkUWFfAIOkYpCHcPNX3243883SzekXvg3/2n/+YsNcrTqQgR67py/LMP/+Nlb9n3d75ch8gHhe9er/fdd99ta2sLBAJZM3/dkk6nU6kUx3Hnz59///33F0f1Yh+3TCbzzjvvUBS19oc6QkgkEtlstpdffvk73/kOTdMQXmD6bgxlFDdydQIBdVs3RQyQUq4Ra+SsYG42FonPAGSxw9dDdZxk2dHeo5/87ljbOeQq2FH75sGdVWU6BQUABgC6qL/DpQ6gHEKi0WIPbK2gVqsbGhocDkcsFsue/esVHMcXF+oQQos1FYuQJInjOMMwtx9cs3AcR5LkYivbxT2wqdDcZN8lijxgszsldz6nYjil1uZqdTlECGWYTDqrljxMx5w/5mttOnblTBsIv/3W63+4+3tVt2+wMWmtZbW7TZRNK1NRD3THkJOT88orrzy5xTxrFQ6AW5if7W0PKByiXVsMUvEdH2MYJhDSArEcxDRFktnNxTxk7T7jG58+/+XlCdm8uf7br1fuqbh7l5iINuTkVucZc7UqIPhCgE0NAhgNBed7WrcLmPySIhDfKVWE0ELQNxf1I71KppDlZPXeD5AeCzA3M9Jz9fMeP2011tbVO/T2e9y3SGc37Hx1m8tRrgIh37FpM8MhQDMxJj2urZTqTCUiuNMdxyHS13NjfMgDVltBXo4uuysXD7haBmDMN9bXcnEG9haU1G7Np6h75wJKZ1ZrTWoMg6U25/BsIhACvz/OxOd2OKQWvfmuT8OjcwOnWzrmh2etO10FDqN4yWt8Y+7vjxELkWBkbtbHIJFGbdBrBEs+xmEYhuPY2n+05llmOIQS4+4F30hao4S7y5sSwZFrFz/8uDlgiBUe2lcmK8x2R/37+2PEQSKRSSVjOCYSCsVCfu8IzwNgMcw/cs03MZjIqzHoTcrfH4+j+dHua1cvnDp/uYsWV9TvfqZuq1mky7aW7q9jDIAgcZykABDLMizA3T2ZOOAYhDCWIwkc+GrvzQwCf3Dm+oWz/p5JqfE5TkwkIhEGOCATfdM9pz/4p09P9NHJijf+5M1n3ni6KAfHV7BOCCdAqaDlMjXDTYVjc9EMBncV3CGIdwaDZE+4zGkkzXyfkE1M86Wuf/7JjzvP9EbTEuWPfOdUtJJAAADJaQ5l0rnP7avbXb3NvrvKZCSyL2J4oD8mgcjTGW1b7OKJqfa+qxf7bHu2WoT0opLZMBMY6e7rGo3pMzklVo6vm9vUxGP4QlisqSjOFZAcE2ZmQ34AAEAMK9Hlbzv02sG6soblfEHPA/RHAeSbnNvqXmpqPnq8/VjoA4uDISx7clkAIKY6pju+/B/HRWAx/3APZlAvo4k8a599+/aWlm5BCGEYBnd0BeVwghLK1OJlLkHFUqnUXYduL09BEV9o+ELz6WOnO6db06W5SnGhCgEAEtG4Ikckd5VvKayvzlMT/BoIz2OTTmdtcfoh8QAuM6rKX3lenJGgDz75p19cnU189UHRi7kv/NmRl3bsL+T7jvGsPkv4Yx6edQcfDvBsBHgd82wEeB3zbAR4HfNsBHgd82wEeB3zbAR4HfNsBHgd82wEeB3zbAR4HfNsBP4/+pAsGhappV4AAAAASUVORK5CYII="
|
<image>如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()
Choices:
(A) 60°
(B) 50°
(C) 70°
(D) 80°
|
60°
| 10,862
| null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAKMAAABgCAYAAABxEMKaAAAZw0lEQVR4nO1dfXAb5Zl/Vk5wKzhEK4pSQhDgWBSc1pw5xqC7xldkR4BTPK3ChElb42KIiRXOiWmbPzJjhks7buPE8dSB9C4dTD8YOJzYTm2UoQ6ESWjd5o+4F/kjnIppMVdTcXVC5EGJYr2/+2O1q93VrrT6lqh/M7ak3XfffT9++z7v87zP+ywHALSEJRQADPkuwBKWIGCJjEsoGCyRcQkFg08MGRH5p5wAS6fEuZ4c/z1Ox2PqDMVnHHBFq8CAiDjJZ0IwIhh0pl1CtgGAOE7eGUU3MgKQE5AjYtLHDkQTw7vpyARTPKUGYmC5LacECwsLObt3/iFvZyBMBCLGFsURUklEoiIkIxERcZEKRiptkAx3l7lJ2v7gDmIGjjiOk0kHgyF31ZU29gsvvEAPP/xwzu6dT/APoUH83lrHkcGwjDgDR8tKlhNn4Ijj7qUpYvJBhIqSjDwBOa6EiAziCMSTk6h367PE1dXRrbeDFwX5KqYE9913Hx07dozOnTuX76JkHRzHiSTjOI72jzJyryMa8IZpMRwmxhjtfoKjCs5BZ4udjDwJBTDiInTjuBIa6mkl1NVReDRMHBSiII8z4xUrVtDdd99Nhw8fzl8hcgippArTFE2hlb62xkAGg4E4jqPvHnidWuvepH97cp/iuiKFVBwQEdHUAP0a99JT5aA36srpNk5etTAL57aACnzzm9+kl19+Oa9lyAWUc+WzRzxEt94iT8RAt6x20Ov/MyM7XJRkZIxFR73I/NH97Ov07PYNRETkuLWcTycZDktK8iuwGxoa6K233qIPPvggr+XINoR+EVr+tddeo/V195MwvWIEAkd0S3k5EeQDRNGRkSeigYgYIcxXcKhnKz333HNk4DjiKlwaV+auqmrWss997nNUW1tLhw4dylk58gmOiMI0SUcPgO578AsiOQ3EK5bv+HzksN0qu6boyEgGEP/cGYgrIcLkYRrF/QTwCsuZod1ku8XKJyWOGOMJm0trqprZgohow4YN1N/fn7uC5AmC+a1k6m3itj5At5OBODIQ6DKfYGqAvnvgdbq/bp3suqIjo4FKoqJgYpgM20fpufYHRbnwx5l3iMK8kiM3rObftr9hwwb6/e9/T++//36+i5I1IByZQnFEg0dfI9tNN1HU7ricAJB7m4uoroWeaqhQXFyk2NNaKwyRGPCGAQBbailyzADH1j0AgHA4DCCc8/IxxlSPNzQ0oLu7O8nMMlCgHIGBb/MQJuAgwpGJxejJycN8/9S28O2jqFfRkVHZyTzZ1Ds/HA5rkiJf6O/vR1VVleq5QitrqjgztFscKJR/XQMTmtcV79q0CqCy3smDEZGB195kdsrcY2FhgSwWC01MTNDNN98cW+Y4a+26l+HzDMZYSqtdxU1Gjd45dOgQeb1evqNLiIhFlgZzVNVE9zp8+DBdd9119OUvf1n3dXN//YA+b1kR5668hSHfAECcYZn44HMsTBzH0U233Ezf+ta3iOPAL1yo9F3RKTBSiI4Pkv47efIkPfTQQzQ1NcWPOAzEgWLWQfOJNWvW0NTUlPgb4pKm8jNMwWCQBgcH6ZWX/4tCFy+J1yglAMfx9cw3OI6L2A8NRLhMHwUu0DP//gytXr2aLyNFJJPaEJ/VyUOOIMy1PB4PVq1ahfXr18NkMsHj8eS5ZOoIBoMwmUzwer1x0/X398NsNqO9vR2BQCBHpUsNQh9I573z8/MoKyuD0WiE3+9PmEfRk1FQYADgyJEjWLZsGcbHx+HxeAqakI2Njejo6FA9Nzc3h4aGBthsNvzud7/LccnSA2MMjDG8/vrrMJvNMBqNeP/993VdW5RklBJQwPnz53HDDTfg8ccfR1tbGwCIhOzv789xCRPD4/HAZrPFHO/r64PZbMamKrkWujnyTHk2qx/PF5QWi2AwiPb2dphMJnzmM5/Bb37zG/FcImtBUZJRDU1NTXC73fD7/bBYLKJYO3HiREESMhQKwWw2Y3x8HAAwMzMDh8OByspK8Zivxw6y98CH6IijPJ5PKMk1Pj6OiooK1NTUYMOGDdi2bVtS+X0iyDgyMgKr1SoSsLm5Gb29veL5QiVkS0sLduzYgd7eXpjNZnR2diIUConnPZsJ9h4l5Xzosed/RFQSsbOzE0ajEZ2dnRgZGcHq1atx8eLFpPIsejIK4vnNN98Uj3m9XpSVlckarBAJ+bOf/QylpaWorq7G9PS07Bxjr2Iz2SHlImMM8PXArjiea0jbdWZmBna7HZWVlfB6vWJ/COI5GUN+0ZJRqKQgnpWoqanB0aNHZccEQvb19eWiiKoQxG1nZyc++9nP4qqrrsLY2FhsQs9mzVWMQhDRAHDw4EEYjUbs2LEDoVAIjDE0NTXFiGe1Ob4aipaMAPDqq6/KxLNA0HA4jP7+fjidzphrxsfH80rI06dP44477kBNTQ1mZmbQ1tYmKlxSeDYT7tmnLqJjRXdu4ff7UV9fD6vVihMnTojHBfEcDAZTyrdoyagmnqUIhUKwWq3w+WI7bnx8HFdffXVOCXn58mV0dHTAbDbL7nvixAlcf/314lyRf6A8MSIaQEGI6OHhYZjNZjQ2Nspsn0J/vPXWWynnXTRkVM491MSzMk1XV5eqCAeiI+SBAweyUj4pxsbGYLPZUF9fj7m5uZjzVqsVx48fjx7wbAbRZsToKJ7NGRfReud0gUAAjz76KMxmM4aHh1X7I1ntWYmiIaMUSu1ZgHJucu7cOVx77bWYn59Xzcfr9cJisSTv0iVBvM5cWFjAjh07YDab4ypO7e3tkodGSxRnR0TrIePY2BisVivq6+tVV1JS1Z6VKDoyaolnrUZtaWmJS7bp6WlNQqbj0nX8+HFYrVZs3Lgx4VLY+Pg4zGYzQqGQXFHZ7OHLoFBmcjVnDIVC2LFjB4xGIw4ePKiaJhPiWUDBkVFKALX1Ti3tWQuCmSceBELu27cvucKqYH5+Hm63GxaLJamlyLKyMoyOjqZ9/0zB6/WisrIS1dXVmJmZUU0jaM/bt2/PyD0LjozxoCWeE8HhcGB4eDjmuJTkU1NTsFgs2LVrV8rl83g8sFgsaGlp0ZwaaKGjowONjY0p3zsTENqjq6sLRqMxYVtIxXMmHIOLhoxK8by4uJjgimjjDg8Pw+FwJEz/zjvvwGq1ajowaMHv9+Mb3/iGqIik0jFerxcmk0m2ApNtSJcYAWB2dhZr165FRUWFuCSpBaVxW8+9EqFoyJiseJYiFAqhrKwsZpVDDTMzM0kRMpNuXhUVFRgYGBB/K8mSTfT19cFkMqG9vV2XnTCT4llAwZFRzVqvKZ6Z/JrotbF5dHV1oaWlRVcZBELu3LlTM43UzUt1BSUO1ObCALBr1y5s2rQpqbySuZ8a/H4/XC4Xrr/+erl5Kc51mdKelSg4Mipx/vx5rFq1KqahYhFGa53G8lndFszPz8Niseiey83MzMBms6mujghuXh0dHSmvNqjB5/PBaDTKHrpsjozCHHfTpk04d+6c7JzWfTOpPStRkGSUjo6CeFYbMdUarLWOMDgRPT4xtAe1bn7bqtvtxu7du3WXY25uTkbId999N8bNK9OoqqrKujPHwsIC3G63quNIonXkxsbGtI3bWihIMgpQrj3HAwPAMAlHnTvyexJ79gyInwBvwrFarbqVBMYY/vKXv8Bms2Ht2rUwm8344Q9/mFUlo6urCy6XK+P5Cg+usBrkdDpVV4OkUBJzZGQE5eXluHTpUsbLBxQwGdWM27EjYVi2D3xiaA9a9wwCAAb3tmLP4GRMvk6nU6YkJMLZs2dx1113obS0FBs3bkyiBqlhdnYWpaWlGd/zEgqF0NHRAZPJJPP1TASBkEJ/nDx5UlOEpzulKFgyfvvb31bVnoXq8hWXKyyDe1tBXHSuODjB5EELmH4zD8A7jJrNZvT29sLv96OyslJmC1Q2frKdoZX+nnvuwS9+8Yuk8oqX//T0NKqqqlT9JvWWK9Ha8yfWzihozxcuXNCVXmgI6XzRXVeLSSkVJV/Lysri7swbHx9HZWWl6OYlYH5+HpWVlXjkkUf0VyYF9Pb2or6+PmN5GY1GdHR0yKYXWuRRs98ODw9nRXtWouDImMg1TAZpe04Oguq2iD/37t2LMPiRUdnwvb29aG5ujjGxCKJM6eYlhUBIYYTUMtOkg7m5OZSWlia9iqPMw+FwJDQ9JSp3NrVnJQqOjE1NTdi6dSsA/R7CAC+it+wdjDmuJurVzDyJ3LyU+4GrqqrgcrmypszU1NTEOCdEyxCJLwSVmFAMOPRKP0wmE7a2utM2PcXz3I4X5ygVFBQZBe1Zr3iOIhxj0gEA9zoSFRol3G43Ojs7EQgEdLl5KREIBGC327NGyIMHD8bMbRN1+vz8PDZt2gSLxYLR0dG0g5dpGbezIQ2APJFxcXExpiJJiWcJJo50aewVMYA4wtAkAIRjhhCfz4cVK1bgxhtvjHHzSsbhNFuE/PDDD1FaWiobpdWsCQLeeOMNWCwWuFyupMS7lvT56KOPklp7zgTyOjKm4xqWbP5S/O1vf4Pb7cYVV1wRd8lPz9qwlJDBYDCjo0V9fX1CM8zHF4Noa2vDNddcI9HA049HmQnP7WRREGJ6eHg4JdewZMEgd/M6fPgw7rnnHnmaFMgUCATgcDjgdDozujzY19eHmpoazfPj4+Mov9WGmpoazM7O6s43UR0z7RqmF3knYzzxrKch1Cbw4nWS736/H5s2PRyz38Rms8Vd2tNr4A0Gg3A6nZqETJXkpaWlqkTbtWsXjEZjxjzUpcbtVatW5UR7ViLvZMy4eFb2A4vv5vXjH/8Yzc3Nsdmk0KGJCJkKlGGXfT4fqqurUVlZmdCArVaHRPVqamqKcQ5JxqqRDmRkDF5cFP9ygXj7npMCU3xGMDc3hwcffDCurS0QCMBisYgKTCqrKNJrPv74YzidTtTU1GRk2iENu3zgwAF8+kojdu7cyW+ahzy2OXG8RWGvuxVenbq0tK3T3fecLmJGxlwRMVXtWS+ScfNqb29P6GKvl6SMMYRCIbhcLtjt9rQJGQgEcOWVV2Lt2rWwWq3Rh2pyEEQkeiQJaK2LPcYrNPED7efSuK2FnJExlX3PqSCRm5faPXw+X4w3T7plkRIyebtpFAMDA7jiiitQVVUlIfYUakmwoSoINjmILV28I0gyNciH9qxEXDIqxbaaGNcS6/FE/uDQCG66uRwf/t952XGleNbKQ+04Ywz7evbDbDbj+z/4ES4EgjH1kaZVor6+Hi+99FLM8WQhzTudETIQCKCxsVEc3SsrKyM3iIjmui06Hhh5e6qlZoyJ4jlbrmF6kXBkjPdbz3fl77/652XiWTgXo50mkff09DTs/1yD6rv/Bf99Zko8HrzIG9f1jPajo6Ow2+0J0yWLUCiEjRs3orKyUrcxWthz3dDQAL/fLwu7zDApGRVVkOSAXgjiWUBSZIw3QklJpSTYx8HL4jWNjzTLxLMWUfQe//4PfiS6eeklsBbWrFmDU6dO6UqrB9IHrLGxUZOQQrpgMIjvfe97MBqNeP7552VpxLDLk4MgjrBnSP4+lcE9W3n3OS7qPhdzH5UyZmNjVarQNWeUiulEaeOlGxnhxbNUZOnJQ6atRoh9+vRp3s3rX2tFN690yXjgwIGsbIgSEI+Qgtua3W5X3TQvhl2OKC5dg7EucBNDe2SeS4kgeG5n2zVML0QyahEu3rlkRKkgDn49ehxA1G9ODxml3z+68DGefvpp0c1L77RBj0ISDAZhsVg03fEzoWA1NjbiS1/6kuwenZ2dMJlM6Ozs1LxOCLv8hz8MwCET09F54VC3W1t8K9JmY99zupCRMd4IEo80ehQYqfYcTzGJl7fg5vVAfQP+9Of/1aVs6ambFNu3b08rqoQetLa2wmaz4dSpU6ipqdG9wUsIuzw1tEccHaUUUfNc0ppDCuK5kF4Rp3sFRm9nJrXvOQJhlNSKEpGqm1cqmJmZkcVLTAfxOrqurg4cx+HJJ5/UbWQWFBsAorhWbsnVc/9s7XtOF7rImI7tUf++Z3UkE80rU3C5XPj5z3+elbz9fj8aGhpgtVrhcrlgs9kS7tITEAqFYLFYMDY2lnBEy8e+53QRl4ypLg/q3fcMaDea3mhealHL0sXx48dRXV2dkbykOHr0qBj1VVBi2traUFZWJlNa4tVDK+yygHzue04XWXWUSGrfs6QD0onmlSlUVFQkHbZEC4FAAC0tLZrTjKeffhpWq1Uz9JwAxlhM2OXoydjpYa73PaeLrJFRz75n5W/ezWsTbrzxxoRiPZMTb+Vbp7TeLJDKPcfGxrB69Wo4nc4YZwxpfh0dHbBarXj33Xfj5segEnY5DnK57zldZI2MWvuetZDvlzZ6NvORYgUEg0Fc+w/L8E/P/Dal/EKhEHbu3Amj0ag7brhASLWg+ECULELYZSl1mEo6KXKx7zldZIWMyex7TieaV+ageOuUZzM2e4AdD92Bf3xYe1uCFqanp8Wor1rE0kJnZycsFgvOnj2rmUYIu3z5UqzGn899z+ki42RMxjUskZtXvKc1o0+yrwd28e0CPvTY+e+zs7NYuXJlUv593d3d4qb5VNHd3Y0VK1bEdZ7lwy6/lnApupC1ZyUyTsampia0trYC0Nbs1F7amE/4euya80SXy6Ur1Mjc3BxqampQXl6ekfXt7u5uWCwWTUJKwy7HezBzue85XWSUjPG0Z6HCWi9tzB8Ur7Tw9cAuvGUA/EuD7rzzzrg5vPTSS7j66qvR1taWUS9pgZDj4+MxHuVerxfXXHNN3DbM9b7ndJESGdXmJYk2Vk1PT8Nut+sOPpQzKN46xdir6OnxyTqqqqpK9loyAfPz83C5XLBYLDh+/HjagaDUrjl48CBMJhNOnz4dk1Yadll5XT72PaeLjI2M8bRnaTQvKQriydTx1qm+vr6YcHjHjh2DxWLBxo0bs2YLFdpHiLctndIwxuKGXS4Ez+1kkREyaq09q0XzKggCitD31inBm2d2dhbBYFCM+poJz3C9UCOkWthlIH/7ntNF2mQ8f/48Vq5cKRPPeqJ5FQKSeevUzp070dzcDJvNBofDkXA9ORskeP7552EymWRTBiHsciHse04XKZNRmFArN1ZJo3l98MEHMdcUOrTK+J3vfAdElNZ7BjNRlv7+fhkhpWGXhf7I177ndJHWyChozwsLCzI3r1deeSVT5cs7pqenUV1djaqqKjzwwAOa79DTQjoPoNa1AiFPnjyJ9957Twy7nO99z+kieTJG2ieqPZ/Ii5tXJsEYUzUe9/b24spPC1FfL2JsbCy6Sy/PEAjp8/lgt9vx4osv4oYbo+JZHmYayEQwqGxDNxmVndXU1ITHHnsspZc2Fi74Dpubm4PT6URZWRl++1v52rSWmScfEJYaL1y4EKM9M/Ff8YADANIAiIiT/kaYOK6ERkZG6Ktf/SoZjUb6whdsVFu7jj71qU9pZVNw4EAEjojIQESMiIgAEMdxdOH8R/QfB/+T1qxZQ7W1tbR8+XIiYgTOQByIzpw5Q2+//TY99NBDeayBHBcuXKCRkRGamJig0tLlxNcrtv8KHapkZAQySKshqxWjn/70BXr/vT/TXz/003XXXUtC5TVvwnEUh/MFh7m5ObJ8foXYBtLyA6B9+/ZRc3MzmUymnJcNHP8w8WBEBo6IcbR+/Xq66647KVFfFDKWqR0UOsG9jqPnRuXn9gxN0FOPPSqOJFIII6f8WGy6fCPVEUOoC8dxdOnSJXrmmWcyXbSkyyL9TcTFbe9C7AsZEsnx1jp+wzgDcGZoN4gIA5PJve2z0Ew6ekujlW5ubg5mszkvWmt0XXlRtYDSthZe2cRYboJ5pQvNMZ0RKEyTdHb0Xrq/4TbiiOiL5WWRk8k9YYX2NOotjVa6FStWkNPppF/+8peZKpJuCG0JcATi5fXg3ieI4zgyGAxkcG6hME1Sa+seyTSjhBhjRAU+U9IkIweiqSMeIvf9dHskmXubi2qf3EtfW2MgAMQIJCgArNBrmjSY7Jeydm1tbdTT05Oz0ggQ2tlgMBA3fZg4jqNn/1TO9wdjhJ51tIxbQ7R6tax/DAZD4WszyqFSaq0f6H5CtmQ24JXYqph8+A+Hw8VmSUgb1dXVGB0dzfl9GWMIRwJA3evukp1bXFxE1xYHH4uHRfozzFAMvRMzMhoMBgLCREQ06vkJDUyFCAw0uG8Lff2LJTQ4ERkxRNOIcCFXEA9edARjcVJlBtu2baP9+/dH750jiwHHcfSrnv10jPsK7d//lOxcSUkJlZWvplvKbiPiImLdwMmtI4UKJTsFX0U2cQi0Lvrm+kVMoJYoGoiSMYQVD1shrYFmaxxQxl9cuXJlTj2SGFuM6Qv+BBCGWizK4lBeANWRkf8c+vUxal13n3i8ZMpHx4iorNxGRPwTxzgori0cG1e2xgGpMrZ8+XJ64oknxNExF4oax5XE9AV/gshAJarpiwUx7BEKP+r5CdU6HyQiItAUOSq+TkRfofsbbhPTLpO8T7ewkH0RLeCxxx6jF198kRYWFnJ2z0T1QxEtMEgRQ8YzQ7uJ4zg6cIzo618s4U0GXAW9se5xAt4QNWuhQTgiIoR500EOSRAfkTJmuU8A5MXMw26/nWqJ6B3fH2OJNzVA3b+akpWxaMiplNuqm8FVg0HHzlEKSV/LpaH91KlTfCDPHGKg+4lIBNszYrt7j3SB1kUjkSXa2F9o0FyBkRMxsWJSOFWNlDXHBbLb7bkJQiCpl7AiRmQAEcGxVfnKDXWlplAR12tnCfqxsLBAV111Vb6LUdRYIuMSCgaFY4tZwt89lsi4hILB/wM69yhZFnyMsAAAAABJRU5ErkJggg=="
|
<image>如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()
Choices:
(A) 12
(B) 13
(C) 6√{5}
(D) 8√{3}
|
13
| 10,863
| null |
13
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAYAAABw4pVUAAAQE0lEQVR4nO2db0xTZ/vHv6dK4kK1GrvRxWMKo4SSsgwGbvwCSUW76POobEYWNEBSX2w8Bpf1l6A/jCa6jBc802Rbho84Z3SJy0gkgMqT8ShqWdjGVjZJRkN9aBVXCCXlBaw14wXt9XtReugpben/U9BPUuWcc59z7nNf5/pz7nPd92GIiJDCzM7OYmhoCCaTCZOTk9Dr9dw2i8WCiYkJ+F4Cy7LIzs4GAKSlpaG0tBQsyyInJwdFRUUQi8XJvoSIYFJNIOPj47h37x7u3LkDvV6PyclJlJWVYevWrcjOzsa2bdu4Rs3MzIRcLuft/+TJE4yNjQEAnE4nDAYDLBYLrFYr+vv7wbIsysvLodFooNFokJGRkexLDElKCMRkMuHy5cu4ceMGHA4H1Go1ysvLoVaroVQq43ouo9GIvr4+3L9/H3q9HlKpFJWVldBqtZxmCQoJhN1up9bWVioqKiKWZamhoYFGRkaSXo/h4WHS6XQkk8morKyMLl26RDMzM+R2u4PuE2pbrCRdIDabjXQ6HYnFYqqpqaHu7u5kV4GIAjdqe3s7VVVV0caNG6mxsZHsdnvQsokiaQKxWq1UV1dHEomEGhoaaHJyMlmn5gi3Ya1WK9XX19OGDRtIp9ORzWZLcM0WSbhAHA4HNTY2klQqpdOnT3N3XaT4N2Yy7lqbzcar+9zcXMLPm1CBdHZ2kkwmo7q6uogFEc6FJ8uU2Gw2qqmpIblcTj09PQk9V0IE8scff5BGo6HCwkIaGBgIWi6ZtjnQeSM9u16vp7y8PNq7d29YN1g01yeKd9Q2ODiIN954A9u3b8dvv/2GN998M2hZhmHiffqQeON773kjPbtarcbvv/+OgoICFBcXw2g0hiwf1fVFLMIQXL16laRSaUC1FkobAhGPmly/fp2kUim1t7fH4WiLxEUg8/PzVF9fTwqFgoaHh+NxyKQQq2AMBgOxLEuNjY1xqQ8RUcxP6rOzszh48CCcTie6u7shkUiCaSIYhuH+FwwCCPGrw9TUFPbs2YOsrCxcuXIF6enpMR07Jh9iNBpRXFwMuVwOvV4fVBiAj90WWBhg4luHjIwM9Pf3Y926dSgpKcGjR49iO2C0qtXT00MSiYRaWlripa0C4Aq7ZDg+sLm5mSQSCen1+qhrFJVAhoeHSSKRhBWTp4ozP1YBAnx+DKji+MW4HNv3Gru6ukgqlZLZbI7qWGEJxPeEdrudFArFitSMC8f30YU7owtLZqoA6NjF/0R2kDDur6amJlKpVORwOCKuY0Q+xOVy4dChQ9i1axfq6+tjs5UC8GgE0GgUC0vZ+NvxfXhoGeOeT+Be/hgUhvs5efIkCgsLUVtbG/w4QWKpsATidYINDQ0AgM8//zyc3VIGIgJZbuMso4SCW+vGI9Mt5GZnLj4gBmgN/4YLNxz46quvYLPZcObMmYDbgwYW4arS1atXSaFQRN05KDS3v2zgmad/Hd9HwD4aJRdnhSLxdu4wdrBarcSyLHV2dvL3DeFXlwgkUOGBgQGSSqWCvECKHU8ktcSpVxyL+liRYDAYaPPmzWE/MC+rIePj47Rly5aE93ImEtdoT0ABuN3uMLQiciH4097eTnK5PCzrsqwP0Wq1+OCDD7Br164wrWfq8ejxY1QoFUvWMwzj4xPcMN9pBcOs8axnKmCGGzE+OwMADhw4gNraWhw5cmT5wqGk9e2331JRURHNz8/HfJcIScPboNt+jwX+pnn09gWCJ4jyMW0eH+PBFXTfYOt8mZubI6VSSd99913IckEF4nA4iGVZMhgMEZ88mbj9/vZddo328Br4tjnADgtcOL6P72MWfhdu/5d/vhiuvbe3l5RKJc3NzQUtE1QfP/roI+zZswfFxcVLtgnaH+UH4/e377JIsQtuz00HIsJb2QF24Aj8ELJ4rW7ecjQ9sjt37sRrr72Gc+fOBS8USEpms5mkUinNzMxEfTekCuHd0S7OZHl/DMP4mSx++Wix2WwklUoDJk643W6+yfJWXqvV0unTp6M+aTIJmT+1zAq3e9E3zs/P0/8UKoL4D39ii7x0Oh3pdLqA25ZoiM1mo82bNwfVjlTyH8uxnEB8qa+vp3feeSdAEVeQv6PHqyWB2li0YLY4E9bc3Iz33nuPe7dB/l0HKeQ/lmNJTYNUveX8BfT/+AOuXbvGK+K5dl83G58UhIyMDBw4cACffvrp0o2+0rHb7SSRSJKaGCY0vb29xLIsWa1Wvy1haEMMxsLrp/17hHki/+abb7B///6UywgPBflFR+Sj0UsiIeKvtFgsqKmpQXt7O1iW9dtnqTYsOR4TRvdwELKzs1FWVoaOjg6/k9CiXygoKOC97VpJ/iIcfK9nZmaGFAoFXbt2TbD6dHZ2klqt5q3jTNaDBw9ILpfzNq42gXiZn58njUZDp06dErweUqmUxsbGuLbm9PLrr7+GVqvlqfxKcuCR8OGHH0IsFuPjjz8OWY4SPHRmzZo1qKmpwZUrVxbb2istlmVXaPd6ZLS0tFBBQQE5HI6kWIDlxpkMDAyQUqnk1oGIaGRkhGQyWcIrJzTBIyrhmJ+fJ7FYzEW2IgDo6+uDWq1OqHoKTaCISgjIzwyuWbMGZWVl3GBWEQDcu3cPO3bsSHrlksXs7Cx2796Nc+fOhUz+TgaB/LJarcb9+/c9C0REMpls1fqPVImoQuHrR5ixsTEqLi6G3W5P8r3iwQ2CCASCKOyMjoWM0LA4evQoJiYm0NnZ6dk3VXKM/Vi3bh2mpqaw1mw2Q6VSCVYR0cJbDF7TLNPi4Tbj+fPn8eOPP+L7779f3DcVcowDkJeXh9HRUaw1mUzIyckJWEiwuygOp7x79y6am5vx008/pfTsDd42VigUePjwoUdDvIPz/QUgiDBCaEe4N4g3ourq6hI0ogoH7/UolUqMjo5CZDKZOIEIpca8QJAJsM7v9WkoUimiigSlUgmj0QiRzWbDli1bhK7PEvhNH957CJfLhcrKShw8eBDV1dWJqFbCYFkWdrsdIqfTifXr1wtamXjpZbh9VKlIeno6nE6nRyCp4PT8u/E8SWsM93v7/74Muf/58+fxww+et35Lji38/DrLIhaL8fTpU0AsFkc1jiEReDviPDlSe32SDEapAoEG2Liot7eXsrKyKC0tjTo6OnjHWUl4E7MB4SYECsiF4/t88nA9AnFzaTp7yOz33lSpVHKZIiUlJUmubfyYmZkhiURCa4VVVD7mO6048skt3DbfXFjjceYM59QZEMiT8OnneFLtQS9aRJztEho34cuWI6g4ftGTYejH48ePwUnBp+2/+OILKJXK5TMCUxyHw4H169djrVgshtPpRHp6uqAVIpEFD28Cfz+q8SyDrwR3/v0JKo5fhMIvBNZoNBgZGUleRROEN7gSeQUiOJZHuAnglVdeAcAXhvlOK87eBI6+//7CwP8FUj94ChuvUojEYjEcDofQ9QGyX0EFgEePzQAWQlU3gWDG/+7yMWUL7oOI4vcAkwI8ffrUoyEymQwTExMBC1ES43cGCvzt+B7844svF5YZ0OM7EDE5EB27iBv/fJ9ffpU4cS/j4+N48cUXsVapVMJsNgcslJSL9nEW//jnTTx6ew0Y5iy3+baZFp08N7/S0n1XMkSE0dFRqFQqiBQKBYaHh4WrDa9BRfjkxuJ4DiLiR1z+A0BWgTAAz41vNBqRk5MDkbfbVzACWMVkmspUwWw2Izc3F0Ff4ZIAL6cIAEPw5MySaMF7w0cT4jMIM9UgIrzwwguYmpqCSC6XY+3atTCZTLxCQjhNhvtHFMQcrT5hAMAvv/yCrKwsSCQSiIgIarUafX19QtcLwKK54szWKvETodDr9di+fTsAQMQwDMrLyxfzgpIOP6U/VZMQEomvQBgiopGREezYsQOTk5O8gsnwI74uwvO3n58IFdquApficrmwceNGmM1mvPTSS57LycvLE8yPLI1iRcEL+LPChQF4ptVlWRYZGRlgmMV+bbz77rtoa2sTsm7PFN7nrLa2NlRVVfE2kNvtpgcPHlBmZmZy38o84/gO2PEiogU/UVBQgI0bN6ZMtPUscOvWLahUKu4rQUTkibK8aLVaXL16VaDqrW7IP5yHZ9Ta4cOHuWWGYfifPJqenkZOTg5MJtOKGom7ErFYLCgpKcHY2Bjv5SAvTpFKpdBqtfjss8+eyf6kZHL27FnU19cjPT2dP66T/Fp+fHwchYWFMJvNIWeqfk70TE1NITc3F0+ePFnSxpyGeOXCsiz27t0beNoHH55rUPQ0Nzfj8OHDgW/4QOHYapqeKdUINT0TUYivIxw7dgwOhwOtra2JvmGeGYgIhw4dwquvvoqTJ08GLRQQh8NBMpks4BR/z4mOu3fvkkKhCPlxsZB5pG1tbbxJMFdizmyq4J0Ec7npdkN2z1VVVWHTpk1cRqDvQyQ9d+oR0dTUhPz8/OWn2w0kJV9N8GZlr+SJlIUmkomUw0p9DzbV+HMTtjwGg4GkUmn8phr3stIn4xeCYJPxhyKiwSE6nY40Gs2Kn+k6ngSzEn/99ReVlJREPLtrRF9pc7lc2L17N3Jzc9HS0hKrn1vV1NbWwul0cjNIhE2kd8T09PSK/eRRsojlk0cJ/yjYs0ZnZ2fiPwoWiNXx2bz4stxn88KJSmMa8Tk8PEwKhYLq6+tpfn7+mQ2D5+bmSKvVkkqlilozvMSUSKNSqfDrr7/CYrFg586d+PPPP5+5J/jp6WmUlpbC6XRiYGAA2dkBBkhGQMyZTRs2bEB3dzfy8/ODftI6lJB8t600YQ4ODqKgoABvvfUWrl+/Hp8JGOKgsRxXrlwhmUxGPT09YZmvlWzi2tvbSSaTUXt7e1yvI+6zBhgMBpLJZNTU1BTvQwuGb4O7XC46deoUyeXyhHyqPO7JmMXFxTAYDNDr9Xj99dfx888/B9PMeJ86YXh7ufv6+qBSqTA0NITBwUGoVKr4X0fcRexDR0cHyWQyqquri6oPLFVMms1mo+rqapLL5Ql/9kpouvL+/fsxOjqKTZs2IS8vD2fOnMH09HTY+ws9JGFqagonTpxAfn4+NwVfwj8fmFBx+2C1Wqmuro4kEgk1NDSk9DdKrFYrHT16lCQSCel0uqB1TYQGJ30qIJvNRjqdjsRiMVVXV4c0Ack2WV1dXVRVVUUSiYQaGxujftUQS70Fm5vJbrdTa2srFRUVEcuydOLEiYCTOSdKKN7jDg8Pk06no5dffpnKysro0qVLgqY/RdT9nihMJhMuX76Mrq4uOJ1OqNVqlJeXQ61WcxN0xguj0Qi9Xs/9pFIpKisrodVqY37KjgcpIRAvRISJiQncvXsXvb290Ov1mJycRFlZGbZu3Yrs7Gxs27aNeyLOzMzkUvm9PHnyBGNjYwA8E7oYDAZYLBZYrVb09/eDZVmUl5dDo9FAo9GkXFK5IAKhCMYuzs7OYmhoCCaTCTabjTc41WKxYHx8nFeeZVnuTk9LS0NpaSm2bt0KhUKBoqKiZbs3IqlbIvh/wgmnciaCE+wAAAAASUVORK5CYII="
|
<image>如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为()
Choices:
(A) 12
(B) 16
(C) 17.5
(D) 20
|
12
| 10,864
| null |
12
|
"iVBORw0KGgoAAAANSUhEUgAAAKYAAAB0CAYAAAAPfklTAAAMJ0lEQVR4nO2daZBdRRmGn+5MJiFhCZsGIyKIS7GKIAJKoaUoSlGIpRFUUIrIEkQDKlTQm3c+BhhI2C1FNjeKRVwKscACykItqhRKRCBGUMmEARQJ0QgGhnjntD/OHRiGmeTO3KXPudPPvznnnj7v1Lzzdfftr792ZkYiUTR8bAGJxFgkYyYKSTJmopAkYyYKSTJmopAkYyYKSTJmopB0xRaQaAxJWwKDtR/nAP82s8HxnygHKWKWn+2d41ZwdwOf9PgfSHaOpOmxhTVCMmbJMbMHwc3z3j1kZpd0k33FuXAm3p8WW1sjJGOWnD5pLvDmzPvvAhwGT0LA47eKLK0h0hiz5Kz3HEKgSrVrhaTXe+8rhHBPlnUti62tEZIxS04IHB4CD8PgsQ5OyLLwZ7Oe/WLrapTUlZeY66QZ4A7Bu4vNbOk0+Jhz4WCZnR5bW6MkY5aYlV0cAMyku/sOgIrZAwT+5UI4MrK0hknGLDFZ5ucDD9rixU8C9PZqH5yb65y7KbK0hkljzJIiaVfnWBBwd0k62MMewbmFwbkrQ5ZdEFtfoyRjlpdNQuCjEDJgVgYrCeGD1tPzaGxhzcClrRWJIpLGmIlCkoyZKCTJmIlCkiY/JULSXsACYImZrYmtp5WkiFkueoGFwNaxhbSaFDFLgKQtgKXALcCfgCfjKmo9KWIWHElvAa4Afm5mVwLPAzvFVdV6UsQsMJLeD5wAnJ0nBAOwmtyYD0UT1gaSMQuKpGOBg4CTzWz1iFurgJ2jiGojyZgFRJKAzYDjzGxo1O2VwAHtV9VekjELhKTZwAXAIzb+WvHjwGxJ3syy9qlrL2nyUxAk7QhcDdxhZpeM9zkzWwdUgde0SVoUUsQsAJIOBE4Bzjez++p4ZC2wI/BUK3XFJEXMyEj6DHA88KU6TQnwBPDGlokqACliRkTSmeRd8nFmtn4Cj/YDpd9wtiGSMSMgaSawDHjczBZNool+4NCmiioYqStvM5JeTz7JudvMlk6ymX8AMyTNaJ6yYpGM2UYkvQu4GPimmf1wsu2YWRV4AZjXLG1FI3XlbULSfOBw4MtmNtCEJleTz8xXNqGtwpGM2QYkfYXcRAvM7IUmNTtQa7MjScZsIbVSgEuBZ8zs5CY339EToDTGbBHKq7BdA9xvZue04BWPAVu0oN1CkIzZAmpbIC4DrjGzH7TiHWb2DOAkbd6K9mOTuvImI+lw4EhgsZm1uvjAc+QrQA9u5HOlIxmziUj6IrArcLyZPdeGVz5FPgFKxky8GkkeOA94wcxOaOOrHwPe1Mb3tY00xmwQSduQT3L+YmZq8+v7GSf9rfbPUlpSxGwASbsBS4CrzOzOCBIGgE3HSRre3qQTM9gT+BXggG2h606zyu3tFjpRUlGtSSLpw8DnAJnZwxF1LAMuNLNX5Waa2eUhhONDCJsBrgvePeTcTcG5PpPOb4O2GeRnDz0HbMnLgfBF4L/kQ5/RW0eAFDEnhaSTgL2BE8xsbWQ5axknaTiE7D3O+et7enqer126w6TFwLekvhvMFjdjaXRDbOI9n80yTgX/PcgGADwcEJzbO4Q5+5BvR34VyZgTRNK5AGa2ILaWGsNJw78debFPmotzu2WweOR139V179DQEPj17wVa8h3rMGa21kxPOOfmhrDF2WaL1tW0/ex/3mvJkkVjmhKSMetG0hzyjWL3mdnlkeWMZBXwrtEX13s+TCCQbfGbV96pTgPwuO52iAuBo4B7h00paWvg3zOnT+/d0HPJmHUg6a3AWcD3zey22HpG0Q98ZPTFEJgf4B6zRc+OvJ5l7AKOzPt6t3FMmuukGTj3/uDcOZJmdMH+3ne9V6r0kEf6cSn1VwrtoFYNo5e8GkbRTAnwd0YlDecZ8u59OHfj6A+HwKnAcqtU7m+1sJVd7EtgEzJmAKcPOXcLZH+q59lkzA0g6TjgaGChmRWyJMtYScNdXewLzKC7++ZXflZfA7dTCNM+3g5tWcZ8HE+YaQlwtvf++izzD9TzbOrKx0FSDzCbsathFI2XkoYlzXKOSgAYHOyWtAewk4cPBefeHELY06zSluTiENwRwbmbAcws9Pb2XgrV/nqeTcYchaRNySc5D5tZT2Q59TLAy9t554XAryDcCbwPmAlUM7jRenp+3S5BfX3aEdw8vH9p5l+pVP5c7/PJmCOQtBNwDvBDM7s5spyJsIraBMjM/kr+O0RD0mbec1YIQJXZkrpqQ466SWPMGpLeSb682FMyUwIsB4q0Y3J6lnEthIOgup5J+KypS5K1yre7N63B1pMBz5KX+1sIiHxz16yYoiZIIO+uLyFPTl5Bvi7eLoaA35vZ/5rZaLO78s0pT4WIKvkf9RTgj8BVwHaUs/TKLPJiroeQ/w3aacz1wANAU405pZM4JPWSV8O4MraWRpF0MrDCzO6KraUZTMnJj6TtyRN7b2mk8EDBeJR8GNURxpxykx9J+wEXAd/oIFNCns3eMTUzp5QxJX2SfEx5mpn9LraeJjMAzCp75vowHfFL1IOkrwIHklfDeDy2nmZTqzQ8RIdEzY4fY0rqJq+GsdrMvhBbT4tZS4dUGu7oiClpO/KNYve1qBpG0eiYSsMda0xJe5N/4XyVmV0bW0+b6Ae2jy2iGXRkVy7pCGA+cIaZdWSZvnFYRYcU2uq4iClpEfAh4PNTzJQwRtJwWemYiClpGvmX5uvM7MTYemJgZlVJg+RJw6X+p+yIiClpW/JJTplyKFvF03RAQdfSR0xJuwMV4Aoz+2VsPQVgZNJwaSm1MSUdChwDVMzskdh6CkJHVBourTElLQTeQTGqYRSJjqg0XMoxpqQ+YJ6ZLUimfCWdUmm4VBFT0pbkG8V+X7BqGEXjOWAHoJBbjuuhNBFT0tuAbwM/TqbcKE+RZ7SXllJETEkHA58HzjKz5bH1lIDHgJ1ji2iEwhtT0gLg3eTVMJ6Jrack9AP7xxbRCIXuyiUZ8FbyahjJlPUzAMyW1M5NaU2lkBFT0mbkk5wVEeqalx4zWydpCHgtJc3NLFzElPQm8q20vzCzS2PrKTFrKfHSZKGMKekg8kSM80tYDaNoPEmJlyYL05VLOgb4AHDKWIXuExOmH9g3tojJUoiIKenrwF7kk5xkyubQD2wTW8RkiRoxJc0ClgH9ZnZqTC0dyEtJw2b2YmwxEyVaxJT0BuBq4NdmdkEsHZ1KrezfcNJw6YhiTEn7AxcCl5rZTTE0TBFKmzTc9q5c0pHAYcCpZrbBkwsSDVPapOG2GlPSGeTbS48zs8F2vnuKsooxjlopA20xZq0axjLgn1OgGkaRWEV+lmPpaPkYU9LrgO8A95rZua1+X+JlhvMLypg03FJjStoHuJR8o9h1rXxXYlyGk4ZLRcu6ckkfAz4BnG5mdZ3tkmgJT5HPzEuVzd4SY0o6FniLmR3VivYTE+IBYM+NfUjSR4FdgCr4mZA97b1/VtL1rRY4FhM2Zm9v7+7VanX1WEuHkj5Onq62BlhaK5RamPX4KUggP1f9GEm3j1UyR9JrnHM/8t4/kWVZH/AYZDs45+7OINoWlgmZpk/absi5n8LMg8f5yHTgP+T1KD0FWYufwjjyMebAWDcvkTZ1zt0DLJf06RG3lvf22jeyjJaf0DsedRtTknfO/SQE5sJhY1bkNbMbgBuapi7RLHrGuvgfz9IQ2IEwZ7dX3/U3ZFn16RbrGpe6jem9P4kQtg2OAevZreiHfiY2Qp+0TXCchHOXW09+yP1IKpXKihi6hqmrqzXTEcA0XPiZa/JBQ4k4VLvYi+DwUMh6Txs1Zp+0o3PTDpF0WQi8jZLuIUm8Ep/5OQBZ5ldHljImGzSmJPeicxcPDYVBSScSeHtw7m/tEpdoHVmW/QEXwGfvGH1P0ua1FbtobNCY3vsznHO3QHYucBuOTXyeSpUoORWzR53jCkK4SOo9cPi6pLd770+Gmd0x9Y07+TGzT4GfK1XOA1giOY/bKstPRkh0AJKdaNIjGVVJeghY471fl2XZ980W/z2mtjEPOZX0Wufcb4JzN5okSXM8HJ3BaeBvhezCtMzYWUjaGhisHWQVnfEi5poQwp6EMFxk/vkMbgQuh2xT8iOVEx2Ema2JrWEkU/pY6ERxSUuGiUKSjJkoJMmYiUKSjJkoJMmYiUKSjJkoJMmYiULyfyzuAJlRhJinAAAAAElFTkSuQmCC"
|
<image>如图:过△ABC的边BC上一点D作DF//AC,若∠A=40°,∠B=60°,则∠FDB的度数为()
Choices:
(A) 40°
(B) 60°
(C) 100°
(D) 120°
|
100°
| 10,865
| null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAGsAAABuCAYAAAAgcu2/AAANoklEQVR4nO2dX4hbVR7Hv7MWG2GxYUGbJ70PnXJXBrlFIdlM2bk+LE3rLr34YDNPRnGTFLdOXHWZATEIlRHcNckipJ2XOL7EumCmLCbzIEwK204KCxOkOmkTNnmRpE8ZEUyqxd8+TG96k9wk9/9NpvOBoZ3c5J7f5Ht+v/PnnvM7U0RE2Gci+JXdBuyjnH2xJoh9sSaIfbGk5BJIVOw2YjD7YnXIIXTqc7uNGMq+WPfIJdYA7wyOHrHbksHsiwWgkgjh1vMCcM1uS4azL1YlgQ/xNhZwCze8T2HabnuG8ICLVUHiQ+DthXuxb+YoxjgKYupBnsGoJGYxHZHEvmAWdPGkfQaN4IDdBthGJYEvj15Fp6rmQpi9Nc5B8AENg5VcAqEvj2JB4kSVWzfsM0gp9ICRDYIAEOCleJmIqExxr/gaCMGs3SYO5IFusyaNsW6zSqUSarUaCoUCbt++jVKpBADI5/Oy73e5XGBZFgAwNzcHp9MJjuPAcRycTqdFVpvHWHlWqVRCPp/HlStXkM/n4XQ6wTAM3G53lxA8z8t+vtFodAn6/fffo1gsolgsgmEY8DyPubk58Dw/keLZLlaj0cBnn32GixcvAkDXF+pyuQwrp1gsdirCV199hccffxzvv/8+/H6/YWWYjl2N5ebmJvl8PnK5XBSJRGh7e9uysgOBAD399NN07NgxcjqdFIlEqNlsWla+ViwXa3t7mwRBII/HQ7lczuriqdVqkcvlops3bxLDMNRoNCgWixHDMLS8vEytVstym5RimVj1ep3C4TCxLEuZTMaqYvvI5XLk8/mIiCgSiVAsFiMiomazSYuLi8QwDKVSKdvsG4bpYkm/hGQyaXZxIwkEAh0x6vU6MQzT5U31ep0CgQBxHGdrpZLDVLHS6fRYhRcxBErbJ6l3Sdna2iJBEIjn+bFpz0wTKxqNkt/vH5s/lKg7BIrIeZeUjY0N4jiOtra2LLBwOIbPDbbbbczPzwMA0un0WI1nLl26hDNnznS95nK5IAgCLly4IPsZnueRyWRw9uxZrK2tWWDlEIxUvlqtksfjoXQ6beRtDUEuBIqM8i7x84IgUDQaNc/IERjmWYVCAfPz80gmk2M50Mzn8wOnnUZ5FwA4HA5kMhkAwPz8PNrttlmmDsYIxVOpFPE8T/V63YjbmYK0FyiHEu8SSafT5PF4LG+PdYuVyWRIEISx6O0NYlgIlDKoZyjH1tYWeTweS/9uXWLZYbAW5HqBcqjxLqL7FdUqNLdZjUYDZ8+eRTqdhsPhMDIyG45cL1AOJW2XFEEQ4Ha7sbS0pNdEZWhRuNVqEc/ztLm5aXTlMRylIVBErXcREfn9fkt6wJrEsso4I1AaAqWoabuIrKu8qsVaXl6mxcVFM2wxhVG9QDm0eFe9XiePx0PValWdgSpQJZaWWmonakOgFLXeRWR+h0uVWOMyR6YUPZVLi3cRaRNZKYrFisViFIlETDHCLLSEQCla2matIitBkVitVosYhhnrGYpe9IRAka2tLeI4TvXnotGoKXOIisSaRK8yqn0VBEH1Q0izKvdIscx0azPRGwJFtHqXGRV8pFhmNphmYUQIlKLVuziOM3TV1lCxqtUqsSw7cV5l9BBDq3cZPXc4dG4wkUggFAqN/dxfL0rnApXCcRwYhlH9pFgQBBSLRdRqNWMMGaTiJPYAiYwPgSLj0DMc6Fnr6+vgOM7QJcxWsL6+Do/HY/jaD63eFQgEsLq6aowRg1TU0qiOA2ZOMmv1Lp7naWNjQ3f5smK1Wi1yOp0T17Gwwm4tldiobrysWBsbG8TzvO6bW006nSa/329qGVq8S6tH9iLbZuXzeczNzRkTZy3k8uXLOH36tKllaGm7OI5DrVbDzs6OvsLlFDQqxlqJlaFbi6cY0QeQ9axisQiO4/TVAotZW1uDz+ezZEyoxbvcbjeuX7+uq9w+sRqNBhwOx1gte1aCFSFQSjQaxXvvvaf4/QzD6B4c94lVKpU6e3cnhXa7jfX1dQiCYFmZar2LZdnOfmet7AmxrAyBUtR4lyme1Wg0cPjwYV03tRqrQ6CIGu9yOp1wOBxoNBqay+sT6/bt2xM1xWRHCJSixrscDoeuDQ19YrXb7bGbZa/kQpidncLU1O7PbCgHMZXtCy+8gJmZGdtsVutdesZafWLt7OyMUU+wglxoFtPngXdWCUQEKmcxs3IK06EcAODRRx/Fd999pyu86EWpdxkqFt25ix93fsBvfn1I8w2NJBeaxqkbL6J89SJOilkbj5zExWwQWFlDDsCFCxfw7rvvWrfeXAatM/Jq6RJr6uABOBwO/Hj3jqmFKiIXwqkVL+KrC0OzazqdTgQCATQaDayvr1tmXi9qx11a6AuDhw8ftjWk7FJB4vwKEHwHCzJKyeUGTKVSeOONN/TPv2nECu8a+lif7tzt/Mj9Ln1t1GeVXtuljG+vAa/98Q8y76tg/V//xSN/Pg2f5HWXy4W//mUBS0tLfTZbxSjvqtVqYBhG8/37xHriiSc6g7epgweG/kt37mLq4AFMHTzQJ6D4upprHSq3UH7o95j+7YFOWZ3P//sfOHf1WSz/7VTX5+nOXbz66qv4X6mMK5v/6SrLKsFM967emd1//r37Qdkv7Z9l/y/+Lv0Z9j4l1+6Tpdceepj6k2ruvi7Nttl7b3FF1o87P4wowxyGzcjLfN2q6POsJ598smtaZFTNlHqJcZzEn14BVs4nkLs3oKrkEpidOoVvX8mgPCRDNMMwCIVCiEajBtqjnEHeZcg0nqiaWPtKX39DLMt2KSpeU+ox+j2L6Jd2ieJBLwGgRx56mOANUjxbVnzvud8d72xus9KziOS9a/haxjJl40Hy3svT6w3GqUxZCvaEli6xxD8KMu46+Ev9WfaaXHgcdW1QmFXy+d7XSl9/Q+5jz1Kr1Rp4HzPpfdg4cB1GOU5eUaByz2vxctdbZYOo3D4sq/9YI7Bzl2avd8mvvc9ScEDG62zQ29dmy3bdeZ7vShos9qomjUgkgnw+j2KxaHnZvW1XPp/vy+1bSZzHCoLIyrTB00/N4KneMwHkaoW4RntYKJsU7MzVIXpXtVolhmF6ru56VW+oG8ZQzzKnp2ctHMfhxIkT+OCDD2wpm2EYfPTRR/0Zsyu3cAPAjIoDu2TFElN02xE+zGBxcRGXL1/W/VhdC0tLS/jkk08MWdo3cLrpzJkzuHTpku4CxgGHw4FkMomXX37Z8rI//vhj/PTTT3juuee6Lxw5ihkAN27JHDJZyXXGl10Mio+TuuNxGIuLi7S8vGxZeel0mtxuNwUCAdnr5biXAC8Fs/fbrXI2TsEB7djQ+Y9J3ZwwiFarRSzLmppYRKRarRLHcXT8+PGhC2bLksEw4B0oFNEIsazO+mUFVqzjF9MDffrpp4ascRcZ+ohEEATUarU909EAdnu6LMsqznymhaWlJZw+fRpffPGFsXOUo9Q0agfEOGHmrk4xGpnxvSmas99rbReROXmo6vU6sSxLzWbTlM0disTai95FZFyuDBFRILPaesVPwyYxH8Yoms0msSxrSDiUbvQ2KyGZYrH24riLyJjdktIeZiqVGjiu0ouq58x70buI9G0ar9frxHEc1et109NRqBJrknLjqkH6hatF2pEwOx2t6hUcVqQXtQMt4Uv69NeKB52alttMSj53tfh8PsWn5W1ubhLP89RqtSyb6dG8NmovTkVJx0nDaDabnYeKVlZcXQvZJi0TtRKSySSFw+Gh7xEnCaxuEnSfRTJJOd6VMmz2QWyn7Ohs6Rar1WqRz+cbi/McjWJQnsXt7W3iOI4ajQbxPG/5abCGHXYWDocpHA7vmU5H7zo/MTNnJpMhjuNsGb4YejJdMpkkn883Vuc86sHj8XRECQQCdO7cOVuHLYYf0DlOB1rqRQx7Kysr9Mwzz9h+Tpgpp6lWq1XieX5PPFZ5/fXXyeFw0FtvvWW3KeYdfdtsNkkQBAoEAhM725HJZOixxx6jN998025TiMiCE8BTqRSxLEuRSGRi2rKNjQ3yeDwkCMJYVTTTxSLa7UnFYjFiGIai0ejY9hi3t7c7p36P42S1JWKJNJtNikajxDDMWI3L6vU6BQIBYll2QDtbprhXXC4mWTaWVb5O3QgsFUukXq9TOBwmhmEoEokYeqqAGsQHjwzDKHi8vyuYuA2nnA0S4CUV+wp0Y4tYItVqlWKxGLEsSyzL0vLysqnhp9lsUiaToXA4TE6nszNVpiwsZymIIHW2TJXj5LVYrCkiIuMWtmmnVCphdXW1s5+K53m43W7wPA+n06k6s2i73UahUECj0cD169eRz+dRq9XA8zxOnDgBv9+vLu1RLoSpNQF08SRQySHx0nl8PvMOrg7Z32w0YyOWlHa7jXw+j0KhgCtXrmBnZwfFYhEMw3TlkeA4DocOHcLNmze7Eq0UCgUAgMfjgcvl6oiuJ5VsJTGL6ci1e795Ec+uYuGk8u06RjCWYg2iVqt1ZRIoFovY2dkBy7Jdafc8Ho/BWdIqSMy+BKxexcIRUTggXr4qmwHHNKyLuBNMOU5eb5zuN0/qdy0ageYTwB8kKl9+Drz4/P2EXxp2LRrBvlgjqWBXq3vCVHIIvRTBNQQhWNe32MVSP540ssGegfD9pCIWj4eJaIy67vuMZj8MThD7Yk0Q/wePAYq7q4eLiQAAAABJRU5ErkJggg=="
|
<image>如图,点A、B、C在⊙O上,若∠AOB=130°,则∠C的度数为()
Choices:
(A) 150°
(B) 130°
(C) 115°
(D) 120°
|
115°
| 10,866
| null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAABqCAYAAABzj0V/AAAamUlEQVR4nO1df1RU153/3DeoScROfgxlooMkMvxQ7IlSNayhQQr+SFWilT3Yra14mshGNj0kAaOtm3i2nIYEa+0uUdTdaHP6g7ZENm6MgLiAsQ0H7YmngfBjGMVCImCSVQfPUZl3v/vHm3nz3vxiZpiBgfg5h6Nzf7337vfe76/7vfeCJgE458Q5d0lTQhTFUT9H2Ya6fdGWZiWRrC75dYdeIgDS39NFJFIXFRXtH/X7+AMBkwCMMRCRS5oSgiB9qrIc59xjm+7y7G0o2+cgAIItTQOQRs7nF2vAGEN5dwKICEQEcW8mNCwBQuIcP75w9IgY06eFAEQExpiKCCOVtcNbnZHak58LG8E5l+oQByCAMxPWxz2F7O0H8e7rW6U6AIQ5q7D/5dVgjz468scFEROe0HbCORPRHXwp4z8kwkoDg8sD5PThgziO1TC9/oz8XOIcTBBgjEsCHjUG+T28g5Ezz/uKQJ6BPqaPlAcCOCMIYODoxHqWhMSDtXhj6wpHfRAYGII91HzBpJDR7uSpc5rzb08Ec05XzgN3deyylxhkNo6Ll3AcwJy4R+CoziGME5GBScC6ATUBrl+/jgsXLqCjowOfffYZmpqa5Dyz2Yy+vj5VXYPBgLi4OADAlClTsHTpUsTExCA+Ph6LFi3C9OnTvT7bnShQDg7GJNZun1MkckBgIRAh3jHhWXdfXx9Onz6N+vp6NDY24sqVK0hLS0NMTAzmzJmDJUuWIDIyEgDwyCOPIDY2VlX/8uXL6OnpAQDcvHkTLS0tMJvN6O3txdmzZ2EwGJCRkYGsrCxkZmZCr9eP+E4cJqxnCUioqMFr+SugIcgznsw1ONgzB/+cmRD0vvCKMTXmPMBunzrbvp7Q0dFBRUVFZDQaKTo6mjZu3EgHDhygTz75xKXN0aK1tZXKy8spJyeHdDodJSUl0a5du6i7u9trvZOHXiQAdKC+U04z1R0kZBeTb18ZXIQFoX3B4OAgVVRUUEpKChkMBioqKqL29vYxf4/W1lYqLCwkvV5PaWlpdPjwYbr+f9fcOGys1FH/psNRAlD29oNBG4D+IuwJ3d/fT4WFhRQZGUmbNm2i9957T87zlQOECu+88w7l5uaSVqulnTt30uDgoNfy7jx4Y4WwILS7j+/t7aX8/HzSarVUVFRE/f394/BmaniajX//+9+poKCAtNoHqLCw0OVd7d/HudWWENLXdIuwMK+UGujQ0BB27tyJhQsXIjo6GiaTCWVlZYiOjgYAF1dnqKE0yzyZZLNmzUJ5eTk6Oztx7733Ijl5Ll599VXcvn0bgKSIATYXKYBxsbHGfmy5hyiKVF1dTXq9nrZu3ToiGxwrjCRTZUVSkdbf30+bNm2i2NhYqqmpca1DnMQxntZhYUf39fVhy5Yt+Pzzz1FdXY3U1FSXMl69UiGEcjHE2fYlIsc7kQiCAMYYoqOjsWDBAnzxxRf48Y9/jISEBLz11lvQ6XQq//hYYtxZ9/nz57FkyRKkp6fjo48+cktkwD3bdPZ2kdPKlLfVKX/hzsHBGJNVamVXcs6xaNEi1NXVoaqqCgsWLMDixYvR1v6J8u2D9m4+YbQswV8tUln+6NGjpNPpZPY23lp0oHBm75xzKigoII1GIytmVVVVFBUVRVVVVT61ocRL2SBAUJlqwGoyke+m2pjIaOePsFqtVFBQQPHx8dTa2joWrzBmEEWRmpubSa/XU1ZWFlVWVsp5LS0tZDAYaMeOHX61yUkidp1Z6keRrLT/5dUErKZ2W6DDSBhzZezatWu0atUqSktLo2vXrsnp4+VICDasVislJydTZWUllZaWUn5+viq/v7+fUlJSKCcnhywWi9s2nPtCpC76TvZLsvrGSeIaLz4tOWF8QchkNLkxg9ra2rBo0SLExsaisbERWq1WlqPjoWiFAnv27EFMTAxyc3ORnp6uWlQBgOjoaPzlL3/BPffcg9TUVJjNZlW+Uum0983FU6cRkZQgqXAkWWeMMcQlrsLxThMIwyO/mJ8DdkR4krM1NTV0//33U3l5ebAfGTZob28nnU5HPT09RCTN7sjISJUDRdk/r732Gmm1WmpoaPDa7pvFa+hAfSdZrVaVWVZ36CVC9ks+vduYsO6PP/6YtFqti03pjl0rO2KisfMnn3yS9u3bp0pbtWqVSk4749ixY6TT6TwukojURasFh+I1rCD0/pdXu2Xd7votqIR2F3k5ODhI8fHxk3omE0kWREpKClmtVlU/KOW0J25XUlJCycnJbmW2tft9F2KKokii6X0CQBV1Zp/eL2QzWhRFslqtlJWVRdu2bfOpvB0Tzcy6cuUK6fV6amlpcclrbm6mpKQkVZq7Gff973+f1q1bR0TOocJFVFThxAmJU3G2FDrsHiGe0c4oLCyk5cuXk9XqmwkwUZGbm+vRZLp16xZNmzbNo4atLJe65HF65ZVXpASREycTrQaottvefyKJ5pNyfLg/CBmhjx49SnFxcWHjsw4VampqKDY2lm7duuWxzOOPP+7e5y2KRCK3/X+Yent7yWCYSceOHaOuunJiAMHufHM44ehAfaffXC8khG5ubiadTjcugQGhhrKDb9y44bJw4Y4AO3fupB07dvhEnJaWFtLpdNTW1qZKt+8ACXQxJOiE7u3tpZkzZ7odwZMFdhlbWFhIeXl5JIqiWyLa02pqaig1NXXEdjm3EudWqqo6RrGxsTI3tBN3NFZI0AmdlZVFpaWlwW42LKAkZktLC+n1ep9E09DQEE2bNo1u3Lght+F5cEgzd9euXZTz3Q1u8wNRVoNK6MrKStnEIJp4drCvGB4eppSUFDp69KjPdVJTU/3icjk536Xo6GiPdfxl4UEhNOecLBYLGQwGtybGZIByFu3Zs4fS09P9qr9jxw6VZq6a0aIra9br9XTkyBFKTEyUFT3nkCQ5NMkHBG1GFxUV0datW4PVXNjAmSv19PSQVquV3ZzO8OYC9ianOefys9rb2+nhaD0REeXm/iOVlJS4tO8vtwwKobu7u0mn06lWoyYKfJV39o5dtWoVvfbaa34/x2Kx+GRPExFVVFRQbm4uEUmrXQ899NCogyODsmRUUlKCbdu2QavVBqO5MYWvW2MEQcBvf/tb9Pb2ori42O/nREZG4rHHHsMHH3zgkuccCdPQ0ICMjAwA0mrXD37wA5SWlvr9TBVGNUxsI26izmZfYJ/Jg4ODHt2cvqKwsFDFhj1Br9fLPghRFFV97OxL9xWjntGlpaV45plnJuRs9gX2teHt27dj48aNWLx4sV/1lbM1NTUVZ8+eVeWT07p9R0cHACApKUl+fnR0NDZs2IC9e/dCo9EEtkHP76GhwODgIGm12rAIrg8lGhsbadasWWSxWBSar2+zSlmuv7+fpk+fLpuf7tpQymcluru7KSoqyicZ7w4BzWiyjcLf/e53WL9+vRxcPxlx+/ZtbN68GQcPHkRkZKQ8m3ydVcpy0dHRiImJwfnz5z22oZTPgKOv4+Li8MQTT+Cdd94J6DsCIrT9cJijR48iLy9PlUcTexeuC3bv3o3U1FSsXr1alR5IKDER4Vvf+hYaGxtd8uztNTU1IT09XS6v7M8f/vCHOHLkCIjI/+f7M/2VtttHH31EsbGxqvyJto48Etra2kin0wVVNFVWVtKqVavc5rW3t5Ner1elKfvUarWqQpX8gV8zWhnA9+tf/xqbN29W5Y/1Lv5QQhRF/OhHP0JJSYl/ookAe3C+O962bNkynDlzBlYuuuQ1NTXhySefVKUp+1Sj0WDTpk04cuSI7+8jv1cA4JyTwWCYFMuQnjxM+/bt89vN6cn97Lw/KykpgZqbm13K5ebmUkVFhddHuItY8QU+E1rJQtyxmIkKT1t2ndfTgymW8vPz3a7wKe1nT3AXWeoLfGbdShaiVBgmOpTfRTbF5/nnn8e2bdtkW9a5nDuQrDSNrCRlZGS6KGTO9rMnaDQapKWluVXovMEvGW3/GLsJQJNEw7Z/B2MMf/jDH9DV1YWf/OQnfjSgHAgjd+kTT/wDPvzwQ5Xm7GnyuNOuly1bhoaGBt/fDwhMRuv1etXBMBMZShn95Zdfkl6vdys/fUVxtj22y7EpLnv7QelYC1sZzrkLm/ZFPtvx4Ycf+i2n/SZ0T08P6XQ6f6tNCOTn57vslfIEbzL7QPHTVHHKJJUjM60FqPhgrapMbm4uHag4JP/W6/XU0dHh8/LjtGnT/Fpf8Nth0t3djeTkZH+rhT3+/Oc/491338Xrr7/uU3kXma2QYpc6CZlZ0um9DHPwVPEadJp7VMWXfTsDjQ2nADjkc2Jios970ObOnYuuri6fygKAQOSQUZxzle1nPlWBuktW1cd0dHQgPj4eRK52YLjDkzfp9u3bePbZZ7F///7AF2dsdOfmOrxBCTAqZPXFjveQGPeI9MPWwRnpy9DYeAaAQz6TB53H3XvHxcUpCG2z21XVnY7EZMx2tjQIjDkOXeAw4cUVzwFcMXKZNKOTkpIcB69MIHiaLT//+c+RmJiI9evXAxidG/d/T59C8Zrl8u+Kl7Ox539WY+vWLCmBSZMpPj4ejDF0dHTIyq3y3PGRDsmxz2gCABtjLl4nHT0p/UmrXBWnbYPBJkhUEIlTxfYiWrt2rby5yy6TVj61Qj7ry5+YpfGEN7ln3wHZ29s7Yllf4FDGbH+KkwKd27YrYJ7sZ5d90orfv/nNbygnJ0eZS0RERWsdAf6m2nICBKo1cdtQcBI3pw8XgzKzwE9wMNvgto+2gYEBzJo1C5xbQWxi7GkWBAGiKEIUXcVNXl4edu/eDYPBIO9NDnTBgsx1KEOx48RfItB/vyF3r+NgG+mfjIwMHD9+HIB7+9l5Jit/GwwGXL16VSFCBXCY0H5iNbIyjWCMYY4xDmC2/efOspZfrEEdX46tRsKJtXMRpyAmYwxDN25ixozpEISIcTldJ1BoNBpoNGpxc+jQITDG8NxzzwFwdKS7axlGAmMM5osXkZ1kVPu4bV0ktcVVaenp6Th79mxAzqf77rsPFotFJUK762qheXGtrB9sf+EpZG9/E1lGDjgbCcXFxRIjMJ+k7CLJrlOaEnq93uZ+Eyd03PbAwADpdLqgnqFSnA2qU2xz9sVt6ovbk8iVjbe3t7vY0vaDZmGz42tNjudHMNjPkwZOHS5CWdkvUFZWBkBA9vYDLkswX375JX71q19hypQpfo/CcEBPTw/ef/99WCwWJCUl4Y9//KNLGfL3SoZrPfi3f38bAFB2nOGfnt8F4wOexRpjDJxzMMbw0EMPobi4GCkpKXIeqc77dr0YBgAsFguGhoZUafXv7UWtiWN5HFD/n8VYES+g1kRYYQQiAEG6JsB8EnV8OYj2AABMp97EoYuxAIPq3Pg7d+5MWCIDwIkTJ/DFF18AAAYHB+V0ZYf6t9wqAPfPxqv/+op8FKQExwRSlQV33LHBODZs2KAq4UxU59/2d7vnnntgsVgcesXFGvyCFWGPUcrPfDYf2Vt/gZqGWqwwrpS0bmv3+4Sni4hbrWS9PUzW28NUd6CYtle878I6ED6nSgaExMREmb2lpqba2Kv9WKeJEzhx7do10mq18glFdYdesm2Yt32L+SSBOc4Lh3RelfThdSZOxEXanj2Dptv4/Npih/+Vc06RkV8LOEBtvCATkBPV19dT4twkWrBgAZ354MMJRFo1+vr6yGAwyL+L1oJqLw4TEdEd3knZ9kPnRCsRiQSXqEYuknjbSpy7X0d3KGMTBIqP8G1NOXwVTKVCZlfGuurK1Xa7fcO804kIEcqoRiJSSGMC3RElg4AJEKYIgChC97UHYLkxhKjor0MgAh+WPD1Mo4GgsdsSXE4HBAhTFYaYtzyVcFKUsz2feaxvf1cmveew7b0FDTQaAr9jBUGQfkfYuoRJ1xO5Pl0I0f1Yo4fSjh4aGsJ9992H+OUFICoA4F2JFJQxTow5BD/ZOo3B0clMI+C+yHsxdNMCAQBZATY1ApqpGjCR23ytBBomsCkR0EyNgCBwcCvJrXrOU0JZTgMB3PaKnuozsCkSwfkwAVMjoJkigHERohVgU6dCM0WAuX4/7mUMzHZLzdM7DrvtlHAksjNu3ryJGTNmQL06wcHhfg1CkEa266I5AwAmgGnIQQzRiqivR+HTTz8FOIETB79jhXhHlB5IkNIZk50CTCOAcbKNJy95SnACFwRI/c3ApkSACb7UZ46Zb/8dIf0+sD0HS9bX4W9clMJlyQTh9Xw8/fKhCRlA0dfXh6ioKBVHYkwDAWqnEOfSopRARGDk7PJTd6bAuc2lp0FC0lyYui9KxyQLGmimRsh/shPNW7/52qfkZgD4U1+BAzvWYFtXHD6//g6MEEAkgsGIPXXlOP7GuzAzcpkZ4QJP7tiuri7MmzdPGrRw9JXzoBUE6Uh2wb7SQVYrrFZFFTlInAEagA+LIMYQZzSirfVvECI0iOAiHGOEbPdvMgjgINHeDkCCzRL3lqcEgzT4/GnbA0yn3sS210+gdk8pwAkEclp5YyCyHZYu91H4+PA9rbh98skn0goYmHxDHidXB4tDm7GDMTDOwYchyTvFDa5MI0CAAKZhSEpKgslkAsDAIgRwqxXiHSvEO2RrTZKXEEUpXQSECDspvOUR6I5VIigTIPjYtj1ih4alQWq9bQUpfv/Xmy9j7Y43sTyWwAQGGnaM/p6eS7YukNibGEYzeSR0d3cjMTFRtSAlyHd3KG7UVTjbfQAnbpVMk3APJVI6Pe7wTlrjdMmYEkVOxyDb6zqOjghfK9vfUCKfCM2tIim/OZyCA70trPCLNQTmONBcTieS7c+aLpGIHAe7ye0SD1tnSiDBgV6FEdlYJ4GBMYegT09Px5kzZ8JCW3W2g1Xv9IgRawgwX+qW/PkQQSIH590oWvEvyC6qwMp4Adwm/53bDQcjy50yFkhcvVdCswibvapRbxXNyMhAQ0NDeNibTgRSvhNjcfjOy6vx3H8cBoEgkAZ0uRYRmnhg+0FUlz0jNSEIkubqMnDHX2a7U8YaGxtVW2t9gq9TP9y35HButd1BoE4TRdF2+Yh6nVbp/5bKOk4FCmfZPKZbchITExERESGHqYYDGNPY7iBQpwmCgD3vKkJ7SMSKOMXdU7JSquQMPCzEkjucP38eBoPB78MHAt4In5OTg9///veBVA89yPX/dkIDkOOolKxZEBxs0h5BGY6orKxEbm6u3/X8uihcebHHhQsXsG7dOvmS7bsIHez9Looi9Ho9/vrXv2L27Nl+tRHwRvjHHnsMDzzwgMstMHcRfNj7/fjx40hOTvabyECArJtsy2F5eXk4evRoIE3cRQB4++23sWXLloDq+sW6nXH16lXEx8ejs7NTWklR3Nc0We6xCheYzWakpqbi0qVLiIyM9Lv+qKgRFRWFLVu2YN++fSrC3iVy8FFWVoaCgoKAiAyMckYD0rrowoUL0d3dPWlPDxxvDAwMIDExEZcvX5b72F+uOeqpN3PmTKxZswZ79+6V08LVBp2oKC0txZYtW1QTyV+uOeoZDTjkx91ZHXwMDAxg/vz5aG1tlZ0kgehAQSE0ABQXF8NisaCioiIYzd2FDRs3bsQ3vvEN/PSnPx1dQ8HxwEoHjzsfcxzOPuNwgqd+qq+vJ6PR6PVOLV8xakIr14Ptl6dM5M134YJbt25RUlJS0K6VGrUyppQVubm5ePDBB1FWVhbQHuO7cKCkpATz58/HypUrXfIC6tugDBcFpGv3DJP6grNQo6qqimJjY2lgYICIPN+R5Q/uXlkYJrCLO/uVhR9//HFQ2w/pJaRGo3HSX0IaTNi54bFjx4LedtDMK3d44YUX0NbWhpMnT7ocK3EXDnDOMTw8jGXLlmHlypXYvXu3nB4sd3LICM1tuzueeuopJCQkoLy8PBSPmTTYtGkTbt68ierq6tBs8gsme3BWGERRpMHBQTIajVReXu5zO18186ykpISSk5NDuu98TI4vaG1tJa1WSzU1NXedKE44duwY6XQ66u7uHrnwKBB0Qnu7m1Gr1Xqd2f5eNTTRUVpaSlqtlhoaGkL+rJDNaHfEam1tJaPRSAUFBfLdT/62MVGhFEe3bt2ivLw8Sk5OdpnJynLBFGEhixBwp0wkJyfj3LlzMJvNyMzMxPXr1/1uY6LC/i1Xr17F0qVLMTQ0hObmZsTFxanKKU8uDGYAx5iHgtx///04ceIE5s+fj0WLFqGtrU3Os3/gZHSfMsZw7tw5pKSkYMWKFfjTn/7kMVokJBE6o2UJo2GvR44cIb1eP6ndpfb+qaqqIr1eT1VVVW7LhdrSGPdDw86dO0cPP/ww/exnPxt1W8pBJ4qhP8LSmzy1v4vVaqVdu3ZRbGys6jjKsdY/xj2Kb9GiRWhpaUFTUxMWLlyI5ubmgNtSbQAXhJAHKXoLiGSMoampCfPmzcOFCxdw/vx51c0FY65/jOmw8gJRFKm6upr0ej1t3bo1rH3kI83G/v5+2rRpE8XGxoaNWBr3GW2HIAhYt24dTCYTHnzwQcybNw+vvvoqrl69Ot6v5gJPs3FgYAA7d+7E/PnzMWfOHHR0dLhdTx4XjPdII/J8m1x+fj5ptVp68cUXqb+/Pyxdo6IoUm9vLxUUFJBWq6XCwkKXLa3u3vsrJ6MB9zPEYDCgoqICnZ2d4JzDaDRi8+bNqK2tlcvQOIcVV1dX43vf+x7mz5+PGTNmwGQy4Ze//KXLllZ3usJXVkZ7A+ecBgcHqaKiglJSUshgMNCOHTvGJbChtbWVCgsLSa/XU1paGh0+fFg+NCaQW+LHCiFdj/YV9nVX8mF5jojQ2dmJt956C9XV1bBYLMjIyEB6ejrS09Mxd+5cVZujRVtbGxoaGtDU1ITGxkZERUVhw4YNyMvLc/FqOX+PJyjv7hir7UthQejR4NNPP0V9fT3q6+vR2NiIK1euIC0tDbNnz8acOXOwePFi2QM1e/ZsPProo6r6ly9fxuXLl0FEsFgsOHfuHC5evIje3l6cPXsWMTExSE9Px/Lly5GZmQm9Xj8enzlqTHhCO+P69eu4cOECOjo68Nlnn6n2b5vNZvT19alO15s5c6btwjbC1KlTsXTpUsTExCA+Ph7f/OY3A97UFk4gIvw/kMw/uMCtiYwAAAAASUVORK5CYII="
|
<image>如图,AB是⊙O的直径,C、D是⊙O上两点,AB=4,∠COB=60°,D是BC弧的中点,P是线段AB上一动点,则PC+PD的最小值是()
Choices:
(A) √{2}
(B) 2
(C) 2√{2}
(D) 4√{2}
|
2√{2}
| 10,867
| null |
2√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAABLCAYAAABJGtQxAAAffklEQVR4nO1deXAVVfb+3v5e9k0CZsRtWJRYbqEQisAQB4KEEBIChgkgTOHojIVguY81jE6V/FAclgELajAQMWxiWExMKJYwA6IzKAJGMBY6giwGQvLy9u73uvv8/gjn0i8QgkLIIl9VKsvrd/vm9elzvnPOd28biIhwA+0GTdOgqiqICGazGQaDAQaDAQCgKApMJhNkWYbVaoXRaARfLr/fj8jISCiKAkVRxGtmsxkmkwlEJMa5FnM0Go3iOwAEAgEYr8noN/CzYTQaYTKZYDabEQwG4fV6oaoqAMBsNgMArFYr/H4/VFWFy+WCwWCAzWbDuXPnsHbtWrzxxhs4fvy4MDAAcLlcUBSlbefepqPfQKsgIvj9fvj9flitVkRERMBoNEJVVeGVNE1DREQETCYTIiIi0NjYiHXr1mH8+PF45ZVXcNttt6Fnz54AAEmSoKoqoqOjIUkSNE1rs7mb22zkG7giGAwGREREAABCoRBkWYbdbofVahVhCGgKHefOncP777+P7du3IxgMor6+HgMGDMCoUaNgs9kANHmp+vp6JCQkIDIy8pqFrkvhhvF0AKiqCoPBAKvVCovFIv5uMBjg9XoRCoVQVlaGHTt2oL6+HqNHj0Z8fDwWLlyIv/zlL4iMjISeusbFxQl+csN4ujiYJBsMBhARQqGQCGd79uzB5s2bcfjwYRQWFmLSpEmwWq14+umnkZOTg169esHhcEDTNEGsLRYLiAiBQAAOh0PwoGuNG8bTzlBVFSaTSXgIIoLP50NFRQVWrlwJv9+PKVOmYM6cOYiIiIDD4cCaNWtQX1+PKVOmwGKxIBQKIRQKwW63AwB8Ph9sNhsiIiJueJ6ODg4Zl7tQLaXOJpMJoVAIJpMJLpcLGzduxPvvv4/IyEhMnToVw4cPR1RUFKKiogAAJ06cQElJCaZPn46UlBQAwKlTp9CtWzcYjUa4XK6Lwlhb4YbxXCX0dRqTyRTGM1RVFfURTdNgMBjE6/pajtfrxY4dO1BcXAyPx4MJEyZg/PjxSEpKgslkgt/vBxHB7XZj4cKFuPvuu5GZmSnm0L17d5hMJgBAdHR0m4Wp5rhhPFcJ/YUKBoMIhUIirTYajVAUJaz4xx6IjWbTpk0oLy+H2+1Gfn4+xowZg8TERFitVmiaBkVRYLPZIMsyjhw5gv379+Ott96CzWYTpJgNp/l82ho3jOcqwcQWACIiImCxWESdxmg0wmw2IxQKQdM0wUl+/PFHlJWVYevWrdA0DdnZ2Rg9ejQSExOFF2NPxRVmWZYxb948jBgxAqmpqbDZbG3KZ64EN4znKtFanYY9jsViQWNjI6qqqlBSUgJZljFixAgUFBQgKioKNptNtBZUVYWiKLBYLOK9K1euhKZpmDRpkjBCbl+0lxHdMJ5rgMvVaTRNg8/nw7Zt2/DOO+/A6/WisLAQ+fn5iI+Ph9VqFWMEAgHY7XYR8lRVhdlsxnfffYfi4mL87W9/E5VkoIlv6UPW9cYN47kGuFydpqKiAqWlpXA6nZgwYQJyc3ORmJgoQpqet9jtdmiaBkmSxO+SJGHevHn4zW9+g4ceeggAIMsyLBaL8EzthRvGc5W4VJ3G7/ejvLwcxcXF0DQNBQUFGDt2LBISEsK6583Td87c7Ha7IL5bt27F999/j5deegmxsbGQZRlmsxmyLLc77/lFGA9fpOYX61K1lyup2ejRvE6zadMmUad57LHHkJmZiYSEBBHO9OMzOWZi3DzVP3PmDJYvX47s7GwRrrgoaLVaw3jR9YL+M+vyxkNEomwvSRIcDocwpGAwCLPZLO5y/htLJBj8YXG9Ru9pVFUVnObdd9+F3+/Ho48+iry8PCQmJl7ESfQXms/LhsS/83neeecd9OjRA7m5ubBYLAgGg7BYLIJYt3XvSj8XrlFxy8NgMHR949E0Tbh3h8MB4EKWYrVaYTAYhHTB4XCIv8myLNJrIhIXlo1KVVV4PB6UlpairKwMHo8H48aNE5yGPUNroixJkmCz2RAKhQAAdrsdBoMBR44cQVlZGV555RX07NkTRARVVWGxWGAymaAoCjRNa3PPYzQaIcsyiAgWi0VkekTUtY2HPYm+oBYKhYTHsdlsICIhZ9A0TYQgfg244C3Yg3m9Xmzbtg2rV6+GLMvIy8tDdnY2EhMTRbrOYehKLiyLuxgulwtLlizBwIEDMWTIEABN/Sp9AVCvKmxrsMHyXPn8Xdp49N6GYbFYRHoMXJBYAhAXXP8aF+yYa2zevBklJSWwWCzIysrC2LFjERsbK8a0WCzifa0ZzqXmBwBbtmzB8ePHsXz5csTGxgoSrQ+lRqPxulSTuVzAP3OoNBqNMHN1tKtClmVIkoT4+HgYDAb4/X4Rs5lDBAIBEBEiIiJARPB4PDCbzYiKioKiKJBlGTt27MDy5cshSRIKCwvxyCOPICYmBtHR0dA0TehueAz2YpxZtQRO1/1+P0wmk+io5+bmIiEhQchPrVYrVFWF3++H2WwWBLwtlYIAwridpmniJvH5fDDMmTOnSwrguUD3/fff43//+x9GjhwpVHbMa/hi88+KosDhcMDhcAi9cHV1NY4cOQKv14vevXvjvvvuQ2Jiogh7fr8/jEQrigJJkpoI5Xlie7k5Wq1WuN1uWK1WJCQkYMuWLfjqq68wffp0wdWYe/l8PkiShLi4OJEItCVp5nAqyzIURRGG43a7kZSUBDOLrTsKOBMCIAppQHj3uvlxlxvLZDJh//79ePDBB5GcnIyIiAiRQdjtdvj9fuGGmXecOHECX331Fb7++msYjUbcc889uP/++xEfHw9JksSHKcuyeK+qqpBlOYzUchbV0lyZjAYCAVitVhw4cABffPEFJkyYAIfDAYvFAlmWhfdh7wQ0rZ7gjn1bQq8WCAaDUFUVkiQ1fb5er7fDeB69YbA3cLlcICLExMSICiwfqy/M8fv0MBgMcDqdePzxx/GnP/1JGABnU/omJtB0R23ZsgVr1qxBdHQ08vLykJWVhejoaJjNZpHhsGHoQxMvd+HzKooiDEmfrTWfN3OKuro6vPjii+jbty9mzZolPI3dbhfH6HtlbrcbUVFRbU6cQ6GQCJHcPgHQFNojIyPb7MQ/FUw0ORXds2cPXnzxRfj9fuTm5uKVV15BTEwMgPB/iojCLpAeRITBgwdj165dyMjIEE1Mh8MhLobP58PWrVtRXFwMn8+HSZMmIS8vD/Hx8WEk9efC5XIhOjpazEev5WGjqKqqQiAQwNSpUxEfHy/m2BL4/7ie0NuKxWLpGNkW10OYXGqahpqaGpw+fRrr16+HpmnIycmB3W7HjBkzkJiYCOBCjYTvPEmSwvQ0QNMFSE9Px/PPP4/Tp0/j9ttvh8/nQ1RUFNxuNzZu3Ijy8nJ4vV7k5+eLlJv1NNcCUVFRYXPlO5jDztGjR7F27Vo88cQTuP322wEATqcTsbGx11Wf0xIutehP07SOYTwsQ+A70uPxwGKxoH///ujTpw+ICM899xwqKyvFuiS9COpSehq+8KqqIi0tDZmZmXjzzTcxd+5cmM1mlJSUYNOmTQiFQsjNzUVWVhaSkpKgKMoVZUlXCvaIzHt8Pp8g6cFgEJqmYdmyZbjrrrvw29/+VrynrfXH1wIdwniYdHLl12Qy4ZZbbhHxVZIkJCQkCAE4G5vX60V0dPRFehqbzSbucu4+P/HEE8jLy8OCBQtQU1ODH3/8EVOnTkV2djaioqLExeJCIvePrhbsFfV1IACizL9jxw7s378fK1asQFxcHAKBgMjkOjra3Xj0LpE71JwRsYvkWkxaWhrsdrvIUFivGwqFWtTTBINBSJKE6upqhEIh7Ny5E9OmTRPKPb6o7HG4RcHSiqst/zPZ1ddJvF4v7HY73G43Fi1ahLy8PNx6660AIAiy/v/vqGhX49G3D/RhQt8OMJvNaGhowMGDB/Hcc88hIiICqqoiNjZWjNOSnkaSJFRWVuKDDz7AyZMnMWvWLAwZMgQ333wzLBYL/H6/MA5ukHL9BMA16RtxFsZaZP0q0Lfffhs2mw0FBQXixuFsjssJHdmA2t3z6Hd0MBqNQgjFi/b9fj8qKytRWFiIHj16IBQKCQ6hX7XAhsOElPU0FosFOTk5yMrKQo8ePUTK7ff7LwoNnDpzEfFaQF/VBppCcEREBGpqalBWVobZs2eje/fu4tzBYFCQ6Ruc5zLgO57jvNVqFTwHaKq77N69G7Gxsbj//vsBNH34kZGRYSIsJricPa1fvx6RkZGYPHkyMjIy0L17d1gsFmFs3AzlkMc8S9/bUlVV1GkupflprgtqSZzFVVqDwSB4TiAQwIIFCzB06FAMGDBAHOtyuYRH5ezshudpBfwh6es1TqcTe/bsQXV1NSZOnIi6ujocPnwYwWAQw4YNE7yEtb+VlZV499134fP5MGHCBIwbN66phN6smciCcgZXT4EL5JbrTfosib+zOJ2lGvX19di1axeqq6vxzDPPID4+XhQg2cDZ23FPraqqCocOHUJJSQkSEhIANBlZfHy8mAtLMzo0qB2haRqFQiHxs9PppGAwSJqm0caNG6lv377Uo0cPuvPOO+mOO+6ggQMH0vfff09ERKqqUn19PRUVFVFubi4NHz6cli5dSqdOnSJZlsUxrUFVVTGPQCBAgUBAzIHfL8syqapKgUCAiIhCoRDV1dVRaWkp5eTk0B133EFFRUUUDAaJiMjn85GiKOI9iqKQpmlERHTmzBkaOnQorV69Wsyzo4M/B/3n6ff7qd3Dlr6sz9mTqqoYPnw4+vfvD+CClsViseBXv/oVPB4Ptm7diqVLl8JutyM/Px+jRo36WXUaPkbvgbh9IUmS6Jrz+Vlq+uGHH8LtdsPpdOLuu+/Gww8/LEoN3Fg1mUywWCxoaGhAYmIiGhoa8N5776F79+4YMWLENSkFtCfaPdviZiK7d842eH026fiFz+dDcXExdu7cCZfLhYKCAowZMyZsLfdPrdMwt+H+FpN1rhUx4ZVlGR999BE2bNgAv9+PSZMmISUlBS+99BJmzpyJW2+9VcyVd6zgsJeQkABVVXH06FFs2bIF8+bNQ1JSkpB3dvjw1ALa3fPwBW7eLNR3pX0+Hz766CMUFRUhGAwiLy8PeXl5IuUGfn6dhpuaep0uQ9M0sVBv9erVqK+vx6RJk5CTkwObzYaFCxeiX79+wkPq/y8m3ixlCAaDWLFiBQYNGoR+/foBuL5Lg9sC7U6Y6TxJ5pUA/KEHAgEoioLS0lKsXLkSUVFRyM/PR05ODhITE2Gz2cIkGpeq01xJys1GFgwGReNPVVUcP34cX375Jd5++23ExcVh2LBhGDVqFHr27AmLxYJdu3Zh586dWLFiBaKjo0VticOlzWYT/5PP58P27dtx7Ngx/PnPfw4z1s7qdYAOYDx8wTlsGAwGeDwebNmyBRUVFfB6vXjyySeRkZGBxMREIfNsaGhAbGzsRSnzT6nT0PmaUEREhFDqnThxAnv37sXOnTtx9OhRFBQUYNy4cYiPjxd9s9raWmzevBnp6elISUmBy+VCTEyMaLGwB2RDkmUZb7zxBp599lncdttt4obpCGuvrgbtznmY49jtdjQ2NuKDDz7Ahg0bQEQYM2YMRo8ejYSEhDD+YjAYRMeZl8ow4WWewTtMNA9beg5lMBhExdrpdKK8vBybN2+GJEnIysrCa6+9huTkZGHgHGb27duHL7/8Eu+++65Yl85z4aUxnNpLkoQ1a9agb9++QsxuMDRtF9cZmp+XgzAevhsA/CR3yu9pDc31N/p2gsfjQUVFBYqLiyHLMsaPH4+xY8ciKSnposVyDHb9wAXuwP0xDmHcU9LzJ24T8JhutxsffvghSktLIcsyMjMzMWbMGKSkpAgJJhciebOCxYsX47HHHsMtt9wCAMJrskheLwCrrq7Gpk2b8I9//APdunWDJEmwWq2IjIy8wXlaA7tnPYHkAprH48G6deuwbds2SJKE3NxcjB49GklJScLTtGScbIAWi0XogTisMLjdwQU65lSapqGurg579+7F0qVL0a1bN2RmZiI9PR29evUSxsUtDPaMiqLgnXfeQffu3ZGVlRWWJXJ1mBfnsRLwrbfewuDBg3HnnXcCaOJhvISns6NNjYfdNuuFOQtpbGxEeXk5VqxYgZiYGIwZMwaPPPKIqNP8lKbgpaSowWAQQJMnsNlsohpMRPB6vSgvL8f69evhdrsxZcoUpKWlhRmN1+uFxWIRFWH2JidPnsSGDRvw8ssv46abbgrjaVyv4i1WVFXF2rVrIUkSpk2bJuZgMBjE62x8nRWtGs+VhqVLQd+trq+vh91uR1VVFZYsWYLk5GQUFhYiKysLkZGRoqDGH6a+59Ta/LgFwYbD65yAJkPgflJFRQXWrFkDWZaRn5+PrKwsJCcnh7UwiEgYDYdV3lhgxYoVSE1NxZAhQ0S2xD0o3nXUZrMhEAjA5XKhpKQEs2bNwm233QYAYolNZGSkWAvWmdHmYYtrLvv27cOiRYtgsVhQWFiIgQMH4vbbbw9bf8Tb3bMhtSYD1d/pTJL1a5p4ZURlZSWKiorEfn/Dhw9Hjx490Fy/zQVLnoN+zfrnn3+OXbt2YfHixUhISBDkmEX5zHPYmyxduhT33Xcfhg4dKirPevUjr1rtEoS5LUFEOHfuHGpqapCRkYHMzEzRtNSvYmAD8Hq9La6m1IM9m34lA4cep9OJzz77DHPmzLmohcF8w+VyQVVVsVaLVYc8NsPn8+G9997DwIED0bt3bwDhWh82cja2Tz75RDRq4+PjhVHxevjrscH29UCrpIK5Qktfrb2X9Tfjxo3Dtm3b0NjYiOzsbBw8eBAejydMGsHFvcjISLHysjW0tHKSw1djYyNSU1MxZswY3HzzzdA0TXCiyMhIxMbGio0GeENK/XJhIsLu3btx6tQp/P73vw/L8vj/Y1ksJwGvv/46Jk+eLEgyAEHc6bz+iOtKnRltmivqeYPD4UCfPn2wbNkyjB07FtOnT8eSJUtw5swZABfIrX6r2SupDuuX6+gzmKSkJGRkZODtt9/G6dOnMXv2bNTU1IiiHIcSHof5CvMu/dNjNmzYIMIsv58NkDes5DS9uLgY3bp1w6OPPioyNJ/PJ7wbrzDlOXdqtNaO1zTtZ3+pqkqyLAvJg8fjISIiSZKotLSUpk2bRqNGjaIdO3YIaUYgEBDvlyTpojF5PE3TyO/3C0lF8y89Tp8+TTNmzKChQ4fSv/71L1IUhbxer5gjSw00TSO32y1+D4VCVFRURNnZ2XTixImwMUOhkDgPfz948CClp6fTxx9/TD6fL+xzYOjP1VnQkiSjTY1HfyE1TRPaFkZNTQ298MIL9NBDD9Grr75K9fX14ni9DsbtdpPf7xfjBINBCgaD4vXLfbFRNjQ00IoVKyg9PZ2WL19OjY2NRHRBqxMMBoUhhUIh8vv91NDQQA8//DCtXbs27EPTGzKPL0kSPfPMMzRr1ixyuVzCsLsC2s14WBSlH0//u8/no8rKSho8eDCNGDGCdu/eHWZgfEEVRREiLR73SoyHDYOIqLGxkT799FMaOXIkPffcc3TgwAFhrB6PR5yDiMjr9dLcuXNp/PjxdPbsWWFc7Bn155Zlmaqqqmjw4MFUU1Mj/mf2kp0d7ep5ZFkOU83Jskw+n09cKCKikydP0osvvkiDBg2iJUuWUENDAxERnTt37qLJB4PBS4a0SxkOewC+2LIs03fffUdPPPEETZw4kQ4dOkQul4tUVaWGhgZhuEePHqUHHniAPvnkE+E1eUz9dyKiH3/8kbKzs+mf//znJUNUZ0e7GQ+PIUmSMBb+8PUeRtM08ng8tHLlSnrwwQdp6tSp9Nlnn4mwoCiK4BF6D3AlBsTv599lWaba2lr6v//7P3rooYeovLw8zLgbGxtpxowZ9Pzzz5PX6yW/3x/2fp6v1+ulYDBI8+fPp5ycHKqtrRWv6TlRZ0e7hi0ep/mdyMdwSCBqIqJHjx6lmTNn0qBBg2jt2rVUV1d30Rj6C9Sa8fL4Pp+PfD6fGMPn81FpaSkNGDCAnnnmGXI6nUREtG/fPurVqxdVV1eTLMukKEqY1lrPvw4cOECDBg2iTz/9lFwuFymKInTQXQUtGY+B6PLFlFZebi2TE5VYfVqq3+iRpacsG9XOSzQaGhqwfft2LF68GOnp6ZgyZQruuusu8X7eXeJK5uDz+RAMBoX+h86n5tyB/+abbzB37lx4vV489dRTWLp0KYYNG4bHH39cHBMIBERF2uPxCAHY7NmzoSgKXnvttbAqMle+O3vnHGj56cbXhfM0d+P69FrvmfSehI/bt28fTZkyhUaOHEnr1q0T4UWfsl8uZEmSJDwHcxtN08I8kKqqdOrUKZo7dy7169ePBgwYQKdPnxbz4qxKHzYVRaGNGzdS//796dtvvw1bceF2uy9KFDozfnbYula4kvh/qWMCgQCdPXuW3nzzTUpNTRUpvdfrFccwj2le89GTWj6u+bnYOIiI3G43lZWVUUVFhUjlQ6FQmBHy344fP04PP/wwlZWVifSdiEQW2JXws8NWe4POh7dAIIAvv/wSTz/9NJKTk/HCCy8gLS0NVqs17FmaXPkluvCA+suBddDcAOUt3vQCM54Dh0tVVTFnzhzU1dXhr3/9K2666SZRDVd1O4Z2FbQUtjpFQOa+0YABA/DBBx/g3nvvxcyZM7FgwQJ4PJ4wVR43J81mMxobG1vtHzHHYvBTZ1h7zMbA+wF6PB58/fXX2LNnD/Lz88MM55eGDu15tPNLX2JiYkQviC/o/v378dprr8Fut+PVV19FWlqa0BrzZglXqgdir8IaaH0DE0DYE/s8Hg+efPJJ3HPPPZg5c6bo/NP5zrl+2U1XQaf0PEajETExMU0TPS8pdTgciIqKwsCBA7Fq1Sr069cP06dPx+LFi+HxeIRSr/njE1sCezVFUcL0RHpBPYc1VVXx4Ycfwul0oqCgQBgOj6E/J51v2nZpXDfWdRUIhUKibhIIBETWRETkdDppx44dlJaWRgUFBXTq1KkrLs7pybIenE0xSebxjh07Runp6VReXi4yLx6n+TlDoVCXIc4tEeYO7XmACzpog8GAb775BkOGDMHx48eF+4yLi0NaWhrWrVuH6OhojBgxQkhNWwML6Kurq/Hf//4XLpcLAIQHYeLMz/gsKipCamoqBg8efNFTcfS8R69G7NJoJ2O+IrBnUFWVPvvsM+rTpw8ZjUbau3cvEV2QRfAd7nQ6qaioiAYNGkTTpk2jH374odVznDt3jvLz86lv3770xhtviBYDn5+/7927lwYNGkRfffWV+Nul0vPmFfOugE7pefR76fTr1w+rV6/GPffcIx4vBFx4sp6iKIiLi0NhYSFWrVoFn8+HwsJCVFZWhh0PNKkMmeOUlJSAiDB//nx8/PHHmDVrFg4cOCD0z6qqwu124/XXX8fEiRPRp08fsYspC7v0XEcv+u/yaB9bvnJwNZioSSZx//33086dO8XvXMnVNC1MA1RXV0ezZ8+m3r1707PPPks//PCD2F+HPcbOnTupV69etHv3biIiqq2tpfnz59MDDzxACxYsEA3R+fPnU2FhIdXW1ob1uroKp2kNndLzMDhrqa2tBdC0nAZo2qCb+ZB+CTGvAf/2228xY8YMHDt2DNOnT0dVVRWCwSAMBgNOnjyJN998ExMnTkT//v1BREhOTsYf//hHzJs3D4cOHcLvfvc7VFRUYNu2bZgwYQKSk5PDVoN2eU7TCjq08dD5pTW8z3J0dDRiYmKQnJyMYDAIo9EoNlLiUELn0+pVq1YhEAhg/PjxWLZsGbKysvD666/j+eefR21tLdavX49u3brhqaeeEst8/H4/7HY7MjIy8Pjjj+PgwYP4+9//jv79+2PYsGFiJwx+xFIwGLyqxnFnR7vvknE58P49zB94dYMkSSIL4+XAAER959y5c/j3v/+NSZMm4aabboLRaMQf/vAH9O7dG8uXL8cjjzyCs2fPYvny5ejWrRuAJkPlVZ2SJGHlypW466674HK5MH36dERHR4utfSMjIwUf+iWjQ3se4MJWtECT51HP71DKO3fx3c/EVVEUrFmzRjw2gCujoVAImZmZWLhwIVJSUmA0GjFv3jx8/vnnor8VCoVQX1+PdevW4dSpUzh79iwmT56MlJQUMRfgwrYw7f1c8/ZGhzYeDlu8+XVDQ4PYB5CrybwXTyAQEM+m2rZtGwoKCpCSkiJ2S7Xb7QgGg7jllluwatUqLFu2DIcPHxbhjNenS5KEpUuXwmw2495778W4cePE44+4bdGcZ/1icb0Y+9XizJkzlJaWRrGxsZSWlkYVFRWi6qzPAg4fPkz9+vW7aKmM/hjOko4dO0aFhYWUmJhIGRkZ9J///Idefvllmjx5MqWlpdGBAwcumkdLEo9fAppnW2bu53R0xMTEYPXq1UJByI9N4kdY8yMbDxw4gNTUVBHCGKTrNWnnNym49dZbsWjRIrz33ntYtGiR2JenZ8+eGDlyJH7961+HbV3XHNTF+1ek8/xcu9LTA8Nbb73VKdIFbngCF5b5arrnnkdERMDv96OqqgpHjhzBtGnTEBcXB6/XG7Z0mMfinx0OBxRFwRdffIHt27fD6XSiV69eGDZsGHr16iWyuJbm1JJhdSU4HA4UFBSIXV35YXrm+vr69p7bz4beiLjrrSgKunfvjhMnTqCuru6yO1HQef7icDiQmpqKxMREHDp0CElJSYiKisLRo0eFvueXYCSXgnZ+ryTu77EkRlEU/D+GTG4/tswbyQAAAABJRU5ErkJggg=="
|
<image>如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()
Choices:
(A) 10°
(B) 20°
(C) 25°
(D) 30°
|
25°
| 10,868
| null |
25°
|
"iVBORw0KGgoAAAANSUhEUgAAAIMAAABTCAYAAAC8o7RJAAAWHElEQVR4nO1dfVCU171+3nf5MFcNt3UJG4MhFYxr19SV3OZaS0rExW4KveIN1zqJf2jbCSjNTWPtjK1Nmk6d6wcYTUsTuE4n9F6sJpJdTUyDEUfSsbloMxUVREeSUj8iYFqxdMLC7vs+94/d9913P1mW/QDHZ4YZ9nz8znnPec7X75zzO+AdUJIkn9+yLFOSJNpqKgjA/VdcQRc7uL5qR5JyGX+IuAOIorsYZEgAAKHLDp1Oh7qP54AkSEJ6eRlShPngA3nJzGpckZLsDEwkiNBBQiespidgqarBkdofeP3mlWHH+qUQ5zwIwN1dCEnKZ7xwhwweKJX71q5atOAxdNY+5xdCRF7eHCB3nicCAeH2ooNAksnOxESBhE5YhYcwp/pNvLJxRYA/KYGCCPG26xPcuDNn0EB3/iJaQOTOeRAkIcuyj78g6DxEkIMLmOS4QwYA/pUrkRD8hgCSkKF0ordnsd2eXzVmuItB+uJcWAD85dJHAOBDCKHLjl2HzkMdVW/DwTVhE0hZltUlXLRxOzs70dvbi9///vcAgAsXLqCvrw+3bt1Ce3s7ACA/Px/Tp0/HrFmzMHv2bABAUVERsrKyYDQaw6ajgwlVu9ZhxXNlmP1gB36w3AQC6DhUjS/96s/ge/+uhqVw+60mkjaBjJQcx44dg91ux+HDhzFt2jQsXLhQreTFixfjrrvuwowZM2AymQAA7e3tuHXrFv7xj3/g1KlTAICLFy/izJkzcLlcKC0tRXl5Ob761a+GzM+5Q9X4UtkmCIJbx2CpqsF7tT/wqXwGGUomOxJKhkgKcHh4GE1NTXj77bfR3NyMhx56COXl5SgrK0NOTs640u/u7sahQ4fw29/+FpcvX4bVakVp6TdQXr4SouieIAZTIChEGU/vNhkwoXqG+vp6vPjiizCbzXjiiSewfPlyZGZmxiX9vr4+HDx4EPv27cOlSx9he/V/4R59FtLT01FYWBgsxwBEVSMJyBDF20xNk2j9txbKnoDNZqPRaGRBQQHb2trCxpFlOaScSMP7+rtos9mYkZHBtLQ0fu5zn2NFRQUH/nYzZNzRZE5WJJUMJ06cYEFBAY1GIw8fPpyUPNTW1lKv1/MnP/kJ9+3bx1mzZvHee++lXq9nc3OzGk6ilwAuWfL5fbsgKWRwuVysqqqiwWBgXV1dTGSG6x2Cob29nV/5yldYUFDArq4uHzm7f/EyMzIyePfdd3P16tXsv/FX1V/pFcaa3mRAwsigFOLAwAAtFgutVisHBgaikiVJUtRdtcPh4I9+9CNmZmaGJKIsy+zv7+eiRYuYm5vLz8/I5IEmm8fzzjARE3R3dzMvL49VVVV0uVyhA4Yr6zHWg7bimpubef/993PlypXs7+8PGl7b4oeGhrhmzRrOnj2bubm5XL58ech4weJPNsScDKEKo6WlhQaDgQ0NDaHjyme5fannMIkA78ESPM036ZYbTavs7+/nt771Lebk5LC5uXnUCvP3r62tZWZmJteuXUu9Xh/wDcEOx0xGJKRnaGhooMFg8FkphKoQST7LHUuXcMc5WS3UNypAoEIlRECcILKUuHV1ddTr9dy0aRMdDkfEefaXqZC5pqaGCxcupNVqZU9Pz7iGrImGuJOhpaWF2dnZ7OnpITl6q5FkGyuWbudZ2VsZLp5ldRGIitd9ZPhL0sru6upiQUEBFy1axNOnT4dNUztkaWX4E6Krq4sGg4EffPABt2zZwhkzZrC2tjaozMlIkLiSobu7mwaDgSdPngzwC9qaSUpvPk1UNAUU5oFKEEW+JKEUWOAOh4PPP/980IqKVh+h9VPIffnyZXZ1dXHRokUsLCwMWJFMRsSFDLIsc2BggHl5eXzttdfGVDgHKsGn3wwMf6ZmCbF0hy8Z/NDa2sq8vDyWlZWxt7c3qnxHgt27d9NsNnNwcJAkuXPnTur1em7btm3MaU4kxIUMLpeLFouF3//+9wPcSf+W4x5zZVmmxCY+rZksanGgEkRlU9DFRH9/P1evXs2ZM2f6KIr8EQkpw65yNHLWrFnDsrIy1a2np4eFhYURDUsTFeMmQ7DWtH79elqt1ogK1kfW2e1cUnkgiPtWFgnBe4yGhgbq9Xpu3LhRbamJgMPhYEFBATdt2uTjXl9fT71ezxdeeGHM359sxLxnaG1tZVZWVlQKpTM1S1i046yPmySf5fYiBAwRXV1dLCwsZH5+fsiWGO+xu7e3lxkZGQHp9/b28vHHH+eCBQvY1tY2abSWMSfDokWLwuoSQsE9RLiXlKrbue0sEkBY3BNHme5u/IUXXqRer2dNTU2AnETP4nfv3k2r1RrUr7GxcdRl7UQiSEzJYLPZaDKZxtw9upo0N5fgq3TSDg2HDh2i0WhkaWmpZ4KY/IJ0OBzMycnh+++/H9S/v7+f5eXlNBqNbG1tVd0n4tIzZmRwuVzMy8sb1+5jqOK5efMmS0pKqNPp2NT0Rsj4/q0sUa2usbGRCxYsCBvGZrPRYDCwqqoqoXObsSAmx3ZI4te//jXuu+8+lJSURC1HIOA+ROI+rSzLMvbu3Ys5c+YgLy8PX/7yl3Hz5i2fOP7H2bVI1Kmkp556CoIg4PXXXw8ZZsWKFbhw4QIGBwcxf/58HDlyxHu4dqIgFoxyOBw0GAxRLalCtd6enh4WFxfTbDarauyTJ0/yHkPWhGpZSnev6DiUITLcMPC73/2OOTk5XLNmDQcGBibMkBETMjQ0NLC0tNTHbWwfKFEZ/10ul1vVm6nn9q2BSpwnn1zFzZs3a+J5/psAE7HCwkLabLaQ/toyGRwcVM90aOMkkxgx0TOUl5ezsbExuvgkle9va2ujyWRSN4GCpXX18hVmZGTwypUrHG0CGQuCjKVyamtr+d3vfndMclpbW2k0GlleXj7q9ni8MW4yOBwOZmRk+OgVxsrumzdvsqKiggaDgU1NgfsS/ti8eTOffPLJqPIbT1y5coUGg2HMqynlwI1er4+6UcUC4yZDc3MzLRZL2DChKleSJB44cIAGg4GVlZURK6oGBweZlZXFU6dOjTm/8UZ+fv6oh3pDoa2tTd0ej2ZvZbwYlQyjtdKKioqIdwe1snp6emi1WmkymaIqvD179nDx4sVjjhdv/PznPw9QUY8GbXm5lWovcMaMGTE7HxopxtQzKBtKWhgMBs/47cVoY/W2bduo1+u5ZcuWqPX3TqeTZrOZBw4E7mUkEx0dHTQajeOWc/r0aXV7PNj8KR4T5nENE6dOnWJ+fn7E4dva2mg2m2mxWIJ+YCiE6p2OHj3K3NxcDg0NjRo2nvCvmLy8PHZ3d8dEttJwgqneY40xk0H74Y2NjayoqBg1zuDgIJ977jlmZmaGnCD5V2KkzC8pKWF1dXVEMhOFVatWxfQeyPnz59Xtce0hmlhjzCo6rVbv6tWryMrKChvebrdjzpw5GBwcxKVLl/DUU0/5+CsaRP87mJFqD2tqarBt2zbcuHEjwC9ZF2MNBgOuXr0aMw3jvHnzcPz4caxevRqPPvootmzZElbzGi3Gpa/t7e3FzJkzg/r19fXhm9/8Jn784x9j//792LNnDzIyMgIzoKn0aD7QaDRi1apV+NnPfubjHquKiAYGgwGffPJJ1GSkep/TC0EQUFVVhQ8//BB/+MMf8PDDD6tmCGIFEdDanRhbZVy/fh333HNPgPvOnTthMpmQn5+Pzs5OPProo5FlJsq9hJ/+9KfYv38/Lly4oLol87q8wWBAX19f1PEFQfDJv5YYOTk5ePfdd/Hss8/CYrHg+eefx/DwcFA5CqkUk4a+CFLX2jHDf4Q9e3AH7R2hx91/XbTYZ1n4pz/9ifn5+eoBUUmSEqYmrq6uZklJSULSGg3Nzc0hzzjEAkq5Xr9+nWVlZTQajVFdWPZ38SWD7KJEz3lEuYMWgIc6vEs/ib7LwJycHF65coWDg4PcuHEj9Xo9X3vttbAfEQ+0tLTwwQcfZFpaWtj0E4WOjg6azeaEpdfU1BT26J/3asFIWDkh7TO89L31OHLpI1Q3v4MvCcHtEKSnp8Nut6OiogLXr19HZWUl9Hq9T7cmCIJqpEPrrrjFAq+88go+/fRTAEB2dja+/e1vx0RutBgaGsKrr76KDRs2xEV+sLL79NNPUV9fj+zsbPzmN7/xsTERqZERn1qmPAJZIt765TNA0RLwvy9CB3+rZ5LbwoknUydPnvQp/BDcihsRgOTODxIB/4bkY3jM46fX67F582YAwPHjx/HAAw+olm4UIih1p5R/AEm03QhJsuMNPlN9gHLHm0RxoA5BGzZn1v0B2sdQiOea/+jRozQajTSbzTxx4kTc0gkF/+Ev0cNEpFBqINRwLarsktxWDqteOY5d//lvAGQsnTsnCE+9s9B775uJa9euRczueMFisaCrqwunT58OMNyVCPh3wZHoXxKJqmUCRMH9Jwg66HSpEMUUCMvW+4RzLy1JCDoRB3etwyt7XsWMz6dj+sL/gA4uOJ2fQXK5IMkyJJcDktMJ2dNjZWffh0+u/AWuEQckSbNUoQuycxiScxiS0wlCo0MI4hcU2nAulzdc0Piyx20EpAxpxOGJJ/vJSYxl197eXsyaNSshaWkhy3KArkYG8asjxLpiwHZOcps8poQz9q1YOjfXJ6zaM8hdNhyVloHDTvzt5jA+OLADuTm50CEVYkoKdKIIXUoaRDENouBO5v7s+9D/15tISUuDILtAzxlG2SVDSEmHLjUdouD+7W49wf2CfJYmXBpESB7ZLo17qhqfECGm6CBAguySIKZNcf+mE5IECKnp0KXoIFBKiC1Pf2WcYlm2apmg6hCUv52HOsednkR3GYqi6J0fwD1HECFAEjpxQajCivkiJHSielcTvrj8G/j6F2b7yHHHPG+D7tn38KuNK9RW/FF3NwAdBJFqhVEeAXRui2eghHsNWei9dhmS0wlJ9hS0x9i2Mu8UdJpKCOenBSVQSPEYbRcg6NIBygCpxpchoOOd3Zjxzzr8kyBASE9FyYZfQExJhQAlCQGiLkUzBWZCLLsqZKBn0id4KuuXzRLWFwM1BztAEmfsO/DDsvk4eN7pzSGDKYjCQyd4hyklvgCoE/3OQ29j7tctAN1W88XZc6GDCT/c4GcsvWa9Rb2rYO+QSdnJZ4rBKQIIiFz6vWpKI8OUZImy0+k5piaT8ggb//d/Ajeq5BG6Rka8Cg3ZSUn5Hc7PX4YnrVCyq9ctJVIf4/mRIfflGvkMH58KWqq2a2QPq0fqAn7HEaE2qpzyORahiGcVfU3nAQLgW53un4rRMFUvIEe2vS9JzhAGx9yu9l3rPHUsEgBt54PrG1Slk+x00OWUSNlJ14im0km6nEN0DTv8bsBLPPl/J/jIw/nqb3dwidKIg5ISWB5xy+VofhrITnc4JZgiW5boHBnizvVLiOIKytr4spNnbFs5NfUxnqNEKYFkiHQL++zBahav8+6wri8GLVU1pGqVxrfyIyWDN7wvmbTpKMrDqmILO5X0/OJDFSAN0zXioCtogUnuFuzvIY1w9qwsXv7zR0FavIMjjs8CW7jHzzXi8POTfAjg7gU84TSyzx7cxoypoK39M444nZ48ueOes2/l56c+xg466Roe0sSVvGkG64liCP/DLdoWq755JQrentgP0SzBQ1rBoUx22ollT6tuO3fu9GiZA4kmKks+QUyDLtU9YVNWgcrwKoMQdCle5YfHQxZSUfyNMrz1zrvQpaZ6x2YhBWJqOlLSpkCXkuKrtvL46VLT/fxEiKnpnskpACHVk590H9mv1m7Cv6ytQdmCu9yTQkFQ417681/wt89ECBAhpk2BLjXVE1f0pqnNZxxgt9tRVlam+Spvasfeq4e9Q4ZTkmB7qRIr5ouwd8jqBFNGdMo4xZRxgDsE2I8cwbpiq+q2YcMGiBTwzDPPBgpSiOvPFC2jZWmEshz8+lokB2LHB605H/d+SbX9XNCQSrebTIOdIQ/Edr5JLKtUfyrfsq469D2LWGB9sUDbOcnPLXi6njmDnyU1DzFcTndXKwUxl6OEHxoaCjgq7yNrnFDnLbJEueMN9wTonOT+TSX3Ms8d3BF2cpQIBDsqr+Tf9lIl11fb3OdIScodNgJgzcGOcacbrKQ7DlUHXGIWBEF1swVpT0m/RDMWKK3JvwBd7OBSgEu/p5wTjN3uaLSXaPxtMqyzeOcIyncAS9TJnDe95Bn4mCDX6yJH9bql6p6JRJnyuYOEDxGU9BNfqMGu15319FgBf6Ps+yQDSb94O1bIdI952oL1HxNJ99o7kQh38VZd8UhOtaeYCHdD/RETMsiyzPr6ehYWFsZCXOTpBvyfvAI2m83ct29fCN8g63o5sCfw31VMNKFjYsBAEAR85zvfwbVr1/DOO+/EQmRk6cKr9xcAkO5lWbANm3hi7969IIlVq1YFPcyq/FYXjZ7XbtxLdUmNo3yPsr+Q8MdNYsmsaM34hEO4e5ok1WN6wSPHLBshoZjx0ZroCQW/myEB+Uu26eGYmjZZsWIFpk+fjsbGxpjJ1J7yIam2JLX1QHOS2G8TShbivytVV1eHefPmhXjKyBc+6iSK8Nd+iaKY3FNbsWbXeEz/hYNM34lXyB5Dq+BOkuk/7Z3UgE2nsA3fb5mZ4DnDuB8sY5DzjFVVVfj4449x+PBh6HS6cZF1IkH7rcPDw7BYLCgoKMDWrVuTnLPYIC6v10mSBKvVivnz52PXrl2q+2R4CjDSPK5duxYDAwOw2+0JyFWCEI/uRmtIvKGhYUKuqbWIZNKmDeNvSDxSGRMdCXliQNm4CfeWw2RBS0sLZ86cycuXLwf4ybI8ab+LTMDjI0ePHvV5fGQiIuR5gBCPjyjkHs0I6WQjxoR7liiZCNfVK88SNTU1JTBHicWEerBsosBfaVZbWxtA5tsRE/MpwyRCS2aHw8E1a9bQZDIF3BwbTTM6GZGwdR5J5Obm4sMPP8TFixdRWlqKW7dujR4xAsRyH0JZVt64cQMWiwUDAwNoa2tDdna2T7hQmsKJvnQOh4TlXCm8jIwMNDc3Izc3F0ajEfX19QFhOUbVh/di6fhVJpIk4eWXX4bJZMIjjzwCu92OqVOnTjyj3/FAMrulSB5GD2ZuMF5oampiTk4OLRbLhDQ4Gm8klQzK+Gqz2Wg0GllQUBAwSYt0DB7PoZHW1lbm5+fTbDarD57dDkqksSJpZAj2ZHBdXR0NBgOtViv37NkT1rD2WEnij97eXtbV1fFrX/sas7OzuXfv3sgzf5sioWSIpLU5HA42NjZy5cqVnDZtGgsKClhbWxtWaRUpMbq7u7l7927m5+fz7rvv5urVq7l///6oVjaTedUQCnHZqIoEkW4IHTt2DHa7HYcPH8a0adOwcOFCzJ7tvj28ePFiTJkyBXq9HiaTCQDQ3t6OW7duYXBwEH/84x8BABcvXsSZM2cgSRJKSkpQXl4e1o7DZNhQiwcSRoZQBay4R1IBnZ2d6Ovrw/vvvw8AOH/+PPr7+/H3v/8d7e3tEAQBCxcuxPTp02EwGDB37lwAQFFREbKysmA0GlVZjMKU0O1OkqT1DHcw8XD70vwOxow7ZLgDFf8PHck8Pw+p3ZIAAAAASUVORK5CYII="
|
<image>如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,OD⊥AC于点D,若∠E=30°,CE=6,则OD的值为()
Choices:
(A) 1
(B) √{3}
(C) 2
(D) 2√{3}
|
√{3}
| 10,869
| null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAABsCAYAAACoyNYlAAAOYElEQVR4nO2dT0wbdxbHv+MkW/fSJlUP7qXApTJ2qg6bA1YPMVlV2t1TILWDiRQCl6TNoZhbc6htWCm0PQBpD5QeAo20BUMaaPfQzWpXJJfCjQT8h6gqoB5q70olUg+Zgcbz9mCPPbZn7LE99gx4PpKFPb/fzPyY93vv935v5veGISKCiXoIAJP+KmABoyMOhIKni8qMikXvBhwKpCrBAIAAQgQjp3uxKK3HCA1tVjWYAldDRsg5LIiM9GI0CjgcjrztUoxoPE2BVwFFgxilIALOEnUAMIzx7LspcNWkL9VzhNHbyyAYIsSjDjgd8rWNJ+o0psDLkG+WBdy7uAhPJAhnNIYoHHA4C0Vr7HH8uN4NMDpSs7w58iZ6F2MAY0EvAMArI15j65CxW2cI0iKlaBAjCIOIQEQQFjyAsx2ndW5dpZgaXhYLKBbA6V4G4UjOS4vEYkChuA/BPBxkUhKBiAAQ0E7BSIoE2qSAE5ltIOBdChORIAh6N1UVDJEBJ4smdcMcw+uEUfXIFHgNKAlVDLoYUeSmwNVAgOitv/POO+B5HoByJI0p+GskTIGrgQFAFoxPTmBvbw9TU1N6t6hqTIGrQsCDhw/wr3/ex+3bt/Hll1/KVzOiDS/AFLgKksn/YXh4GLOzs2BZFq2trfj++++LKxrRhhdgClwFPp8Pk5OTsNlsAICrV68qa7nBMefhSHvbUgdM+jsYDAIARkZG8vZ57bXXsL6+nu0Eao5rBEwNh7K3vbS0hI2NjSJhA8DQ0BBu3bpV1XF1RbcYn8HZ3t4mlmXp119/lS1PJBLU0tJCHMc1uGW1YWp4AUQEnucxODiIqakpvPLKK7L1bDYbXC4XlpeXG9vAGjEFXgDDMPD7/fD5fHC5XIr1iAh+v7+sWTcapsALmJ2dxf7+Pt57772S9RiGQWdnJziOw6NHj4rKyai+sM5Dim7I3c6Mx+P01ltvVTQuz8zM0MDAgOpz6E1TClxOEBzHEcuyFI/HKzoWx3HU0tJCiURCq+bVlaY06XLTpb6+PgQCAdjt9oqOZbVa0dPTg7m5Oa2aV1fMwAuAiYkJ/Pzzz5iYmKhq/52dHZw7dw67u7vaNqwONKWGS1lbW8O3336LsbGxqo/R1taGjo4OLC0tZbcZVY+aSuCFQkgmkxgeHsbMzAysVmtNx+7v78edO3eyvw0ZZQOa10snInK73bSyskJE2njULS0ttL29XfNx6klTabiUYDAIt9uNrq4uANpo5NDQED777DPDmnMAzafhgiDQysoKud1uzY99GOLrTafhu7u7GB4eznOwaoEk2myz2XDu3DnMz89rcuy6oHePayQcx5Hb7abV1dW6nWN9fZ1YljVklI2oyTT8xo0b6O7uLnlTpFZYlgUAPH78uG7nqIWmEfj8/DwSiQT8fr+mxyUZB03NwxG6obeJaQTxeJxYlm2YM8VxHL3++uuGjK8feQ3neR59fX2Ym5urObiiFqvVigsXLhgyvn7kY+mDg4Po6urClStXGnpeo8bXj7SGT0xM4OTJkw0XNiAfXwf0j7EfWYFrcVOkVsT4ulTIusfY9XUhtEWc++7t7RHLsoaIa9vt9oofqqgnR0bDSfLQ/6VLl3Dz5k20tbWV3afeXL16FdPT03U/j1qOnNOmtFJEL54+fQqHw4GdnZ2GzRJKcWQ0HAAePHiAhw8fGkbYAHDq1CmcP38es7Ozejcljb4jinYkEgliWTYv2GGEeLYgCNn4uhE4EhrO8zx8Ph+mpqbyFvc1wiOmTN42JRiGAcuysFqtWFtbq3t7ynGoBK50YW/cuIHz58/X9aaIEgzDqOpYH3zwASYnJ+vfoDIcKoHLXdilpaXsPW5A/8CGEt3d3VhbW0MymdS1HYdK4IXC3Nrawqefforbt29nt+ke2FDgxRdfhM/n0915O7TTMp7n4XK5MD8/L7t4gAy4GD+ZTKKjowOJREK39h0qDZfy/vvvw+/3K64UMZqwgdwS46WlJd3adygFLprFgYEBXdtRDbrnh9FtQlglP/zwA7ndbkM/GVoOPePrh0rDnz59iuvXr5dcKUIGd0mICNeuXcP09LQuba2700ZEYBiCFqNHT08P+vv70dPTU3vDdESMr+/u7uKFF15QvZ80Hbv4XS5Fe6m07XlSOOB/z360gmEYoCJDIv/OkI8//hh2u/3QCxvIxddnZmYq2i8nRCH9ncRtQnZ7bpuCtSu08fvcQV3HkGri2/VaKdIIlP5f9fH1VOajhvL1Gj6Gq5mOSPuluMLT0Ks5qkB1fL2MiPJ1WIU4C3uAVMP3uYPsR+63dJvccfa5A5rzniAAxCD32ojjlhN03PM17XMHxRqQyvXUfe6Azrn/RP/+139kj1143sJ2Fv4/RkH8n+fm5qi3t1fFDkRhr/S1GyAm7RgRAPIsqLUAMjlelC6i3G813wWB6GvPCYIzQJsk0D53QCkK0wUGBGeA1rl92Ybx3AH5/X4aHx9XPLb0t1LnlNtHD5TyyrS0tNAvv/yiYr8UhT0MwTtPokIItElBZ/pdLMU7yh+vIpN+wP+OP1hPFG0r6eQxMcTjgMPbi9MZd8KCi7i7GYAzOorLN+Oyu/3ju++yN0UKz5mxTHm/xTrSunL76YXcUGa1WnHlyhV88cUXZfcjxBCNEzxeLwALFkdDiMIJr9cLh1PGOWMUsnkX9gAl8yxXpqQ5eRoeCdBpy5vZXpgri1DACTru+bpo/+3tbfoje4b29vZKHrvwt5rvRqPcEmNBeJ7+GwmQAx4Kk0BCJEBObzhTobB+aac4q+G1TsXk9icAkbt3sdXeA0/eKxsFEAhyswae53Hp0iVMT0/j5KlTmrTNyNhsNnR0dMjnXwfAMMcAANFvvkEMd9HLWGA5PQpyOtJWjimsX8YpFiWv5HxJy5W2i2UpSXfb5w6I5x7RR84T5AhtFu3DcX+ni5b8sn2Op4GBAZqZmSnZplLOo9IYbmQtLzftTI/VIGdok4hStBFykGchVdUUV3UsvZoLljZD9swL3kRSRAKRsOAhoJ0Cm8+zJdmshkLaUun/RFpjEASBWJal9fV1+fJIgBxwUCiaviKphYDEUVPvoROpFHjlws54kQuerHcuIghCzkv3zqeFKwgKKzwr+2cOM+Pj4+T3+2W1diPkKLqOREQU9lQ0JSMqI3Cl+a4sQu6vQESpzCsb88152hwB6e1GXCmiFxzH0csvv1zkvAmy1zHTCfAuhQs6QTmrqPnNEwIASuGY5bj8tMAZwGYklJ2iAQLa2504duwYXn31VS2bcuj46aef4PF48jJCWixpv1oqJvGmCbzzoIXeis6h+duFGQBgjkEQij1IIHP3DEz2js7ExC28/fbbuHz5cnp/Soflmg2GYfDjjz/i888/z9suCCVeQF+NqtZqitSYEkF4nlf+38zYvLKyQn/981/yzZi0YrN4bRKkyQKlFF4KcTiUu0SlvPeGPPEi1wC5lSImRPfu3aPu7u66HV+3R5zcbjc9ePBAr9MbFo7jqLW1tW6KoMsjTmLaS7fbrcfpDY3VakV/f3/d3m/a8OfSl5aWcOfOHc0yIR5FkskkOjs78eTJE82XGNddw6X9aWdnB6Ojo3krRUyKsdlsOHPmjGJ8vSbqMlDIwPN8xWkvjbDcVy9WVlbo7Nmz2d9aXYuGjeFDQ0Pw+Xzo7OxUVZ8MuFSo3pDEGnZ1deG3337LviJLq2vREIFL3wWm6pm2JhQ2UCzU/v5+fPXVV9qeg6i+TtvW1hb6+vqwurpqiBwnRkWuk/M8j7a2NsRiMZw8eVITJairhouZGRqZ9vKwovQIlLjEWDOLp4knoEB3dzfdu3evnqc4Uii9LdFut+eV1eLA1U3DJycn0draeiRWijQKhmGKHs602+1oa2vD/fv38+pVTdVdRUJhj1tbWzv0Kzz1pPB6ahlf19ykJxIJcrlcTf0wg1ZIBW+z2TSJr2ti0klihnw+H8bGxrJpL8ngy3eNjNR0Dw0NFWWBqubaajotqyTtJTXpXLtakskkXC4Xnjx5UtES40I0c9oqTXtpCrsyxPwwy8vLtVnNmgcFSq8UYVlWdqWIiXasrq6Sy+Wq6RhVazhlehnP8xgcHMTU1BROZVaKFNYx0QaXywWe57Px9Wqub9UCF01yYdpLaSNMs609165dyy4+rOb61uS0zc/PY3l5ObtYn0xHrO5I4+uFFlUNFWu42D+2trbwySef6J5KstmQxterotwgLxe3ffbsGbEsa6h3eRx1pHIQ4+vVUFbD5Uz09evXMTQ0pJj20kR7pHKw2+1obW2t6hGoIoFTmSF9cjz9LrCBgYHqVj6YaELZFJ5KshFVvTBpDICiFYurq6t0tstNz549q942mWhGcXy9/ErSvDF8I+TIJI0hSlGYPED2t/wKz+ZZzmtExsbG6MMPPyzys9Jr73OK61n8nYQFD11YTOUELi5LvbCYE2LYmxP4G2+8QQDIAqbYEpifhn6kKbteeuklKpQh8C4tCEK2I6Stdzt9FM0KPJWXNIZIXH9sl08JZaIbSk+7ZIUtGYYlCb/IAy+F6XlOwzdCjkzPsRAAso9syh3XxKBshBwExpFVUIGkK0w3KRAKEwmZMVzsHWL6CCESoHaAHCOPqfQ4bWq/Echqd2b4LYUFBDCxu7gb9cDrZQAIgCOEkBeIBUexoJiIGYBghlH1RwBhC7Eo4HA684tkpmYWMMDGwgJiXg8uggFgAZg4ojEATiccUDqGAFgYpUJ5zHLNywkWMNFNROXq5oknnUnCQojgm7vxTErHNIsXnfhbFLgQCkpysaTJ/pIL0kmqklzec7Nc83IGADmdcAKIRaO5wJmk7sJIEBHJhoyLb5G4/vn504oxx27DEU7PvaXZnop8M0FQ8dSqzCyg1GPwKSrVUczyepaLzrZUcQun1f8HNTYbnhVv61oAAAAASUVORK5CYII="
|
<image>如图,已知D为△ABC边AB上一点,AD=2BD,DE∥BC交AC于E,AE=6,则EC=()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 10,870
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAABMCAIAAADSltOkAAARIklEQVR4nO1de1BT15//nnsTIo9ECIUCIqAgAuYnogJqBUFdH4hYlGp/A9TqSLtrp866ddq6dd3uz+3UsR2czthRW+sqrhafVBRUKA/BIhDEjFUsygJVebfBQEISwr1n/7hwveYFSASS+hn+cM459+ae7+d8H+d7HiKMMQwGjDFCaNBm1gGmu0PuzTCbWx7EUBrZDj1WiCExZFNAw9OIYTYfNrg2zKg9G4QhvWeGYhJfYVjg2iejtgq9EropmPBA9CgbniH92F+TxZdt34aIVzpkBLifG5pTRjxXDaPHHs9oqU6na2lpkcvlYGOh9uAgAGiGG5Lm0QgwovVaIAwAgC0kEoSeKYlAIPDz87O3t+c26GeIacQyoVAovvzyy7a2Nnd3d8t8yFiAGVsIIaVSWV1drdPpNBpNVFSUUChkmNBoNHfu3JniP9XN9bV+B4N5gGiAHhLzFO3Ur/fvz1oQZidAJGZ5IhCmwXIMsQqgVCrlcvmePXvmzJnDbdDPEJdJBu7u7ps3bw4PD7fMh4w6uGOuoqLi3Llza9askclkjx8/TkhIiIiYx+eTTU1Nhw4d2rDh7xJJCMYUAAAmEQEAPT1y1b/983+Fz5y3L/1rJ2ceHwABDUDgAR2ylJVjGWpqajpy5AhJknoNnlk5rimzAefEdqevry8jI2PLli1hYWGzZ8+uqak5ffr01at5mze/29HRwefzxWIx90GMASHs4Oj44aa0zLM/ERjRABgwAsAYY3gmJmwJmgb1IMb9EOdzMateVueNmI/Pysry8/MLCwsDAAcHh7lz54aFhZWU3Ni3b193t2L69GBXFzFwe4cAA4F4ZOBkHyeCDxgjAARoIELob2PZ7wTT4h0k2rY6VrhACLW3txcVFW3YsAEYDcAYAEiSjI1d9MUXX8TExGi12h9++OHx4ybugxQQQBAIgKBpsp8h07CQuTFltwafD1mpAjEoLCwMDg729PQ0rBKLxZs2bUpLS3N3d9+7d+/p06eVSiVThYAADATGCGGEECs5hBAxQJel3MCgobIt5+WePHlSW1u7aNEiHo8HAExcx9ZijEmS9PX1TVy3dteuf29uebJz587rxTcUnV0I9wFN00QfRdAUQjQAjQEwBqANRjoNBuH4sGCY9dH7CZN+iG1npdpDUdStW7ecnZ2nTZvG9txAHAgASBJ5enpu/9ftd+/WnD1zsaLiZnikJFIyq6i4QFYrq5ZVz4kOFxDAhAgI9ccHyHJqNPAxQNM0GAjcJENWSgwMjC2VSlVaWpqcnKw3AWQzBRgjhAEItpuERCLxDwgq+6X0VuXN61fz+TTvn95aQfABUYBIRofYWBsACMB4wEHR/SUjg1GZDxLLWS/Ky8sdHR0lEglbotd/hLDhtFMwgR8bGxseNvN+zb3Tp88INE9X+PtN4DPsEAhowIgNGxCyrCIZhw36IYSQXC7PzMx8//33+Xy+QT3x7I9AeuUIA0EQIrFbxBuLvvx6/5SpAXv+sft/j/3P40e/UxSFgQBEDjxu8LaXAxtkiKbpH3/8cfHixV5eXsN9tt9jAQBCdgLBunXr/vM/dut6NcePHz9z5kxb+x80R2kM4+OXMdO3BYbYiQ6DxsbGR48eRUdHm3+KpumOtva2llbGP3OBABDQjH55eHq+9/6/JCYmdnd3f/Hf/8i9nMM8DcbchmHybOSwNT+k0+kKCwslEgk7B+LO5zDGSqVSKpXm5ORIpVJn0USCINo62hcuXLhq1arw8HAHBweE0IDnpwEAEAEAEokkMDCwtbX15MmTBQX5ycnJQUEhjo6OoxBP2QhDrKQePXr0+++/b9y4kcfjsbltpoqm6YcPH166dEmtVicmJu7du5fH4zG1JSUl169fv3379ooVK4KDgxnT0h+d4/73CwQCX1/fTz75pLKy8vz5LFfXkujo6NDQUIFAoBfHW3a9xhYY4oqjvLzcw8PDz8/PsFl5eXlBQUFERERUVBQTgrMPRkdHh4WFFRcXZ2Zmrl27NjQ01NRvkSQ5f/78GTNm3LhxIz8/v6SkJD4+PjAw8OUpky34IRY6ne7SpUtr1qxhlIOVGsa4ubk5Ly9v6dKly5Yts7e3NxSoUCiMi4tbv379kSNHOjs7gcmWYsCADbNyIpFo5cqVW7ZsCQwMTE9PP3TokE6ne0mdsh2GMMaHDx9etWqVt7e3XpVGo7l8+XJISEhERISZN5AkGRwcvHz58uPHj6tUKjCbkEQIubu7r169+ptvvhEKhWlpadnZ2S0tLRZfkrYFhphYoLGxsbq6OjExUa8cY/zkyZOampqYmBiSJPWyc3ogCCIiIkKhUNy7dw+IgTUH09EZxtje3j4lJWXXrl0ymWzPnj1NTU0mW78QbIEhANBqtVlZWfHx8Y6OjkwJdyzfuXNn0qRJr732GvcRUzy5urp6eHjU1tb29vaa/1GEEEH0C5AkSZqmfXx8BALBiHpiAFuIFADg7t27SqUyMjJSr5zh6cGDB9OnT2elaR4kSXp5ef32228URQGYWxqiaRohpFarKysrT548mZycHBERYW9vb9n1GltgSKPRlJeXBwUFeXp6Go16nz59KhaLhy44oVCoUqn6+vrMN6Npura29tq1a11dXenp6UKhkP3dF++MAWyBoebm5vr6+rVr15qSvqOjY3d3t/mXcK2iWq2eMGGC4aYOLjQaTXZ2dm1t7Zw5c2JiYhwcHNgqy0YKtsDQlStXZs2a5eHhYWo1zN/fv76+HoYsu+bmZjc3N8OsK8vi48ePDx486O3tnZqaOnnyZPNcjhDWGilgjJl8WmNjY0VFxfr165mcGAtu48jIyAcPHnR2dupVcf/NktfR0dHU1CSRSJiVWS6YrXfXrl3bv39/XFzce++95+fnR5LkS90aZZU6xLhohJBOpzt+/HhKSgoTQRluS2JKvLy8Zs+enZ+f/+abb3JjLUOVoiiqrKzMxcVlxowZerU0TdfX11+7dk2lUm3bts3X15cpf9l7cq1Sh1iJ3L17V6VS6YVwBit1yMHBYcmSJffu3WNsHQOjA7+lpaW4uHjNmjVOTk7cco1Gk5ube+LEiUmTJm3dupXJKqH+dfGXmzy1Sh1it9EWFRXFxMSIRCJ2IJuSl4+PT1xcXHp6OrO1kc/n60V9Op2uuro6IyNj69atkydPBs6Et6ur69tvvwWA1NTUKVOmEATBVr3KbZuDTCZTq9Xz5s0bykSHIIh58+ZNnz593759ZWVlkZGRr7/+uouLC03T3d3dra2tUqm0o6Pj008/9fHxYR5BCCkUivLy8pycnPj4+GXLlnFfOGrbcq2JIe6Y1Wq1paWls2bNYvb0DnGu4+Li8tlnn+Xn5//8888URbHxHpOR27hx48SJE9nGdXV1Fy9e5PF4H3zwQWBgoN6rRm2njTUxxBUKs5D64YcfDusNGGMnJ6eEhITY2NiOjg65XI4QEgqFjD7BANM0TRcWFubk5MTFxUVERDg7O1u0H8ODNTHEQqfTfffddxs3bmT9+RBHNNOMJElnZ2ejcqdpuqGh4ezZsxRF7dq1y9XVdcx3pVklQxUVFQBgmIUbIbq7u0tKSiorK+fOnbts2TKL50BfDNbHkEqlunr1alJSkvnRbTTQMhV9YYzr6+svXLjA5/NTUlKmTZtmyS8eGayMIZqmq6qqHBwcgoKCzLc0fvLdGGcURRUVFWVnZ69evXrBggXc9QuM8RAz4i8PVsaQQqG4efPmggULGMc+QvT19TU0NFy+fFmhUHz++edMWMjNR4y5EwKrY+j27dt9fX1z584dYnszk8re3t68vDyZTDZjxoyEhAQm+8nozXgghoWVMXT+/PlNmzbppWTMQE/W7LTpzz//PHjwoJOTU1JSUkBAAJucHlfcMLAahjDGBQUFYrGYOe84lPZGxc0siZ47dy4hIYHdljWeYTUMKRSKzMzM3bt3j2QxhvE63d3dH330kZ+f3zjUGEOMKkOmj7kPfv6moKAgKCho0qRJL/bTarW6sLCwurp65syZsbGxIpHoxd4z+rAOHero6Pj111/j4+OHFfuyhk6hUBw4cAAhlJSUxN1SMt6CAqMYVYYGhKGvMRgIMK5bAAA0Td+8edPZ2TkkJMSMQI2Ku6ur6/bt26dOnVq3bt2SJUsIgjBclxvzGY95jIkOEc9famQcbHq/q6tLKpXGx8dzd2votTScu2CM6+rq8vLyFArFzp07je7khnEZvOlhrKwcwdUkM0JCCJWWlopEIlO73dnFNHhe3FevXi0uLo6Ojo6KijLldcY/PTCmfmhIl20olcrMzMyvvvqKzWOadx4URbW0tGRkZBAEsX37djc3N8MNIXoY595oXEcKNE2fOnUqNjbWzHlHrnB7enoKCwvLysrmz5+/fPlyOzs7o48YO7Y/fjGuGWJ2xO/YsYMrU1MCbWhoyMrKIkny3XffDQgIMOP/xzklehg1hvqv/oLnIzozURxN00VFRRKJZNA77iiKKi8vz87OjoqKiomJGXpOyCowagw9xwQeKAEDetgQrrGxsaGh4e2339bbl8MFRVHt7e3nz59vbm5m9uhYl34MBaPBUP+tbBgj6AOEMEYUIpkrd3kAmKKBQP3XRwzQgzGuqqoSi8X+/v6mhK5SqX755ZeysrLg4OC0tLRxsiRqcYwGQ9wz7FqNOiPjRGm5dH3qlqWxbyAAgiBg4H49tr1arc7Pz//444+5m6e5IbVcLj98+LCdnV1iYqJEIhnns86RYJSsHHMbDoWJh3UNIUHT/jYrdM/+g66eXmFBU3gIeIAAaISeJWN++umn0NDQqVOnsjECy59Op5NKpceOHUtKSoqMjBSJRHoNbMzQjZYfQjQAYBp5eHhIggIwj5fy986qqipJ0BSCCX85B3rr6+uvXLly9OhRbhqbkXtdXd2VK1f++OOP3bt3651XtTFiWIwaQwgACJJwdXUF6EMYxE5Ce3tH/vMTVwyg6+3NyspKTExkL0RgqrRabWFh4a1bt4KCgt555x3u1kM9PbMxqkY1liMQMNeIYor6o6Nj6YoVZP/NrwigX13q6uoUCkV4eDhX0G1tbceOHUMIvfXWW/7+/nppAhujRA+D3wBoEQyMbgxAU7q+8krpypUrhSJHwEAO3KkHAL1abWlpaUhICJtEUKlUMpksMzNz+fLlixcvNnoVAgubpMo4Q9wrgkeIARPEnHunaJ32bs19ZxdXB0fHp097BHZk/cMHjQ3/xxw1JUmyoaFh69atJElSFFVfX19QUNDa2rpjxw4fHx+bJGBQGGfIgidjEAbAGBEIANNazcXsrKMnTondvPn8iVOmTLUToO6uTheh0wQ7fp1cfuPGjYULF3p7e2OMc3Nzq6qqQkNDk5OT2UO8fwXopQ15RussaeIQgoG3ETzegjei/KYFU2D3tFN9+VKu5G+BG9YnurmI7QV2TS3N169fT0lJ6erqOnDgAEmSqampvr6+zJRonGegLQi9bhp3uZYycQDMZW0DrBN27p4+7p5+AJCZeSbA3/Od1A18Hh8B9Pb2njhxIjk5uaamJjc3NyYmZuXKlXoZaDZU++uwBWYiBUvP0mmEEMb9xpOiqAsXzqWnf23HI5mkqkwma2hoIAiisbExOTlZIpHonZHjvsu26TFn5bhQKpV1dXUTJkxg7d7I5MK5oReh9vZ2hUIhlz9VKLoBoKen5+jRow8fPvT394+MjCRJ8v79+6YubWOjGBvjqb29vbOzkzlEzS3Xt2ZMz5VK5ffffy+VSpk7UCwhCxqe3VFNaHW9nX8+9fDwYMq1Wm1TU5NIJBKLxYzuWtLMWgn6+vqEQuG2bdv0zvuNnSDG/D86tRLYbErYZjB2q+CvtGdoeKVD4x3/D1t4oOhF1Rw/AAAAAElFTkSuQmCC"
|
<image>如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()
Choices:
(A) 130°
(B) 105°
(C) 115°
(D) 125°
|
115°
| 10,871
| null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALQAAABtCAYAAAAI/EvVAAAZp0lEQVR4nO2df1QU19nHv7OLoedIsjFuwpp3E/JjEQwmXZFGmlIwshj7Vo8YaZtUbLDHxh9rg3kDie8JksakPVRQacSUHNuGk9KG9BCQaH2JYAMGW9RYtskqasRwYmxQkrj4owGZmef9Y5lhZ3f2FyzLD+/nHI/szJ07d2e/88xzn3vvMyCGT0RRJEEQFNtqtqwlQEMACBlrqF/8iNasKXaWVxzLh7GlDCIiDRg+4TgOGo0GRAT+eB04jsOOT+4CkQBRFEGlFkzS3A/ccy8AgEAgEgaO1Y5m069LIka7AeMBAiByx/G9hEykr9uMxu35AJxix32PonhNOrjY6SAAGnAAE/KowQTtFxEcNHhnWxkakYYPt/+PR4l7Y2OBe2eAczkG0EAURWg07CEYTjgiotFuxFiGiCByxzFfMxNxm2vwat4SEJHTOntBBIEjgAMHeC/GGAGY+fADx3HQHj+JvxFgmh47sFVULStZBg04p+CZmMMOE3QAiAPCJHL+wUHpI0tCdtWvKIpgD7/wwwQdADQjDhYAZ05/7NzgqtzjNdhad8xZjmigB0kARJ9uCWNkYIL2iwgtErB2y1q8mrcEW985DgAgEvBRXTG4pxvwzOIEAE73ROQEQMPB/dKOhLVmTwBPWKfQDwI5La0GHD6qK8Y3M58FcQAISF9XgsbtzwwWJoyY3xxMxMRfp3UiwwQdJLJm/YhXEuBwxeUqZFF03lzXq1gDgcWhEZz14zz+ADo6OnDy5EkcOnRI3nb+/Hm0nzwBzsVcHD16FFeuXJE/p6SkQKt1djBnzZoFnU4HIsKMGTMwbdo0uYwEi2n7h1loPzgvjwiO04IANB9oxsn2E9jX2IDj9mP4+OOTMBrvxIwZM5D84ByIcE7zuN1wB+LiYhXWdPbs2YiKipI/Hzx4EDzPg+M4HDlyBJcuXQIAHDt2DN3d3RBFES0tLTCbzTCbzUhKSkJSUhLmzJnjs83XsyVngvaCKIr497//jbq6OjTufw8nTxzHqVOnkJKSgjvvvBO1tbUwJ34T7cdOYMqUKUhLS0NGRgbSHk5F9K23hXQex5EjR9DW1oZ//vOf+OCDD3D06FE89NBDePDBB2E2mzF79mzMnDkzZOcbzzBBQ9mJOnHiBOrq6lBVVYWuri4sXrwYixYtQnx8PO6+9x5c7rmEpKQk/OIXv8CyZY+DiMO//vUvNDc3o7FxH5qaDiAmJgZz586FxWLBww8/DJ1ON+z2EZHC5Th48CA++OAD2Gw22Gw2XLx4EY8//jieeOIJxMXFXZfWGWCCBgDYbDa89dZb2LVrF77++mssXLgQy5cvVzzanbPrgAULFiA5ORmbXnpJtU9IRDh06BCam5vR0NCA5uZmPPDAA5g3bx4sFgvS0tLwjW98I+TfoaOjA2+88Qb+/Oc/IzIyEj/72c+wdOlSGI3GkJ9rTBOWSaphQG3esi/sdjtZrVaKiYkhk8lEGzZsoLa2Np/HWK1WyszMDLpt7733HhUUFFBKSgoBoJSUFCooKKCmpqag6wqEtrY2slqtZDAYKDU1lXbu3EkOh8OjnCiKKkcHjyiKtDaDc84PV/x7mI6RQAJ5nidU53Znwghawp+oW1tbaeHChWQwGKiwsJDa29sV+71d6LKyMjKbzXT58uWg2uNeX29vL7377ruUl5dHiYmJpNVqyWKxUFFRER06dMjv8cHS2NhIOTk5NHXqVMrKyqLW1tZh1efJ4PVemwGq+UiQFzYUWy2yqImUv40oiqpCHy4TTtBE6iKor6+ntLQ0iomJofLycurt7Q1YLPv27SOj0UifffZZqJtKDoeDamtryWq1UkJCAkVGRtL3v/99Kikp8fvEIPIteFcB8TxPlZWVFB8fTwsWLJCF7c0ABHsj8WSnhzNWe2xfNR+Uvq7ErfKhnSMQJqSgXampqaFZs2ZRXFwcVVRUyNsDvZinT58mg8GgatlG4gfp6uqiqqoqWrlyJZlMJtLpdJSVlUVlZWUeTxOJYFwtIqKqqipZ2IcPHx5eg0UigUT68J1isvx8i8fu4jXphIxVzqID10skIoFGZnnahBV0RUUFxcfHU2JiIlVXVwclPkEQSBAEcjgcZDKZqLKykgRBUNQRjIiGI/zOzk6qqKig7OxsMhqNZDAYKDs7m3bu3EmdnZ0BncdbW998802KjY2lzMxMamtrk793MEjnLF6TTiW77B77a7aulgUdDiacoJuamshkMlFqairV19cH/EhW25eRkUEFBQUBlQ+G4dTT3t5O5eXllJWVRXq9nmJiYmjlypVUWVlJ58+fD/g8rvsqKiooJiZGFnZw7RRIpGM0D/PouIpPXLwmnSw/36I0BiPgO0tMGEE7HA5auXIlGQwG2rt3LxF5WixRFAO2lkONaATLUK23JLa2tjbatm0bLVy4kKKioig+Pp7Wrl1Lb7/9NjkcjqBuHknYOTk5qlERrxx7281PHohsHKshAFSyyz5iUQ13JoSg9+7dS9HR0WS1WuUoxHAu4FAjGuHA3/dqbW2loqIislgspNVqyWw2U15eHu3evZt6e3v91s/zPBUWFlJ0dDQ1NDQE1J6aratpbUmtx761GVC4G643F/OhVbhw4QLl5ORQTEyMakx3KO5GY2MjGY1GOnv2bMjaOZq4x8CTk5OpoKCAGhsbPcq6Xq/W1laKi4ujtWtXyze2IHjGlHmykwWgGnv/4MbjNXLOknAz6oIO5JGoJszq6mrS6/W0YcMGn5YnmEfu6dOnKTo6mlpbW0PmL48lent7qb6+Xo6BA6C0tDT65S9/SS0tLR7lL1++TFarlUwmk0eURxAE+nDXZqdwNe4DKqDi2o/C9bUUjLqgg+XChQuUlZVFCQkJPgcJghWka0TjesHhcFBNTY0iBv7II49QSUmJHM4TyfnUMhgM9L/PbaD+/n7flY4yY17Qrtb58OHD8ggfzw/PB5MELw2ZWywWOaIRrg7MWEMtBp6ZmUnbt/+G/vGPf1B2djbNmjVLDvF5YzSv35gXtITkYtTX13stE6xVlsqHK6IxllG7dlIMfPny5XIM/KGHHqJbbrmFdu7c6XKcy5A2MUH7paioiIxGI9ntnoF7IgpqQMD9YnuLaExEKz2U7yRdW4FEam9vp8IXXqT77ruP4uPjqaioaLBu1fOFP1nlmBY0z/OUk5NDiYmJ1NXVJW8PVYdtokU0RgJ+4FKLIi+L1mw201/+8heaPXs2rVo1OKytvGFGp1M9Zhep9fT0wGKxwOFwoLm5GdHR0fK+QNbWkco0b1EUIYrOrEcdHR3Izs5GdXX19TdnGIGnQNAOXGqO08rzv3Nzn8aOHTvQ1NSEzs5OPPbYY7h27ZrbogLNYAaeMBJ2QQdyITs6OpCcnAyz2Yza2lrFOrxAUVuxodFooNFo0NPTgwULFqCkpMTv+ryJynBWtCxfvgznzp3D0aNH8de//hWTJk3CI488olgA7DyJ57GSQRkxRuW54IPW1lbS6/VUXl4+IvXzPE8Wi4Wef/75Eal/IqI2heD111+nuXPnyp/z8vLIbDbLruFo9UHCJuhA5lEcPnyY9Ho97dmzZ8TawSIaoYHneYqNjVVMZiotLaWYmBg6ffr0qLVrzFjozs5Oio6OppqampB0+tRunu3bt5PZbKZLly4Nu/7rCW+/R2lpqYdxqKqqIqPROGqiDqug3S+M9PnChQtkMpmorKyMiIb3uPJ2LItohJ7e3l4yGAweK2ukuejSjD3pdw7HdIJRt9CXL1+mxMREeu6550bM7/K16oQxdARBoNLSUsrKyvLYV1BQQBaLZdgjusEyqoLmeZ4WLVpE2dnZRKS0rkO5m91vCPdVJ4zQI1lpNRcjKyuLVq5cSUTh6ySOShyaBkJ3K1euxNdff42KigoAylDSUPK4uR4vJRzPysrCY489hmXLlg2v0QyPkJsoioiMjMSqVavw8ssve5SvrKyE3W7Hli1bwpf4Jiy3jQoFBQWUmJjocxL9cH0uFtEIDw6Hg/R6vcJKS79dV1cXGY1GqqmpCUtbRkXQO3fupJiYGMVwdqhxnaMxEedljBWka1tYWEhWq1Xe7jq/xm63k8FgGP4K8wAIi6BdLe3p06dJp9N5XZIfCtwjGkzQI49kpb0ZqT179lBMTMyIR5nCaqF5nqeUlBQqLS31WW44rkYwEY2JuCol3Lhew/Xr19P69evlz+6GpLS0lJKTk4nn+YmRCqy4uJjS0tJ8lgk2R50rFy9epNjYWPrTn/5EREyw4aarq4t0Op1PV9JisVBJSYnX/cMlbIK22+2k1+t9PnLkubduSV0Cob+/X7HqhBFepN8rNzeXCgsLvZbr7Oz06ECGkrAImud5SkxMVKTi8sVQHkdWq5UWL14ckFVmlnvkOHv2LOn1eurp6fFaprS0lFJSUkbk/GGJQ2/atAl33nknnnjiCY/po2rTCYONWe7YsQMHDx5EZWWl4gU73mDvKgktrtfaaDRi4cKF2LJli9fyubm5AJy/W8gZkdvEhba2NjIYDNTd3U1EobWOgiAoIhosmjF6uEey9Hq9zzGG9vZ2vy7oUAiZoNXE1NvbSwkJCSEPqkvnYnM0xh6SsHNycvxGs6QMT6Ek5BbaVdgvv/wy5eTkhPoURHR95tEYT7S3t5PBYPCZBEitbzXcp+yIuRwOh4MMBsOIjAZKq05YRGNsk5mZ6ddKt7W1hdT1GLGXBr3wwgu4dOkStm3bFvK6161bh3PnzqG2ttZnObqOXxEcTqTr7P4CU5vNhszMTHR0dMgvGFUjPz8fPM+HRiuhuCvcO3qSdf78889DUb2CsZwZlOFJZmYmvf766z7LeBuQGYr7MSIux8aNGxVDoK4Mx0dSi2iwmPLYwv33aGlpIZPJ5Hei//r162nDhg3DPv+wBe0u0PPnz3vcbaEQHYtojF/S0tKooqLCQweu2pFCfUElWlchZBZaaqz7BJVgUbPgLKIxvmlqaiKz2ey33IoVK3wOmweCQtD9/X3yv6EQyOSUYOF5ntLT0+WIBnMxxidz5871Ox4hDbYE8qYBbyjGgCMiblD8HyxFRUVYsWKFIm3XcMnNzcWNN96Il156CQAbth6vPPPMM9i0aZPPMvHx8UhJScFrr7029AxL7gofqnW+cOFCSKyzqwW+njKDXg+YzWa/SYSkqRJDXS3uU9DuLoiaSyJ9Li0tlVdveysbyD6JxsZGuvvuGOrsPONRrq/va9Xj3dvp/n0Yo0ttba3f+fBERBkZGQHPzHTHr4X29bm/v0+2qCkpD8nvBZTKSJbU/Rhf9RMRdXR00B13/Jcc0QjkeG83n7dzMMKH6xx3s9ms+oInVxoaGgLqRKoRlKDV9vX391FHx8c0bVq0/Ji4dq034Drcyw5GNN5QbXCgdfs6J2P0qKio8GmlJfF7y/XhD789rIiIG8Dz13zuf/PNt/Doo1ny8GYww82uZQVBkPNo/OhHP/JbnjH+yM7Oxrlz53DkyBHV/VLK46VLl6Kqqiro+mVB+xKtPyorK7Fs2eN+y9HAtBHyMn0kNzcXUVFRckQjFG1jjB2ICFqtFgUFBfjVr37lM1f4kiVL/M7V8XYSIlL6nGr09/epRheOHj1CJtM9ikeG5EdL/9xjx/39fXLHTqKsrIySkpSJZ4LpVPrzoZnbMXbgeZ5MJpNHkkcJURSJ53nS6/XU2dnptYwasoWOiLjBZ/yZvMxce/PNt/DjH2fLd5tGowHHcXJ9Wu0kj9hxRMQNmDQpUj5fQ0MDioqKsGvXO4ps/d7aJG133ee+zdvfjPBDbpZYq9Vi3bp1ePHFFxVlpHIcx0Gr1SIzMxPV1dWq9Xl1Pf3dTYIg+LRuRqPRZ9IYfzFjX3M0WLx5/OP6PkhXent7feaRFkWR9uzZQ8nJyar7vOFT0P7ixYGO0Xvjq6++kudouKcuYEPcE5/S0lL6yU9+4lWgPM+TTqcLavK/zyiH2qPdlfr6eq/RCGBwNbDaMKYgCPjhD38oZwbVaDSKRxMb4p54kJvrsXr1auzbtw9nzpxRLa/VarFo0SK8/fbbiu0+V/QPp4FNTU347ne/K392b7BGo4EgCKrizM3NxeTJkxURDSbiiY273xsZGYknn3wSxcXFXkW6dOlSVFdXK/b70klAS7BIxQkXBAE333wzPv/884Beu+Zax44dO/C73/0O77///pBe2caYOPT09CA+Ph42m02e1Oaqlb6+PkyePBk9PT2YPHmy3/oCMolqPcqjR49i+vTpXgXpfsdJdezfvx9FRUXYvXs3EzMDOp0Oq1atQlFRkbzNVW+RkZG4//77YbPZAqovIEGrGfEjR47gW9/6ltdHhdpjoaOjA8uWLUN1dTVuv/32gBrImPjk5uaisrIS58+fV91vNpths9kCmlIalIV2Ffb777+Pb3/72wH7vdLbW7ds2YI5c+Ywf5khM2XKFGRnZ2P79u2q+yVBB6SZYEMtUojFZDL5jD+7xh8FQVDk0WDxZYY7XV1dZDAYVJM8Hjx4kBITEwOqJ+i8HKIooru7GyaTCT09PT7vGilPQ6B5NBjXH6IoguM4cByHp59+GjfddJNiBBEArly5Ar1ej6tXr/rM7wHAv4VWs6Z79uyhBQsWBFSerTphBIqUitd15bf0pDeZTGS32/3W4dcpUYtwtLS0ICkpyW95XxENNg2U4Y6Uild6zR8wGFyQ/Gjy41AE3TMTRRE2mw3Jycmq+6SeaEdHB7Kzs1FdXQ2j0RjsaRjXKRs3bkRxcTH6+voU25OSkmCz2fwawqAFrdFo0N3djdtuu011n0ajkSMaJSUlmDNnTrCnYFzH3HPPPUhPT0d5ebm8jYhgNpvR1tbmvwJ/PonaJKE77rjD6ywpKTPo888/79ffYTCIPPtTdrudjEaj4m1ZZ8+epVtvvdVvXX4ttFoU4+LFizAYDKrlpVUnaq/KZTDUcHcjEhISkJSUhMrKSnmfTqfDpUuX/NdFFFzYrq+vDzqdDr29vR7pU8vKyvD73/8eBw4cwI033hhMtQyGApvNhh/84Ac4ceKEHKqLiIhAX1+fz9Bd0D50d3c3brnlFufBLmLev38/fv3rX2P37t1MzIygcberZrMZM2fORGVlpbwtKioKV65c8VlP0IL+4osvZEFLsIgGY7ioRS/y8vJQXFwsf7755pvhcDh81hO0oL/88ktMmzZN/swiGozh4m6dpdDvd77zHUydOlUeYY6KigqtoEVRxBdffIGpU6eCiBR5NJYtWxZMVQyGjGSdJSG7urKbNm3Cpk2bIIoipkyZEpzL4X6nEAny31IHsLv7PHQ6HTiO85pHg8EYCmoRtbS0NOh0OtTV1Sl8aPeppPZ3SlBrF52CFuEUrrsfw3GDvUnpZD09l3HbbbfJb2/94x//6Hc4kgEcOHBAnoTDhv0Dh4jw1FNPofSV3yAqKgpXr14FoBQ/j+N4enE+ACACADRwCtc6n8OrDcoKS3bZ8cziBPmOuHbtGr766iu88sor+OlPcxROO0OdTz/9VDE/AXAaj8LCwtFp0DiDOODUiZO4JXkKvvzySwAiAA1EEDTg8Mq6MnAZGYibOeBySPZ1xz7C6vlOERMRPty1GXmZM7GrfXBYGwD0ej2efPJJ3HTTzb4bwiw3OI7DqVOnVPd9+umnYW7N+IQjYMWKFbjrrrvwn//8B5KnzBFQu20NKCMDQoPTy4gAAA5OUYs4hlP7LFhXHw8AuD/2XgCSMJ2PSde5qu4DKwx1rl69ir///e8e21esWIHU1NRRaNH4QrLE7pC9Dg3CfJTFA3nzp+M+aFw6hUQ4XrcXsD6ChAHf2bp+KdLXlSBzhvpJmC8YGIsWLVLdzsTsH29iBoCnXmvEq88sgUYgpE+/x7nRdfJRzdbVBKexJgBUY+93m0TizP8sukwoUZuoz7IeedLc3Ky4tozAEUXeKToiInJm2KrdtkZxPedZi4mISOPMWOT0Pxr2lqPm+DUQEWq3rcGjMyeh1j4YHpGiHhycjrpzm+fdw9wQT1JTU+WEhMT6FkHBcVqAk6JxGtCJOuzjM+Rr+eGuzYi7y+keOzuFnAY4XoPfcquQGR8BArBovRXzwKGhvk71JN4eAwzGiEAD0bj2Wmif+j+8mrcEACCKwOkzZ2TDOhC241D77j6szpgv79AeO4m/gfDfsdNlP4YAwCWrDZGgiFUzGKFnIERHwFarBfm/3Q8AqLX/FktmAtbvaVG+LwJAOU52loATRZ44TgvrfA6WrQIW3weQph0LuJloxFwcowbc59T94ClYdIMRRkQQOPK/DpVIgMb+zlZwnHNA5dH7tdBqtYjgHkBjxioQvechZhDzkb3hyz92HynMz88Pc+vGLxpwqsmOBv929vM4Tqvsboui6IxgeOttkmv0gkUyvOEe+cnPz/eIbACg/Pz8cDZr/BJExguNpG6nwjlnV8/1LnC5UzgpbE3O+4ahjqs1efbZZ3H48GEPy33gwAGUlJSMRvPGHwOeRiCxoQg1YRIn1SGCg8Ytna4IcBr5BCzW4Z2WlhYUFxd7TejtLnKGGs5OITA4ou2uOddtqmZWQ8rdSmd80EozMftm48aNyM/Px9133y1vk0TsTeQMd5RvdvCnOXW/IRClMjX7pbm52WPYWzIOFRUVrGMYIP6iG657I7yWYgyLTz75BAA81lgSEVpaWtDU1IQ//OEPo9G0CQ3r2Y0Qkpvx2WefKbZzHIfU1FQPV4QRGpigR5D8/Hxs3LhR/vzJJ5/IMejNmzePYssmLkEnmmEEx9y5c9Hc3Cx/PnPmDLPMI8j/A0bCywY7oto/AAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆的直径,∠ABC=50°,点D是⁀{AC}的中点,则∠DAB等于()
Choices:
(A) 40°
(B) 50°
(C) 65°
(D) 70°
|
65°
| 10,872
| null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAABoCAYAAADGpx+DAAAXzUlEQVR4nO1dfWxT19n/2ZRWYqZuVbM46IIHGDAL2lyzlpSljSIMzba4ytS0adf0JZNYjUi1OQopqZT1Q2rVrC/vQBUTCR9qpmVaJLLQrmFNcFidCtY0QQOpCQ7ESZOagRs2KcWhSop9n/ePcG/vvb73+vojjmn5SVGu7/m85znPOed5znOeA8piRKNRikaj/LMSWJaVTSv3nEjZqcTl3jU1NREAAkAul4uIiGpraxOujxr0yGLo9Xro9Xr+WQk6nU42rdyzEliWVUwfD3JxP/30U+h0OgQCARARWJbF3r17odPpYLVaNeetCWntEilCjqOSRTLcl04AkOW42tpa8nq9aa1fVnEix1FSrkgGQu6YbdP0IV5+Bw8eBAC8+eabMWFWqxUrVqyQHT2ShY7S/YVpAMuyMUQQEliv1/P/v/jiC5w7dw5DQ0O4cuUKfD4fn254eBiXL18W5c0wDFatWgUAuPPOO/HQQw9h2bJlWL16NTZs2ACDwZBy/XU6HRobG+F2u0XfIvyOdCIriaiGS5cu4eTJk+ju7kZPTw8uX76MgoICLFu2DCtXrsSDDz4Ig8EAIsKKFStgsVhE6cfHxzE2NgYACIfD6O/vx+joKILBIE6dOgWGYVBUVASn0wmn04mcnBzZeigRZGRkBFarFV6vF06nM6ZDzgVuCSIODQ3hyJEjePfddxEOh1FYWIiioiIUFhbCZrPFxNfa4+XiDQ4Owufz8X8mkwllZWWorKzkOVgNUiJmBGmbXdOMiYkJampqIofDQQzD0K5du8jv9/PhWhcGyS6WuPwHBgbI4/FQbm4uFRQU0KFDh2hycjImHlcOy7IEgJqammLKHh4eJq/Xm1R91JB1RAyFQlRdXU0Gg4F+8YtfUEdHh2LcdK5mlSDsLG1tbVReXk5Go5Hq6upoYmJCtg6cbCgkmNfr5eXEdGPOiaiVY4LBILndbjIajbRr1y4KhUJzXLPkEQwG6fnnnyej0Ugej4c+//xzPowjqtfr5YV8KIgb6cK8c+LU1BTV1dWRyWSil156iSYmJua7SoqIRqMizguFQqK6T09P0+joKB/OsmxG5NV5JWJ7ezuZzWZyu92KQ9OtgFAoRBUVFWQwGGjhwoUZH0UyMpxKiRMMBsnpdJLdbqfe3t6YNGo9eD41MWr62P3799OSJUsIAP3sZz/L6Igy5xobvV4vWsb39fXhgQceQFFREc6ePYuNGzfGpNHpdIqy1VzLXGpQ0se++OKLOHDgAD755BOsWbMGS5YswQMPPIDBwcHMVCxj3YWImpubyWQyUWdnZ0xYvJ2I+YJaHSKRCFVWVlJhYSFNTk4Sy7JUVVVFL730ErW1tZHJZKK2tjYimv0+oRiSTmSEiJFIhKqqqshqtdLAwEBMeKLbTNmAcDhMJSUlVFpaStPT0/z7rq4uys/PJyKivr4+YhiG6urq+PC5+J6UiRivUpOTk1RcXEw//vGPRULyfENurtaKyclJys/PJ7fbHRMWDofJaDRSKBQilmUpFAqRw+GgsrIyCofDqVZbFilPMGrqrcHBQfzoRz+CxWLBhx9+CKPRKB3KUy1eE+TKkc7VSpDuqIyPjyM/Px9bt25FY2NjTHyDwYBNmzbB5/NBp9MhJycH//znP3HnnXciPz8fo6OjyX+IEuakaxBRZ2cnGY1G2r9//1wVoQlC64BU8cknnxDDMHTw4EHZcI6z9+/fT+Xl5THhDQ0NZDQayefzieIL65oM5oSIAwMDZDQaZRcw84F0zEOnTp0is9lM7e3tinE4Ivj9fjKbzRSJRGLitLe3k8lkokAgkLbOlXYiXr16laxW67xzoBAlJSUiFRj3pwRp43JKidOnT8vG5zqJMN26detkZWAiotdee43y8vLSNkemlYiRSIScTidVVVWpxhMutzMFl8tFw8PD/O/a2toYQsrV6dChQ8QwDA0MDCRUZ07UUEJFRQWVlpbGvE+mXdJKRI/HQ06nkyKRiGpl5kP+k9tBcLlciopplmXp5ZdfJpvNRmNjYwmX19nZyYsacpienqb8/Hx6+eWXRWUmg7QRsbm5maxWa1YqsE+cOEG1tbUxneeFF15Q3B5yu92Un5+ftFgkFDWUEAwGiWEY1XlWC+KKGCzLxhUFPv74Y9TU1OC9997DkiVLRGmzAV6vF1u3bo1R2cnt1M/MzODnP/85/v3vf8Pr9caIRVphMBjw0EMPiWx+pGAYBu3t7XjuuecwODjItxfLsom1XSIUlzPk5XrT+++/n1JvmksofWZtba1oOJ2cnKTCwkL65S9/KbuyTBRKooYUbW1tZLFYkh7FUhpOWZalzZs3U0NDQ0xYJuc9tbkkEAjIznuBQEC0+x4KhSgvL0+kIkukfLnvPX/+POXm5mrqEPX19VRWVpZw2UQpEDEajVJrays5HA6+ksIPmS+dp7Qxm5qaqKmpKSaey+Uil8tF0WiU/H4/LV26NGmxSK3D2mw2+uijj+LmMT09TTabLSnZWhMR5SoZDoeJYRjq6+tLuNBMAgAFAgH+N8eB3IKmt7eX7rvvPlq0aNGcKCeef/55VVFDiO7ubrLZbCKFuhYkzYk1NTWyCuBsgdTGRfjHDaEdHR1kNpvJ5/NRZ2cn3X333WknZDxRQ4ry8nJ67bXXEiojKSIODw+TyWTKql0JNcgN7W+99RYxDEP/+te/+HecvjcVQkrLUhI1lKabUChEJpMpIROPuESUK6yysjJmiEiXMjcVaJ2Hq6uracGCBXTy5MmYdBwh//jHP6atXj/96U+ptbU1bjyuzTweD3k8Hs35J8yJXE/JNi7U2mmqqqrI4XDQ22+/TRaLhYLBYEyc119/nQDQ8ePH01I3raIGhytXriTUxgkT0ePxJLUMny9wxJ2enqby8nJyOp107do1Ippt3Ly8PFFjzQUn+v1+ys3Npa+++kpzGrfbrXlBlBARJyYm4qqS5gtqQ2k4HCan00kVFRUxDVlfX08FBQU0PT1NXV1dad9C4+pls9kUdzXkEAgEyGQyadrp0EREriL79u2jyspKzRXJJJSG01AoRHa7XXWO2b59O23cuDGGgOmUdePtasihtLSUmpub48ZLiBPtdju/K51NUCJgIBAgq9VKe/bsUU1//vx5WrhwIRUXF6e9blxHkBM14nWS9vZ2KiwsjFuGZiKePXuWLBZL1lqfSXH27Fkym83U0tLCv1Nb/Fy8eJEKCgpo9+7dc1IfLbsaUkQiETKZTDQ+Pq4aTzMRPR5PwsNBpsF1sO7ubjKbzTFKeS2WeXl5eXNmlVBcXKwqasjVT0u7ayYiwzCi84FE2WHcK0VrayuZzeYYdaBUr6tU92AwSBaLRZNclyi0iBpSA+Pe3l6y2WyqaTQRkTP8yXbs27ePLBYL+f3+lDqY3+8nhmGou7s7rR1VzYBKCZFIhAwGg+j4nBSaiNjY2JiQsJpuaDkiVldXR3a7XXbOEabVem6wr69PlqOl9UoUWnc1hIg3DGsiYnl5OTU2NiZUcKYQiUSooqKCPw+hBjnjKDVCdnZ2EsMwol0QDsku8JIRNRoaGvjNBmG53LMmIubm5sbMh9kA7jxEWVkZv32jtKdZW1srsqfhwk6cOKFqvtja2koWiyWGw5MdZhPd1WBZNu68GJeIY2NjtGTJEs2FzhWktp0TExPkcDg0bYdxQ6gcR3m9XtLpdKrp9+zZQ3a7PWk7UWFnSkbUICK66667FEeauIZSgUAA69at0260k2bQTSMt7tyEXq/H+Pg4HnnkEZSXl4vOQ5CCQddbb72F2tpaWcOo0dFRUTqpgRLLsqipqUFxcTFKSkowMzOTUP1ZlhWd+RAaUCnVVw7r1q3DxYsXZcPiEnFoaAhr1qzRXFi6odPpeAd3AHDu3Dk8/PDDqKmpwQsvvCCyEFM6IPPee+9h69atimG1tbV8g0ot4rg833jjDSxbtgxPPfVUQvWXOxRbUlKCY8eOJeRdymq1iogo7GyaOFHO4U8mwZ0c7unpwU9+8hMcOHAA27dvB/B1Iyk1yMjICABgxYoVMWHd3d3o6OjAjh07+PRS7hC6I2tubkYkEoHb7U7pezZv3oyenh5Eo1HNaWw2m4iIos4RbywuLi5W9CWTSWG/ra2NzGZzQjsBHADQiRMnZN8rrUzlvo1lWQqHw5Sfnx+zwky0LdasWZPQt7S0tChaw8Ulot1up7Nnz2oubC7Q2NhIDMPQ+fPnk0ovXZkGAgHS6XSafctIxYnJyUmy2WwisUsaJ54IUlVVRb/97W+JSFsH8Pl8isrwuES0Wq2yq7p0Qfixct4p6uvrKS8vT3YHPhG4XC6RkJ/qN42NjaVkgt/Z2UkbN27UHL+vr48cDodsWFwims3medkEjkQitH379pTOQySKRAV4v99POTk5ou05rcOqnKihZrfr9/tp7dq1snnFXdhMTU2lxQeoEuTOHMzMzKCsrAz/+c9/4PP5kj4PAcwuXmw2G+6//36cPn1aNa7W1SJXZ5vNhnfffRdPPPEEBgYGAHy94BCumoWgmwsn6VkN6epaWheDwYDr16/LVyhej9EQJWUIex3n1GD79u1pOQ9hs9n4ITQRTUki6OjoIIZhVI/AyXFovF0NoQfHyclJMhqNsnllBRE5BINBWr9+PdXX16ctTzkiSufedGx0qx3tU8o/kV0NIRGlEFPoq8jXfzdhMBjmzHWHENz2TyKKdi2Nz5nG2+12OnXqVCpVjIuGhgZyOByK7SVXXzkDKjmuvXTpEjEMI5tvLJt9Je4VagubVHqwMG1vby+ZzWbe+9KtDO60tNbzFMJdDaX2ZFmW/H6/ohI87sLGYDBgampKNiwVp+Rc2uPHj6O0tBStra14/PHHk85vPkECLc/evXtx3333Ydu2bbJ6WClcLhe6urpUXV4TEcLhMBYtWiQqi3tWJ+KNKEzGe3F98hr/GzeiYGduiOLghoz6iHuvEtZ86Ah27NiB999/Hw8//LD2PNTeS+skV36aIW38P//5z/jvf/+LX//616L3QlUZR9BNmzZhaGgIExMTivnr9Xp8+eWXWLx4sewKVp2ICxcgJycHlz6/wv8GAP1dC2d/34jOvlu4QNxYwvcKYQ3/9794c+//4bTvQ9jtduj1erHeUpiHEEp5C/9zabjnDBBSiAULFuCdd97BRx99hN/97nf8e5HS+ub3Ll68OO6xcGD2FoLvfve7smFxh9O1a9dieHh49seNKOgOyaUhStymgueeew5Hjx5FT08Pli9fHj+BlJBqcYRxtaSbI3znO99BV1cXDh8+jMOHDwNQ3iHhdjXUcPHiRcUtwbhEXL5qBS4O+mMK5p+FXKEClmUxMzODbdu2IRgMoqenR+SkQZr3rQyO40wmE7q7u/Hqq6/i+PHjivG17GqcP39ecUvwayIqcJPNZsPIyEh8bw5xuDEcDuPRRx/FHXfcgb/97W+JaYEyPBymCiHHWSwWdHV1obKyUlFjZLPZcM899+DMmTOKeQ4PD2Pt2rXygfw6VSIfchgbGyOTySQKE8kxCumEMmcoFKL777+fP03Fztwg+ioy+1+SJtG8Fd8pPacZWsWsnp4eMpvNirZKO3fuVDWgUjPP0KSOMZvNdGEguW0gv99PFouF9u3bFxN2qxwJSBfa29vJYrGI1HNcp1UzoErZUIqI6H+efiYpk0XOdnMurKlvFUhVfI2NjWSz2WK4Ss2A6o033lA1CIsrJ+JGFI888gg++OCD+JOBAF1dXXjsscfwpz/9CeXl5dIhPKG8bmVwN8xxz263G8888wweffRRTE1N8WEGgwH5+fmyokZPTw+KioqUC9HSm7h9M61oaWkhs9k87xYB2QiOM91uN5WUlIiU33/4wx9idjU4M34hh0qnIc1+bJYuXRrXgDgajdKePXs0WwNk44GcTKKsrIwqKipUnd1qOVCjyQe4Xq/Hk08+ib/85S+q8WpqatDS0oJTp06pXlMnHF6+zWhpaUEwGMTu3bsByIsara2tePLJJ9Uz0tpruEOmcuDOQzidTn4b5tvOZVoRDofphz/8IX+aWbirwR0yHRsbU71TQ5WIXq9XNCza7Xb64IMPYirhdDqpvLw8YXdWtzGLUChEFouFWlpaRKKG5uPeSvaVRLF+0aSOF7jzEDt37kzxM7694No6EAjw1nOcqCF0vCDnx5xzb6bIiVJbTaJZot19990UCoVobGyMrFarrJvM20gc0WiU+vv7KTc3lwoLC+n3v/99jAsUl8vFE054SCjmTmGWZXH48GGsXLkSW7ZsiZHpqqurce3aNfz1r39FUVERfvCDH6Q8wX+bwZ014fDll19i0aJF6OjogMvlwiuvvCIbd3R0FKtWrUIgEMAd0kw//fRTALNnF1wuV0yhTz/9NDZu3IgnnnhC9bSUtHK3IQ+ujbj2WrRoEa5fv47BwUH84x//4ON1d3ejtraW/+3xeL4+6cWxKjc2c6btgUCAdu3aJcv6jz/+uEhZ+23TgaYTSh4zqqurRe+4e4ohY8EOYUbSiEpnFTiXVdx1c7eRPKTtp+Qq0+Vy8YQ7ePCgiJB6jpW5i6holrDwer2wWq2y+4irVq3Ctm3bsHv37m/MRu58Qdp+v/nNb+DxeJCTk8O/GxkZARHxCpRf/epXAICTJ0/ORiAiGhkZoZKSEhHlm5qaFC+2IpqVD81mM3388ccp9sXb4MS87u5uslqtMfK21I+51Ak9OI8SELCn8ASR2vEvqSP321BGvIs+OUfuf//732PCXS4XjYyM8L852vC/U62c0+nkZcXb82PykLtSQcmP+WOPPSbqFCkTMRgM0tKlS7Pmmr1bEVovN1HiZlUialVi9/b2kslkykpfN/ONeG3Y399PJpNJdNdyoiNaWojIsmxWX/g1n1AjiNYLv+LRIUbtlgqqq6sxMDCAzs5OLFgwf4a7twJmZmZQVFSELVu24NVXX1WNy7Ks7N4r3Ty/kRYicoVEo1EUFxdj7dq12L9/f6rZfuPANToAPPvss5iamopr+a0145QhZPeJiQlavXp1Vl1Hm214/fXXs/c6Wg6JXAz9TbAAkH6D8Ji2FMKLodOFrLii/ZsuX3LXxDc0NNA999yTdmf4c3ogf2BggKxWK1VVVfFanW8yweT88BDNXqxSWVlJeXl5/OXU6WyHOTU3y8vLw5kzZzAyMoLNmzfj2rVrMQpfkqyrsuUK22QgXEFy5w+vXr2KTZs2YWpqCr29vbBarQDSewJszm0GjUYjOjo6sH79emzYsIH398JB+jHfJDPGM2fOwOFwYOvWrTh69Ojc+QNKG0+rgBs63n77bTKbzTELHi0+vm81tLW1UU5ODh09enTOvy2jRCSaVTOZzWbRRY8syybs4C5bEYlEqL6+niwWi0iVNpfIyNglHDIdDgf6+/vh8/lgt9vR19c3q3WQ+BvV6XS3zPzI1bOnpwfr16/HuXPn0N/fj7y8vJi4NBd2RxnpKjch5a5jx46R2Wwmt9utqHNVGmrVLKI5ZGqIDoVCVFFRQRaLZV52czK2iiAZPy2lpaUYHh7Gvffei+9///t45ZVXcPXqVT4+8LXXYUC8cuXyEnoGFkJJ35jqNwgRCoXw4osvYv369Vi5ciUuXLiALVu2pLVMrRXLOOSurg0Gg7Rjxw4yGo20a9cuunLlSsbrpZVzg8Eg7dy5k4xGI3k8nnm/TzLj63mS4Ui9Xg+GYXDgwAFcuHABkUgEq1evxrPPPouurq6M1U3OWRDd5D6WZXHs2DE89dRTyMvLw+LFizE8PIy9e/fGeAHJOOazB8mtSjlMTExQY2MjORwOYhiG6urq5mXTeWBggDweD5nNZiooKKBDhw7FdaKbaXEprfuJCXYezVqLoaEhHDlyBO+88w6mpqZQWFiIoqIiFBYWpv2mgMHBQfh8Pv7PZDKhrKwMlZWVvMngXMy3qWDeiJgsLl26hJMnT6K7uxs+nw9XrlxBQUEBli9fjhUrVuDBBx/kNSPf+973YLFY+LQsy+Kzzz7D+Pg4gFmvyn19fRgdHcVnn32G06dPg2EYFBUVwel0wul0iuw/tSCRzpkuZB0RE22EL774AufOncPQ0BAuX76Mnp4ePmxkZASXLl0SxWcYhueohQsXYtOmTVi2bBlWr16NDRs2xFWNcfXTwo2ZIuj/A9Wy56W6jX54AAAAAElFTkSuQmCC"
|
<image>已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()
Choices:
(A) 4
(B) 5
(C) \frac{20}{3}
(D) \frac{16}{3}
|
\frac{16}{3}
| 10,873
| null |
\frac{16}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABwCAYAAAD/h0UQAAATqklEQVR4nO1dX0wbR7f/Lf2qz0iRbqJWwpWuYqL7YGMnzfJUV6qy0KoNeYrd2JikD6FSFad9CfSlocpnTFqF9Ep1i1QJkj6QVFcCTAqhUiMiVbXpQyCqKkgAG3pVoE92UhX35bKQr+y5D2aN/+yud+31n/z5SQjvzs7M2Tlzzp6ZOXOGISJCGUBEYBhG93KXlpYQj8czrmOxGGpra2G321P3DQZD6rpUtJQTTLkYpxUiWWIDx+NxhMNhRKNRhMNhPHz4EEtLS7BYLKirq0vlE68fPXqEO3fupPJvbW1hZmYGRqMRZrMZjY2NsFgs4DgOFotFMz2VRkUZl6/nj4+P46effkI4HEYsFkNTUxPMZjOam5thNBpVNXg24vE4lpaWMDs7i+XlZUxNTYHneTQ3N4PjOBw/fhz79u0r5rXKgqqTuLm5OQwMDGBiYgJ2ux1HjhxBc3MzWJYtmYpbXV3F1NQUpqamMDk5CY7j4PF44HQ6da9LN1CVYHBwkCwWC7EsS/39/RSLxVTlEwRBVzp4nqfh4WFyOBxkNBrJ5/PR+vq6rnXogYoyjud5CgQCZDKZqL29naLRaCotnSHZzNGTWUplxWIx8vl8ZDKZqLOzU3VnKgcqxrjBwUEymUzU0dFBKysrGWl6S5FcmfnqEdPX19dTHez8+fPE87zu9GlFyRmX3TjRaJQ4jqPTp09XVQ9Wg42NDert7SWz2Uy3bt2qKC0FMU6ppyqptfPnzxPLshQKhQqptmqwsrJCLS0t5HA4KJFIFK0hCsmdw7j8hWznVpyH8PX1deI4jnp7e6tCzeiFsbExYlmWZmdndSlPCwNlJG47p5BC+1Q0GqXGxsbHXsrksLKyQna7ncbGxnQpL72dRYGQEowdxiWl6N6oj9xWEAACGsgdnKftkRPkCm4XpA7GxsbIbreXxfioJHieJ4fDQT6fT/G5vO+toVlqAIAQQfdBBoe7I3AH50FEECgIV9SD5zwR2Ky7Uz1qR+uXL1/GN998g++//x4HDhzISKuWaSMtIIV5CoPBgPHxcQDA22+/jc3NTcnnlN6biAAtzSLQPPkPgmDz0XzW92ubRsgFN42o7AqCIBDP8+TxeOj8+fPqu88TBDktowiBaMQtarrkH4Mags1KNvcIzUu0P+77rQQ0UPeChNFB8+Tzj6iuf319nex2Ow0NDakn+gnE7OxsQUbLiBsE24UUo/6OjJDLJgpVJvPgs4HgHt69U+Dnh+d5amlpoXA4rPhRfVKR/a6xWEyT5Ak0Tz4byNazkJkw76MGgKz++YzbcDG5NwuB1+ul/v7+XUKeIqbJYXp6mjiOUzUEEhZ8ZIWVfPN/Z1qWOwzNEC4iqlnUYW1gYGAARISzZ8+m7j2OBojesNvtOHv2LNrb25UfJGDhxg1EbC64bIwqG6XGBiCyGJVMHB0dzVtAOBzGxMQE+vr6VFT39KGtrQ0HDhzA5cuXZZ8hZgE3RiOwut04xNRkmO6ECCKLgNVmy8wkBF0EIMN6ERaC5HOfoBH6W1G8V1ZWiGXZqln2qOZvq8PhkBykC4KQUpOSBmLQJWk8gohoPpgceDM7pqjV3U0jC4JiA/A8TyzLZizFVArVyKhsiBa32F67NG8nmSNhOQqLQ+QCyOYezSmPISIiaBv7ERHq6upQV1eHF154AUDym0Y7K9RU5kV1yloZ/+OPP/Diiy9W7Dsr1wabm5tYWlrCvXv3YDKZAACEBfQcOoRR1zwWuw8CABYXF7F4wwe/fwyMf/d+Rh0kUUM+Rl67dg1dXV344IMP8Nprr1WVIcIwDE6ePIlAIACj0ViW+tKbMN/15OQkHjx4gMHBwVR6Liywuj3o7u5Gq20nPZspSZlUFvN0VRSLxYhlWfrhhx/IbrdX5Wy/yWTSNnNRZnActzvpnmn7ZyLtOvtzUJNke/5eJcLv98Pr9eKNN97Aq6++iv7+flU98xl28eWXX6Krqys5p5ne9mm/KWvuMkcytfQUcSpHRCwWI5PJJCl1lTQYql3iiIg6OjooEAgUnF8T46RM2mIJKAWqnXGCICh2ejWoUSvec3NzWFtby/E1/Oijj/D1118jkUjk5KHqctmsOMT2YBgGRqMRTqez8E+NWg7LDSCJiAKBAHV0dBTUc0qBapc4EaLUbWxsaM6rSuLkpE3E+++/j/Hx8YzNF8+QBClonbq6OjidTgwMDGguVxXjBgYG4PV6ZdMNBgPOnTuHzz77TDMBTzqUxrgMw8Dr9eLq1avaC84nkjzP00svvZR3PpLnebJYLFWhoqpRVSpZ2Xa7naanpzWVJytxtCPiExMTOHLkSN4dLAaDAZcuXcKHH36YkT/9Nz3FxoqS5J0+fRrXrl3TVJ4s48SpmuHhYXg8HgD5G97pdGJtbQ1zc3MZhIq/q2lqrJrgcDgwOTkp62QkhaSXlwxDHj16hFAohGPHjgFQ1/A+nw89PT2qCXgGwGg0or6+Hnfv3lWdpwaQZ8j09DRYloXBYFBdoNPpxPr6OsLhsOo8zwBwHIcff/xR9fM1SupvYmICx48fl0xTytfX14fOzs68lT/N37xsOJ1OfPfdd6qfr1FSf6FQCE1NTZJpSvlYloXJZEo5icrh2TdvFyzLYnV1VXIGSgoZxkm6BCQSCaytraGxsTFvIVKS4/f7cfHiRUWpeiZxmWhubkYoFFLVLhmMS5eA5eVlNDQ0qKpQSnJYlgXLsrh+/bosIc8kLhMWiwXLy8uq2kV2OCCGoigGvb296OnpwdbWVlHlFAO5vkvpPwSZp8qsEMxmM3799dfd6hUkT5Zxy8vLMJvNRRFiNBrhcDgqttia/eLp10z6j5r0Hi4g96HywGKxIBrddZVUkjxFiSuWcUBy2aevr0/T4FIvMEzSuZTSllPyQ/VKl+4wm81YWlpS9awslWtra6ivry+aGKPRiNOnT6O3t7fosgoFwzApradG+1G61JUR4rTiX3/9lddAkWVcIpHA3r17dSGoq6sL169fr+iyjyh5SZlLMoYiQfg9tqRkMgwYxorW0QUwFZS6vXv3IpFI5NUOshRubW2htrY2b0VqTNdqWfbZbYwaLPS4cdDWjYhrBPMkQBAE3A9asdB6CO7R8klcdvvV1taqM+bklhygwY9IjWMQz/NkMplKGiKD53k6depU0hvbaqXffvtN8rn0PYECUYYbXHKPWq5XcbmQ4bqnAMW5SrVQ471sMBjg9/vR1dVVVF1K+Oqrr1KzNZFIBO+9914qjYhAtA2K+ODxR2D1B+G31iRVp8TrV05ZqoNu9Klhfnt7O+bm5jA3N6dXtRkIhULgeT5Fzy+//JJBH8M8h1H/J4jiBLq7bZl+jEi6g0ciAFBTIfNEPcresUq57HPhwgXs2bMHQPJb8emnn+6kJNmwjSBGbgBwu9GaJWYMACyOIrgIWN0ncLDcgziRDrXaT06H/vOf/9TFvVzq+6dnUJds3Llzh/bs2UNXrlzJrFtI7vpsAKih+77kFyy5gT7/9jI9kd0+at0YZBm3f//+kvltTE9Pk91uL0nZRPI+J9s0Qm6J/dRE23Q/eIIAkCu4uw+tEuaJWn8Z2RXwUk4A2+12GI3GvMs+aiFFv1RaDVrxL78VEX8r/Is7YzksYKT1ZbzcmozxEnSluVxU85dOjqNqzdJCkb0PoVBIqWKlXrtN8zTid1EDdiMoWV3DdF/c8SlQZURtByJL8g2xZI0Ti8Wiet6sEBw+fBj19fVFS51WzVCDg3D7gogkPxMgimAh6MIh205TMELZJ5dFpK/IFDxzYjabsby8rC9laWAYBoFAAB9//HFqApoUZvO1IF8+hmHSJi0FMMxzaflqiqq7GESjUdVLabKMq6+vx9raWs59PV/owIEDaGlpSS37ZPeyQr+zqvKlHtltAimXwnJibW0ttcU4H2QZ19DQIKkq9X6hSi77VAPSBWF5eRkWi0W760I6LBYLYrGYaueVQlH0dqPHHOmCcPfuXdjtdvWuCyKHN/l/p/6ApPNKOfwjfT4frl69+lTv9kkkElhdXQXLsqqez5hkNtQ+n/H/6NGjuH37tmRGPb91+/btw5kzZyq+7FNJ3L59Gy0tLarbVdEh9ujRo5icnNSLNkU8zXvsiCjFOLU2hKJD7EvG/wSDf2Ap+r8AMlWpmC9dtaYjW+0qpRGR5GKrXBlK9wGAwT+wtfl3xr1qBsMwCIVC4DhOdR7F1QFD7fN45513MDT8P6nr9P+b/L9hqH0ehtrnMxoo/b6WtM7OToTDYczNzWU8lw65/On/CX9nPFvtzAuHw6ivr88JgayEvMs6ra2tCAaDAHYbIh1yUqUF6VIvteyTXacUsjuV2nzVgOHhYbS1tWnKk5dxh162Yu9/vIDp6WnJ9PTerwfEPXb379/Xpbxqx9bWFiYmJlJ7ENUixTg5qWEYBu+88w6uX7+uWJCe6sjn8+HSpUuKZVdiSkpvEBHGx8fBcRz27dun7Z3E2WZ+4xHxG49yZqHFyOb1pv+ieDyeM2stl0+8ryUt/drhcFBw5FvV+dPvmUwmikZ+TaXL0VEJZLef1KKyGucr1a5c//3Z52WNZTI7O0uNjY0599W8VDVu3pfC2NgYORyOgvKqYtzG/22V3L1OiiEOh4O+/fZbzWU9DowTBEHWhUNN51Q0TtLHbKV2apUaT3Z3d+OTTz4pSX2Vxs2bN1FfXy85xaVqEK6ll2xsbJQ9lkkhQd6qXeJ4nie73V6Uw5Tm8+O06GU9Qh8WEmWu2hmnR+wzzX6VTqcTDMOocjnQY+3uSVv2icfj6OvrUwxnrwpauCxKUCwWI4vFUraw9VrrqxaJk9I4LS0tdOvWraK1kSaJEyXIaDQiEAjg1KlTxfUalTAajThz5gwuXrxYlvqKBclspOzt7QXLsjh27Fjx2qgYrvf29pbtuDEtw5FKSpycJBUzZpNC0acSezyesh07FggE6Ny5c3mfqxZVKSIajZLdbtf101L0qcQ8zxPHcZrD9hUCtaEVq4lxf/75J7Esqzs9upwDLp5FUI5zvdWonEowTkpFimfqpXuE6xUdXpdtVkajEf39/Whrayu5m53D4UiFVqwmSBkbXV1dePPNNzPCaunl3qjb/jjxrLSTJ0+WlHkMw1R1aEXasSgvX74MnudTgVf1hm6MIyK0tbXB4/GgubkZq6urehWdA6fTiXg8jpmZmbw0lQJK5W5tbaGtrQ0PHjwoKEi2FiKKgpTOnp2dpVdeeYVmZmZU59EKpd0+lTJOYrEYcRxXFitbF+NECuJLpJ+bqjeOHz+ecxaCIAi6Mk5tJ5ueniaWZfNa13oZJyVjHFHSqvJ6vSVbgJWTunJL3NDQEHEcl2NVl/J8oZJu3jcYDBgYGMD+/fvR1NSk+z4ElmVx+PDh1FlslUBnZydu3ryJycnJnPPqSrrjp2RdIguhUIgsFgsNDg7q2hOlln3KIXGiavz8888z7pfrFC/dGadEeCwWo/b2duI4TtezVbMXW0vJuPX1dfJ6vUUvhBaLskhcNjNDoRCxLEsdHR26zLakS50gCCWJGMHzPH3xxRdksVhKanCpRVkC1GTr+qamJkxPT2P//v2w2+149913NY37KGsclR5aUYyEpzZvPiQSCXR3d6OhoQG///47QqFQxkH1eiGbrrx0lrJX5NP3os/mtWvXyGQykcfjkT3qLB/Sl320qspsOgVBoNnZWfJ6vWQymcjn85VlHlYLymacqMHQ0BA5HA6qq6sjr9er+Rsi+nLkY5xch1pZWaHe3l6yWCzEsiz19/dXzeH02ZA8TrqUoKwzu6XuxeNx3Lx5E1euXMHq6ipef/11vPXWW2hqakpFJZAqZ3NzExaLBYIgYGpqKu/ul3g8jnA4jNu3byMUCgEATp48ifb2dl3CGpcSZWccIN3ockgkEqnGnZqawvLyMo4cOQKj0Qiz2YyGhgbU1dWhpqYGRIR79+7hwoUL+PnnnzM2SfI8j5mZGTx8+BDRaBRzc3Oora0Fx3FoaWkBx3Gqtjlpob1QqKqjWJENBAI7EXqSfwzDZFzr9SdVbva9UtRd6jqkyjMajbS5uVldqrIsIFQsOpBWpKQrD80EISNWdLUHQlWNjN7HPD7bsJICB1Ce+OzZAb6fGMaJnVXAMC76Fx6j41+SLJCkVwzeJ8HTJ4ZxAEC4j56DJzHyuPAMQLCVSU0aiH+2Vj8WQLvceQxjRmvCYs8nuAHAarVWmhTVaA0SRtwNgGsIRARhcQTW0R4cag0q5nsyGEcAIn58a3XDVWlaNIKwgMVIFK7WVgAAY22F241k+MXdh3LwRDBOYIJwB634lxuILlphs0LyZasSi6O4seiC280ko9X2WOEZbUC3L7mZX8C2tLVZ7DiuGjDiTx7wICz4yAoXjVQyxKtG3OuxEpjdMZzNP6LqsAppxuXLV4l0mTzzPbadQWzNzsufyM+4Sr2fkH05Tz6bGMB7OxWlPTfYdy7kJa4KmZeaHBb/LfjIH9x9UAi61B+vUjb606Kqp01uC4JAwoKfrFkdbTeEfoExmfPOPJQpXUj7WKXGOgyweMOP1lEbut27BY3eiKR+C/k+cmV7P/kItPOjI4i4PanDK5KGCoCDB5H8TAvyR6LtdpBtJQZXPD0bQDKCefJgo6TKQWq+L7fHVop+ea2ZriaT18OtZgLS78kXwJBARFCYjabkdEzF0otFldKf+3wNYHsb3d1++N22/PmJHpNJvWfIwBMxjnsa8Yxxjyn+H2xhdGGClgE9AAAAAElFTkSuQmCC"
|
<image>如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()
Choices:
(A) 4√{3}
(B) 4√{5}
(C) 8
(D) 10
|
4√{5}
| 10,874
| null |
4√{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAGMAAABuCAYAAAAzpa1LAAAPKUlEQVR4nO1dT2wbVRr/vXG6qWgrhBokDkghiZMmTVBTcemhgkPt0m4RSSS0HIhUkJBQbVaqoBxWlKSRWMEuCdvVpumuuOS42i3xBJolarpSDxyQQhWx+F8ad1vRIJVbIEibNJ737WE845nxjD1jzz+j/iTL9rw/8+Z97/vz3ve+N4yICE0MAsDUfxyAoP7LzE9hLfoWhvtZZcEQQqidJdzQd3P5cQhZnB0+53dzGkLTE0OBkb3/9OYlsHgcPf3aqxxaQRA2ofCLIQZDuXPFj5OgeAx8iYMb8zFm+jsMaHpiaMc2YwzIiliiON7uZvh3vAcDOkEmgEjSFDSSKlg0PTFgEDVvzlzHpbeHAQCxnq6K7IxFSj84iB5yhqvQihpx6re4dOkSGGNg/SMwjnwi0ugJAYw91BneICtiCcfUDk+Lk+jp6NbJMcYYGGM6goQJLUE3wBVkRbCzi6BrfwUg9//a7QKAbhAIzGAAh01xq6Amx2QiRpD7n1JpTsSJEnGo12LJyYoynPMAWlobjChkxraHIKLwcgXCJjTrBRkmfYSyCatBmAkBAL8IzlDWp0RRBAAMDw87KhcW/DKIURI/+/fvx549e/Ddd99Z5JTnFmHlkOYXUySLH1EUsbW1hV/tboUoivo1KPWXEFpCAGh+a0rBoUOH6JFHHqHZ2VkaHBwMujl1ofk5A7KuKBaL2LVrF06fPq1eazoEPRrcwKFDh+iDDz6gI0eOEBFRKpVqSu5oes4QRRGMMbS1taG3txdA2ZpqNu5oKmKQieE3MTGB8fFxrK6uqsQAgPHxcUxMTNiqIyxoKmIolpDSocrIHxoaQj6fx4EDB9S8Ru5Qyjy0pjzC4OAgpVIpIiKKRqOUTqd16aIoNpXuaCrOII2I0c62JUnCvXv3dGIKkDlGm9dYR+gQ9GioF1quSKfTFI1GTVdjm8myairOAOSRbVyDWltbw8DAgE4fUIkDtLqDwswVaAIFbuxAxphqQSnIZDKIRqMV+RQolpVReYeNOKEnhrEDzVZmC4WCzpIywmreETrLKlAhaQNGPaDVFQqOHDlCX375ZdV6zHRH2Dx+TcUZVv6KXC5XlTO0ZbTc8ZAzGsDg4CCJoqi7dv/+fWpra6vIazbqwz7vCD1nKNDOtrXI5XIV8wvAfNSbzTvChKYhhtGCUnDr1q0KS6oarNaswoCmIEY133Y2m8XTTz9t20wN9Ypu0HLSDgYHB2lubs407YUXXqiwrmphbm4ulLoj9JyhjOCRkRHT9HQ6baozqmFkZET1m4cKQY8GLcwsILN5hYKtrS1qbW2lYrHo+F5Wa1ZBzj1CxRlW/gqrfVC5XA4dHR2IRCKO7xVKf0dgw8AGqnEFEdGnn35KQ0NDjutVRn/YVnRDxRlk4a+wQi6XQ19fn+P7KKPfzLKiIBcPgx4NVqjFFUREo6OjNDs7a5luR/6HiTtCxRmAub/CCrlcruqEz478D5W/I+jR4NSC0pbbu3cvbWxsNNyGsFhWgXOGHX+FGb7//nvs3r0bjz76aMNtCI2/w1fSm8COv8IMN27coGeffdayHqcIg78jVJzhJL4inU6jp6cHgDsRSWHwdwRODC0mJiZw4cIF3TWyUKqFQkFdBnGr0y5cuBDoim5oiGHlr7DaRFDPmlQtBO7v8FUoVoFdXaGgvb2dCoWCKteN3/UiyHlHKDjDaSze9vY2fvjhB7S3t6ucY/yuF4H6OwIZAgZU81eYjfSVlRXq7+/3rD1B+TsC5wwlvsLKX6E/XkLG6uoquru7PWtTUP4OX4lh7FRAtqDGxsaqljOKnlwuh4GBAVfbZsTY2Jjv8R2+EsOpv8IK+Xze0SaEehCIv8N3waiB1oJyYgUNDg7S8vKyR60Kzt8RmJgycoWTEVcoFDzVGYH5O3wjuwFO5xUK7t69S0888YT7DbKAn9zhuzVFDvwVZqi149xt+Onv8JwYxgcwi69wUoeyDOJ1x2jhV3yHjhjEi+A75Y8b96rXX2FVx9raGvr6+nxdUfXN31EhuLhE0oMdcmspv15/hRVisRgtLi422Crn8MPf4bmYqtdfYYV8Pu/6aq0d+OLvqCCPyhmc+IMdkh7skLQjESciLu3ouaaUV3qwQ5LEK+qQP0VSUuT4ipRpmlU71PtzTpubm9S6Zx89+N+WoXy5rfp2c0M9jY1kr+M7qnAGA2sR1G8GgAkRMBaBPCAIJAFsVwuEXREwSSrpGAIVOVhLC4RdLWCMQEXFghLw4q9fqEgzGSKaOiJg4AAY8vkcDvX2oKW11VBeaStARQ7saoHQIgAkgSttbBEA4hVnpjuB1/6O6mKKCWARTYcRByJM/U3EQTtF8B2p/JDEQUxQz5tjEbkT3p+YwPj4edO0ig4iDlKJzsBaWsAYsJpfRbSzs2p51hLRHXXHIoLmv/EwQ+fwMr7Dghis/MBCBIwk+fBeqXxdToxA2NWiflQRajDDPv/8MwDA8NCLFWnWoIp+WysU0Nt30GZ5b1DT31HxeNbnrZOhL1RiULEIrnCATjExIAJQUQK0o4wJJSKVW0FUug4CcVKv/+H37+PdsTHTNPmaEUzmQkPdmUwGndEuG+W9hemKrtIkZux8QUMffZrRABB0v0gCL3IDa5e4AwauAANrYTIRd4rgO7yUXpLfkgS+U8S8+Dm2iUr+Cn0al+Q6lKchZW7DBAgmdRcKBRzoPWBSXtYxgDxoqOb/xmDq71D7ptylyeMMjEUgCKx09HcEAmNgxxOVE0aC3bUpTlyqbYnUuzvQDorFIrW2ttLm5mbDdbkB7byDc+v4kEQclMqU09PiJMXPfGSa19Y8gzg3iC5zuOWvMMP6+joef/xx7N27t+G63IBWdzAWKXEbh1YUccogz5IYPhgBIYupqRQODp3E813yqyQqDZcq4DsmcwgHqNdfYYbFxUWKxWIN1eEW7Po7suIkJSZTct6pBE2Kacu8RDU4Q5kPCII9FUku+SvM6jSetBYkavs7ZO5Yvf1fzJyT9cvI2zPoih60VOZKYU/glq5Q8MYbb9DFixddq88t6LlD0qUl4qU3FxBRMh6jTA3h4PraFDXor7BCPp/3fBOCUxCR+ozz8/PQTduyImZwRn1HYOeJkzhYSzg0OjK8tKC0ePLJJ+nu3buu1ukW5sQUHT58WHctNZWgZElfaPFmImlZT8Oc4Ya/ohZ+/PFHbGxsoL29PfjoIhOMDA3rJAIALC3O4NhJ/b7h5HEG3hnTXDHojUZHhdv+CjMsLy+HIu7O3CKU9YSiO9LipPpWGwDEGCOw0u/S22/UetQvuY6G37nktr/CDJlMpsKSogDeEmN+P1m47Nu3DwCwRl32uVdZ/yvV4aoCN4uvcAO3b9+ucCiF4eCun3/+GdPT03jqqafw4Yd/xLvv/k63ZmW24qEXTXox5RoxrOIr3EC98d5uQjva19fX8c4776CjowM3b97EwsICrl1bxEsv/QbEyjtJjONFfuWp/o2axpu4Ai90hYL+/n5aWVnxpG4nWF5eptHRUWpra6P33nuP7t+/r0vnnFMqNV+3fnOFGF5u9FIWCLe2tjyp3w6uXLlCR48epWg0Sp988knNttQ7MF0hRrX4ikaxtrZG7e3tntRdDZubmzQ9PU3t7e0Ui8Xo6tWrtsvWG9/RMDFSqcoJj5u4evWqrwuE9+7do3PnzlFbWxu99tprFYfd28Xhw4cdc4cjYng92zbWzzmnixcv0tmzZ12p3+p+nHOdPjh//nyFPnCKek5dqIsz/Nwy//rrr9P09LTrG8aU+pzqAydw6kJoSEy56a9QYKznueeeoxs3brhSt4KffvqpLn1g9xnrHax1iym/tsq3tbXR+vp6w/VwznX64NVXX61bH3DObRPGKMZdF1NmN3EDxoZubGzQvn37TNOcoBF94GdcuWNiyBMbf7jiq6++omeeeabu8l7qAydQBm4twtYkhl/+CjPMzs7S6OioozKNzA+8gl3LqubalB/+Cis42XGuXS/6+uuvsbCwgKWlJZw6dUrNQwH5QmzHd9Siqh/+CisMDw/TlStXquZZXl6mV155xbX5gVewE9/hSGf4HYrb29truUDoRB+E5aUltQayI2KYvb/CKxSLRdq9ezdtb2+r14z6YGFhwZe2uIVa8R22ieE3VxQKBXWBUDs/OH36dN3zgzCgGnfYJoafuoJIJv7Ro0ddXS8KA6oN6ho+cA5AgCiKyOVy+Oabb7CychMCIiCPvJ6M5POkLv3tMh5sbeOxx/bjzJkzYIzh8uXLkL1jXLaMBAYWvs0iOiinAmlPB8rlchBFUWeREgBGRMRBqBbl8I+//xPZfMazBpPJ5oI7d+6go6MDgEwgr4jvL+SoLkZAX18fXn755RIVSslaNknENVtMSttMqm/Wlaqk1Ydw2D0eoOLBpNLlch9W6IxEHCoBlD1Ac7U2iQYC9weCJ1C7rnZ7y2FkBBCyWF06hpNDctxcf3eX33yM5HGhFOWj/cSQrYjxC/wQOXswiWian0qWn+14AoQsksmpcg4GIDv/BZA4gYOlGpJnRxBLTmLEZMeuV3rz0jWORBxIpWUlTUSYTDD0szhymmjVxoKI/YOulVn5CMDpO53qs9HF4xBYP9DZBeh8FFMJ3dZEZTt7GRpW80hySZShY/HKzcGJOCiW+Nibm/oAThmKARRLTlakTSViNCmmSZCtGHln27UvZpDKFEFESE0lMDIgIJXW7nors5pX1k1u/guwno6K653dMVxfW/Pmpj5g/uO/4DqO4c/Tb1WkdXb1oCt6EFBHeyZFiJ/RUPJbigOUnKyyDu82d3CiydIokVHmxNRUQtO+JlHeCrjMFQmTEAEtBHm7IYe4uITE88ehcAnLFnAdQEe023pfq9vnmLAs/nWZcOJFZStnOYb69u1biPUogYkCqgW7hwkcBORu4TqAzmj1o/xKYkrA0uIM4ieGAAjgyCLePwJC2bKq5+E5JEfpLFOAcOYU+lnpHBCU6J35DOdmruNE/IScT2666/f3It04maaKHxoY4wnUT0kk1Fp+5jVERq10LVJTCVNWTsTl9pg1pdH7e50u5/nWWkxlUqpYru1cqnkrG5lsVCKVGixmNBczKQIEnS7z5P5epxPR3FSCGIRSx8sE/I/4ke7ZbK7aShY3rTEqbD5EmTsFfcQPUDN22o37+5X+beoj9dmYwczlRPR/2uc8ttl6ohgAAAAASUVORK5CYII="
|
<image>如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为()
Choices:
(A) 4
(B) 5
(C) 6
(D) 7
|
7
| 10,875
| null |
7
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAABaCAYAAAB5cP74AAASjklEQVR4nO2df0yT17/H36d4ZVvIl28WEpdcFjcpCLRbMJJpRCMbLcKMsQpO/9nQyCZQjJ3g1CGjTlG8FMFYmEYccu9NplEuZbooAjc4dWLEuF3bUgWW7cqSrxvLNOLuFwf93D/ap336Cwr2x1PglRDa85zneT495/2cH5/znHMYERE4CAAzW7+IAACGlir0xqqgSAzDDP7CDC69ATOU6WGoaxNZwznSYKR2JADWfPKPJSL+F2JckAgggGCESlEMkMjlRHIJmWHyiGzpScRQe5mglJnRrDeDiEBE0BQwJDIZjCC/icFiCQ/+fQiEmq11YHI5YhPdZD/NSMKXMFgynzEGghEmpoRCYs+Roto2FMg7sK3wsF/tcH30rbRUF8IsS4O5zQyRG0ky5keZTktEljQlwNhyESzuddsRrpSYFytD+/1+P1vhDqMObSRHUSxDhzwOCS6Zb3Z72gyTg9+MAwMutl1ChjzDHsQYGGOIiYnjnQT4Ix9E7i5aWNeO2iIFACAtdp7LcYLI+iNmhOELLKWtJS0JRlyqJWSuTnSJ199/H7K4GOtJwBgF/KQR8Rs0AKA7rERtba1FlZI1jlUD2W2xhPveoOmLJS2Z8T6YMhOJztW0UYcdde0OJYffrLDd2lpVEI2CiKDXaRA7L8Yee6bZ4Hd0l9oQP0/sEq5UrQHJ81G0WsIL9UuVYcWoA1NdtlQV1m5mb/+PYDOdCb9CAAYHB62fjagtqsM76avsB406MMZQh3zQ5Tqns31fQjMioiqlHMV17QCAZr0ZCgmDMp2hrs0SSabU4O8Pu/DSSy/h9ddft55o8VswxhwbRdyFPYTP4MizZ8/w7//5H6gt3gDFNo1jujEABGh0eqeSwX8w8jLXUlNTceXKFcTFxSFzxbv4+8uRlgvwfsCMCCbOhQsXsGDBApw4cYIXyvdcBha7IKzuUH7m8lGr1TCPjCL8xRdQWVmJjz76CCUlJYiMjAy0zSEF52xyx82bN6FQKGAymbxORz96rQFYZUhkd4cyxsA83FI0KwwlJSW4d+8efvvtN8THx6OxsdFt3JmSwoInMQwPD2Pz5s2oqalBZGSktQNnbyQ6pB/BoYfnTyy9DGej3dyVkchm5Jw5c9DwZQPOnz+P+vp6JCcn4/r1647xZzyZY3Lw4EHExcVh/fr1ALgkt1cTXPoREczM/sASkYNAfM0sr2IRQMxsLzms5dbC5GRcvXoVZ86cQXZ2NpYuXYrq6mpER0f7x9opgslkQm1tLe7cuWMJGKMesJTYjt/9iVWSXFHloV/L901Zqxf+b1i/fj16e3uRkJAAqVQKtVqN4eFhP5kc+mzatAlqtdr+4PCe/olUtf6olkUO/7xo2XIKddZpREQEPv/8c+j1ehgMBojFYjQ1NfnO0inC8ePHAQBKpdLlGDdm4S3+KC183reJjo7G2bNncfr0aRw4cADLli1Dd3e3r28jWMZ6agcGBrBnzx7U19cH0KKJ4bfObkpKCm7fvo3169cjMzMTmzZtsnnkpjKenloiwtatW6FUKiGRSATbC/O796OwsBB9fX2IiopCYmIiqqqqMDo66tW5Qk20ydDS0gKTyYTdu3cDEG4vzG+C4GdmZGQkKisrcePGDXR2diI+Ph7ffPPNuNcQaqI540m4XPjjx4+Rn5+P+vp6hIeHB9K0CeM3QbjLzJiYGJw/fx5arRYqlQpyuRwGg8FfJgQMT8Llwnfu3InVq1cjJSUlkGZNiqA4zFesWAGTyYSMjAwsX74cn3zyCR4/fhwMU/wCv8To7OzEhQsXcOjQoSBa5D0+E8RE6/uwsDAUFRXBZDLhzz//hFgsRm1tra/MCRr8sYvh4WHk5+dDq9Xib3/7W5At8w6fCWKy9X1UVBS0Wi06Oztx9uxZSKVSdHR0+MqsgMNPh4qKCiQkJEChUDiEC7mx7J3rOgBIJBJ0dnaiqakJGzduRFJSEr744ouQdYMbDAZotVq7e5qHkBvLgnspMisrC319fVi8eDGSkpJQWlqKJ0+eeH2+UJ6+3Nxc7N+/P+QELThBEBHCw8NRUlICg8GAgYEBxMXFeRxmd4Y/Shgsjhw5grCwMGzZsiVoNkwWwQmCz5w5c9DQ0IBz587h6NGjSE5Oxs2bN13ieXqFLxA43/uXX37B/v37Be2eHgvBCcJdRqakpKC7uxtbt26FQqHApk2b8PDhQwBjv5EUCJzvXVhYCKVSifj4eLfxhVKleUJwghiLDz74AL29vYiOjsYbb7yB8vJyPHv2LNhm2Thz5gx6e3vx6aefeowj5AYlEGKCYIwhIiIC+/btw61bt9DV1SWYYfbHjx9DpVLh5MmTmD17drDNmTQhJQg+c+fOxfnz53Hq1CmUlZUhNTV1wm5wXxbfKpUKWVlZWLRokc+uGQxCVhAcaWlp0Ov1WLduHVJTU7F161avh9l9NW3gypUraG9vR0VFxXNfK9iEvCA4CgoK0NfXhxdeeAFisdjrYXZ3dfpERDI8PIy8vDwcPXoUERERE7JZiEwZQTDGbMPs165dw6VLlxAfHz8pN/h4DT++YNRqNaRSKRQKhcc4ocSUEQRgzwSpVIq2tjbU1NQgLy8Pq1atQn//xBbaGBwcxJUrV9we4wRjMBhQX18PrVbrcH9+nFBjSgnCORNWrlwJk8mE1NRULF68GDt27LANs4/1BD969Ahvvvkm8vLysGDBAuh0Opc4o6OjyMnJwcGDBzFnzhyX4zMlhEAJCwvD9u3bYTAYMDg4CLFYjOPHj4/5BH/88cdYu3Ytenp6UFZWhr1797oIQ6vVIiIiArm5uW6nP4ZqCQHykrKyMiorK/M2esAxm81eHb916xYtXbqUFi5cSNeuXXOJd+HCBXrttdfoyZMnDuHNzc2UlJRESUlJ1NPTQ1FRUdTT0zMpW4TMlBHE+IwS8fLp3LlzFB0dTdnZ2fTgwQMiInr06BFFR0dTZ2enx6t0dXVRRkYG7d+/398GB4UpX2XYETnMLrIMs9+HRCKBVCpFaWkpCgsLsXr1aixfvtway3Um208//YQHDx5g165dgTE7wEwjQdjhmnuzZ78AtVoNvV6P7777Dl999RWWLFnCi+mYPIODgzb3dFjY1FzZd9oIgj9hmlmffK7h96/R0ejo6MDXX3+Nw4cPe5xttmPHDmzYsAFvvfVWgKwOPNNGEAxcjeG6OgtXk7z77rvo7u5Gbm4u3s3IdBhm7+joQHt7O/bt2xe6PQgvmDaCsGP/yYaWatsEW8YY5IVVAICcnBz09ltmm82fPx/l5eXYvHkz6uvrp4R7eiymnSDM1oqjSpkOqeIbGMgMMhPMZABqi22i4Nzgt2/fRkNDA37//XeMjIwE0/SAMK0EQUQQgaFKKUdxXyyI2pFgXeiCIRE1Og3aay9aVpy38scff+Dp06doaGjAzp07p8xsM084CGJkeMT2NxVhjMHQUoXiunY0H9bawjwxOjqKvLw8VFRUIDs7Gz/88AMyMjKQkpKCwsLCKTmb3UEQs8JnOfyfShAsJURdbTFkSo1t6wHiRejt/9HhhJqaGkRERCAnJweAfbZZX18fACAhIWFKzDbjM/WrDP7qbawHpjbmuNI870PbpTrIrOtM/+/PP2Pfvn1uX//nzzbT6XQeZ5tRCA5wjSkI5yqEmZlLleKpihmr+vG2avIUb6xwZ5tGntnjMON9/DcIMWL7SvNclhlaqlDXBijztwMAtuTnYffu3Zg7d65H+xITE9HW1oZDhw4hJyfHZZg9FLunYwrCuQohETl8HxkewazwWZgVPstFJFz4RI7x4cfzFM4/n//f2b6R4RHLgl6JcZAB6O8z2q5nWT3YspUUV5U0NjbiH//4FcXF213sIjfvPKxcuRL9/f1YtGgRFi5ciNLSUgwNDbnEDwUmVGUwM3ObQf5uhHrTpnHX/nE4jzEwJCKjQIZifr1v1EHEJIBSg8tHt2NwcBC7dn2KEyeOIyzsX1zu4+mpDw8Px549e2AymTAwMIDY2Fg0NjY+9yt6Acd5tOuvf/7lMgL21z//orKyMlKXqseN6y6c/32sY768tsPn/3M8R5kOAgNZV1ekZr3ZNmT9/vvvk0q13e29J8KtW7do8eLFLsPsQh8atz1C/KJ2Mjzv+X69tuPuctC2ErRuorW2tuLbb7/FvXv3HMJpErPDkpOTcePGDTQ2NiI7Oxupqamoqalx+3aVkHDxQ7hL+Fnhs8DMzNaG4IdzVYZzUc1v+Hl7jF/1TPTazm0Jd5+Jt6a3M8PDw9iyZQuOHz/usg7U8zQOc3Jy0NvbC7FYDKlUivLyckEv6moThLsGnDd4Oo/f8PP2mLvv3p7vHObu81iLduzatQvLli3DihUrxvvJE4abbXbnzh18//33gplt5g6vGpUjwyMupUOo4JzxHHxxdHd34/Tp06iurvarLdyirqdOncJnn33mcZjdk82BwCs/RCjjXNw7J/bo6Cg+/PBDVFRUICoqKiA2paWlwWAwYMOGDcjMzHSZbebtjDJ/CGdcP8RkqxKh4iwQjUaDV155xeaeDgRcRiqVSttss4SEBGg0GttsM28WPgmJta5DiZ9//hkHDx7EsWPHXI75s9jmZyQ3zN7V1YXW1laXRV0D7e2c1oLIyclBaWmpW/d0oFegiYmJsc02U6lUyMzMnPBsM18wbQXR2NiIoaEhqFSqoNngzr/BzTaTyWQus80CwXMJIpit4efh4cOH2LVrF44dOxbUt6c9lULcMHtPTw+ePHkS0EVdJy2I8cQgZLFs27YNGzduRHJycrBNGZOoqCgcO3YMFy9exOnTpyGVSl32NvM1kxbEeLu/CHXot7W1FTdu3IBarQ62KV6TbN3bbO/evdiwYQPWrVuHgYEBv9xrWrUhhoaGkJubiy+//FLw2xS4IysrC/39/UhKSsKCBQtQWlqKp0+f+vQe00oQpaWlkMlkSEtLC7Ypk2b27NkoKSmBXq+HyWSCWCz2elFXb/B6q2e1Wo3Ozk6kpqa6HOvs7HT4L0S4XXTv3r0bMI9kILh+/Tq2bduGF198EdXV1c/dLpoWJcTo6Cg2b96MI0eOhJwYxnteuUVdc3NzsWrVKttss8k26ifkk05NTXXbGBN6A62iogKvvvoq3nvvPVvYZN5xCAbe2piTk4OsrCyUl5dj/vz52LFjB4qLiyfcVnIpIcjlgxuE26N02QzVZDKhpqYGJ06ccIgTCmKYKBEREThw4ABu376Nrq4uzJ8/3+YG97bEcBnU5mZGO+w17Qxvx2ehwe8OExHy8vKwZ88eh20KpqIYOBhjtr3NTp48aZtt1tPT49X5IuekcRbAWPtQCj1ZT548iaGhIRQWFgbblKDwzjvvQK/XQ6FQYMmSJWPONuPy3aXKYIzvyvWwJzgJ/yl7+PAhdu/ejcbGRo/uaSF7U30Bl0fcMDsA26KuHFwa2Lbw9kW3U4icPXsWL7/8ckj7HCbLWO9SGAwGNDU1ITExEUeOHHFJH697GW+//TYYCbPd4MyDBw/w66+/Yu3atS7HpmqDks9Yz7hEIoFEIgEAXL16FZGRkQ6+C4cSQpnOUNdmP1kEhn/T3UXRaokfzPYvg4ODIedzmCy+FLmIr6bay4QCOaDR6UFE+B9dJYoVUugMBHcrsgmZ6SIGwLftOZHDq+kw4l5bGjJXWybDSmJj+FG5SIKrNpTp9mWBHP7SC4JtmnBwyjTdYSUYC7OlE8EIpbLKsZdhbLkIZp0OD5ihVK2BrOCwbS0FANbVVoSEGbWXCXnpQIt+xOaY0us0kMXFjH/6dIHLNKMOjDHU/jgPRKOWv5p0y/zWeTHWuZ3W6YbNVQUEOM55HAuhzFM0k4HkcqXtc2VlE5nJQBrNfwXZMmExataTDCCZUkNEDgv7kqZARpXNd60r2VrV03apDs16M8xEaK4qwBqpyNp+CO5WiONhbGmFOCMdANByuBYQx4EhEUVFa4JsmTAgsrza/3V1HdqRhiNayzIH/NwTi+dDHCvhZn+PEhmaCfJ8m3LMZCAZQAWaZr7GAqDjidOsKSQw29qk9pJNGAWYIHCfnw4RiMi21rUIukttKFiRblMOM95HO4B54liLyqzxhEhbqxbNd80gIijlMsRxvWRhFGCCwJ6fMW57BWRNK1sOt12qgzxDYTkII+SSNQDsPQ4I1c1r1KEO+baG77wMrlE8g3ssi8CTc34SWXSi12kcGpK2P2v1IXSaqwrcFoNKpZKEWsUFA36Vwe8MmM1mIkMzVTbfJaIJ7JcRPOyZaibXZkGB3LU3VCAHFVQ1+d+0EIETANeL1Oj0tmN6ncbh4Q8BQdjhK1vfUulYojmVcuN1macNTsngnG5cF5Tj/wHDA/0V3GHIcQAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()
Choices:
(A) \frac{25}{4}
(B) \frac{25}{8}
(C) \frac{15}{4}
(D) \frac{15}{8}
|
\frac{25}{8}
| 10,876
| null |
\frac{25}{8}
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAABJCAYAAADsfgJUAAAPrklEQVR4nO2cXWxUVbvHf2vvmVKx2F5AxBhSbAFbyhsxXAgxhiIt054X7RD0gKEoEhSZKYKUxBhQmqNGja3QpC0lQHg52ojHg536XtDaastJFI4hsfh22mqtInoBgYshcFDamb3OxZ7ZM3u+Oi39os4/mczM+trPWv/1rPWstZ61hZRSAkgpKbMp1LUShpW4ZSsLESABER6fxMRBAxRTiPFPCEHtFxJHITR2aUgpkVJS6RDkiQK60UxkSvROkMToIFpbSsD1gRMhhP5Z5UDShdNZ5U+hRORRkKAzDZJufsBJSZ5fG4Hy2hYchV/x8vb9powCQCTVdbQghCDAAwDdLhRFUPtzlqFc8sAqFPE3yMqOqUyKzozOdHfTKXjwAT9ZwSRZ8wv48od+wNyTknSONnQeJN0U5q2hwFFJa025EStzS6h0FJCVvQAhohNqCf1zqrUZW+GBkBB9jM7OXgB9EmSgJwXjkhh9uD6opU08jrtmlylcCKFzMT8XXZ2icCCllJqmSU265UqxQrqlJs3wyUpHgSxwVsokxh6adMsCkI7KxlgJQuCT4XQpAeaF+yeE4++6NRuK7s/ZXddGUWHR2HXJJAyI7h9pA7LmzTfCYpueSsS8Z+hrY3Mz8+dmmWMlOHeugVUOyktyI4pL2ri3Dxlu3Pj/Bowk/5oyGC/it7sipUTSTd3ug6wqtgdjul0IRVAntiFbaglO2KayRy54EoCfuJCmkXkLKAD6+34kYLMaadyfU+Xqjl9gl6tS4l9Whn8qXV1jMU0kEQW//HrB+N1Y5Qi2v3+O7HJVSgq3SSl9wUyajJhDMUXGQCzCk5/R/fT09Bht/q+mSqkgjLiVjvfNpMTgC1NErEQg7Xa78X348GF55cqV2D0gDjQtTs8Jwb59++S+fftG9IyRQtO0cX2upmmyo+N/ZHp6un/jLTQyPLUvPCBqWyqmidA0KWogg8N7Y2MjHo8Hu91O8xctzJ49m8LCQg4dOsTly5dJFCLB3SU5AXNuorKNFr755htKSp7gH//4Tz0gUGVJQgaKiJLIb+VqERFI3SQOzZKens6zzz3Hf//XJ3g8HrZs2UJ7ezuZmZk89thj1NbW8vvvvweL8JMyEnLGu3HHG52dnaxevZqjR49itz+pBwaqLKLwEbKB4FfnqKQrAFJGiYlhHgt/trS0NNatW8eJEyfweDzs3LmTs2fPkpuby5IlS6iurubixYt6niHImQhtTARjJVdnZyf5+fkcOHCAtWvXAuFtZN79kVKayBAR6UNyyjiRQ+qI/yGpqamsXbuWDz/8EI/Hw+uvv05nZycPPfQQixYt4r333qO/vz9mMZNVG8dCrt7eXgoLC6murua5554zwsM7j2l5KETCa0TltkSOkllVVex2O8eOHcPj8VBVVcVPP/3E0qVLyc3NpaKiArfbPaLHTRpNjitGtOFSl723t5cVK1awd+9eE5nRMFJexnx33WazcfjwYa5cuUJ9fT2XLl2iqKiIefPm8dprr9HZ2ZlwWdE0ZkJIjtva0Zv04sWLFBUVsXv3bnbs2DEmYsV++hhh+fLl1NfX89tvv9HQ0MD169ex2+3MnTuXXbt2ce7cuSHLCCdQCDF5NDccfrEuXLjA8uXL2bRpE+XlIcdhYyD3hJ1/PfLII9TU1HDhwgVcLhdSSp555hnmzJlDWVkZFy5ciJovmpbGmutGrcH8xThXCcN7QPF/2wzvgYjkIODy5csUFxezceNGKioqEpL79mRNAAkmi4vQRXCszQVN02RXV5fcu3evnDlzpkxLS5Nbt26Vzc3NccsbTQy1sVDpKDC2RDXZI1cSedSl+TcBrly5InNycuTOnTsjygmXfzTaWEopLUMRPloI7Y0xrWohyMvL480330RVVa5evcp9991HeXk5paWl2O12Vq9eTUlJyfhaxiEL/V/6wFG7UJeXHIodBTT/YrbgBQrXrl2jsLCQ5cuXs3///ogix0r+Se1yMHPmTPbs2UNXVxdnzpwhJyeHiooKMjIy2LhxIydPnsTn8429IP6213pc1DLfdGb8c18bCx7INiW/ceMG+fn5LF68mPr6+rGXLwSTmtBQzJs3j/Lycr777jvOnz/P0qVLqaysJD09nfXr1/PJJ58wMDAwZs+XwD+b23DYVhlhVc5C6lpX4iwvMcJu3LhBcXExDz74IMeOHYtd3hgZcncMoaHIzMzE6XRy5swZenp6ePzxxzl48CDTp0/n6aefpqGhgRs3bozOw0La/YtTtdTtXmMYRrv75iNlm6Gxt27dYvXq1cyePZuGhoa4xf4lh9xEMGfOHF588UU6Ojq4dOkSNpuNjz76iBkzZrBmzRqOHz/OtWvXTHmGpR3+dhfdLurYFnSplBL5RZ2R7NatW9jtdu666y5OnDiBqqqjUb1h444nNBQzZ85ky5YtnDp1yjgZcrlcZGRkUFxczJEjR7h8+fIwtUPf+XH39VOwQJ8rw7uDz+fjqaeeAsDlck0YmTCFCA3XuvT0dJ599lkaGxu5fv06paWltLS0kJmZSX5+PocOHTJOhuJrrN5EdbW7cTp2AuaNIp/Px/r16/F4PDQ2NjJt2rSYMo0Hpgyh8TYc0tLS2LBhA59++ikej4dt27bR3t5Obm4uy5Yto66ujl9//TV6wd0uFEWhrlVhTZ4Fl9tM0qZNm7h06RKnTp0iNTV1SJnGGuO2Dp0sSE1NZd26daxbtw6fz4fL5cLlcrFnzx6ysrKYNWsWOTk5wQwL7WiaZqxFpf8oSyLZvHkzXV1dtLe3k5aWNmF1CsUdr6EjGdYCeVRVNR37vfHGG1y9epUjR46waNEi3n77bXp7e/VMAePIf5S1fft2Ojs7OX36NBkZGaNUm9vHHa+hgc354QxvsdLa7XY6Ozt54oknWLZsGY2NjaxYsYKMjAzsdjulpaXk5eXxyis7+PLLL+no6OCee+4ZraqMCu54QmFs5iqbzYbNZqO+vp6vv/6ajz/+GJvNxh9//IHP5+Ozzz7j3nvvBRh2hxoeAueriQ2md/yQe7uINmSHhz366KPU1NSwZcsWpk2bxtq1a9m8eTNz586lrKyMb7/9dsQWrZEriquBu6kKIVREYZk5j7sxeGe0cJspLmFCJ8IEH49nJqpZ1dXVHD16lDNnznD06FHj2G/GjBmUlpZy//3389JLL3H69Om45YTXyXi6FlnXvJJyNOlmZdtBk3Ut8tYg3Y0UOCuRrbWmPAkTOhEm+ET5GoU/t7a2lnfffZfW1lYyMzON8MWLF/POO+/Q19fHV199xezZs9m6dSuzZs3ihRdeoKWlZciyI11WIl1YBNDa3GQKc/f149y2i5hX8pMIIlSLjh8/zp49e2hvbycnJyfmEB04Cert7eXs2bPGYUJGRgbPP/88LpcrxslQqHtm5H3P7qYWHO4ufthdQxfSGKJb+gX2vJh+uUmEIqBFDQ0N7Nixg46ODmNtmojHRHZ2Nq+++ipdXV2cP3+ehx9+mLfeest07Hfr1q3IcqLQ8cXPYF+YR7FD0NLUjQAkvUhtblRntb88obHm6ZMnT+J0Omlra2Px4sUjLj8zM5OXX36Zc+fO0dPTw9KlS6murjaO/eKdDEm60bS5CODfVhXR3NoM+F+dMP/BqM5qQobUSGqDDPqCFVQsKViE3gP37ds34kqNBB0dHQDk5+eP+3Nv3rzJ999/z4YNG5gzZ86IHNGiLWVCw27evElPTw+9vb309/cjpcQ36EWoSjBft4uqvvmUl+QhgbJVgoIDGr/UlVFUU0OujBwdTOtQoVhJET4GvRqKxYo6Of2fRwgF8BI6KAUaI9DQAdLuvvtuHA6HsWkwEmt7qKF5+vTpLFmyhCVLlnDz5k3ef/99FIsgVO1czf0U79IPzwVQYNtG26kmsrOy9TPYaPxEei955cDAgPSG+DCFJhsr56xwjN4tMN1hyyR1nCpUVPyH8dzxqamOaG1cVVUVksInpbtRQvx7u3F2ijS8g140IPVuqz7/+ofkwFCM9DHo9en71qoVa2BxHBIOCharJagX8eLMXQ0NycDgAAgVq0XVO2TU/AFZBapFRXp1uVEspCiSQe+Anl6xkKIqyNDOHXbTS8qAJapFNVLGFrqV27S/jDXl+uF5v8yittwOKMjcEpyFBdhKFsYsIY7EChaLikDB93+D+gUZRUVRLDqZaHh9YLGmkGK1IHxe9OlXw+vVUCwppFhTsCgaXl9gbRUvzlwxiUSgkGK1ouIbouyArBKfV0OxppBiURGalwG/jK/8PY309FRSAj61in+npcg5/KYZRciQ4Txwacy+q9bwitDJ1NtICEFNSyuL4rjux5daqFhUiRo45pMaKIrxW5M+BgcHGBj0+inwhwvF2MlSFBWhabpI8eJMtdSQxu1HgWqMCEPlF6iWUI0XKKp+Bba25Q+efww++ZfffUSTuJuqKJifFfWqihynnTGTe6vxSC3sO9DmhI0mkTLGIFQYb30TiopPteKVEp8mzIaSYiHFmmJ8LIE4KaM20pBxEUmjpBxGfgheipX08CMv8GSevhyo+uAkuU8WUfRAVkR/D+yTjjuUQM2UsG8/wi5kR5PRyKH5BhgIDH8i9G6wwqAPNO8gUlGD4UJB0bx4Q3qVJv3haPiMvUmJVBT9QfHiIiSXIe8STKDsIdD9eTMLVj4OaDR9UAvZOQgWsqt8TQK5xxoJnqj4q6139OhpTW/jRPMy4NVQVNXcGf4cREEJOxBQsFgUNO8AA4MDDAwG3tapz2f4BvVwn8CqKiF5YsVpeAcH9A4iVBR0syixsjW8Xh8Sic/rRYvyv6evn2MVz5A2I5V/L68je17A+z1yL3W8htsgEpyvhf7eonijh2HlCsVKSpxyhapGPlZYSLFGTYzVGsPzLWacgsWaYvqvACmmsFj5FVRrCpaQOUYJy/dVSz0f/6+GPRfKilaxIC+YN7ysyQsljjkUSJEIUq0hw99kg98CDPj8hMQYmtbt4qDYpm9mK4KsomIWMomvId4G4hKq+fThNJXBSbxr5K+CMH3pv/2vV3M1t5quMOzapb/lcvv27eMj4jgiLqGKqluvf/45XuIMH0Edi34VHhRam+soLCoxpXGuEsgHCsZWuAnAHe9TFFwpiYhZwd1UxSL7bgDqFkX23cb9JRFhdzrueEJ1aAgRSVheSTlSlkdJP3UxmU26YSCBakw9+ycqpgihfsQjTfw1OJ1ahA5hiU9aQ30UMbUITSJJ6FRDktAphiShUwxJQqcYkoROMSQJnWJIEjrFkCR0iiFJ6CTFSA/fJy2hU9GbYDgYqdfhpL3BPRFulFOhE5lun8VM5PdTnQoVnswYjfZN6IA7SeSdg0k7hyYxMiQJnWL4fwtJCtRhJxN7AAAAAElFTkSuQmCC"
|
<image>如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()
Choices:
(A) 1
(B) 2
(C) √{3}
(D) √{5}
|
√{3}
| 10,877
| null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAK8AAABkCAYAAADwvWACAAAayElEQVR4nO1de3AT17n/rQwXIiYkKc5YMAx0LrEMGD8Ay73hFcAylIY2CWsgtkkvqcUFmunDIplcGsr0grAz/aOdPiKnDRnIdWwDxqIZINg82gy5TkfCDnZs/JAa33LDTDKWYkpJy8Pa/e4f0q5WT0uyJK+EfjMaSbt7zp49+zvf+c53vvMdhogIaaSRhFBMdAHSSCNaTJroAsQDNpsNQ0NDOH/+fFTpFQoFeJ5HUVER5s2bh+LiYgAAz/NQKNLtXS5g5KQ2EBEYhvH7HQ4sFguOHz+OTz75BLdu3QIArFy5clxl6e3txd/+9jcxr6KiIpSXl0edZxqxhazIOxakhHY4HGhubobJZMLFixehUqmwceNGLFmyBFqtFtnZ2VHlL1SHIGEdDgcuXLiAjo4OnDlzBlarFWq1Gt/97nexZcuWkPdJS+o4g2QKjuMCHrdaraTT6UilUpFarSaDwUBWqzXo9cGOBwPP817fvrDb7fTb3/6WtFotKZVKYlmWzp8/H9E90ogNZEteIm8Cmc1mYlmWlEollZWVUUNDQ0zv5Utyp9M55nVms5l0Oh0plUrSarXU2NgY0zKlERqyJi8RUWtrK2k0GlHKmc1m8Zwv4SKVsr5pg0nbsWC1Wkmv15NKpSKVSkVGozHqcqQRPmRLXilp9Xo92e32gNeNh7DjQTCiG41GkcRvvPFGgkv1YEF25LXb7WGRNhiilZ6xhkBijUZDVqt1oouTkpANeXmep8bGRlGnjZS0coTdbiedTkcASK/XR5RW6FEmqmdJBkwIeaUvRJCU1dXVBEDUF4XjwQZOyQSz2SwO6oaHh4NeJ+01pHWUJnBgJMzOS0EmHRwOB771rW/h2rVr+NOf/iTOZiUbxrLpjoyMYNmyZbh16xbee++9pH1OOSFhFnTpzJkAu92OFStW4NatW7h+/XpSv9BQxCUifO1rX8PAwACWL1+OtWvX4sqVK17n04gcCSMvz/MAPCS2WCzIz8/HokWL0N7ejszMzEQVJe4QnlWAtMc5efIk9u7di9WrV6Ours7rfJrEEWIidBW73U4qlSroIEYuFoNYQ6q7CoNTqd06jciQcPJ++eWXpFarqaGhIaVG1NE8g9lsJo1GQ62trXEoUeojoeS12+2kVqv9pE2oF59MxI6mx7Db7VRcXJyWwFEgITovEcHhcGD58uX48Y9/7DcwCzXYSSavrFAunL56MABwHIfMzEycPXsWL7zwAiwWy5hp0vAgIcy4efMmVqxYgVWrVmHXrl2JuKXsEKgRZmRkAAAyMzNRX1+P73znOyKBiSipGu5EICF23pycHDzyyCN+kuVBB7lt3xzHgWEYdHR0YM2aNejq6orKH/lBQ9ybNsuyAIDW1lYAaXOQFIKakZGRAYVCgeLiYuzatQsbN26Ew+GY4NLJHzGXvII04XketbW1qKmpSeqZs1gi3JUVpaWlAIALFy6kV2OEQrxGgq2trQSAWltbief5lLXdxgOCVebll1+e6KLIGnHTeWfOnImXXnoJ+/bt8zqeliTh1YHFYsE3vvENWK3WtP4bBHEh78svv4zTp09jcHAw1lknLSjEauhgZN6xYwe6u7vTA90giDl5bTYbCgsLYTKZsH79+lhm/cDB4XBg7ty56boMgojJO1aXV1ZWBsDlgJLG+MDzPF555RWcOXMm3YsFwLglr7Q7tNlsUKvVop6W1m9jg5kzZ2L//v3YvXu31/FQqsiDgHGR17fyiouLUVBQgLfeeismhXuQEIqIRqMRv/rVrzAwMAAg9DT0g4SY6byC1B0eHsbjjz8eiyzTcEPQfU+dOoV169ZNdHFkg5jpvGldN3bwlcJEhJ07d2JkZCRdvxLERG1wOBx4/PHHYTab0zNpcQAR4S9/+QvUajXsdntKrToZD8Y1mhKkw/Hjx5GVleVH3DjNf6QsgtUXwzDIzs6GVqtFTU0NgLS7JBAjx5xf//rX+Pa3v+13XG4DCwJAxIFHsEbFw/cUERfvYokYyx/4e9/7HhobGwGMseBTSAPOHfkycc+QSERMXkE6CC3fZrPBarVi7dq1sS1ZHMAAYJgMgHc9Q0BJJ+UPua6Xw8tXKBQoLy/H7du3A864SZ+EcR9QIAMMw7ieOQURMXkF6SC0/IsXL0KpVHoFXU6WLo1hGJGYPDj4VYdAZBm9/A0bNuD3v/+933Fvmc37HkhJhE3eYPqYyWTChg0bvM7LcWJCqi4oFArwGIBhiQIKxSQwDIMMZhLyaq+BCKIYI+Jc0nfiiu0HlmXx4YcfAgggJMRX4Kn/ZBEkUWG8bmlKpTJp4tLydJ+IiPprCwkAVZo8oaRGW54nAFTRMkpEHDl5+S78BBAwlpupEgTGpdqL34UG6qfUdEeNiLy+K3nNZnPQipQjeN7pJm4+HewfdR/z+BqfrHS97D4ZE5eIQi6X76spIFQeJyKiUTpBFQwI20yJLF7CEFH/7qsOfPzxx9BqtUljd6TB17H1J13IqzmBffNdGyGRrzrEu1eCBLVITDwKCgrQ2dnpd5zDNbQ0d6PSvfRqEjZjUwUATk6KT+wwrq2sOjs78dRTT8WqLPEFAacM+/AJVaBlr8e5W6FQgIgwin709zGAwj0gJQY8Q1DISuN14etf/zqGhob8T/SfwomuCux71mUeG3hdg7KmAhy8tjHxhUwAxjWy6u7uhkajiVVZ4gon0wxTA4Btm7AJChBxIBKsZjwyBkxouUrI3fwM5oMBGIjElZsMXrp0KXp6egB49xzWP5xEDzViq2IyFIpJ2IJ6ENcl9jJyBhEXsJ6JCBzx4ChAXxhMnxDXnAXR9TmOoxDJZQeu30CFAC2q+UQ8Jl1X17INBKaSTMQTRzzxvJOI5Kv7+ta9k++jA4WeQaiz7yAVApRXe20iijcuCGMr4f243gfv4iLvGWQrpAwXWgAgme0J0muOjIxAqVSOo60lFvx8NdQMACg80sr9jNypCrDvAttMR/EcXKqCy7AvP5OfgGnTpnktj2cGTWjursBzz7r+ZyzYh32VQM/eQ2jG6MQUcpxwcZB394Bu2zWT4dkrT3ohEed6ae53y4PgRDMMtX1+GXd2diI3NzcBjxAbTKLN+NmhAvT+pAKHBt0NFEDLNgaTNjWh4g8c/vsZeRNWioULF3oN2gZPNaOnchNY94QKjwEMDAAoyEFeku3SK4xDAEAwUzNu0pJ0PkGaSJgKJbheLqEPry/ZgmOM3LS+KMAAC/Z2oa+GwU8XTAbDZIBRMChjToCI0PCMIqBvAcnWuUghTkDcQ5/LyrDpWQCuY6e2LcC+TuD5n73m0uGTCDzP+83kArx7qpsRz/k1Sek8uLW2Ej+9CpT/dKGfj2lHRwcKCgri+AjxwYK9XaC9wc7yEEghVJpcnIuE+nc1Jh4FBXn4+OOPsWHDBkxlXD0gs2kSGhiAIYCQj4P9ndg3Xz5T22OB4OoNpSZZHoLFx79H9DnimUrk+g34L34fDi4GFG7WS6caR0ZGMH369BgXP74Qyh9cmioAyHPdndCIBEeb6dOn4+bNmwA8eyZzPA/iCTwRiLqxb/4k2VlKgoHjyK9/aNnGIINRQKFQeEldhmFQaXL6ktf114lmvFAO7HuN0Hs1FwsW+orw5EQgacqDAHITmgD/Fi4f3wCpd5tLL2SCNkRRZyQn5PQMwSBSiyBOELHvEk5WAlTZ7DZtEpzUC0PBIixYGEAWE3E4XWlCWdd/YuFgH/qYAuTkuM4Jkku0uCmSfy8FhdumyzBMEMtKYhrsWCQUyuIZyPDuAbaHwNJGKQbxYyZhPM8Q73crLTsBrndBPIgAJ/Wivx9uXV4BU+0B2LAQz215HgvnK7yNhTzPu+bG3X7brk8FtXjZO12/9Xte8bkuuT4Mw0x4GaIpn1zKHU45Ii2rYNPl3JMLXL+B8hgX/7h+Ay2qbPbiqleTpMEaHGQawbv1JqepHCjIwUKQ5Cp3EuJQXV0NInJLAUqKj9FoBMuysi9zsPJ1d3dj586dmDJlCrKzs3Hnzp2ElovjuLDfudPp9Po/PDyMxsZG6HQ6qNVqKJVKaLVa6PV6tLW1udnFiHbdwVPN6KFGsEwGMhbsA3IXiCxkGEZibeg/BM1WHvXmfwV39x4mPTQF1oFeQOGx5RJ5O63IZSQeLogIu3fv9greIffAKESuLRGOHz+O3/zmNwCAH/zgB6iqqsLUqVMxderUuN3XdwVzOJDW56efforz58+jq6sLly9fxo0bN/Dkk09izZo12LFjh9eaRxenXNYeAOCpHy3N3VhU04uevbnor83HgQXz3eXgwTEStQEAMcgnQ9dXxNE1OrgYHp9QP9XBtRWTVqulNKKHMP3pG/5V+N/c3Ewsy9KMGTNo586ddPXqVSJyTZ9qtVrZ+VFbrVYyGo3EsiypVCqaOXMmsSxLBoMh5IYxgcLfOgcMlI98Mgy4poM500E62D8qqhRE5PHnFeaTR/9518+dIZB7Q2vbGVq6dKnbByC5IOdYwQMDA/SjH/2IsrKyaOPGjdTU1ET379/3u04OW2CZzWYyGAwiWVUqFbEsS0ajMeKd7jnivYjWV1MQ0JHeaSqnSpOrPkS1QboLI4EAMHDeuQcGABEwWTkFzjv3wIODAhl47NHH8fe//x3cXScAJyY9NMWr+3DeuSf+juRcONeFOj7poSnieeG37z2EZ5WLynDz5k0cO3YMv/vd7/DVV19h165d6OrqgkqlCprm1q1beOyxxxJYSlfM4AsXLuCDDz7ARx99hNmzZ2PVqlUoKSlBbW1t2HGEifxDWylAHl8TXIOpuRuLtjQgR2IC6q8txMLXctHCM2JGHuYTR6P/vOvVGu7/4x9eLWL0n3eJ53niOI7+RZEhSjFpOunvSM6FkyZY+tF/3hU/0v/SMgfDRO31dvr0aaqoqKAZM2ZQVVUV/fnPfxbPjRVNXvLq4oa2tjbS6/W0dOlSUiqVpFaraceOHdTQ0CCunolH3QEgRmqJYCQq7LaTouowycN8Br6GTgUY8EyGeFgqxRiGQfYT2TD/z0coKioKt/FGhVDSWXqNr5SV/g41uAxX+lIAiTHW9b73ttlsePvtt1FfX48FCxZg+/btePvtt70GXoF6BOkxi8UCtVoddjkCIdA92tracP78eXz44Ye4cuUKNBoNVqxYgUOHDmHp0qXIzMwEx3HiFlyAezFrjHswCnNwOKa7kUAKxZTJfjeYPXs2/vfG/+HfVi6PrpRJhkitK8L1X331FY4dO4bDhw/jiy++gE6ng9lsxuzZs72uFxqHLxGIvPdk+/TTTzFnzpwon8KFkZERXLhwAX/84x/R3d2Njo4OFBUVYeXKlTh48GDQYNZS4gqYKNVLJG8g3VAK13JxDxiGQV5eHjo6OlBeXj5m+vEgnnlHC4FooaTxxYsXUV9fj7Nnz+Lpp5/G66+/jtWrVwfNM1g+vsc7OjqQn58f8NpgUtDhcIhkFcxWy5Ytw5o1a7B582aUlpaGbJyCxI2094krBD1DqiMGQiC9sbW1lZ4sKg6YzlcHDedcoP/hph9L5w31bLHE0NAQ7d+/n+bOnUvLli2jI0eO0O3bt2N6D41GQ21tbSGvsdlsotkqOzublEolabXaMc1WApJhz+ewo0Q679xDxtR/8Wt1DMOkdORCCkPS3L17F8eOHcPRo0dhs9nw4osvYvv27XjiiScizl/631eKCv+nTZuG69eve9W5zWbDpUuXcPHiRbS3twMAli9fjpKSEixdujRu0Tsn1GITDsNDSS2NRiM7Y3micPnyZaqqqqIZM2ZQRUUFvf/++3G/p8ViIZVKJdpYtVotzZw508/GmgySc7wIKXl97amBWtmePXvw17/+FS0tLfFrYRMAkkhAklgNbty4gXfffReHDx/GI488gt27d4Nl2bjbXAUb63vvvYcrV65ArVZj1apVWLt2LYqKisK2sUYiKSlEryMLG/l42W82m0mpVI43G9mC53m6f/8+1dfX09NPP01ZWVmk1+upv78/6vzCwfvvv096vZ40Gg0BILVaTTqdLibhtaKRyqHSTNSMZUws3SqVKulVh0AvwGKx0M6dOykzM5O2bt1KJlPswyYJ921tbfUiq0ajIb1e75kC5l2+A4B3eK3miiBuiOWnxPyTcQo/HMSEvDqdjliWFf/L2XcgEKTl/eKLL+gXv/gFqdVqys3Npbq6OhoeHo7pvex2OzU2NpJOp6OcnJzAZPUBx3FUpfsPYtnNfufEGGvkIukonaAKgFBgoL4U3vc5IvIG6zoE1cE34J7cKi1UeZqamkQPru9///vU09MTs/tKyapWq4OaraTlC1TXSqWSWlvPe3lWOfk+OrjYE1xEmOYXgo5Ig6ykGmI2Qa5Wq+mNN96IVXYJQU9PD7300ks0Y8YMeuaZZ6ipqSkm+fq6Bj700EMR2Vh9wXEcGY1Gys7OFlUAjuOIeNdqg3zkk6H/nleaUb7H5dZa0Rw06lGyI2bkNRqNlJWVFavs4obh4WGqq6uj3NxcUqvV9Mtf/pI+//xzIoq+pzCbzV5kHY9rYDCoVCoyGt/0O37tUL7oOigtv5N66UAhCC+0pMkbDrKzs0mv18cyy6jhS0STyURbt24VHbstFkvUeUttrIK3VazJSuRRHYxGI6lUKuIlLq8cx5GTel0qg6GbiLw90UbpBFUyoEU1vSlr8x03eaUV1traGlD3nSjYbDbS6/WUlZVF69evp/r6erp3797YCX3Q2tpKBoOBSktLRbJWVVVRY2NjTJ/Vt8EJpNNoNHTooMGzMNF9nOs/QLnIowMDo548iCOe58lpKicg3+tcqiHmTqHCqJloYubHR0ZG6K233qIlS5bQvHnzqLa2lj777LOI8ghkttLpdNTU1BSQrNE8Z7gqSmNjIymVStesmU//f9/0vERlcHpWw9AJqpSYy9KSN0wI0jeW3Wc4OHfuHFVUVFBmZiZVVVXR5cuXw0pnt9vHtrFOAARyu3RdI3Gca68M4RzntjIsqun1SieELsit7fXLK9UQF3d8lmW97L7xwtDQEL322ms0a9Yseuqpp+jIkSN0586dkGkCma2kZJWTlBJ03UAQJyaCbaCSmnz1QlzIa7Va3TbJ2Euu27dv05EjR2jZsmU0d+5c2r9/Pw0NDQW9fnBwkBoaGkin00XlGphoCFLS4XBEPhXMEwnSWbqbUaryeFwbZ4fCnj17cObMGbS3t0flLkk+TiEffPABjhw5grNnz2L9+vXYvn07SktL/RxErFYrLl26hEuXLqG9vR1EhLy8PKxevRqlpaUB90cmn5UKckBZWRk+++wzmM1m9xFPTAPfugkEnndCoUiuuLyRIm7kBYDi4mLMmTMHJ0+eHPNaCrAy4caNGzh69CgOHz4MlUoFnU6HrVu34uGHHxavE7ytrl696uXHqtVqUVJSguzsbHl5/4eBN998E3v27PHz2ZVC+kyutd7ScKC+8BA/pRBPsW6320mtVlN1dXXYae7cuUP19fVUUlJCs2bNoldffZVsNpt4XrCxlpSUiGYrnU4XsY01HN020fovx3HiVHt0Ko3bhEZ8yqoKUsR9/bTwMgTdLRghLBYLVVVViR5cp0+fJiKX9aK6utprQkCn00VlY5XTYCwQ7HY7KZVKMhqNY14rkDPQxjdePhIpTOOYkjcYOerq6rykiVC5n3/+Of385z+nefPmUUFBAdXV1dHIyAgRkZfZqrq6OiqyBgujFOhcsPSJIrzdbietVkssy/rdU5yU8DnO87wfOT076ThplAKHk0oVjFvnFfQt4VuijohB+RRgUFZWhvb2dhw9ehSTJ0/GD3/4Q9hsNqxduxazZs1CT0+PGCtg5cqVWLduXdDl18mOQKsQNm/eDCLyGx9QkunriUSEw1GX4i8Naizs0sKdqsBk9ph4ZaXJiXfwAv4d9Xj3uQzs2LEDhYWF+OY3vwmWZXHt2jUolUo4nU48+uijIWMFpBoCLaUKRFwg+SJxJhThiuhgHc8o3+PyXkIFnXA7Q/M8Tye3gVwbVHv7EhiNRtJqtbK0sU4EBG80AcH8G9Lwx7h0XsGrCQUGGvCN5sefoEqmkk6R/xIUo9FIGo0mpA4bLPxnKkGn09GmTZv8jqcJGx6iUxvAg4HCvdVVPg70vYocidbLgwBmIXIOKfAs/MMD7d69G0SE5cuX48yZMwFXvkp3v0k1OBwO7Nq1CwACrrqW24SJbBE+z72lgSh1t50UR+U8+ceRDSU3jUYjKZXKgPEOUlX6WK1WUqvVVFZWNua1qVoHsUL4Oi/PEydRAYRFfotqel37GfO+1zu9vgOB4zhqa2ujadOmkcFgiKzkSQjB4y7Qsz4IalKsEb7kddepxxHaQIsZj0teoIGGi+xjSw9hIoNlWfryyy/DLlIywWAwEICwJiDSCA9hK1c8uWJEinG05quxgIDeawNee8UKOFV7CIMIbyPq4uJiXL9+Hbdu3UJubi6amppCqTle33LHuXPnUFxcjHfeeQcWiwU7d+6c6CKlDsbDfNdSE4WXQ7Sw8K/iD9Hpa4IezLKsl0+DXBCoWw+km9rtdjHCjV6vl83SqFRCROT1vDjPy+L6D1Ch12Zw+XSwfzRIuvDyHxwcJJZlCQCxLJvwVRnByhUO7HY76fV60cl9osueyohqkiLYywy+NVN04YasVqtI4rKyMllNbPhKW6vV6kXacBzx04Oz8SECa0NoAnLuuAEexxBp9JfxrWC12WzEsqxIjLq6uoR1w6EIxvM8NTY2ig2stLR0wreXepAQNnk5crpepHt51FhSQ+rdNB75IpVwdrudDAYDqdVqUqlUpNPpAsYRS4RE8y2H1WpNm7sSjLiupABiF8fVN5/GxkaYTCa0tLSgpKQEhYWF2LJlS9wigNtsNpw4cQJXr17FuXPnkJubixdffBGbN29O2ajwckdE5OV5QKEAeLoPBhlu85iHUOQTkJkYBFmWEh0CNQSHw4Hm5mZcunQJH330ER5++GHk5eWhsLAQGo0GDMNg3bp1Ed2jo6MDN2/exNDQEDo7O9Hd3Y2+vj5s2LABixcvxpYtWzBv3ryYTeNS2u0xKsRd8iYaFosFnZ2duHr1Krq6ukBE6OjogEajCSv9lStXkJOTg+nTp2POnDlYvHgxNBpNRA0gjfhCEGIpR95gaGtrC+s6X59iWYSvTyMg/h9+FAUIg0cH6wAAAABJRU5ErkJggg=="
|
<image>如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是()
Choices:
(A) 32°
(B) 24°
(C) 16°
(D) 48°
|
24°
| 10,878
| null |
24°
|
"iVBORw0KGgoAAAANSUhEUgAAALwAAABcCAYAAADUDd8pAAAXMUlEQVR4nO2df0xb57nHv4fcha6LhFY5ne+dIzeJyUidrlREGr1hYho2oQtaqUqFtLWLq7FLwZmWNa4aKanobsmSdSYNd5Db/ZDqqLlNrkZrc8ctSXBX7kYkprQjdzE4DZBLQqSQ0alMjjanMed7/7CP42Mf/4JjGxx/JITPeX+c97znOe953ud5fwgkiQIY6+vEhOF5NBiF0BkRQFEui1QgA+T/E03hdSbGsbvBFnU2/6vmbiT/n6oQdczYn6/t6oFgNuNLRiGlF6TAyiXvBT5aY2OERAsEXIetoNkEcVCESBGIkPmCtpd/5L3AC4Iga7QFIaLJH/8vDNKMPaUC3jNvglEIVoegFLdAXpD3Ak8oaDWhlnvXv59Bz54GAIBp08ZQqChLWyC/yHuBDwq7GHVOgOuwFT09PRAEAYLxiYjQoqi0BfKJvBf4IMHbpCT4XhcGaQZJUCQ8Ljs2rd+YIH2BfOEfcl2AbCKgCKLXhVW7z4BnjkonMTF1GUBB4O8KmO+Id37a20xEUDXnOxcWSJLP1SJ8rmaXPUeFLJAtBLJgewOg3LsteFvzjrvuaYpRtpfh4WG89957Mvv8HWKrp9A+rGzuOoEvimjGvR9dxPbt29HQ0IBvfvObGPeMJU1fsM2vbO46gZe4ceMGHtteh2/U7wAAVFVV4Z+rtmHXrl34+OOPc1y6Apki/wVe6pKGEfHpp5+ioaEBra2teO5fWvG5z30ON67PYnJyEoIgwGAw4PDhw1hYWMhRoQtkirwXeILhzmhQ/y5CU1MTtmzZghdffAFf/OI/4t5778WJ/zyJSxc/ws9+9jOcPXsW77//PsrKyvDuu+/mtPwFVCa3RqLsY7PZaDKZGAgESJJ+v5+rV6+m0+lkWVkZ/X5/OK7b7abRaKTJZOIf//hHkqQoior5FlgZ5GULzziWlJ///OcYGBiA0+nEqlWrAADFxcX47Gc/i0cffRRbtmzB/v37w/Framrg8XjQ0NCA2tpaPPvss/jzn/+clXsokCFy/cZlC7fbTZ1Ox+np6Ziw8vJyjo6Ocm5ujlqtliMjIzFx5ufnabPZWFJSwo6ODtmXoMDKIS8FPlrt8Hg81Gg0PHfunGL8uro6Op1OkmRvb29YtVFSXyYmJtjY2EidTsfe3l7Vy14gs+SlShNpK79x4wbq6urwy1/+Elu3blWMr9frcePGDQDAk08+iS1btuDll19WtLkbDAb8+te/xsmTJ3Hw4EF89atfxR/+8IfM3EgB9cn1G5dJfD4fKyoqeOTIkYTxOjo6uHfv3vDx7OwstVpt3C9CJA6Hg1qtlo2Njbx69eqSy1wgs+RlCy/xzDPPYOvWrfjBD36gGM5Q51an0+HatWvh8/fffz/sdjssFgtu3bqV8Bo7d+7ExMQEysrK8NBDD+Gll17CzZs31buJAqqStwL//PPPw+/3o6enJ67VRlJZdDodZmZmZOe//e1vo7S0FB0dHUmvtWbNGrzyyivweDy4cuUKSktLcezYMXVupIC65PoTk4zF2L27u7tpNBrp8/lSiu/1emkwGGLOz87OUqPRcHR0NK3rnzt3jlVVVayoqODw8HBaaQtklmUv8OnS399PvV7PmZmZlNP4/X4WFxcrhjkcDj788MNhR1U69Pb2UqfTsb6+nlNTU2mlLTi4MkNeCbzH40m5sykhCVZJSQlnZ2cV49TX17O9vT2tskj5+v1+dnR0sKSkhDabjfPz82nlU0Bd8kbgZ2ZmqNPp2N/fTzL9FrK8vJznz5+Pm7ek2sTLN9n1Zmdn2dLSQo1Gw+7u7rTTF1CHvBB4n8/H8vLypObHREQ6nyQihdDhcLCiomJRqk0kHo+HZrOZRqORbrd7SXkVSJ8Vb6VZWFjAt771LXzta1+La35MhUjnkxI7d+7E5z//eRw6dGjR1wAAo9GI06dP4yc/+Qmee+45mM1mjI0ln3hSQB1WvMDbbDaQhN1uX1I+69atw/T0dPiYZIyn9Y033sCRI0eSCiiTTAMUBAE7duzAxYsXUVdXh23bChNPssWKFviuri4MDQ3hxIkT4dGPiyXa+aQ0rECn0+HgwYPYuXNnwskhUtpEgk8Sq1atwp49ezA5OYnPfOYz2Lx5Mzo7OwsTTzJJ1pQnMc7vRdLf30+dTidz5y+l4+d2u1ldXZ1S3Orqatrtykt6pFuGyPiTk5Osr6+nwWAId75TSbc0FuT/87zvnDWB97jsFASBMLfKA0SGK9njshMA2+zOhHmdO3eOWq2WHo9HtfLFcz4pMT09TY1GQ6/Xq9r1IwV4cHCQRqOR1dXVaZlYU0Wq55hn4emjIE2KjA7LE7Ig8AvhX8GK/jo94kJMLJFjNAG0O8funFNoxWZmZqjX65O2gOly69atuM6n6HKIosju7m5WVlYu2WqjlL9Ed3c3NRoNLRYLr1+/vuTryK7JMZoF0OmJuvaYkyZr/i5IlQUd/s4lJqaKYDavUtSPd9Ua4Ta3Yk/Dg+Fz0fFu3ryJ7du344UXXsCOHcHVBqjSOjGrV6/GPffco2ipiS6HIAiwWq0oLi7GkSNHlnzteEt/WK1WTE5OQqvV4qGHHsKBAwfg9/uXfD0JEhg87ZRNch+bmIK19flQeP6twZPVTqv78hRKMYhLUUYOV+f3gdI2tNWa465RvbCwgKeeegq1tbWwWq3h82quE7N+/Xpcv35dMUx6+JFCcOzYMbzyyiuYmppKmGYplJSU4ODBgxgdHcX58+dRWlqKt99+e8n5XuwbQNuYBx/tOYpx4U45T08JEftc5R+ZF3hK/8axfn0N1m8yYWpy/E7QuAuDqMEGXMIGw5eCO3Aw1kphtVpxzz334LXXXstYUbVarcw0GYn0YkW+YHq9Hj/60Y9gsVgSpkmFZC+HTqeTTTx59NFHcfbs2ZTTA/K2ZGBKwBMPGvGNNgEDfePB9LwIUXxgUeVfKWRe4EN1Nt43gI11DTBs2ITLkxMAAHIMph+eQfeeTRg4SjzWsDmURG5i7Orqwrlz5/Dmm29mtKjJnE9KSM6urq6uJV07kXBFCvO2bdvwwQcfoLW1FY2NjXjqqadw7dq1+Ol5J70QPjUOcj0AEdtr63DafRqCIMDT1w+h9EtLuo/lTtZUGqVP5ZHvH8W/ne7Bxb4BoK0OD0qPRFpHBoDL5YLdbsfAwADWrFmT1jXTUSlIxjifUuXYsWNob2/HlStX0k6bCkrC/J3vfAcTExMwGo145JFH4k88ERT6IOOXAMMmAEUwPr4HpR/Z4Bwnzrgv47HHH0T0BhL5RFYEXuQYCD0AoHTjBly6chmuw1YETK14EALePXMKj9U+JktDAB9+8AG+973v4dSpU7j//vvTvm46n2RBEGKcT6myYcMGvPTSS9i5c6diuJL+rwZr1qzByy+/DI/Hg2vXrilPPGHsb9epqZBgBzHXtcI90AdsMIQanRXtj0xMNkxBHpf9jvlrzCmztYscYw1qOEZR5vSYnp6mTqeLO8BKFEXVRxim43yKJhAIsLKyUnEkZKaR6iFy4kmigWmdnZ2ydBxzUgDY2Tcmi5ePPqiMC3yb+c6GA06PSPGCK7zxgLOzLRRWRMAcFHoGnUBGo5Gvv/46yewNnU3H+RSJVD6v10uNRqO49k22EEWRvb29XLduHevr6zk5eSkcdqe+IxucIFazSdE/km/kZHhwIgG+fPkyV69ezcbGRkWHTybLkmjmU6rY7fZFfyXUxO/389ChQ9RoNOGJJ3Nzc3ckXFaV+S/oEllS1qK2goynW4vEj3/8Y2zb9iiGh4fx1ltvyYIzYSaLzLO4uDiu8ylVdu/ejZs3b+JXv/pV0rhUQaePl0dxcTFefPFFeL1e+P1+bNy4EZs3b8b5/z0fjCCryqK7Z4vO7L9j8VuTQ4cOsbKykn6/n5OTk9Tr9VnXiaVl95aCtNLZ8lmnZoH79u3jfffdR6PRyFOnzih+LfNRZ48mNzOexFj1xOl0Uq/Xy+aVzs7O0mg0yhZJyjRKM5/SQbqvjo4OmkymlOJmmvn5eWq1/8TR0VH29/eztLSUNTU1qg6+WylkXODFmB+xjIyMUKO5X3H04fz8PKuqqtjc3BzMJsNC0tLSEu4sL4VAIMCKigo6HA4VSrU02tvbabFYggcLIgOBAI8cOUKNRkOr1cq5ubnQ48l/XT7nc1qnp6ep1WoVzWiRM//r6+vZ0NCQ8VV7o5fdWwqjo6PUaDRpLRmiNrOzsywpKVG0HEkrIms0GtrtdlVGfi53ZAJ/+9Pb4T81idcqz8/Ps6ysLKVWMBAI0GKxsLq6OuUFlhaDw+Hg008/rVp+7e3t3LFjR8z5bKkz3/3ud2mz2RLGiZx4shR1biUQ08KrLeyk8sO9ffs2TSZT2q2pzWZjeXl53DVklspSnE9KBAIBPvLIIzlRbbxeL9euXZvyWjjSjidVVVUZmXiyHMiKwCthsVjY2Ni4qLR2u50GgyEjDp7FOp8SMTo6yrVr12bsJY1HQ0ODbCpiql+V119/nVqtlhaLJetlzjQJBT5axVFSeeKpQEpxpQo/0HGAVduqeNN3M2Hh4qlYtz+9TccbDq5/YL1s8aTockbfTyqo4XxSYt++fWxoaFA9XyVEUeT7779PvV6/6D6Pz+fj/v37uXbtWnZ0dPDWrVsqlzI3JG3hEx2n8jv6+K3/eIsGgyHo9VOIm07e/f39XKdbx+Hh4bgvZ6JrxCPRsnuLxe/302g08vjx46rmG4/KykpV1KiZmRk++eSTebPjSVoCrxQWr9VXymNkZITrdOvo9XrDrX0qAp/o/O/+53fUarV0Op0pv4DJSMf5lExNiAyXJp+r+TJJ+Udep7e3l+Xl5YvKK979DA8Ps6KiYsWviJySDh+vpUxVKG9/epuTk5PUarX87Xu/jQlT7NSmkbfH46FOp6PjjWCLJorikgR++/btfOedd1LWeZWELl68vXv3LrrvkgqBQIAGg4Fut3vRY5ESxTt+/Dh1Oh0bGxtzam5dLGGBT/T5T0XgEwnYXz7+Cw0GAx0Ox6JemlS+HtPT09xctpmHDh1KmiYe0oNWy/kUmaeE3+9nWVlZxtSD7u5ums3mjOQtIa2IrNFouH///oyaidVGJvCJBCORYCbqtN703WR1dbVsuelEndF08o4W6tnrs9xasZU2my2uPp8KajqflBgZGaFWqw33Y9QiOIRAu+SxQJEkau1nZ2dpsVio1Wpj+gvLdTXklD2tizVXWiwWNjU1LSptqkRWrs/nY3V1NZ9++mkGAoFFVbzaziclbDab6qqNbAiBSqRSf9LEk5WwInJKAr9YYW9vb2dVVVXWN/H1+/1sbGxkfX09b926lbbQq+l8indtSbVRy7N5/fr1uEMIskVvby8NBkNo4slkzsqRiIQCv5ShBsePH5eZHyMffKY/d1L+zc3NrKysTMnTGFmmTDiflBgeHlZNtWlubpYNIciVShEIBGi322UTT5Sefa7Kl5HBY0NDQ9TpdLK3PNs3KF1v//79NBqNYVNgKuVItOye2uzevTuu+pRqnUlTC3O1nY5SOefm5mi1WuPueJIrVBf4yclJ6nQ6Dg0Nhc9lY6peIrq7u6nX65MufhpZrkw4n5Su5/f7lzxoK3oIwXLiwoULNJlMLCsr429+85tcF0ddgZ+bm6PBYMiaNzEdTp48yS984QspWzDUmPmUKtIXcTEt9NDQEB944AH+/e9/z0DJ1KO/v59btmyhyWTK6cQT1QTe7/ezqqoq7d3ussmpU6fijr2PJpWZT2p+qaxW66IsLGoNIcgW0orI0sSTbKOawDc1NaluEssEkns/meNHTedTKvh8vrSXAV/sEIJck8uJJykJfLKWrL29ndXV1Vk3Py4Wr9dLnU6XUKAz7XxSQkm1iVf3gUCAGzdu5ODgYEy85er0kZDG7EgTT/R6fdYGpi25hXc4HDQYDDHmp+XOzMwMy8rK2NHRoRieDeeTEi0tLWxubk5al93d3Uknia8U3G43KyoqsjLxZFECLz2MoaEharXaZetkSMb8/DwrKirY0tISE6b2zKdU8fl8siUGlQQ/E0MIskGyl9jhcGR84knKKk30J9Pr9VKr1XJkZCRumpWAz+djXV0dm5qaZLqk1+vlxo0bc1Imt9tNnU4Xd1BWJoYQLBd8Ph/37dsXnniitpqccgsfKfSS+fHkyZOqFiZXBAIBNjU10WQyhYUsUzOfUqW5uVnxy5NoFYJ84urVq2xsbKROp1PVzJ22SuP3+/mVr3wlru67krFarayoqAh3GrPlfFJifn4+xoFHxg4hWGmkO7Tg97//fXhF5LNnzy75+jECn2zhpMbGRj67Mz8/pyTZ0fGvLCsr45X/mw47n8Lrj2ZZTevv76derw9/dcbHx6nRaPjJJ5+ECpTV4uSU3t5e2cST1CezyI8Rmyz+6lN79+6lyWQK67p5Vd8RN/OLX/yCOp2OVVVVOV+nxWKx0Gq1klzeQwiygd/v54EDBxQmnqS+YlpsCy8qOwEcDgfLyspyNkApa4QEv7e3l/feey9fffXVnBZHssi8+eabMasQrBTDgNpETjyJ8aUsRNVJ1A7wAplozWYRQBHee28Q27c/hmeeeQZ6vR4CARHMk13eihBvT6O//vWvKCkpCR+Tmb9nQRBilsD+29/+hhMnTmDr1q34cvnDEO6ata0T8+GHH+K/+/vxoNGIrq4u1NTUJE2TROCDdHV14ZNPPgkfZ+PBLwcoIEq4RJBCxu49Xr1evXoVAwMDaGlpiVOuuxNBECCKYrjO6uvrsXXr1lBosLGOSZOKwIchohbSL5AtPv74Y2g0mlwXY8XgOmzFE3uOBg9q2yCebsX3d52RvwLW2mDrJf2tEorQ2RfcNptkjLCn867kC5H3nK27J3nXC7tU79EyFyOD4y4IgoCeyxvAYB8VPGzGqqIvg+s3ANEdnzYzaHcFxyt7XPbwZmT5vHa4VAeRG7BJfyZrjq0inj5ZeaQN4cjY/tldjRjcEdKs8MxEUaS9zcSfOi/IrTSyLSTJ8BaT4S0nwxnnL/Y2E+2uP1FksD5MAFt/+k5sxCxUgr3NREQ8D5Fj/LqwDF7CZUpwl8IajnEhZu82Z2cbnZ4os6THZY+ozAW2mUFT2+GsFXg5YDWbQgIW/KLZ28zBOsnyW25vMxGm1vCxdHmP67DsJSgQRGqc2uxOhWe1IEUK7eIXUoMmpi7D3WNDkSBAEFbB/JqIwZ4fJtWrVjoM6XoYd6EHpbLdqC9PDGLThvXZ6ayHFJexvk7YjrrhPNITDrpz+aAJtWClkSOMX4IbwAZDqcKzKgr3QYNPNRRh8NRROD0iRBLOzjY8saUIrrH426bni2lSug/XqUG0ba8Nn++0mnF0sAbW5xsyWwCpaoXg39EeG0xWOx43yuuXJCamLsemKxB/K9RwcCg83OSPOQlzq9Tyyz8R0Z+GPCWm02puTZ5IZRZC9S4ZDqJpM4Mm66sFhSYKqcNqlckrg8I89jbtrj+RjNDhnZ1tcuEOdVilis/7Co564aMRRTGzdSBlPuYkUMR3LsgbF1EUo6xmBaIJdlojZFYUOdbXKWu4wgLfZgadoUZFat1lFoI8HrchMrrDHjof557VrImYvKIbGvGOhcYEuREhn59J2oSqQmoUEMesDCmCgNx/znNJmxl0jcnP5UKcRJI/ba2R13/IFi89vIKYx0GhYqJPBYcWJBsykM/h4+9AMD4ZPnR6RDQYBXmaTJcPQPTYD2utgKODd0LtLg/2PG6MiZeV8uVReHpjafKQ5TQ8iJGDx8ZdcPHx4MtXQDVkTYWIhYSR8zFcAOKa96JPZ+L6ke2NJOxjfZ0QjE/giS1FMO/qDBeEAHbVmjEeeSLD5cu3cJnAF2FVwgR5Gx6nEY0+nYnrCwiNf5eE19uH3YPBF8Flb4O7xwahKDiYr0gQYO46HXKMxRZw2dbvMgr/f2xQ21CH3HlsAAAAAElFTkSuQmCC"
|
<image>如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠PAQ的大小是()
Choices:
(A) 70°
(B) 55°
(C) 40°
(D) 30°
|
40°
| 10,879
| null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAANIAAAAWCAYAAAC14MLgAAAFfElEQVR4nO2bsZLTOhSG/+MsM8xQMMPcchtCR6iXhqwzc2nzCiSmo8e5t6NnH4AyNq+QB7iJPUNBDQUDKy+wrwBNYp1bONJasp3dhbW9ZPPNZMeWLPlIOkc6OtaCLaSUHEURA9C/smeumqo6z5OlSfKyEFGrsjTNdRqHprlI24mZGTniOMbh4SFsXr16VUi7SogIlij49u0bptNp47LYMDO+f/9+IVnK2vGnc13GoQ2q2m6PsWMnzmazygrrpEz5Pn36pK+JqDFZ8jAziMiQJU+TsrRFVdu/fv3asCTNU9X2OI6N+z3AVNIqxuMx+v2+nnEvUuZ3+fnzJ969ewfANDTP89Dv92t/f5UseTzPw5MnTxrpj7b48eNHadufP3/e+Dg0TdW4FzjPHySi1nxiWxa06J+XyXJT9knXaRyapqrt9p6+tDeu08ZyJ8v1YNf2SwYbSlasrXZbLsuuP3aU4eRvbJuKoggnJydNynNhzrH/2tgZ0Y4yDEOylcR13UaFyRPHMYgIg8GgNJ+I9DNhGNYuTxiGICIQke6XyWRS+3t3tMtgMNDjrn52xA5AtbPr+z67rnv1DmcFZR9klW9a9bEWAEdRVKtcQggGwL7vF9KCIKj13W2i+l7pgBoD1XYAPBgMWpSwOVzX1Xqm+uX4+Nh4pmBIUkoOgkAXaJMgCCqN+fDwsJD3KycuzitjG5HC9/3ajbhJNk1WQggjXwhR2ifbSt4OhBBMRCyEMJ5x2NprqD3R/v5+q64dAHz48AEAkCSJkf727Vs8fvwYnufpNP7FIMCmMsqde/36tZHOzOj1etjf37/0+64rm/phsVgY+aenp3jx4kUTYrVOHMfwfV/fe56Hly9f4v79+8Zzjt2Bb968wWg0AgAcHBwYebbR1c2jR49wcHCA09NTnZYkiZaj2+3q9DqCAOPx2Dgeot5LRBiNRoXO3BZUO+M4hhDCmLAAQAixtW23EULg6OhI74+m02lhYgWsYEMYhrrQgwcPCsrZZMRKnfnr9XoQQujB9TwPo9EIR0dHtX5VV6ugMla14jU9mbSBGmdlML7vI47jG9F2m+l0qvUvCAJ0u92ChwTkDClz6Rjpaol0tcRi/h96Dx82KLKJPesRESaTCebzeWG5bQKlXPnJ5CYoFjNjOBxiNpvpiFXeE9hmlMEoPXz27BmA7LOQjaMKjMdjjEZjOI6zruQETahJlTLm3bePHz8iDEMMh0MA2cHa4XBYqyKrzhNCFPKSJNGh920lSRJ0u10QEfr9Pt6/f48kSTCbzdDv92/EJLJYLAy3VsUPSicS3/d1OFMIwSxTfvr0b75zC5URK+Z6/idJEUWRjoqUhZrRQDRRRS9hhdijKGr0s0Bb2KH9IAj076bguq4RnVN2wlzU/5L/2kt5tVyylJLlasnpasnpKmXJzFJm97oOma7zl5zmK86nr1Ysrfqr8qSU7LpuJvCt23z85TN/+fKZ//1nwpKzwaRbt/nevbv81727ufJnshpyp9J8X3p547fPWd2UsK9tMGpC26aQfxVVB1U3TaDFs3YsIaUEOXsgSEjJoE4HmRPDYAmQQ9l1ykDHAYHBaQo4eyDKXwMsV2B04OgyZp5kB52OY4rAEpCypL4Nda/lBiiTV987oI6zvs+3ZUcZYRhiPB4DAIIg0BFcIPvKP5/P2xGsZvg3z1BuNiQCmFdgVsqagtEBEQBOIaVZNDO+FFJSpry6vrUC84Y8Q4YUkp218VnplXWbctvtKNzv2HGF7JUnE5RmE3UAmYK5AzCZAXPqlCi7/lPBBTepzGBQyeqx/ZvcHX8e2ixYrnIrTF59M+NhmQLknOWQA+IUZ+sZZ9e0dvV0Bp+V25RnQABkzmYuUPeOHS3yPzlqwCSoQrHTAAAAAElFTkSuQmCC"
|
<image>如图,C是线段AB上一点,AC=4,BC=6,点M、N分别是线段AC、BC的中点,则MN=()
Choices:
(A) 2
(B) 3
(C) 10
(D) 5
|
5
| 10,880
| null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAHAAAABbCAYAAACriwG+AAANSUlEQVR4nO2dT0wbVx7Hv2NWoqpQhkOiuFUUtoEQUlg1p22kDSotGMqqVb2rSs0hUl21q02cSoCaQw+VuORQqWYhq5CkyiFwqGRtoDZdp0Dg4GycLYfdwKoYsy00Jmolo0Zq6dI2RHh+e7CfmRnPP9tje8blIyHs9968efO+83vzZub9fgaZhUAkCIJeEVoM+iiwqF3Origdv9cFAkAcUv8BkC+4aNo+YUotRvQQiASKUgegKyDrCL0TworI2yxQSkQm2mLQRzDQB0ZxoFAIAGegHAcMvj0MzuVCY7NKVUSpohwn+W8nstu8hP/OtKP7lacBAM2H603dX8ECEkg5naTpE4Nvg1wdEGYEUaogKWNHwVIImV5YXb0nyVn65FNwZ7vxNFKDqLfnD2h/2wd3Mwf58efDrwqtQN7pKYMUwHEOpBroAJaCuCl0YPgwcK7jcOpgAIAcEuvt6+sDz/M7dRFZXlQOAihtB8tLMUxPT+Nfd/+N+vqUpX25cg+zw5fAXToHkAMff57EpRZmN4UPgIXXIINjoomqPzs8g+F33ACAjiMN4sIZlpeXcfnyZayuru5kW1w8ABnxYrEYgp9MIPTpjYx4ADAzdQmBRQEkEAIDp/HH31QhGKX0tmY0oMgEBk5nZl8AqOOsT7Xs1NQU1dbW0tTUVLGbZSojIyPE8zxF/nFbmhENEFxnMl/ZJM7rC5i2b3MtkADJuL4UxAx1gVKzXSwGfWh8Sv0i3tXVBb/fj9deew3j4+OmNq1YjI6OoqenB7du3cLvWk+kEtOmFZyagberE5k+icYwywGHGg6b1wDTTgUGmx1HAwTXnyVpgQFv5uzTukWIRCJUW1tL169ft/StxMWLF4nneZqfn1fM97p2bheSaesD2ilq6L7LGKYIKO9kn7cjM2SyA2A3tNAZRhmRSIR4nqeRkREzmmg6g4OD5HQ6KRaLyXKSmXu9rL+O05kyZmGeBQoqn1mSsK2Zr8T8/LwlRJSfoO+//76KeOKN2IdssQSV9Hwo+iRGDaODCBPxypUrRW2PUfr7+6muro5WVlaMb5R1sFaywBJcohYXF8npdNLQ0FDxd6YBEy8ej+dXgYHnxblikgUmFXTcOcu0mqz13FOcFovFyOl0ks+nf/0sBr29vdTQ0JC/eEWibENoPsRiMaqrq6P+/v6S7re3t5eampookUholBINiyWcOBdJQPPGeLllxuPxkor41ltvaYonmbsZGB4tOoSWlng8Tg0NDdTb21tQPWqdydI9Hg8dO3aMvv/++4L2U0xsJyDr3EQiQUePHqWenh5T6yUi2t7eplOnTmXEs/LDBI6ITHmmWg7W19fR1taGEydO4OrVq5plxYep9ZA8mUzi5MmTSCQSCIVCln87YmsBAWBjYwNtbW04duwYrl27plrOSOdvbW3h1KlTSCQSmJycRE1NTU7blwPbCajUkUzElpYWjIyMoKqqytB2Yra2tuB2u7G9vY1AICARL5d6So3p7wNLhfi843ke4XAY8XgcJ0+eRDKZzCpvRDwACIVCquLp1VMObCugvCN5nsfk5CQSiYSqiEpsbm6iq6sLABAMBlFdXW16W4uJ7QTUsoCamhpMTk7i22+/xUsvvYStra2stTliNjc30d3djX379uHGjRu2Ew+woYB61NTUYHp6GkQEt9uNR48eKZbb2NiAy+WC0+mE3++Hw2HPrrBnq3Worq7GxMQEgNRb/s3NTUk+m/Q0NTXB7/erTnrsQEUKCKREDIVC2LdvH7q7uzMiPnjwQHLboSQeYL3JihoVKyAAOBwO+P1+OJ1OuFwurKysoLW1Fc8++6zmPaOdqDgB5U9cqqqq4Pf7UVdXh5aWFjz//PO4cuVKVlm7UnECKg19X3/9Nebm5tDQ0IDPPvsMDx48UC1rNypOQDlra2t47rnn4PF4sLi4iOPHj6O1tRXr6+uZMra2xNI+Oy8tai+Ajb2gtQe2E1D8akfxNU86SbwEQ6ncuXPn6OCv6+jevXtFamlpsJ2ARlBdBJWUClnwIiULUHECsmWIly9flmZItNtZ8tHf308HDhzQXuNpYSpKwIWFBdpTy9PotRGJYPKV0u3eDyTbDQ0N0f79+20pouUFNLqcgS3FHx0dlWyTWubfTtF0EvMQki/vHxoaIqfTqernYFUsL6ARmHjj18ck6b6zLxA6z2SVT1mk1MlEEAS6evWqprOKFbG9gLOzs8TzPI2N/U1ymcsOJpC+7gnKAjKYr59dRLS8gFpD6NTUFPE8T6FQaKd8+v/pTlD7mQHF7QIDXgL3AkVJUKx/ZGSEamtrKRKJFNT2UmB5AdUIhULE87yiNy+7zmXiscg08rr0XdzGxsZSXrcWF9GWArLOnZmZUS4QHSdwouFTYUb68efqq8eZVbL9WNnl23YCGrGMLAuUpWesT2OCy0Rkw7RVRbSVgGyCcefOHSJS9mwShG0SKH37wAIMCES0FCRw2feAcpSuiUzEQCBgxmGYim0EZOLdvXtXp+TO0Hi6k928OwoObxUOh9Oz3TH9wiXEFgLqBRNQIxefBiNlI5EI7dmzh/x+f07tKCaWF5A9IdF9zCXqfz2vo0KYm5uj2trasvvtMywtoM/nMyYeQ5B/LdxPMSv6oCDQ/Py8ZUSUCLgt/Jj5KzfsVc/S0pJqmXK6fc3Pz9PevXvL7refZYGlEk+r85l4a2trJWlLvrCXxkzEcpxQZRNQDasGE1AjFovRE088QefPny/L/jUFlA+pSkOs2pCrNRyr5cnXqqiV00qXt6kUJ2Sp/fbF6Fqg1ncjn43myYMJ5Fq32smmtE0xiMfjdPDgQXr33XeLvi8xOQV8TdJPqOIez0orlDfeeAMLCwuYm5uTuDQz5PsEsh0tq7jHs9qntF2xqKurw507d+ByufDw4UMMDg6WZL+6Aip1jDxfDyJSjKudTCbx5p/exH8WlhEOhxXFU6vPiotyDxw4gHA4jLa2NgAoiYiZhb2FWpLW9kqdzYIJ3L9/X1c8ed1WFI+xf/9+hMNhzMzMwOPxFH1/GR951klqFqVmhWrbiTtdnvdo+394/fXXsb6+jk+C0xmXZvk+toUfU/4NBuqWp4nbpXdsxcDM4AtaGA5yoDWM6iFuJPNH//nnn3X90e0MEeGHH35AW1sbjhw5go8++kjVla0QDPlG5CMeUXZcFnEwgenp6YoUjx03x3HgeR63b9/GN998Y8hvn9KhqQ3aFAAdAZP0U97XRiYaa0wuwQRyOQCrwXGcpP3Mbz+RSODVV1/F1taW5ra5DqeaAlZxj2f+8oXjOEkwgVAoZMtgAkYQW58YJuLDhw/hdrs1RcyVormXsYORBxPQug7kOnxYDb0IGsFgEADgdruz/PaN1iOnaAJyHGcomIB8m3yGEbtQXV2NYDCIxx57TOK3XwiF/3aSisUoBRNQKmtni8uH6upqjI2Nwel06opopG8KFlDJWtbX1xWDCSiVrVRr04L57T/55JNobW3FxsaGYjlDfWP0oanRd12JRIKampoKDsZaiSj1ocfjoWeeeSanoLLiekxdUsEi6fb19ZlZbcWgZgQej4eam5tzcvlmdZkmYDnfiVUC+frtFyygIAhliyZvd+T+/kzEXFYjFCxguX/PodJ47733cvLbL0jAaDSaFUzAygHC7UIuwRfyFpAFE/jwww/zrWIXDc6fP09Op1N3WSVSvgQaC2AVDIqJN3qt/AtbKxkjq9JTFpjDqBeJ/NMSPwlX6bBL0dDQEO3du1fVL0Q0hOr/9k/KuaNG5KFj3k/s7KKOlt++5BooyP6L2QkmMEZMuN0JS+lgIs7NzUnSVSYxUstiDo5/vxFSLr5LUWGG4vf7M97JLE13Tczy8hc4fvy3ePnllyW/j75LeYjFYpiYmEA0GkV9fb3+oiYCcH9tLeutgs5muxSR7777DhcuXEh9EV/wAgPejDsyXGdIoCh5vT7Fa6IgCCX9ocNKpdB5hAMcgKUgHByH4a8OgSgJEgg01IkqrhlcfYPSourUu6pf3qs80zH8PjQz4AmizwDUgr8RpSI9DExECzpDdskNuT16XQq/Ry8KE+aY+MswZtGOCxf7skQ/VN+IQ/VHRSeBsCM+SU+EXfKD9SERgZAe1ER9O3yT4HUBgUUhs+jL5+XQzLmwBALXAVCjL4Dhd9x57F7ALyBuekkh0Sp2IgK4GFydlzB7868Q9/XZTg5fNPrgmOWA+vrD2RVlPgnZlrZrekVDfE3kOA5LE5PgGp+C3FCeauzA7JdfwQECSOE6upPkyJ6rcDt5u5iBoJozdXMKL7pe3ElIG0/DoUaACI4OAF+tfCndigAsBTEwEc1OF3/dvRc0B0oZgrw3BYpi8hLh96807ySmjWd19Qt0NNYDqXs/aWC4xaCP4DpDSXE8zd17vqIg7dakNCE6rhwWMzqe0QxE4qDgqZt4pWh+SdrWbMhufn75gkCqxhEY8NKZDz6W1EKUvrVIB/IrbE2MnlXu5uecv/NGKEod4KQB+qKBzFMyJqaqgEr7tupZXCn57HIVnRhQuHlH1qWOiOj/dY7F3hkP1wYAAAAASUVORK5CYII="
|
<image>如图,已知AB∥CD,AO=2,BO=3,CO=6,那么DO=()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
4
| 10,881
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAALcAAACECAYAAADSgLqcAAAgK0lEQVR4nO2df3AUVbbHv93hmX0WW3HLUAzLwESc+EbiapaqXaldtuJqhChJQAM7RqMJbiC8x/4BJAG2lhJ1g8+n4YnPQH4MLEFAUm4IClGSSeLCmj9Ygsq6gYT8IhpqC4NaYGANOn3P+2OmO90zPb9/k/5UUWS6b9++3X3uuefee+65HBERNGIWBvvn4cFNHGMMPM+jbAmHbUdULsopBR2pjFAJYxc+2gXQ8AwPTiHYRASe50Ek4NV3CaW5QGs/AxGBiHC+bQdy774riiWOHTThjiMYs4HjOBAJAJcAQj96sA4LjRwYzqOmxorUzIV45I6UaBc1JtCEO47g+SkAAI5LAAdgsM2KtMWPAgA6LBYgNQWEO7F69cIoljJ20IQ7DhDtbmcuXBjCqyUPg+MSsHDVNswxpIIHB6b1ogBowh2XiGMAbc3/i9Z+BsZsKMt+FHOMdrsbnCbdgCbcMQ8R2bUxyG5rg9nt7sEWVPJlWGi0dzZTc3JgBA+OU3ZAJzOacMc45JBTHhw4LkE63v5BO0qzHgJjDBw4rFq1GgCwYcMGAO5NmcmEJtwxDgkMDATGmOMID8YYrMe2YWHmIoDnICrqsiUchLsWgkjQtDcATpvEiW0YSCGo/dZq3LXovzChl5gifWs/k0wVIkGh7ScbmuaOcZz7hqkL/9MxYSNAoO9AROjp6UFSUhLy8vLwsHGiInDc5NbemnDHOKKAyhtY8S8eCRgdHUVOTg5ef/11nDhxAl9eviy7enJ/3sn99HGCfUZSNgUPAQBw48YN/OY3v8GTTz6JwsJCmJf/Bm+99RYAu//JhJ0+OdFs7jimqOgZCALhzTffBMdxOHPmDJ566imcPXs22kWLCTTNHYcwELZu3Yre3j7s2rVLMl3uvfde3HLLLfjb3/4W5RLGBppwxwECKc2Ldw+/g7q6Ghw9ehSJtyRKx3mex+rVq7Fnzx77gUneJmtmSZzR1dWFRx99FB9++CFMJpPL+atXr8JkMqG/vx9Tp06NQgljB01zxyhqncGLFy/i8ccfx/79+10EW9RRSUlJyMjIQGNjY0TKGctowh2j8Lzy01y7dg05OTn4/e9/j0WLFgFQDg/Kx7RXrlyJ+vp61XzFSjMZRlI0syROyMnJgdFoxGuvveZT+pSUFHzwwQdISUlxrNyhSTepo2nuOGDdunWw2WyorPR9XWRhYSEsFovUAnAcNym0tRxNc8c4FosFr7/+Ok6ePOlXB/HixYtYsGABBgcHkZCQoGlujdiio6MDL774It577z2fBFuup2bOnIm7774bLS0tANQ1982u1zThjgHUhKy3txcFBQVobGyEwWBwOa9mYsg1M8dxKCoqwq5du6R7OHdSb3ZNrpklUUSMP+LM5cuX8Ytf/AIVFRUwm80B501E0Ov1+PTTTzFt2rRgixt3aJo7QqjpEDXBvnHjBpYvX44nn3zSb8GW34Pn7UvOnnjiCfzpT3/yv8A3AZrmjgBiwBwRNaEWWbFiBWw2G/bt2xeSe585cwb5+fk4d+7cTW+GOKNp7gggChXP8x4F2+4M1SvZyYHgrKvS09Pxox/9CF1dXQHnGa9owh0jHD58GBaLBUeOHEFiYqL3C9ygtrhBHPOebGhmSQzgzRkqWK5evQqj0YgLFy5MKmcqTXNHGU/OUKEiKSkJ2dnZOHToUFjyj1U04Q4znqa8RWeoTZs2Sc5Q4aKoqAg1NTWKYzd7o62ZJVFAHN/OycnBnDlz8Prrr0fkvqmpqTh69GjYWohYQ9PcUUJ0hnLn5RcOnVNcXIy9e/eGPN9YRdPcEULuuLRr1y5s375d4QwlCAISEsIbQOfixYv4+c9/jpGRkbDfKxbQNHeEEAW7o6MDL7zwgoszVCSETa/X47777sORI2p7jdx8aMIdIYjIqzNUuO8PACUlJXjzzTcjeu9ooZklEeLy5ctYsGABXnzxxYCdoUKBIAjQ6/Xo6uqCXq+PWjkigaa5wwwRSc5Q+fn5HgXbedgwHCtnEhISUFBQIEWmupnRNHcEcHaGcufqGm7E+/b29uKxxx5DT09PxMsQSTTNHWacnaHkgu1OM3vT2B0dHejo6HA57k1Pifc1mUy47bbbcOLEiZt6XaUm3GGCMabqDCXX2O60t/y4s/CdOXMGS5cuVcw2imn8cWktKipCfX19VFqQiEEaYeHUqVOUnJxMPT09IclPEAQaHh4mvV5PjY2NpNPpaHR0lIiIGGOKtM6/1RgbGyOdTkdjY2N+Xxsv3MTVNnqIzlAHDhwI2VT3V199haysLGzZsgV5eXkwm83SChtnjS3+9hTGeOrUqcjKysKBAwdUr70piHbtutkYGxuj9PR0qqqq8prWnZYUBMElz/nz51NFRYV0XU9PD5lMJq/3cM5LTmdnJ82fP99rHvGKprlDTH5+Pn79619jzZo1LufI0eGT28hqw3+iHUxEEAQB+fn5uO+++/CHP/xBuk7eKQyUX/7yl7h69Sp6e3sDziOW0YQ7hKxbtw6CIODVV19VPS9fbibi3KGT/+Y4DqtXr8aUKVOwY8cOl/xWr17tcUkaqYRzcKawsBC1tbUe08QtUW45bhosFgvdc889bjtonswDZ8RrNm/eTAsWLKDx8XHVfMRO4ZUrV3zO05lLly6RTqcjm83mc/niBU24fcCbYHZ0dNCPf/xjGh4e9vkab/eoqakhk8nkIrjO6UpKSnyy793BGKOlS5dSY2NjwHnEKppwB0lPTw/NmDGDTp48SURK4fNXwEWamprIYDAoKos7Tp8+Tenp6QHdR36/rKysoPKIRTThDoLR0VEyGo3U0NAgHQt2nLizs5N0Oh11d3e7nHNXWdLT06XKFQg2m430ej2NjIwEnEcsonUofYScprbdRYaSjzH7y/nz57Fs2TIcPHgQaWlpLufddQ4V++AEgOhMdeDAgZtrXWW0a1e84KyRi4qKqKCgIGT5j4yMkMFgcLF95dqaMaaqva9cuULJyckunVl/6OnpIYPBEPD1sYimuX1ErpFDERlKzpUrV7Bo0SKUl5cjLy9Pcc55aFBNe4uhGxoaGgIug8lkwqxZs4IaN485ol27Yh1njX348GEyGAySX0ewjI+PU0ZGBm3atMmn+7sjFLON9fX1IW2Noo0m3H7gzhkqmE5kXl5eyATKZDKpdkQ9IS/72NgYJScn+zRuHg9oZomPqEWG8tXV1F3n8ne/+x2uX7/uducxfykuLsbu3bv9ukZe9qlTpyIvLy8o8yamiHbtimXEDpw/zlDeEDuEL7/8Ms2bNy+oTqAzo6OjlJycTOPj4wHncfLkSa/mTaDj95FG09weEDtw+fn5eOCBB1SdobxBTkNrPM/jwIED2LVrF95///2QBqacNm0aHnroIbzzzjsAAhuOvP/++3HlyhX8/e9/dzssyPN8XKzg0YTbA4yxgLbJk+McUri1tRWbNm1CS0sLpk+frnqNO6FyV0Y5K1asQHV1dUBlFfMqLi52MZWISHGvuFjBE9V2I8apq6ujtLQ0t6aDv83zqVOnSKfT0alTp0JRPAnnDq2vU/dqCIJAly9fJp1Op3DYkp+PFzThdkN7ezvp9Xq3QuLvRx4YGCC9Xk8tLS2hKJ5HKioqaOPGjUHlsXTpUoVbgUg8LUPThFuFnp4e0ul0qv4agWiuS5cukdFopAMHDviUPljtKM52BuLGKgpvS0tL3DtTacLtxOjoKKWmplJDQ0NImuCxsTGaN28evfzyyyEone9kZ2dTU1NTwNfbbDYX8yaetDZRHIyWEJyXYcn+hqB+DZHiHPnYQXOODBVsp0kQBCxbtgzz58/Hxo0bg8rLX5599tmg3AMSEhKQn5+v2OZPdRdiD3kQqX+fiBHt2uUb7jVo2RIQ7O+YcjfUEpFA/dZq6RgAau1nRIJM6whOvx0888wzQc0WOmv6goICWr58ecD5BYOoeUdGRgJugYaHh31ypirNdbxrDgTwjvfOE8dxVN3W75KeUWRagTgRbs9sWAKqbj8v/bYxgfqsVYQlZfYDKoIshzFGFRUVNH/+fLpx40ZIyrRp0ybKyMgIakJFjjdhEATBRYg3bdokrZgPlIyMDGpra/OarnQpqHVw4jejfsrhFlMvTdj9kTZr4kq4XYaliJFAfbSYX0z9Du0ufuCdGxdTWY1vIxNNTU2UkpISMmeoqqoqmjt3bsh9NBhjfgnI8PAwzZ49W/Wcr9p8z549ZDabPaYRqJcezS0lsWS1tbUkEKPy8lK310RizWbMC7enjyAQoz5rFeVuqCPG7C/LLgA2Ks1VahJ3hDoyVGNjo2QOSOWM0tjwlStXyGQyuQw/+lNBxsfHFYuQ1a7ts1ZRWe37REQkDB6j3A124Y42CuG2XWfSv3jBWlcqs6+nTNh+OXatwZirfS1WhJGREY9jz/42o8ePHyedTudzRQml0MvL2tzcTAUFBZSYmEiZmZnU2dkZVN7eFiErvwEULaYgM0uIOS++CK/2dtHc8STYRPYOpfXCxEsSiJG1rlRpkggqYRGuXlN1hnJe+eIr3d3dpNPpfBIk8R6htEHPnTtHZWVlpNPpyGg0UkVFRcjWRJ48eVJ1EbLYSpYtAbUM2J/FWleq6P+oIT73pBduefMmEFMoYTZwbKLTKGNnebbqC5YLbnZ2Nq1du1ZxPlBhE0cVghlXDoTR0VGqqamhtLQ0SkpKouLiYmlqP9Sdt/T0dPrkk09cjguD9m8gCAIxxuh86xvU0hcbU/Quwv3ddbFgAtmuM/r+mv1/QRDouzGb49j3RGR/ge7MGE8mjq/mj7t04jFr1UZaX9uiOC5QLy3hH6Oe699Lx0REF9a1a9dSVlZWSDo1ol1bU1Pjck4uYOK95MfcrYn0FkOwoaGBli1bRgBo2bJldPDgwbB30F577TUqKSkhxmwyzcuotXa9zx33UOCp0jq3BArhFoTvVQVJzvfXbarn3P3tzzlfrpH/XZoLsnbbFJXMWrWRcjfUShXT+RqLxeLRGcofxsfHacGCBbR58+ag8/JGV1cXlZSUUHJyMqWlpVFVVRVdunQp7Pclsg+tfjH6JU2fPl0a2hRb1NJcxzyCjInWNrIanCnuJ0wIN2M2EmhCIIiIetqqqOXvSsGSmwlyzRpO4XY+3metkjovifh36eVuXPzv0vEN/2d1PNdE2To6Okiv19PQ0JBq3v5gs9lo6dKlVFxcHHAe3jqUIyMjVFlZSSaTiXQ6Ha1ZsyZkozr+IhAjs9ksOVP1te50mSgL1wiJ1zF+Yqp9Jbc2N6N+ygXI2j8hHKI5ImYg/62Wh9pvf4Xb+cFs11wrmIhzqyKms11nqs5QwdilJSUllJ2d7feIh7dA8ePj47R//37KysqihIQEMpvN1NzcHHA5Q4H4HltaWigzM9Nr+lCKuLf3K82Oyv5VW88RMYdwM2aj78bsgiEKy86NZZSTk0P9JJDtuvKcSKTMEnklUqRnMiFmRDeu2cspkLIlufSZa2QoosCH4rZu3Urz588P6RKxzs5OWrFiBU2dOpUWLFhAFovFp0kgsSMXCcTIVBPOVILbfoPjbMju7elbleaCdlr7iIikVr21nxHE28tNC2tdKe20ttBifjH1sQnBVrtBKDuU7jqOnq7/nhjZbGJHV5DSi+fHx8cp81cL6fnfv+j25fiCKEQWi4VMJpPX2UxfhhSHh4dp8+bNNHv2bDIYDLR582bq73f1xYgmdsVhkwT1ueeeo+eee84lFZHYoYuwnc36aDH/iH2GmjlGb0Thlif8jgnEhlqovLaVWJ9VMcwWzSFCuQZgzObS7jm/VPlpMTJUKCZMmpubPS5g8IYgCPT111+TxWKhBQsW0NSpU6moqIiOHz/u8Tp5+GK1ihLJGdALFy7QrJl6t6MzdpcIZneOikB5+lurJIc5cWba/ptI2oeSAHAANpZvwH+/+j/AwDE8tutzNL20GhgnJNxqXwu45YXnAWZ3dOT4KSBmC6fT4gQ8AcxDCAUuAXBysezs7ERfXx8KCwuD3lv9n//8JxoaGvDUU09h+vTp4DjOr7WOAwMD6O7uxtmzZ3HHHXfg3nvvxdy5cwNyq/X33sFARC6hK3bu3ImsrCzMmTMHAINyKa79dzjK+MILL7gca7OUYeGqbQDPgSOgpU/Aw3cyEHGYIibiHAlfqdyGVypfBQfgsXW7QN8SFM/GJgocMcEGPAs24CLY58+fx0cffYRVq1YpBFt86c4v393H4DgOX375Jd5++208/vjj0qJeXz7cV199hU8++QRnzpzBrbfeip/+9KfIzMzED3/4w6A+vFq51YTQHWrPKj/m/Ddgr9wff/wxzp49C6PRiB/84AeOK50r58SWJ5GgtXkbWvsZFho5u6Cn8tJvySz5fvAYldW0kI3Zm7g+a5VycD62Ji4VODfLvjpD+eJGeunSJTIYDD6HKZbPGt5+++1UUlIS8gXBkUIcijQajZSWlkbV1dU0OjoaM4uExdlR6Tf1Ua7Dt4Uxm93mdk5ERNRmKfM48+TFRTpqjIyM0KxZs0KyEFcMxlNZWSkdc/dhGxoaKC8vT5o19LZTQahGOJxnPINFHIrMzs4mnU5Ha9eupZ6enqguMXO39Upr7XoqrWt12Pk2uzsGJnz7sWPDIsmTzjpov3j9EhAHEPgJ4zyWER9eFMY33ngj6DzHx8cpMzOTysomKr182pnI3kKIs4bp6elUU1MjjaJES7sFet+TJ0/SypUradq0aWQ2m+nQoUMhLllgeHKuks+OilqbQ7bk2x+UP3esaG9R2NScoQLFbDZLTvpygZHPGur1eiorK4varKEzvgi287NUVFSQ0WikefPmUU1NDX399dd+5RcN5DPUin9L1ivSOSZx3EgpU/wX06xbt07VGSqQD1RWVkaZmZmSH8X4+Djt27ePsrKyKDExkQoKCnyeNZS/22gKi3jv8fFxqq+vp4ceekiqnAMDAwHnFy2cJ4gkbxbBfkYQhOA0d6ws9ffmDOVpFs2ZyspKSk9Pp2+++YY6OzupqKhImjWsr6/3eVbS3SROKDaECgTxWZKTk1Urp9q3jJXvq5znsM9GuxNuexq7gnPS3LIXr6avFUu5YuPB29vbadasWX5PrKiVv6GhgRITE6m4uJgMBgPNnj2bKioqfM472trMmc8++4y2bNlCBoOB5s+f79OUvj/fNRLPqyaH6srCdRIv5tdQesJdZKhAKl57ezslJiZKTv/BLs0KN+4Ea2xsjPbu3UsZGRk0c+ZM2rx5s4vZESuKKdzErXB/8cUXZDQa6eDBg0QU3Ac7deoUmc1m2r9/f8ztpOurdmxvb6eioiJKSkqigoICam9vd5vXZBFuafo9nrhx4wYWLVqEjIwM1SnZQPJLTEz0a5YvFhgaGsKePXtQX1+PlJQUFBcXIy8vL6Qxv+OZuBTuFStWwGazYd++fdIxxlhIY0bHqqBfvXoVb7/9Nvbu3YuLFy+isLAQzz77LAwGA4DQv4d4Zor3JLHF1q1bcf78efzlL39RHA/lB41FAXnvvffw1ltvwWq1Ijs7G1u3bkVGRoZLJYy1ckeTuBLuw4cPw2KxoKurC4mJiV7T+yukoqBEUkA8tRBDQ0Oorq5GQ0MDTCYTCgoKsHv3bpnTkvfNpiYzMS/c4sc/ffo0Vq1ahQ8//BDTpk3z6Tp/iYagON/z6tWraGhoQF1dHb755hsUFRXhr3/9K+644w6Xa2OxhYkpotSR9QtPkaFibWw5EBhj1NzcTGazmaZNm0YrV64MeijS2/KzyTBiwhERiQsV/IUxINyK49q1a/jVr36F4uLigHYTCzdy7UkOv2pftWlvby9qa2vR0NCA9PR0FBQUYNmyZT6ZXJMFIgJxAEfqLavz+1ekkUv6sbr1E04oueUksAEqK58INxaO8FfuNK8vzlDxoH2cyyj39zYajbRt27aQhT27mfH0pd3JAc8YAxtqAccloGbQBEEQQEQQXnsQCbwRXOqdUkXguASpthAJYB7j6vuGs5aT78rrbZu8SNrIge67KJbx0KFDyM/PR2pqKj766CPs2bMH/f39WL9+PfR6fSiLetNBJKhaFqL0OcsBif0t0Q9WzW97Z3k21bR5DmoYSuQ1sK6ujubOnRvS8AmhwJuNLz/f3d1Na9asoeTkZMrOzqaGhgafZkDjoUWKNvZ4JbyT2+ujki83ERHs4WfF4O1KN5UWS6kyxrXoAuuHl52/MMY8bpMX6x/+0qVLtGPHDkpLS6O7776bKisrIxb2bNIgqIRyExjt3LhYWqwgECOIa87kMJkQKz0ABad0oRe0np4emjFjhuo2ebGKzWaTglMmJydTSUmJFBE10HcU65U4GshDH9tYDz2aa4/BLhCT+oNSaAdGxMG+5gyrH7rLbttw6iEQtmzZAvkyfg4MFILdtUnWw/3222+xe/duPPjgg5g7d65P10STL774Al1dXejt7UVKSgrmzp3rsdxyxJ3BYuE5YhmO4/D888+7fPPzbTuwof3f8O7/rLKPmHA8wAHV5UvwX/1G0DvblJM4RBx8fdehEGyx8BzHQRAEvP322/jJT36iKiBq4Qaiwb/+9S98+umn+Pjjj8FxHH72s5/hwQcfxK233iqlkX8IdyEjYqWCxjoT31w5YP1BxzE8svB/QSSA5xMkATfelQr0O9LlAlTuMEvkDaEweMweUDBCiJGhQr2aOxTYbDZpRXhycjKtWbOGuru7XdIp+iGyorusJNHwG8UCBWmTL+XwtCAItGNTtjQ4AnE/k51tvVIm/a1VqjsWhKJgckRhELfJ+/bbb0N2z0BQi39SXFxMSUlJZDab6c9//rPrRcz984lHNYEOLeKmUkROy/YGnUI7ECPqb1OuJs4pd90lICSFUhlhaWpqIoPBELJt8vzFuUwjIyP08ssvS4Fo5OEafMvve4+tD6PwjjbdbMgHNMQ4hBN7Hinf4focEJaUuY/PHUlOnTpFt99+e8hCI/iiIdXWf4qBaB555BGaMWOGFIjGl3v5urpFcV5T5AEjUC9l86C2AYdgyyK7YkmZ4906hgLtO8860rmJ7BMsah/e2zZ5obyXOzo7OxVmR6BB3u1OSjbqs1bZgxmJJp3DZGGOv4nEmBt8RPeRiXsU707chtsROMrxu7rVeZ2oI5yaPOaDJxsyVHzzzTeq2+RFguHhYdq6dSsZDAYpEI18Rbinlf2eKr14hd3EW6yYKZtIY9+tIpKzvjcD/vo0id9vCmQDLKKfBxeQj6DvPPnkk3jggQci5uV37do1NDU1Yd++fejt7YXZbEZHRwfuvPNOl7Ty4TnysMpFEATVsMjDQwnIziYAPJy9LTfkpuLIkjIcznS9r4Z7FN8E9nfKmA0877ocgUQvQqgsVqAwjyV7c4YKJSdOnEB9fT2am5uRlZWFtWvXYvHixT5f7+kdiJMwPM8r3C6tA0P4D/59DA0QjMaJ61t3lQF3l6JsTiZ4JDimwLRxbt+YUCqeBNsOAw+70nFJEWqhln94i8WCtrY2nDx50kXrOWtJd3hL99lnn2HXrl3Yt28fZs2ahcLCQmzfvh1JSUku5QkGMQ8Gu/+2XWMMYM6cTAj8OVz4fAAwpgJgYENWdLCFmMP9H3jjfwKwt46E78Hh34Iuy2TDvWBDOcMeWuvI1e4RaWtrUzhD+WrX+7KaZGxsTNqKQ6/XqwaiCTc2m43Ot+yglj5BsT23QH2Um1tGAvXSI9yj0h5D5DirET7Cto5Grl17e3vx9NNPo7GxEbNnz3Y57w5ysw5SPP7BBx/g6aefhl6vR2dnJ55//nl8/vnn+OMf/6hqT4cPe2tw/LMpWJSqfKWWjXWofOclDLa145YNS5HKJYCkXSC09Y/hJKwLhIkIX331FXJycrB9+3bcf//9Xq+Rmw1qFeDChQuora3FgQMHkJKSgt/+9reorq5WBKKhEJk4vsODuH4QDGCMYZYhBX0dn6HNUgZauApG8Khufx9ZC19zPFdw+/No+Eg4m4Xx8XHKyMhQ2drNO/JhtytXrpDFYqF58+aRwWCg5557zsXXO5Cx+VAOefZZq6i13751oDipUF7bar8P9Tt8IYSw7bKr4UpIhVsUMHG1yTPPPEMFBQUB59fc3EwFBQV02223ed3SLprT2aVLnbaJlvk+2H13xBUji51sbo1wErZwai+99BKOHj2K48eP+7Wau7e3F7t378b+/ftxzz33oKCgAE888YSUB/m5wtwZCrerKQkA8QDv+R7aUGD4CYvNffjwYdTW1uL06dM+Cfbly5fR1NQkBaIpLCxEV1eX6sJZ0f9bxB9hDZ9gy/Zi5BJAIIXY2hze74rwBIwAjgsspoaGb5BjW2HRW00Nd37Kaojb5J07p+4LLs+rsbGRzGYzJScnx0VMbI34wqPN7Ung1fDFGaqnp4fWrFlDOp2OsrKyaP/+/dLeMxoaocStcFdvyCHOvraHAJ6sA0Q1G8pVHYKIJrbJU3OGGh0dpaqqKikQTWVlpSIQjVtnf83JXyMIXHplNGgFz/M4hmxH8B0CkYC29RzehxFG+SWyrmh+fr6LM9ShQ4ewfPlypKam4h//+IcUiKa0tBQzZ86U0rmzg7U1hhpBIUo5owmXzNK6Y0SkDKTIBlqlcVsR0X5eu3attE1ed3e3tPGoPBCNpoU1Io3CLKnekEPILfdyidIssVgslJycTBUVFWQymchkMtH27du1QDQaUUcaCiQM4NgrR1Fe+zu5VlcxDSbMko6ODqxatQq33347RkZGcPDgQaSnp3trKTRzQyMiTEjq4BCOALhzzhwQJoJRtlnKwHMceC7B/nvIfu7cuXN48803cfDgQVy+fBk1NTVeBVvMM9Cgkhoa/qA6icOJMk/AwysrMXBHKu58YxD07itSmrlzTdi7d29AN9V2A9CIBBNSducc5ALovzAkiw1r/2/wwgDKF2e6vVRDIxZxhKQHOBixzVqNbasWoaZjSJHIerQSDz+0EIBmTmjELuTkJuXiOEWDVvDGRXatLZ7JLQd79xUnNwiZP4WGRgzy/18XJ/5KffxLAAAAAElFTkSuQmCC"
|
<image>如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()
Choices:
(A) 10°
(B) 20°
(C) 30°
(D) 50°
|
20°
| 10,882
| null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAABuCAYAAAA9IBFhAAARr0lEQVR4nO2df2wT15bHv9eJqJZaG1iyIggLlzgoRqEqEn0iKqla2gTKJo6diipFShteoSRVn9QfD4dtS5d/lzRhgarEaZ4q1FcoElRxSKqS2Gl5avoD7R+AGh70xQGbhBIWuhst9ClhnTn7hz1mbI9/z/hX7key4pk7c+9x5sw598y5cy8jIgInLtrMDB+c1gAQJHtNGCM7yqB5sIsAsDQLFwdEBMbkBBMAaCRy+7dVQr2a85D2PoK1XsCQi0Dk+3RZNVjFLHBBAMh3YUWFy4a7WSpDVIUDJDeKumrBlS4BCC78lXajxoDA1Wxtt8Na348/7vkTwIIvbDYYu2AZfBZ6j4WBMQbGCvwfBg1jYOa2tMjElS4Bxp1DKFi9yrcRuJoCSo0mnL7iypRYsSH/x3+599sJ1nrA4ZoLWOy/DXXBXF6WFnG40sULAcPOQfxLdXVIgQaGsnJk9b+SIcjkEVy4DCueLSUQrqK72wFDTTW2GFb6ywX5ehQii/9T2QUxF75sF/BszSOAv/8mMu76GfXGUv+WAAjZ0JuLzLjDidW11WCMwdnTBRhWAmRAS0sNAID51UK1GJM40RH8f1xfUX1bd3ixa5AAULfTFenUjCMIwZIMfbxbdLgEgIbCRVcVbuli4XdLzq+HUW54JKx4z9ubgXordj0ruqawUzNOaNQ6PNCBMy4BgiBgd10dSkv97jTMsKnkZtOr4zmIQCTQGNWHWATRwqHe6tsWrUmQUZlLm5hyiDJJLZ3gGgzITETU3R1uvX0HqicXI+IPh6PhctiwatNr8HV/g+98m2MMLdUPIr7vvvsOdrsdDz/8cFplZIyF9b+2bNmC9evXS/b4nsc5eqxwUg3276rGgy69gLa2f0V7e3t65OVKlyjyT+s9Hg/Wr1+P3377Da+88goWL14MQD4LIKckSnLkyBEYDAb88MMPYWVtZoaaA+R71uj/LW1mBtR9hfZXnwscp2pSRT0jmh+EdsKDyvx/Z2ZmaO3atWSz2ejEiROk1+tpamoq6XpTYXp6mhYuXEgLFy4kr9cb2P+3wSNBwUPoJ9B1SEP0U6iWMucL8qkjfxkAENDc3Iz169ejpaUFADA5OYna2i34y1++jehqo9WbCna7Hc888wxu3rwJp9OJzZs3AwBWbXoNRK9FOEvSbUhD9MPda0yiJb8FdHb+B+x2O5xOJx566KFAyVtvvYXR0VF89dVXKCxM3739/PPPw2w2Y3JyEhMTE7DZbACybAyC+sY0DwhzOb6odHh4mPR6PU1MTISVERE1NjZSU1OT6uKJ3L17l7RaLd2+fZt++uknKikpodAIOvBT5qL7UTW9LH9OFw8MECQPsYgYPB4Pmpt/j2PH/gydTuffT5BaxU8//RQTExN45513VBONJI7qzJkzqKysxJIlS7BmzRpotVqcO/efoT/Fd44mut1T0ypypYsTjeQy3L9/HxaLBXv3vosNG54M7A/tpy1YsAADAwPo7+/HRx99pIpc0jZPnToFi8US2GexWGC326OekxFUtKJ5S2NjI7W0tMR1rCAINDExQXq9nnp7eyMeI/2bDDMzM6TVaoOi5pGRETIajRHbyxRc6RKko6ODqqqqaGZmJqHzLl++TCUlJXT27FlV5BoYGKCqqqqgfV6vl0pKSujy5cuqtJks3L0mwPDwMD788EN8/vnnQZFqPBiNRpw8eRLbtm3DlStXFJft1KlT2Lp1a2B8HAAUFBSgrq4OfX19ireXEpnW+lzB7XaTTqejkZGRlOrp7e0lnU4XEvGmhtfrpeLiYvJ4PGFlogUMdamZdLFc6eJAmnFQApvNRhUVFTQ9PS1bnqhCOJ1OWrdunWzZ3bt3qaioKGaGJJ1w9xoHoRmHVGlpaYHJZILZbMbs7GxYeaLRZW9vLxoaGgLbJHmMotVqsXHjRvT39ycvsNJkWuuznWQDh3jYvn07bd26NeV6YgULR48epbq6upTbUQqudFFwOp20YsUKRftfIoIgkNfrpeeee47efPPNpOsZGRmhioqKqMfcvn2btFot3b17N+l2lIS71wh4PB5s374dx48fD2QcpFCKKWvGGDQaDU6ePIlvv/0W+/fvT6oeu90e5FrlKC4uxrp16zA4OKjqkKq4ybTWZyNKBw6xmJqaorKyMjpx4kTEYyIFF3q9ns6fPx+zjYMHD1JTU1PGHwwTcfcqS6yMQyoXTu5cQRDI5XJRSUkJOZ3OuOu6cOEClZWVxXWs2+2moqKioDF2mYK71xAOHDiAGzdu4NChQxGPSSV3KXcuYwwGgwH9/f1oamrChQsX4qpLzLVKoQjuU6/XY+XKlTh79myCEqtAprU+m3A6nTJDldLLwMAA6XQ6crvdMY+tqKigH3/8Me669+3bR6+//noq4ikCVzo/brebli9fnnLGIVUEQaCjR49SeXk53b59O+Jxly9fJp1OF7MuKefPnye9Xh+xPF1w9wpgdnYWFosF77//Pp544gnZY0jFqE9aN2MMzc3NeOmll2AymWQfHgPAF198AbPZHLXeUFe+du1aAMDFixdly9MFVzoEZxwiXQg1L5Bc3e+99x4ee+wxbN26FXNzc2Hlvb29eOGFFyJXGuEeqaurQ29vb7KiKkNG7GsW0dnZSU8++aRsxiHTjxe8Xi9ZLBZqbW317/ENPXe73VRcXCwTic5FeOn7AU6nk9auXauKvPEyr5UuGwKHWMzMzFBlZSXt27cvsO/gwYO0c+fOkCPjm03A6/VSUVFRXIGKWsw7pRMtgVJDldLB9PR/k9FopI8//piIiKqqqujMmTPRT5JYulCL3dTURAcPHlRazLiZd0pHlP6MQyJEcuniTdLT0xPkWpPpApw6dYqeeuqpVMRMiXn53mtjYyMWL16Mrq6uzL+kEgGSmY7i0qVLqKyshNlsxmeffRb5XER/m+vevXtYtmwZrl27huLiYmUEToB5F712dnbil19+waFDh6IqXKbvRTnZKioqYLfbsW3btsA+l8MGx3jIgSGyh/4WrVaLp59+Gl9++aVi8iZExmxsBsiFwCER/o/GyCSZh0TqaIOmB5NxwT09PWSxWFSWUJ68V7pcDBzixdZmJZPJRGNi5BqheyendFNTU1RUVESzs7MqSihP3rtXxlgg47B3715s2LAh0yIlRoTZMR09VqC6GkzqISP0FuRc9dKlS7FmzRo4HA5FxEyEvFI6itAPU/odh7QSpi8a0PgQHLQZu0qB03XG4NV6YiD9HzU0NMjOACB3rJLkjdJRhCWIOjs7cePGDRw+fDgDUqnDnm4n2nf5lhaoW/1gJlCCb86VaMoi/R/V1tZiYGBANs0WeqyipN2hp5F8CxyIQmZGZ5CZ8T2+zITYzzMajWnv5+aNpQtFfMfh2LFjsu845CKiWyXyrXQzNtiFVWWPBB8T5xoQsSbZUZO8VDpp4CAOVYp1EbIZgk/hNG9/jfZdzwT2X3OPQ+P/WeLvEx0iYyyuFfEsFkv6R52k1a6micbGRsnIjAfEenaVrXS1mQIu1eEiIoHIWu/bZpC62OSWECgpKaHR0VHF5I1F3qXBOjs7Zadj5USmtbUVK1aswLvvvhvYRxHXhk2dnHKvse6PVGZVms80NDSEuVhVB63muqUT78jr169jw4YNOHHiRO49AM4wc3NzWLRoEVwuF5YuXap6ezll6aSI94qYcTCbzbmZccgCCgoKUFtbm7YoNuuVLpIhlpr/l19+OXczDllCrOyEkuS8e+WBgzLcu3cPxcXFuHPnDrRaraptZb2lC0V6j/DAQTnEeezSMcYu55ROXMwtHzMOmUb6eqKaDjAn3evs7CwqKyvR2trK+3EKMjk5idWrV2N6ehoFBQWqtZNzlg7I8aFKWYxOp0N5ebnqY+yClO7vmA18shVxqFK0WZU4ySP3oFhpwtzr3zGLhcjOTvnw8DB27NiBkZER3o9TiUuXLqG6uho3b95UrY2cca88cFAX0fZUVFT4F7I7p1pbUZUu1N3Kud9I7jiaq47XjYvH/M/s/wa94xDp/FA5pfs4kQlN7lssFgwMDKjWXkz3Gm07nu+JlEWS44XmF7HkHxbBZrNFPF+qXNJt8Xu2dhmyDSLC999/j5aWFoyOjqrSRkLuVe7iqR14dHZ2Yupq7MBBlEsqH1e0xGGMobKyEr/++ivGx0Pf4laGmEoXakXkysWP0gwPD+Pw4cM845BmxIXsQnOxSj3SDShdqtZKaWt3/fr1wDoO/6T757DyHHymnVPIvTuh1Bi7QJ9O2geSI1rfS+680D5WPGViG2LG4ZU/vIodO3bEdX6sPl2038YJ5969e9DpdPj5559lx9ilMrI47jRYOjvjL774IhYt8gUOcqg5lJrzgIaGBtTW1mLnzp2y5cleh7gCiXQqnNrrOHCCiWZzIr2eKB1AmwxRLV00F6kGPOOQXdy5cwcrV67EzZs3FR1jF9XSqRmZhuLxeNDc3MwzDlnEkiVLAgvZKUlWpMEyvY4DRx7GGBoaGhTPTmTFeLpYgQMnc3g8Hjz++OOYmppSbIxdxi3dgQMHAtOxhpIF98O8R6/XQ6fTYWRkRLE6M6p0Ysbh+PHjshkHHqVmB2azWdE3xdLuXsVnOx6PB1VVVfzl6BzgwoULsFgscLvditSXdkuX89OxzkPEheziXYc2Fhlxr+LL0bt27cpE85wkkBsAkCxpV7pcWceBE0xDQwP6+voUqSutfTqecchdvF4viouLcfHiRej1+pTqUt3SiTrN33HIbQoLC2EymRRxsaorHQ8cchupI1Tq3QlF3WukoS4845AfiAvZTU5OoqioKOl6FLN0kRQuH9dxmK+IC9mlau0UUzo5hZPOqrRgwQKlmuJkELPZnPIMAKpFrzzjkF+InuzWrVsoLy/HrVu3kn5ZSpVAIt/WceA88GRLly7Fo48+CqfTmXRdqihdc3MzKisr0dLSEhBWnFdOhCth7iFes1RX2VHcvfLpWPOfK1euYOPGjZiYmEBhYWHC5ydk6fg6DhwAMBqNWLRoEc6dOyerE7H0JCGlk4tQxQbEl6N5xmF+ILpYOZ2INQ4y6T4dX8dh/iBnuVLJTsTs08XzQm1jYyMWL17MMw7zAKk+LFu2DN988w2MRmNCdcS0dLEUTjpUiZP/SPXBbDajr68v4ScRCbtXvo4DR0RcZSfRd1mSemRCRLh+/TrPOMxzkl3ILsjSxat/9+/fh8XyPA8c5jnJLmQXpHSMUQzFEwCI6zj8jq/jwElqITsZ9ypAqouh0WtHRwf6+vp4xoEDQLqQ3X9Bq/1H36LvQV08AUQsSIcY0RyJSmatZ+joD67U5hhDS3UZQMDw18Oo2bwJO37/CpYvX676D+JkP0SETz75BB0dHWhsbAwvh1QHfQZNI7Vq7acJe+p9ikZEGBvqQmvNKjjGfWeOjo7i397dyxWOE0ADhh07doRMJebrhjl6rNAwn5Vj5jYQrqKtzYbCYE104a/9ddjZVwoAMJSWBlnKN954AwCfCZMTGSICrjqhWbUZ9dbuQIxA40PQaFbBahtEoVR1xh1OaHabYCAGMGDP25th2m1DjSG4YgaucJxgROPFmBvmss2ob+uG/d9fDZQzwyZ0WU1gpaUIGpdyzT2Ovg86oPnAF5UOuQjtIQrnqyG4IQ6HwWflnH86gtMwYWz/Tp9x8isJEcFQVg56xACQBGs9aMjl+36m548EPNgORRC8JMjtp7mgv7x8/pQLNEb1AFm7B/3b8gSiCBofwgewosaniNi0sxX1ABzDQ/KazQrCrBwRgfmrZDIZNl6ef+UkfeI2fhX9jMFQWuo/JhyCAI0YaTi/dsBaW+07mDFg/CpOA4EKpA1LETAX+M4YC2uJl+d3uTSgJMTOajHpIxPHQAdqnt3kP9mF+lWbAZjwbHWw0oVGrRoUPGhRBl6e3+UiBIAZSmFmwNi1q8HHk8+Tdjtdvu2xoS7ynxP8qbf6PXAE3y5E8tic+YQgeIO2hz7eTQDI5hgL7Bsb6iKYdwe2I44yoUSfxcUKZXl5/paHlI07bCjb9Fpgu76tG/b9u3wRLgT8P8Juz63YyKeYAAAAAElFTkSuQmCC"
|
<image>如图,将△ABC沿DE翻折,DE∥BC,若\frac{AD}{BD}=\frac{1}{3},BC=8,则DE的长为()
Choices:
(A) 2
(B) 2.4
(C) 3
(D) 4
|
4
| 10,883
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAI4AAABhCAYAAAAA75lfAAAdqUlEQVR4nO19e1RU1/X/59wBBkElakjNq76Qh0l/aa2kLlSQARQfID6SWoyJNmJlEI0m+mvSxiTLfmP6rYmPRkGsbZIm2iZq6ghBRUtiu+JqoiExyhtj6U8NQijKe+beu39/3Ll37p0XrxlA8bMWi7nndfc5Z9999tnnnH0YERHuAABARGCMKc/FudtQNX4NksJ0SpgoiuA4DkQCGNM5K2ZAgOtrAvoLRGiZRkQpMpPXA5DCRFEEAHCc1GSM6TCQv7g7jGMFZ2UQEMCDsH31TiB2OkLCZIaRosUBzS423GEcDUSAAfk7jaDEmWCFBEZyE3ES05BNKtEAZqIBzzgEi+qJA8pMyKdZWD+e4ZQhAuGMU8UycExUntnA5Zs7jMPIV/UkImPncexemwwAiI0IswYTiGT5winDlVonGmgY8IwDVd8f3ZGJ3bt3gzEGLmKeLYJjYIwpSTkMXIaRcYdxrKDSIzhOM0FW6VJs+h3CQ8b2NVn9Fj59TUB/AJWZwK0+BjqZpYRVXqoCENp3RPV30ADH1oxoAjgCQKZSgYiI0uNBAAgMZDC+7jKvKIq9RWa/AyMa2JZjIgIYA4MIgFM934E7DHgdx6b0csozrN+Su29KEF1GDQgMeIkjgyBNsP7wx32orLiMGQmxMBgMmrg7sOEO40BaRuDA8O2332L06NEYPnw4fHx8UF1drU1IAjCAFzbVuMM4BBBsK93+/v5KVFtbm8OKuRoiAdwAFUV3GEeFF154ASNHjgTP8zh79ixeeeUVjB8/Xoq8M15pcMeOY8WBAwdQW1uLV199FQDQ3t6OpKQkHD16FHq9/g7T2GHAzKqIyOksSRRFvPvuuygsLMTevXuVNHq9Hjt37kR8fHxvk3pLYMAPVW+99Ra+/vprvP766w5xRISamhrMmDED58+f7wPq+jF6197Yd3Bm5b1+/TrNmjWLBEFwiFOH1dbWksFg8Cp9txoGhMQhJzOj2tpazJgxA0VFRZ0qo6KiAmvWrEF+fr43SLzlMCB0HMaYMrUGgM8++wxLlizB2bNnO13G+PHj8eGHHyIxMdFbZN5SGBASxx7x8fE4ceIEOI5TnVpwY6+xpgGAw4cP49ixY8jJyelNkvsdBoTEUWPatGnYt2+fwgi2Uwuu59tyGgBYsGABYmNjkZaW5l1C+zkGFOMkJiZi9+7dePDBB5XjLt3B4sWLERMTg4yMDIdyelLurYTbmnHUo/DixYuxfft2PPzww+A4TiNFOgM1QzDG8MQTTyAqKgrJycmadF0t91bFba3jyHpLcnIyli5discee0yJU+stPcE//vEPfPzxx3jxxRd7XNathNvi83A1XDDGkJaWhtTUVA3TEFGnmaajoWfatGm4fPkycnNzu0j1rY3bWuIsXboUS5cuxYwZMzTh7mZQ3YXRaMSMGTOQkpLi0XL7K247xiHrmtSuXbsAAJmZmb327kWLFsFoNCobwG5n3Har44wx5OTkwGKxwGg0KuGylFHrNj2RPOq88u+DBw9i4cKF4HneQcrdbrgtdBw1Dhw4gOLiYmRkZGg2ZcmdLBv71GHdgTqvmoEOHTqEP//5z8jLy+t22bcEem1VzAVEUSRR5J3EOC48doQrV65QdHR0z4nyAGbPnk1XrlxxCHe2oEpuTtmoF2ddHceRw3vzsE6vMA4vCk4rLTeiK+YReefM46zxr1y5QgkJCT2ktHtwVrfm5mZKSEigyspKt+evutPZTttSXZLoJMzD6BXGKT76O+nQW/xKIpIrLjhJA1q148Mul19TU0ORkZH95oBcW1sbEUkMPnXqVCopKVHiRFF0wvjWZ2fkOwlT19OROQSHNN5Arw1VEmPEUjFZiEjbHgKVkIGBXs+9qIRVVl5yW57c+O3t7RQZGelxersDp8MQEcXFxVFlZSURddyh6tiKE1nSidLkDZp4sfK4FG4XpynndmGco9u3ksFgoIuiWQmTh6f0eBDiVlkDiYiETsvwH/3oR9Ta2uqy03oL6mFX/V9GTEwM8XzHupxI2qqLVEHJAJ2otEWIokhi5XFK2rjb5XAkEO9Cd/QMvD6rIqtdJb/8Esbr/o6qch2IBACSH72jO9PBQo1IT5olZWAAgQOYe7dpoigiKioKubm58Pf377M1IlEUlSm+KIrKDMt+xrZ//34X9h0t3Qx2++KtM8CTp04AzGYRr6yqQubKdOcuV0QCB51D2Z6E11ubMQZiZRg7PhEh42NQWVVmPcMkQig3IZfNxFhWjJCQEABWJ44dlCmKIubNmweTyYT77rsPgMSgcif2JtQLpu6Y97777sO7776LuLg4NDY2dlguWRmm6uQprK6sQmn6m6hUdVfhZR0SxsH5p8U5Z15Polc+05K8XIQnzkFo2EOoqKgAAIioQJwxH7syw5G3C5gzJ8JKkK2yHJhTRli3bh0yMzNx9913K2GMsW6tevcmHnzwQbz33ntIS0tDW1sbAMeOl+34jDEQgL9/wyFh3FjMeg44VXDJmqcSRGOkdG7f6L2PyKOtTHa/5U4/WemLxFDO6hFCwvbVO5B18veoyM0FVs9DqF0LysOUPSNs3LgRjz766C1rmR05ciTWr1+PZcuWAQBs34X0Q9A4FqwEIDl3MiTMxkenTgAAqgpOAuPGuHWKIOEWGKqIpCFGrgyD1OkClUAUx0LHASFjx6G08pKk18zORAR88NGxPMxNjLdZXxXCmKILyVi2bBkefvhhLFmyxFNk9wkmTZqEzMxMJCYmQqf0gPRDRyopUXUJNHY0ACA0fhXCStJRUAWcOnkJ8XFj+9YHoae1bXtNvvjob+nDEusUvPQIAaDV201EZJ2GYzqVkNby6Wym8Nprr1F2drYmrLW11cPU9x4EQaDCwkJKS/uFyzQFe7KpQjXrOpHzHG3YU0B79uzpDRLdoseMo2YUQdBaiDMMIGa1N5hKBRJLj5AhczsRER3ZudJmi0AsFVO7Q9nyFLewsJCefvrpnpLaZ1CbCuwNgPv376eMjAyn+ewZRLbfZBdUyCV7nNbOoseMYy8d1M9a6SMxlSvzjCBIUsleiphMJpo3b55d2r612XQV9jYd9TMvCvTe/rcpY/UaJawga4PyUW3Yc1yTd0NSElVQ38OD+3FkLzN2oVbbBgNzMwWQ3KjZP+fk5ODChQvYuXOnY3m3iY9h2Qa0d+9eFBUVITU1FVOmTJF0Rq7/Osb1+EYuUrYsEOx1b1HkATifMosg3GhsxF2Dh+DnP/85amq/haXdjIKCU54kr9+CIGLxT38Gk8mE4XcNwweHDiIqKkoV378cZvR4I5cIAiNJQsiSQGIead8LMZtthuNcv44DQ1DgYFy4cAEHDhwAAERERPSUvH4L++uLGDh89NFHGDIkEHUN9ai59q0mfX9iGsAD03EOTKq4k41NjLEOvZCrDXwcx6GtrQ1Dhw4FAHz33XcIDg7Gpk2bNHnUQrK7lmIPC1q373FGo/r6os8//xwjR45ETEwMwsMnYNLEH+OLLzt3pr3P0Ee6FRE5V3IXLlxI9fX1StwXX3xBM2fOpFGjRpHRaPTo+725gux8+4Qjli1bRiEhIZSTk6MJf/7558lkMnmLvB6jz3cAymhrayODweB01xwR0b/+9S9asGAB6fV6Sk1NpatXr/YyhZ1HR0wjCALl5eWRXq8ng8FALS0tTpl44cKF9MEHHzjkVf/vK2gYx9JmVv48ic582bGxsfTNN990mK+hoYGefPJJ0uv1lJGRQZcvX/YUmb2Cy5cvU2JiIj3wwAN0+vTpDtMvX76c9u/frwnrDxvWHCSOp5mmM/jpT39KtbW1mrCOvqibN2/SihUrKCgoiAwGA505c0aJ6w8NS+RIx6ZNm2jYsGH03HPPKWGdkRwLFy50aJ++htcZp6OGycjIoD/+8Y89esdvf/tbGjVqFEVFRdHx48c7ztBLkPZSi3TmzBmaNGkSTZgwgc6fP9/lcgRBoKioKGUXoRzWl3DLOPZDl7OhzNXQ5m7Yk8PTfr6C/vSnPxGRcynhrAxBEFyW/dr/bKGQkBAaN3osnTxe4FCf3oYgCLRs2TIKCgqinTt3uk3bGSmZkpKiME+/ZpyOnjvz21mcIAj03HPP0QcffOCyY7tatrm1XWGmw4cP0/fuvod+MOFhevPNN/uEeY4cOUJ6vZ4WLFjQ4bbSrmDixIn9Qq/rEuM4i7O0mZVOkxvIWTq5sSxtZnr77bfpl7/8pdO0rt7VEX2iKDrQ+tFHH9EPf/hDChkzjrKyspyWZ4+e6kc1tdcpISGBhg0bRufPX/DKEZV58+b1OfN0SsdRD1UdpXUW3t7Spvz+26EP6ZlnniEiyZunpxjH/re51bbafu6zsxQTE0NBQUFkNBqpurpaU4ZAokMHd4eBNm3aRMHBwfT888+Twyb0bjJka2urQ97GxkZKSUnpVnmegsI4rpjDXVxXh5O9e/fSk0uWuiyjJ2Xb/1YzjhxeXl6u6Bzr1q3TnHfqiWQ4d+4cxcYZKDExkQr2vaKsbDOAkjfuUXW85/SSoqIip8eCekv30TCOO13AXQfbK6/qcDnu0qVLNHv2bKdxrt7RFcXblSJv/1sQBGpoaKDHH3+cvv/979PkyZPp7x8Xuqx3R1i/fj0FBQXRb37zG8ramERAElUoZ8ekoy1zNmZ3UEr3UF1d3WdHnjttOe6Jgnnt2jV67LHHvLZjr7NfmbN0/7P5N5ItaHosXbhwwSHe1RBz+vRpCg4eQVFRUdTW1iYxjd3hOJ7nrYfqkqiSenbGyZ52+bm6upqioqLc0uoNdIpxusI09hW8cuUKTZ48ma5fv95h2r6AQJKt5Xfb3iC9Xk/33nsvHThwQIpzQt/ly5dp2bJlpNfr6dSpU0RkO3F5rNwxfUXBLqsUclbXztW/o9lYdXU1paamKkeP5f/ehFvG8cQSxNSpU7udt6voCiPan7+Wn44dO0YhISH00EMPkclkora2Nioq+oouXrxIW7dupdDQEEpNXawpa0OypMtoGMFaYMHeDVrG6aZQ6EialJWVUWxsbJfy9AReW+Rsbm6m6OhoKioqcojrTUnT3cbLzs6myMhI0uv1yt/EiROpsLBQU66sx0j7gB3rtWGezFSO9Hi6X48fP06LFy/uOKEH0CHjdGZ7gH3nNDQ00MKFC+nLL78kImldyR72G9v7I65cuULh4eGk1+tpxIgRNHXqVIfVe3kD+YlKx/zSEMY5jfMW9u/fT2vW2PYvy23s6eGrQ8bpjnSYO3eug62kPzAJz/OdclQkCAJt2bKF9Ho9TZgwgUJDQykiIoImT56sbIU4d+6ctYxymsdAWSfKte+ySiK1tHGAl5okOzub0tPTiUiy+XgDHt9zHBMTgxdffFFzQRg58bXnLKyvoPYL+Nlnn+HZZ59FWVkZ5syZg9DQUAQEBKCmpga+vr4ICAjA/v37ce3aNYSFhWHz5s0ozX8D6aXhoCP/KxVYeQJs/Ewkb9yDv72W5rqeHthI7Mpf84EDB3Do0CEcPHhQ+0oPtbtHGWflypVISUnB7NmzlTBPOaLuDWzcuBE5OTkICQlBdHQ0xowZg6amJrS2tiI4OBjt7e24efMmhg0bhqqqKvz73/9GYWEhRowYgUn3VuPwv+SSOByv4DFjnOpkhxdvflV7y1C39eHDh1FUVITNmzd7/J0eY5ynnnoKSUlJWLRokSbcvjL9SdLIyMvLw4YNG9DQ0ICZM2ciLCzMLbMTESwWCwICAlBXV4dPPvkHzp//Eg/e/wA2/N+NWL58uZKur+u6fv16TJgwAStWrPBoud1iHEEQFO8QALBv3z4MGzYMCxYscEgrN56agfpaCsk0tba2IjU1Ffn5+UhOTkZkZCTq6+sxevRo3LhxQ5NHPr2h/u/v7w9fP3/wlnbU1NTg66+/RlFREWpqarF58yvIzMzUeD7tK6SlpSEmJgZPPPEEAKn/LBZLj2jrFuOoO76goADZ2dk4dOiQyzT9Efv27cOvfvUrBAQEYOnSpfDz80N7ezu+973voampSXNSw1kT6XQ63LhxA83NzRgyZIjicqWmpgZXr36LQ4c+gJ+fP55+ejleeuklJ50kn3zonTZKS0tDXFwcFi9e7JHyejRU5eXl4f3338fbb7/tNp0rJuoNUW7/jtraWsyfPx9fffUVUlJSEBkZifb2dgiCAJ1OB0EQNL6QXZXn6+sLHx8fRZqazWbwPK9IYovFgqtXryI3Nxf19fVYsWIFnn32WTzwwANera87rFmzBhMnTlRcrPQETBRFctd5IggQbcdR5YY7ffo0/vCHP+Cdd97pMRFdQWdutHOF9evXY/fu3YiOjsbkyZMREBCgHCLU6XRobm4GAIwYMQJNTU1uy5IlEc/zCtP4+PggICAAAQEBAKRzYXq9HuXl5TCZTNDpdFi3bh3S0tJw991395oOpP5wly9fjuXLlyM6OtplGndhgJUHOpI4Iggcac99l5aWwmg04uTJk33qe6+z7/70009hNBpRU1ODOXPmYMyYMRgxYgRu3LiB9vZ26PV6+Pr6AgDMZjNaW1sxaNAgt2XqdDpFush5eZ5HS0sLWltbERgYCH9/fzQ1NUGv1yMoKAjnz59Hbm6uciV1ZmYmEhISetYQXYDcZosWLcILL7yAiRMnOk0nS193UBjHmfJq/0WIoojPP/8cL7/8MvLz8/vFrEGGK1qefvppvPfee4iPj0d0dDSam5sRHByMa9euQafTYcSIERBFEd999x10Oh2CgoIgCIIy7KjLVv/39/eHKIqwWCzgeR48z8PX1xe+vr7Q6/Vob28Hz/MIDAyE2WxGU1MTBg8eDH9/f9TV1SE3Nxf/+c9/8IMf/ABbtmzBpEmTOvwQPKU3iqKIuXPn4o033kBoaGiXy7RYLM4ZR4baPiWKItrb2zF37lycOtX/HQG89dZbePXVV8HzPObPn4+RI0dCFEUMGjQI9fX1CAwMhF6vR2trKywWCwIDA+Hj44Pm5uZOfXFqRuU4DjqdDqIogud5Zdap0+lgNpsBQJqB+frCbDYr5Tc2NuKf//wnzp49i1GjRuHXv/41fvazn3m9bWRMmTIF77zzDsaNG+e2fvYQBMG5juMsk8ViwYIFC/D+++93KMa9gc7e+lJXV4f58+ejrKwMU6ZMwU9+8hMMGjQILS0tAKQhRpYO7spxNZvqDOTrqmXmUSvbch10Oh1u3ryp6EMnT57EmTNnEBERAaPR6BEF1h3I6kbYYDDgL3/5C0aOHNml/B3qOEQCGm/exFNPPYUXfvUiIiMje0RwT9CRqM7KysJLL72Ee++9F3FxcQgODoZer4fZbFaGF51OpwwjZL0pz8OrLgCgKN1y+aIoam6taWtrU3Qjxhj8/PzQ2NiIL774AufOnUN9fT22bNmCtWvXelSPdPaxTJs2DZ988kmnJh2yTshEInJwhgQCI6lCDbXfYnVmJnbtysKQYXe5dVXSV6irq8OPf/xjNDQ04PHHH8cjjzyi6B9msxmiKMLHxwe+vr6wWCxoaWlBYGCggw7jScgSx8fHR8OYaibw8fFRjHF+fn4ICAiA2WzGf//7X3zzzTf46quv0NzcjCVLluDll192VCU8RHddXR1SU1Nx6NAhDBkyxCFe/R6LxQJfX18XEkckfPHZ53jwvvvx/AsbkL5+LSb+aBKIcR26LektbNu2DZ9++imuXr2Kixcv4tFHH8WcOXNgNptRX18PvV4PjuPg5+cHPz8/ZZlA1i86MvB1F2o7j6wniaIIQRA0Umfw4MG4ceMGzGYz/P39QURobm5GYGAg7rnnHlRXV8NiseDatWs4ffo0GhoaEBUVhbvuugvFxcU4d+5ct+hzJbVra2sRFhYGIsK+ffucrgLIEARByzgEACSgrq4ek3/4f3D9uzpMCAvHk2lpqK+rwT33fh+NzU1gjNDa2qxtMEHy9cI4ASRKDebMK1dXIAiSu1pZT5AV9JaWNmRl7QLP8xg0aBD8/f0RGBiIlpYWDB8+HP7+/mhpaYEgCEpHyjMfvV6PQYMGKTYbb0E2JPI8D4vFovzJyrO6XoBN55Djhg8fjvr6eoXJedECiBKzDx06FDcbm6VG9wCCg4NRW1uLIUGD0XjjJoYOHYrr1+sc0hEJIJKGXx/1FBMQwZgOf/3rXyEyYPSosWhubcf/u/ofDB06FNe+vQ4fHQPnQ46zDiY5WAIDyOpyn7GeDWuyVVan00nvEwntZh6M4yAIAoYOHQpfX18cPHgQ999/P2pqahAcHIzq6mrcc89INDfehEXgodPpJPGqki7eNiOo75cQBEEZMnmeByANZUOGDIGfnx+amprA8zwCAgIQGBgIAGhoaEBbWxv8/PXw85Fo//N772BPVo6Uv9WTjC95VJsaNQ0Xii9ix47fO03FmA48b9FOx9Worf0Oj6ckI3jEMKxevRrTZiRaByh7J4/ehZqZ7feuFBQUoLKyEitXroBO52ulzpn7Su/Cleh3Z4l1pZs4C7ev05dffolHHnnEY4xv/07ZtZx9vNz8LS0tksXdnnE0thsI1ltI+g42L6PaYU9pUAJEcpyqS/+1efqTwbLzsH2s6qHCW3BgHFjA4KuR1BaLBZy923smpQYAO6YRJRf5ZPO7541prD04jrN2tt31PPKrmXamojCGE6XXG0wjT7W9CeWaJuhU1n3eQ2WTtbvlK42kPj+6M10yJzA/sPh0gJUhI+N15Y4OTs1dxgQGxln/rHaIN3JLrYRC0WE4jpMkk6YjbI0nK3qeYix1OcYEq31EZ/NyypgBJeCtVNjuklDXzb4cT0G9L8kZ7Jmq60zG2eqham5PmUUYY9YraziIEEBlJjDGsL0y3KawvzkbHIsAhY4HA6DX6x2dR6bH2644lO/JNJU6bliXvaZ7exO6XL5AvOIcID0edKTEdjJya8Z0AptOxdTucv93f9gsr0Zn6RFFXrpBEE7+4lZ6lCZBLCYDA8Wu3mZ9uS1ua8Z0ev1oqfIMEiXiBBKljFwMFZNFei75m1PGUR/Qt/l+4R0bw4N9Jb9ToBKabljlULYxDjRdrnA/QU+ZVZ0/PV7bDyW5/2vrYA/BtN2ouTeVyNa/ph2rNO/3kRRLHRiAkrw8kDEFEVa/2cbMFMRlbENSmPbaQE41RKn99TrKQY9IU+k91sIqjuaCTQjTlE0kYEzEdOwuKdHOQvrYHXlndCoRAhgBPBh8mZ0ex+S5bClKkI7dYRxElOL3O75B5tokzKko8widoiiCceXYtm43Vu44ovQ/AMWJd9KaLE0eTj0+V16qQuGudYruMOtNwsk3nwHBpqRKMxbPGJ46C/X7co/nYW7iDM2laowxhI0PB8BZ77myKqy3wASKgw6M6RSmIVhUupgIkIDi3KMIT0oEAOTt3AYhZBQ4hOPZZ+b1+P1kXa8Ty8tRSEDY2FCHNIzpHPRDTiaQiJB/NBumEsk0fnT7KiSHMxwtE233/akK6k3IdhwLSmDaRZg1O1xlNZWmq1VlpYiNCLOmZ15bvPQ2GHy1korpcKmqCtlr54ExhnlrczA+JNxz75PfZb1nQ74wVgappuHWhAAUxuGA8qPIolWYGyZJltlrM2FgQP6xXBezp965NFUmnEDwKasAtzoFEUw10wAHlJmwLutjzE20XrdoVR9vPZuN/cxP6p5juXtgKpWWT1bFTUdImOfaXrFqhE+AgYkoLy+X1tTkcMZAZSa8kVcsX3YJIoCTk+Qez8eq5FmAVcxzZZX4O0HZ5COns1WM65UbdxljUNMYETLW4Vpp4+p5QHw61s+ZYM2EW2KYkqFuW5teY61jmQlZtApJYRIThSbN1uggPQWDbEwNxdptv8Ce9fOxPb9Uab6S3K3gVh/DutkRqjtVyTYdV09xLVRCBgYHDdse3nCM6AqilSa1Zi9f1cgMq5SL0m5FuGtH045VlL79iDTLVZ3jX2X8BXnKNZza/07x0d8Rk0zuBPXU3A6QbTUAiDFmyxS3ykaoSB4jsjuQaWTKIMQpz7LNyd4l7K0PqT6r4uw+FlGyY6VvP+KRt7huLq2ZxZ65HbaOqteniEha9bYJKM0I0BeH7uzXUlzFkZO1qv4Mabiw0VuctxUPzd0ATeOrYCoVlOHLE5DbTtu+rhe1mSjyJGcAbFOvziqW0vSRBxP1EMDgo7uFlIs76Db+P6TrflqompYRAAAAAElFTkSuQmCC"
|
<image>如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()
Choices:
(A) 1cm2
(B) 1.5cm2
(C) 2cm2
(D) 3cm2
|
1.5cm2
| 10,884
| null |
1.5cm2
|
"iVBORw0KGgoAAAANSUhEUgAAAL0AAABGCAYAAACZgpXqAAASl0lEQVR4nO1df0xU157/3KEVm7iP/jFdB0ODwvCk0o10sQlGUrp5oOyzMPxBdtaUbHFX4fXxmtLKoO260WRpisp2bYIrP2qkkeSR99iHVlphZmixSyNVUtwWim+ZUSwm5ckfUiEVk+F+9o+ZO9x75wfDj/nBwCcZZu65597zved8zvd+zznf80UgSaxykIQgCF7P2az/hTtbfovc5BALtSwQAWiWfBd/9bMSsfQaiQLIG1SuAQgbKnPLvV8kRo6uqDIIEATnR6PRuH8LQgwarDbvFy1AfKl+5OUoPoaqZXiK0GGN9CoIAEQXIxoPN0LMz8eWZBGAiieayNF8Jy8RlQagy06IogiSIG3IF17B3+UkufMp5A9QfHLW/fvEpVmYCgCzja4yiBHLGRSk6r1cuLhnCQXWSA94NJAGArqaTEBODtAhPymGVKxAQdhwiybsdvG7sbERRDJSK5/DL2VNLOd5oFat0qy5jWGYkJvsLLOhsQvJObvx66QtnveLHJ3ggTXSA84GkrUZ7WZ0MxelScDl/Oegd1eTJiI1mN1ixXN7cwA4Zf/U7kw/efKkz2sCtdHJuXzycqxNDUBSMgToUVqWCwGCqmoiU0EAa6Sfg4wDhxusOFG6GwAUr25BlS9ScGfUjtqyPU6bXr8HW5M3u8UUVVRUauT5iSnvHHdG7TjlKmd3aS2Stjjrxnu9RC61IleyEMFNAgIkYGky4dSpU9C4CARBRYyI0/QiLJ/WostlZ5sbK5GcNGfHa1RsXMosjKWj1m3PVxbIxjokwIjUB16x6knvJIHoJPdtMyzMBTnrHKSZz2KrjEDOCxBRxKfdilM0ISfJSbwtm5OxZXOg86sLaH57N07BhBzXrVP2vgI9NCC8dKQIqh9vWPWkl0C7FZq3rThZuhtStYzeve09sxD4QHD5ISpIZf3cAtPeHCfxBECf+xvs1i+fzpWe0/J5p7McV3ppaSkA4HCVa7pSXqT67RhUeJY1b9twDaw35RNOKtFsc6aZCkDBlVZQ1UAxjPJ5K1tKMxXMyewv/1IhL0e6f6UBNDV0zZUriorvUEBekq9y1elrpCdJzvo9G07CS1DLMGI+6+6oUmcNhpzqctQfdYcLF0RRVCgCT1nzOeJqZ4Fcc0NYLIjQDN5CVU4gMkSCLEp4d7WoMgjI/YCuNQWg4XABXj8JjPAi1kivgH9fFbp8UNzfiAAC+BE5uPJJtnR4h4X04hdE2FBgaMTlS/J1ChGVhhiMpDasDWQBuKcr52tAd+W6vkNBeOc8u3q2XQaFyMpB3bLIJ1+0k+lHQqMuPCyQ2kQum91iRcxzKaqcGqRszccnt2x4IoTyRS4EEYKsAa9evYovuj+PKP8aCQIBel0Ics2ZC3P5pLdScKEBORt2L8wnn4zF7373W8TF/RWs1s/w97kfeORJStkK/DkSumqY4aTEXDUcP34cxcXFgMaTMITGOaXjTg999akJf+3aV+jquuI+Fii6PUCXg/BSeT///DOGh4e95vEkfOjq5dy5czh37hxefvklxMXFgbiNz04Rv8pJ8shrG7nlXGEP6RA7jJhvGm1iYoLZ2dnMy8vj/fv3QzrtthRYrVZmZ2cH5d4TExNsampiXl4eATAvL48zMzNBKUuOQOr+wYMHLCoqYlZWFu/fv+9KnaVo62JBVYPqhqRo6yIA1ltGVt+UpbcK7e3tpU6nY01NTRgkWhrGx8cZFxe3bPfzRvSmpiZOTEwsWxneEAjRpTyDg4PU6/WsrKykw+FQ5OlqOKRYO5BgKgCRX0lyFc/TSxVYXV1NnU7H3t7eMEu0eOh0Oo6NjS36+snJSZ4/f56FhYUhJfpi0NbWRp1Ox7a2NleKfI1lhAXqtQO72TlPX2ByJ61a0k9MTDAnJ4e5ubkR2bgLQU5ODjs6OgLKK3X2yclJNjc3u4menZ3N+vp6jo+PR6Rp53A4WF5eztTUVA4ODnqc97eIVm8ZobxzrErS9/b2MiEhgdXV1eEWZVlQWVkZ0LM8fPjQTXRBENxE//HHH0Mg5eIxMTHBrKwsFhUVcWpqyp2+GLcHURRXH+lramqo0+nY09MTblGWDS0tLTQajV4bf2pqihcuXGBRURFjYmK4a9cut0ZfCMKl/Xt7e6nVagMebwUi5aoh/eTkJPPy8pidnb3izRk1BgYGmJqa6j6enp5mS0uLm+iZmZmsq6tbkt0fDtTV1c0/3pqH5aKXLKuC9H19fUxISODRo0fDLUpQ4HA4GBsb69b4/oi+kFmScGFqaopGo5EZGRlB6ahRT/ra2lrqdDpardZwi7JI+PYAnZmZYWtrK//hH40EwK1bt/L06dP84d7K0uhy2Gw2pqWlsby8PGhrAlFL+snJSRoMBmZlZS3Yfo1kSEQ3Go2MjY1leno6//PD0ywsLGRTU1O4xVsS2tvbqdPp2NzcHNRyotL3pr+/H0VFRdi3bx+qq6sRExMTbpEU4AIjhs3OzuLixT/h4sVPcPHiRej1SSgp+WecOHECiYmJAADRMYuhIZebAOHavRSZXibq5yeJd999F21tbbh8+TJ27NgRdAGiCh9++CHj4+PZ2dkZblEWBcmedjgcbGtrY3FxMTds+AXT0tL4/vvv02bzvmsjmO4IwYS0XpKXl8cHDx6EpMwVRXp/A6zJyUm3L8ZKmKXw9Szt7e0uom9gWloaa2pO+iS6/F7L7Y4QCly/fj0sEwwrivS+cOPGDZ++GN4Q7tkJNdrb27l//37GxcUxNTWV77333rxEd0Ocm5JbqjtCKNHU1ESdTheWN/KKJ31dXR3j4+PZ0dERcWT2h/b2dpaUlLiJfuzYMQ4PD3vPPOt8rrMmg8f+1Poqk3vv569y59wRIrUuZmZmWFJSwvT09MA79jIjMkc6AWB6ehr79u3D+fPncf36dezduzfsGxnmg9lsxsGDB/H000/jnXfeQWJiIq5du4bh4WEcP34cqampXq/jHQsEIQZXhF87A6c6V9JheVvAZ9C7ww6+sD0dN2/eBLC0oE7Bwt27d7Fr1y4AQF9fH5KTwxT/PCxdbYkYGBigXq9nRUUFHQ5HRGo1SabOzk4eOHCAWq2WKSkpPHLkiG+N7u0+Ls/BynpPM0C0XVG40V64cIFGo3HpwgcBnZ2d1Gq1rKurC7coK8+8kWzB9vZ2kkt/jQejw1itVjfR9Xo9jxw54uEZGGi5Z6vyFW6xs/TtZKV2R4gU1NTUMCEhgTdu3Ai3KCRXEOmnpqZYXFzMjIyMsNmC/tDT08OysjLqdDomJiZ6Jfq8ENWHTi2v3hThq7s4HA6uW7cuJLubAoHk75SVlRVR/k4rwqYfGhrCiy++iLi4OHz11Vc+bUGGKJqJVM7Vq1fx+uuvY9OmTXjttdfw1FNP4cqVKxgdHcX777+PtLS0hcmmNsPtt/EJoAjICogwN5kU/wnE4grNHRMTg23btuG7774LezjJoaEh7NixA+np6ejp6YFWqw2zRDKEudMp4O2V3dzcrNopE1709fUpNHpFRQUHBgaCUpZ8X6caI+azCrNHwquvvhp2d4Tm5mZu3LgxYtpMjYhyQ5DPOExPT+ONN97AzZs30dvbG76RPoCvv/4aFy5cwKVLlwAABoMBV65cQXp6OoBlfMOoozMlJ8EgAPbbtwHoFXnujNph2ps7d6lraf+FF17A0NDQ8sizQMzOzuLNN99ET08Puru7FW+6iIK8BzwS5z7hxNDQENPS0lhWVsaZmRnFGyBUMzV9fX0sLy9nQkICExISWF5ezr6+voCvXy45pW1wcm0viiIr873HkZS7I4RyVmtsbIyZmZk+dzdFEjzMm3ATvqWlhTqdjq2trT7zBKsiBwYGWFFRwcTERD777LMsLy/ntWvXglJWoBDpnJoEQA0EAq5oyl5MG9IZHeHpX8SFVMaVFk0iYkg/MzPDAwcOcNu2bfz+++89zoeC6DqdjmVlZSt+K+FC3RGWUre1tbXcuHHjioom4demn5GZqusFz2N5nvWqmQdveX2ds9vtKCwsRGZmJr755hvExsZ6yTcXs/CxzPCV33uGSjml3+ryh4aG8NFHH6G9vR2PHz+GwWDAxx9/jJdeeikiVzIDBV12/fPPP49vv/0WCQkJAV+zUExPT2P//v24c+cO+vv7AyorYqDuBWpN7+84kN/znbvwhz9Sp9Px/PnzCy5Hfiwfj4iiqBibPBKdAYKOHDlCvV5PrVYbFRrdFw4dOhTUSA+Dg4Pu3U3eHPwi0Y6XY0Gk93bO2+A3kHs8evSIpaWlTPvbDK+LON7MLInMvo7VvwcHB3n48GGmPP831Gq1PHDgADs7OyO+UZYKaa/sckFeX21tbdRqtUHf3RRMBGTTyzXmfHnny/dIJEdGRrhjxw7u37+fEw+n6A2B3vvnWVFxbnh4mMeOHVMQ/bLZ4v1mUYpguCM4HA73mzJY6xKhgpv0vojt79xizJvf/6md8fHx7gWUQMg9370loqduT2dcXBxLSkrY/tkVn9eQkf8KXgqk6AjL5Y4gBVsK5e6mYEJBen8zN/7I6aujyM/Jw7J9M/S91+t8mU/e7v2/t/7Mo/9ezdTUVMbFxfGfDpbyD5c+8bDxA3m2aIMoikxPT18WBy9pd1N1dXXUKIqA3RCWQprR0VFmZGTQaDTy4cOH8+b3Vbk2m401NTVMS0ub0+gub8vlRDQ0bnFx8ZLdEerq6qjValfsfmNfUJF+VvkvCl1/fBJ+dn5ySGEd6uvrfebxRzI50Tds2MDi4mK2tbUFtC1wNaO2tpYVFRWLulba3ZSRkUG73b7MkoUffjX9I3F2QaaBnLwOh4MVFRWLGviMjo6ytrZ2jegLgFpxdHd3Lyo6ghRsqaSkxOuYIBreggGbN/4eVn1ubGyMO3fu9PDD8IfR0VGePn2a6enpXL9+PY1Go1+iR0PlBxP+oiOo606+y0un00XE7qZgYn7SL5BbHR0d1Ol0PHPmzLx55USPjY2l0Whka2trxGyCWOmIj493uyPMpySOHj0aUbubggkn6UWSnFWEkyBdFeW1rjzjK8rncf1V3NjYGOvq6piRkaEg+uPHjxX51LHH1zT7wpGbmzvvP2vwt7tpvrpfqW3i3DklAIAGEJTu3II6we26oEy8d+8eXn75Zdy6dQv9/f0eYdnu3buHM2fOYOfOndi8eTN6enrw1ltv4aeffkJrayuMRiPWrVunuEbyB1F/u1wnFudzscqwfft2d3QEb3XW39+P7du3Iz09HV9++aXP3U2+fHNWrJ/SUvuqZAeePn1akT4+Ps66ujpmZmbyiSeeYFFREVtaWgK28f1hpWqYUEPujqCus+bmZj7zzDMRu7spmFDY9FUG5f/qEQCeNf/fXAaRCnPn3/5VaQeOj4+zvr6e2dnZBKAg+mKIukbupcGbO8LMzAzLysqYlpa2oFAkEqKhTTwGsocL5nbpSLt21Dt0xsfHmZWVxVdeeYUjIyMKohcWFrK5uZmTk5MheYA1eIcois7oCOud7ggiyR9++IEZGRksKiri9PS0M+Os95mcaIZAzhl7hA0G4RA+YDv00IB2MzT6PTDbiJwkQhCIq1f/B0VFRXjyySexbt063L17F6mpqe6P5Au/hvCDJBobG5Gfn49NmzahvrEBpkOVOHTokPv8irXLlwDFJhK7xQqhai/0dA5qD7+9BwVVDchNBgDiL3+ZwBdffIHy8nIAzs0Y+/btWyN6hEIQBGx85q8xPj6OTZt0+O8/trnD6knnPRG5ce2XCwpNb2kyYXdprXPGhoDZRuQmiyAF5+5MjeCxYX8NkYUFa2+RgMYzfzS/BZxd2kV7S0ctukZEUCTMjYewWy/AYtdAEARIs5TRWQ3RA39EtciDRBmqQNhQdaTBfV4+qRmthAck0gsiaDfjFEzYrXc+bM7B36AAgKXbDNB7JXBtvnxFgHYzBEFAnS3FGfWYhPgfu6ERUgD9XPQ0AaIzv+s7WqGRvrq7LTDtzZk7IwspRx+dXljT+xEPwoZC/R4YDjfi0olSZxoJQZ+Ds1X50G+ZI73oak8hym36JyQj3fxpLXI/OAVgrqKAfPwqJ0lBbRGEBkJU23zRhO6PGvEJ8jFS8y/uNKndkvW/BJP17nSNSolFaxsLI+azTNn9ujJREECDCWw/ESax1hAw/MwsEDYUCinY2tCFk6U5kA/hBAJEdJJ6Pihmb9YQXRDtZsTo96DeMoKyHP38F6wCkIxy422VYz4dvhq1nSCoRyyrsRaiAD6bLTkJBXBGPVa/0Gk3o9FqC7ZoEQkNgblac6kG52F0T1tFEwRI08eiKl2PN5pMOFW2B43dI+50m6Uemretq9bkcdv00TpSX4OT5PLJCsPhRlysORhGicKL/wcR04dirdct/QAAAABJRU5ErkJggg=="
|
<image>如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()
Choices:
(A) 2√{2}
(B) 4
(C) 4√{2}
(D) 5
|
4√{2}
| 10,885
| null |
4√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAAB8CAYAAACrHtS+AAAaQklEQVR4nO2df3Ab1Z3AvysBpo1AMZHPaxAVENHIFTO4485gijgrh0qU1nEE8TQ5qs45xZC0CVPPYSe+IWC4ujMuMW1mcIqDmUFzMYM6J85p44Jsi1qA3HHxDPZ07NrFSvPDoZFjl8iWc2jO0n7vj9XKK+2utJJWP2z8mcnEu+/t26/e9/34vu++HwQiImyQMQgA5wa74Pw9B+E7W/MtjTCyfAuwFhBXI7zw7KM/TufBnLKhcBEQIuK8fvR1wF3fg7u3UvQNFPlgjtlQuAQMdjcDmEwAfQTQ6qYKUtkAGwpPDwQAim6v8dwADMIj8NRWCs7uKoevgwwKOVsLV7JChgAAGV2Fj3QNwstPmYFAgN3l9+ZXLhFsKDwlqJirwe4m6OjoAIIgQKbdGRNWqIOfDYWnRCS7kG7KXfgoICIgIswMnoSv36OJxiQKtBO/Id8CiAERgSByl4HM+6K1lIhVH/5tAGT/7gL87cuRGwDnz58HAC3QrYCsYI02wHUARVHZSxvDMdevHdmFQJttOOCl7zXXQvTe7uZTiNkTJ2MIxALtbDIEJWwVCnRInRbrtg+XsgtIlhJfjSnUerRuFZ5LCB7d5tLmSIU1YbSxSdZUDw8Pg9/vh48//hj+/ve/w8zMTDRsbm4OpqenY+LrdDogSTJaI5nrBx98EDZv3gwPPPCAoAzhcBjkcvmaau/XdB8+Pj4OH3zwAbjdbvB4PLCwsAAVFRWgVCrBaDRCcXExVFRUROOXlpaCTqeLSWNychIWFhZi0rx27RoMDQ3B0tISjI+PQ0lJCVRXV4PRaASj0Qh6vR5sNhs88cQTcNNNN+Xq50rCmlL4wsICvPPOO+B0OmFoaAjKysrAaDSCwWAAg8EAGo0meSJpcPHixUih+hDc7g9hbv4qKJVKaDlyFKxWKyiVSgBYI8ZdnkYHiChuOBUIBLCnpwdrampQoVBgfX09OhwOnJ+fz4GEXLxeL956661YU1ODt99+OxYVFeGePXvwN7/5DQaDQd5nsjlsTJWCHYePjo6i1WqNZmhPT49ghuYKv9+PWq0WZTIZBgIB1Gg0ODU1hTabLVogrVYrTkxM5FXORBSUwimKwr6+PjQYDHjnnXdiZ2cnzs/PF0QNCYVCaDKZUKvVotlsRkTEtrY2bGpqisbx+XzY0dGBJEmiyWRCl8uVL3EFKRiF22w21Gq1+K1vfQt7enp442TVo5Yk7Z/85CdosViwrq4Ou7q6EJFWsEqlwmAwGPN8KBRCm82Ger0e9Xo92u32rMmdKnlXuMfjwcrKSjSZTPjRRx/lTY54hbOvOzs7saKiAufn51GhUOCVK1eiYVarFbu7uwXTdblc+NBDD6HBYMDR0VHpBU+RvCnc5/NhXV0dqtVqPHv2bL7ESIrL5cI777wTL126hH19fVhVVRUTPjIyghUVFUnTsdvtSJIk1tfX583gRMyTwtvb27GsrAzb2tpEG2L56Me9Xi+WlpbiyMgIIiLW19dje3s7J15lZSV6PJ6k6QUCATx27BiSJImdnZ2SyyuGnCp8dnYWq6ursbq6GmdnZ3P5alGwCxVjkTP2RCgUQpVKhV6vlxPXZrPh3r17Rb/H6/ViVVUVms3mnNf2nCm8t7cXVSoVdnR05OqVacNY5M8991xUsW63G/V6PW/8YDCIJEmiz+dDRPGtUWtrK6pUKnz//fdTljHdFi/rCg8Gg/jkk0/itm3bcGxsLNuvSwuKomIy8NChQ2ixWGLiNDY24rFjxwTTaGlpSRguxMjICGo0GmxsbMRQKMSRS2qyonBGUL/fj1VVVWi1WjEQCGTjVZLDWOTx8mo0moRW9oULF1CtVscoTazC/H4/WiwWNJlMWc+nrNVwr9eLWq0WW1tbs/UKyXG5XKhWq2PsC4qicGxsDNVqddLn6+rqBMfcYpTf2NiI9913X1btm6wo3OPxoEql4oxPC8FjJoTX60WSJKMWOZvW1lY8dOhQ0jRcLhdn2JYqJ06cQJIkeVsTKfJPcoU7nU5UqVQF6VYUgrHI33rrLd5wvV4v+veUl5cnbPrFKI0xcMUM9VJFUoW73W4sKSnB4eFhKZPNKisrK2gymQQNLq/XiyqVSnTf3NXVhU899VTGcjEVR2rvnGQKHxkZQZIkRZXKQmra+SxyNsePH8f6+nrB8HgLPxAIIEmSkoyv+/v7kSRJSb++SaLwsbExJEkSnU6nFMnlDCGLnI3BYMDe3t6E6cQX4EOHDsV45PgKuNhC73A48I477sCpqSlR8ZORscJnZ2exrKxszSibyWg+izwen8+HSqUSl5aWkqbHxuv14te+9jXOuDpdHA4HqtVqSVqNjBQeDAbRYDDw+pcLmUQWOZvu7u6EzX0izGZz0pYhFVpaWtBsNmdciNJSOFOqn3766ZR8yIVAMoucjdlsRpvNJhieqFk+e/YsmkymtGQUes/OnTuxpaUlo7TSruF2ux21Wu2a8aAhrvrIGYs8kcICgQAWFRUJNqPJ+uBQKIRarVaw703HcJ2fn0e1Wp1R95mWwqemplCpVBasb1yIZBY5G7vdnrSGJlNaR0eHKIdNKng8HlQqlWl749JSuMFgwBMnTqT1wnwhxiJns2/fvoy/Wfv9flSpVOj3+zNKB3G1cFEUha2trVhTU5NWOikrvKurK2P3Ya4RY5GzCYVCqFAo8NKlS5ywVJvihoYGySc7hEKhtOfKpaRwn88nuSMgm1AUJdoiZ+N0OrGyslISGSYmJnDbtm2SpMVmZGQE1Wo1b+uRqFCmtJjw4MGDcODAAdDr9dlaFyEpS0tLYDaboaOjg3eNGAPGLb5xOBzw2GOPSSKDXq+HkpIS6O/vlyQ9hgceeAD27NkDjY2NHPkTLmQUW6LcbjdqtVrJnAnZhKIojkUullAoJHkrZrfb0+5zExEMBrG0tDQl41m0wo1GY3RMWki+cCFSscjZeDwe1Gq1ksoSCoVQo9HghQsXJE0Xkf6cmsrvFKXwtVK7mYKYqkXOfr6pqSlj5wYf8atUUpEpEcx8OrG1XJTCq6urE3qcColULXI2FEXh1q1bUzLwxMJepSI1J06cwN27d4tqeZMqfK3UbsTEPnL2OFaIiYkJJEkya/IlW6WSLkwtF/PtPKnCzWYzdnV1FXy/HT+PPB3a2trwwIEDWfutYleppEN7e7uo7xoJFT47O4u33nprwfvL+Szy+IkJYqioqECn05nVwi12lUqqXL16FW+55ZakXr2E4/C33noLHn/8cVAoFJKMHaUAIzsfsvnpT38KCoUCfvazn8XcT2VjnYsXL8LMzAyYTKboe7LBM888A6+++qrk6ZaUlMAjjzwCdrs9ccREpUGn02WlNEoJY5EnmqQghhMnTqDVapVIKmHSXaUiBr7FjvEIKnxkZAR1Ol30uhD78Ews8niqq6vR4XBIIFVyEq1SSTWf2cZoKBRCtVqdcDqUoMJbWlqwra0tpZfnknR85EIw675zZavwrVKRiqampoQzkAT7cKfTGe3PCo3FxUVRPnKxvPvuu2A0GnNmq2g0GqiqqgKHw5FxWhhna5hMJnjvvfcSPhADRVHo8/lQoVAkLYH5aOZT8ZGLla+mpiYr42M+2JMos/GZmZmpI9Ra8TbpdrsdH3vsMcmFSZdkKzszIRAIoEKhiBpRUpOo0Ol0uqwsKaqurhacBiVj1fRorXc6nbBjx46Mm5tMYWRihlcnT56EP/7xj3D69GlOnITpCF4A9Pf3Q0VFBZSWluZ8Q9zGxkY4deoU536m+7Tu3LkTnE4nfyBfKdBoNDmf5JCsVLMtcr644ZhNysOccP6X0u5Ovk0KctFdLS0tYWlpaUbzzfnk9Hg8gh49jsKDwSDK5fKC8p0LWeTsH5uSeiKRQ6EQKpXKrHy2FEv8KhUpuHbtGhYVFfGGcRT+ySefCG5tkQ8WFxcT+sgzqYcu1x+y5ttOBlNYvV4vajQaXFlZkTRttVrNW5BlGNdv/eUvf4Hy8vKM+hCpCIfDsGfPHti3bx/84Ac/4I0T39t5B7voU4Yi/3YffV2wb+7tfQd2794tsdTiYPrprVu3Qnl5OfT19QGANC5dgiBAp9PB5OQkJ0wWbyDMzMxwtpjOF0I+cob4zOk6Wgv3PvouzGAYKEQI4wzAywfA0tLN++w777wDFoslG6KnxOHDh+HkyZMAIN3G+tu2bYvZK56B43iZnJwEnU6X9yMcTp48CcPDwzEWeTzszOk6Wgs/ntYB4u9ACzJ6E3vQwisDr8HvXj4L3rgzxz7++GO4+aaimP3U84XZbIYLFy5wNu9PF0SE8vJymJiY4IRxFD4/Pw9qtTqvRzi8//770N7eDmfPnhXl/ZoZPAk/fvksDPySPlYKOacmxP8WCs6cOQOWxxPPTM1VoZfL5XDw4MFoLc8UgiDgjjvuiNn4n4Gj8MXFxeiG7/ng3LlzYLVaweFwgFqtFvXM668ehtojp6LndrOVff7CubjYFADKaIUnac5zWegbGhrAbrfD4uJiys/yFczi4mK4du0a576M/QBiGK4H/xe+uumrEAqHIZzjVj0dHzmCFz49C/Dd7/wLfR0ns+v3HVB7pAa00bItg+m/ToPf74eHHjZIKH1mKJVKsFgs0NPTk/KzfAVz06ZN/IUn3mxX/VMZzl29iuEcu8nTnUdOefujh8ZFx+WR/2YGXos5UI6hvb0dGxoaJJBaWiYmJiT7JM1smxYPR+Hym2/B5evXJVd4MuHT9ZFTOIO1ANg1OINsDxtzv+Zo7EmBLpcLi4qK8J577snrdt1CGAwGSaZZMbNk4+EoHG7chCuhEIYjH9RXQiFcCVNIISJF0dchRhaKosNDIVxhC8i+HwpHnqViw1ZWomG8s1bYaUTeL5T2a0dqcdOeo1G5Vz51ovK22/DxllOcdLZu3Ro9NjL+a1W+J3lQFCXZKhW/349KpZJzn7eGX7/+v3QNp6hopkZEwlC06tN/U8zfoVCkVWD/jUiF6YxGTjw6bIB31kpseuEwU8iE0262bMJbbrsNlbfdgjcD4ICXwpUVVmGJ/Jay0lJBhRcCUq1S8fl8uGXLFs59jpVefKsCAoElxhoAuQwhTCHT4QMwBgIiIFIQDochFKaip60CIiAhi0YjCBl9jyfsb+fPw5NP/wj+O94ij8Sjz2QnQCaTg5xInPbL/xOAz69ehc8X/PAFInznHgAgAGQxJwMjNB89CkVFRfCVr3wFdu6MPfO7EJDL5dDQ0ACdnZ0ZpbO8vAzFxcXcgPgSoLlrK/71009ja3WkqQzHNK1hVs1lQYVjWwVWK0F3CfTffr8ftfd+HU/39GA4vimNpM1JXTDtcOTv/1u1PZimPK4rCVN0l+52u9Fs/i5qNBrs7u4uqI9FV65cyXiVyujoKO93gtXv4VQYQhRC8W2bYXl5mVUkCJDJACiKAmTXFoIAAinW0A3pIRFBAAEI4ej4CKPnbxOEDAhAWAmFoK6uDvbu/T7s+9cnQMYZVhAASAElOu3VIVc8Mp6j4wgAqK6uhvfe+z2cOXMGXC4XqNVqeOWVV+J+O6dyCIZJCUmSYDabE3oZk3H9+nVef8pqDhEAgBRs2bIZlpaWYrKJVhQRaWJXH5DLCLqghMMQCmPEoUWAnC4h9H0kQE4wmUWHPfvss6DcvBlefOk/QR5NFCHMjP0JAm4Qm7aMoJ+laNcpRVGASa9Xuf/++8Fut8PIyAhMT0/D3XffDc8//zwsLCzk1b18+PBh6OrqSukZtrzXrl3jbdKjCicIOdwgl0Oxshg+u3yZu8hcRnDrCiGDG+TyyD9ZTO2P3pcRQBDE6qyVX/8aPB9+CLY336TDVhMDuTzSV6eSNuvZ1bjJrlk/ISKXRqOB7u5umJiYgGAwCOXl5fDMM8/A5cuXOXFzAeN4Gh4e5oQJFUS2fJ999hmoVCpOHE4bqNfrYXp6OuZhpnZmSqo+8nxQWloKx48fB6/XC2VlZfDNb34T9u/fL9mHjVQ4ePAg7yoVoYLHLgjT09Nw33338UaKoaenB+vq6hAxMuyJH2OniZTzyKUm0fg7GAxiZ2cnqtVqtFgsODIykrPxOrNKZW5ujjc8kRwmkwn7+vo49zkKHxsbk3zGSyq7H+YDsQq02Wyo0+kSzgqVmpaWFnzxxRdTfk5oxkvW57Ql2498LdLb24tVVVWo1+uxp6dHshrPl8758+dRrVZjOCxyYibSFeymm27iDeNdiKDRaHBycjIFUYWReh55IUGP5c2o0Wiwq6sLv/jii4zT5FO6xWJJaU+2RLNWOUYbQRCwfft2+OijjzIwN2jiZ63g2jmbXhT0WP49OHPmDAwNDcHdd98Nv/jFL9L6ps3AZ5AdPnxYtOcNEcHj8YDRaBSMwOHtt99Ou1amsh/5euPChQvY0NCAKpUKW1paJF3NIrRKhQ2T94lsDF6FX7lyhbO2LJV+qpAt8lxw5coVbGpqwi1btuCBAwdS/hDCl9ednZ345JNPJn02rbVliPT2F+kMQQrdIs8lfr8f29rasKSkBK1Wa8qredh5v7y8jCRJJt3So7+/H6urqwXDBZcLm81mGBwcTMm7FA6Hoa6uDvbt2wdPPPHEuuuzU0WpVMJzzz0Hs7OzUFVVBWazGXbt2sXrPeODnfebNm2CPXv2xLhb+fJ3cHAw8VdAoVIVvwOEGNazRS4VNpsNy8vL0WAw8DpGEjE1NYUajUZwyJzRDhCI/Hu8CDXx6e5+uJ5IpfuLH8uLxWw2CxaU+D1e+ORJqPD29vaEZ3YxJLPI8z11qFChKCrlsXxfX5/gSQ0WiwW7uroSPk8rXEAfs7OzqFQqY2ptfFS2Rb6h2PQZGxvDvXv3IkmS2N7ezjHOmLxlpkAxzTZ9Pxzdp8bv59/NiopM8AR+Ja268Xbs2CFYavyLgYx3P/yyE5//zFheqVRiU1MTZyxPUVTcWSq0rtrb2/H7+7g7MVJxa+UhNpArhNBeq+GV9OaRbyAOn8+HTU1NqFQqsaGhAS9evBgN8/v9MUO0YDCIZWVlaey1SsUtsqfoe/9cvR1ttv+KibphkecGZiyvUqlw79690W2y2WeppLJnOm8Nj8f9h6GYWh6dR7785bXIs4HY7/JmsxnfeOMN1Ol00W/m45+MiUqbQBT2jrDnuRiNRti/fz+o1WrYsWMH1P9oP6hvvyPGSZAgqQ0yID5vbTYbXLx4ERQKBWzfvh3kcjn09vbGKGywuxkefbqDvqhthtBvn4b/ODoQO8XpyO7V+WfMLgqnXF4AAHjppZfg5z//Ofz5z3+GY8eOxSgbgJ4cCLD+vogVAkyeMp63+vp6aG1thUOHDsHQ0BA8+GBk4SUBgOcGgCAI6PTeG92ImPqlCW4g7gXYquV62pprmXVaiNMDnTGL8SwWC774QivdRKTQVG2QnFSGtEzcxsZG/Lf9q34SZj1d7ZFTGL+T1WvNu7FrcAaBrTkK/4rfI2pwJhKZvTITEXFubi7hiT8b4/DcQFEU77llA683IcCq/tgMvN6EA944o21m4LVI6aBproWYa8S1eTLhemNlZSV6MuHqqj26djef6mducKAwztNGlxBmmZiMs66aGbatxbNH1xMvvPAC1tTUxA6hI61x18A5Tny27mNqeHMtYP85OsJgdzPdnJ8Lcx5cq6cLrweETheOKjxif8XD6A5iHqhtjlyFkcIZ3BVpIvj65rV4fvhaJ9H54YmadMrbHy0IUYUPvN60GhnjS0yY1yo/cOAA7tu3T5Ifs0FyzGZzwkP0mC55tZaH6W1PohWZpfDmWiLaZzOlBYha9EaX/MdCURR+8cUXaDAY8Pjx45L8oA2EOXbsGJrNZt756au6CeOn/b9GABkCQdtitUdOxfbhMwOnWIYa6x+reY8mzNO0z87OIkmSOVuJ8WXE4XCgWq1OuuuymEFxygfG8zE2NpaW0jfG7clhlD01NcXJr3TyTxKFI9LWI0mSoqdEbZAcp9OZ0kGyYpBM4Yj0t3OVSpXwrLONAiAOp9OJKpUKR0dHJc0zSRWOuCqoy+WSOukvDb29vbwVRwrFS65wRLp5LykpydlJQeuJX/3qV6JPCk6HrCgccXXrx9bW1my9Yt3R2NiIer1e1Hq8dGt7wgkQ6XyrZbOwsAC7du0CrVYLb7zxBhQVFWXyqnXL8vIy/PCHP4Tl5WVwOBxZ3c064enCYhFajqRSqcDtdsPNN98MFRUVMD4+LsXr1hV/+tOfQK/Xw1133QVOpzP7W5en1S6kANP09Pb2IkmSvEdGxcddi6Qje2trK5IkyWvgZisvMm7SU+Hy5ctgtVrhxhtvhDfffFP0BvhrEeScyrDKuXPnoL6+HhQKBZw+fZp3e61sCpZz2tvbkSRJbGtry2h7yUIkUc0MBAL4/PPPI0mS0SnGuSYvCkekJ9rX1dWhWq1OeRXlWmz63377bSRJEvfv35/QJ57t35Y3hSPSP87j8WBlZSWaTCYcHh7OpziSwVaay+VCg8GABoMha2PrVMiZ0ZYMm82GWq0WKysr1/xatVAohDabDfV6fXTuWSKE8igbtT2vNZyPvr4+NBgMqNFosLOzM6ODWHONz+fDjo4OVKvVaDKZCtK9XHAKZxgdHUWr1YpFRUVYV1eHdrs9xsArlH48EAhgT08P1tTUoEKh4OzlUihyMhSswhkCgQDabLZohtbX16PD4Ug+GSCS0dnIcJ/Ph3a7PaZA9vT0rIkRR07H4ZkyNzcHZ86cAafTCUNDQ1BWVgbV1dXw8MMPg8FgAI1Gk5X3Xrp0CYaGhsDj8YDb7Qa/3w9GoxF27NgBFoslt+PoDFlTCo9nfHwcPvjgA3C73eDxeOAf//gH3H///aBUKsFoNEJxcXHM2aKlpaWcg3QnJyejRzYSBAHj4+Pw+eefg9vthsXFRRgfHweVSgVGoxGMRiNs374dvvGNb+TyZ0rKmlY4H8PDw+D3+2F0dBQ+++yzmBN25+bmOPue63Q6KC0tjbkmSRK+/e1vg1KpFH1CIh+YwNuWL/4ffdNSBghlkr0AAAAASUVORK5CYII="
|
<image>如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=\frac{3}{4},则弦AC的长为()
Choices:
(A) 3
(B) √{7}
(C) \frac{3}{2}
(D) \frac{3}{4}
|
\frac{3}{4}
| 10,886
| null |
\frac{3}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAFUAAABlCAYAAAA8j6/3AAAOZ0lEQVR4nO1dT2wTZxb/jRNC/9BND0ZJJFcJ+aMGpYdKsAIVKrQlKZEgTqRmpT0ElQMpCQQJ0Tj00EOrXQ4tSK2EqScOICRCV91GS7qJFuwE1Eph1ywXJAKJsFMShYOlcDCbSnUae94exjOeGc+Mx56xx5H2J4088/198773vffmm++NGSIilDiICAzDqOZFpr/B023H0dZQZKJ04LCbACOQMlQqAYQIBttOqFfi7JOVDcFUKRgAXIq1/jN+cB0d2NbAAZAzHA51yS4GNgZTFULnAIPAiAdobQUmpZlcUcnSwsZgKgMZY2khiNvUho/qgYmO7WgUb8ORMQB2YGMwFeAZm8KZ4Wl88dH7AAB3c6O8iH2zXkTJM1V0TgggAqZGPDh37hwcDANH4wGAUUz5/0tqdvCWn+OZ93MQU9QGoiSICOGgD2/W1ysqwHbGltvbvXHQwjQcp6dBP3wppj1dXABQn1kWBBA0fduCgzYAWE8HASCGYSgY4dM8bhDDyyS5h4aJs5dEGRiijfBElQTDlGnnoyTsk4iS16kAZAwVZEAqC1oMtUtaNgRTAWBtbQ3J5LqoJ23TlwawMZhKwPj4PzA9fcdocQD2qYQNoVMBDu++uw9OpxM3btzgk0pNkUpQ8pJKAB49mkM0GkUoFMKzZ8/4DBWGknDYLCcbQlL7+vqwfft2RKNRbN68GZ999pndJOmi5Jn64sULNDc3Y35+HrFYDHv37sXi4iLKyrRdLLtR8tN/dHQUnZ2dqKysRG1tLd566y1MTEzYTZY+bHroMIzm5maanZ0Vr2/cuEEHDhywkaLsKGlJvX37NpxOJ1paWsS0jo4OzM/PY2lpyUbK9FHSTP36668xMDAgSysrK8Phw4fBsqxNVBmA3VNFC4uLi/TGG29QIpHIyFteXiaXy6WaVwooWUllWRYffvihaOVJ4qS4XC68/fbbGBsbs4s8fdg9qkREHCdfuIvH41RTU0PLy8uadW7evEmtra2FJi0vlISkKhdHxsbGsGfPHrhcLgDqT0itra0Ih8OYn58vCo25oCSYqoTX68WpU6fEa4HpUuaWl5ejv78fly9fLjZ52WH3VFHi/v371NLSYqhsNBqlrVu30traWoGpyg0lJ6l+vx8nT55UzSOFGqiqqsJ7772H77//vhikGYfdoypFLBaj6upqWl1dNVxnenqadu/eXUCqckdJSSrLsuju7saWLVsM19m/fz+eP3+OR48eFZCyHGH3qBLxLlUikaDa2lqam5uTpSvLqeH8+fN07NixgtKYC2xlqpRJk5OTefudKysrOauNQsLW6S/1T71eL/r6+vJqx+l0orW1FdevX7eKNHOwe1SJiCKRiOln+ZmZGdqxY4eFVOWPokoqabxkYFkWAwMDea/mExHeeecdxONx3Lt3zwyJlsD21ylra2uoq6vDw4cP4XQ6TbV18eJFPHjwACMjI7pxAgVHMaeFYJikBmpkZIR6enosaT8Wi1FNTQ3FYjFL2ssXRZ3+artLWJbFiRMawRA5gIhQWVmJgwcPYnR01HR7ZokpKLR8SyKiUCgkMy56ZY0iFAoZXjsoFCyTVJKp5nS0CMMwsjzp+VdffSVzo6zQgbt27cJLL72Eu3fvGqBTkac41yurC7tGMxqNktPppHg8bkl7UilnWVbU02p6vNCw3vqr7HESupBK4tmzZxGLxXDu3DlLuweAX375BU1NTXl7FGa3aRXMpdIjLJlMoq6uDj/++CMaGtLxj2ShG9TX14empiacPn3aWJsEEGPRnjcrxZ7jOH6aJTkiSmpuGR8bG6P29nYru87A7OwsNTY2GiiZtLxvS10qhmEAhkmFMDo0R51lWdnrkkKgpaUFTqcTd+7cyWJweBZYOl0tH6YsmJubMyhB5jE6Okrd3d2yNKnB4jiOPO70DkwABCb16/ZQvtEZljB1sFMgypE6QEAHPeEyF0hOnDhB58+f12wrHyutVofjOIrH47R161aKRqO69T1uiFEvREThoI86z/hzpkOANZLKZRLm83QS0EFhUWclaXV1laqrqykW+68l3RrBqVOn6M9n/yKQmSZZcLUoTIfcHiIiSlCYWDZIXOo3X+TIVHWlLiVMkkgeN6jTMyzW83q9dPToUc12CoG5uTmqra2lRELxFiH1Gw76yDMcICKioH+QfFNhIpUZlgsskdRw0EfuoWFFapJ8Qx28bkqhubmZ7t+/ny5SJH983759NDk5qdpf0D8o06nS2ZYvDFp//Tj66el/4uD7f5AbQAANjW+K17dv38brr7+OnTt3pssUYWWOAPT39/O7BFX6C06cRzBC4DgOQ4fSH2Qw16lpROgQDlKY1jNyfEMdogR3d3fT6Oio+e7yQCKRoOrqalpcXJSlc5EAoXNQvPb7/WSFapIxlfttXTyMgosE1C1lOEAAiJ0K07Nnz6impsay5/x88Mknn9Cnn34qSwv6B0V9KoXH48lIywUZkpoTQzlOmzB3ytejpNwPVPMJi3gkEgn+yY8yPRaebkb1fnJB3kzlOI7WKUxugKYXJOmRgOg8C+/zAdDy8nJRV4rUAIDGxv5OkaBPg+kOYgCaMmmsdJkqVQec4jqcIuzlTRX0yqYKcoARiWOnwsSt8eX+9u1fSaq6OY4zrGa0yumlS/OV9wOg4GsORAYkVe/ayPnevXvp5U0VhtvPpW3ptZLRaowFQC6XiyIRC/wmHRhyqYTFBlpPgNkk/5gFrSdA6wnVeg8ePMDz589NL+cp+9QrIy3LbCrPWEw5cuQILl26ZIqerFByWU1ykipTidMoS0TErfHpR48eJa/Xa1pS9dJzmTlI6fbq6uqCeiKipGpJG6DwmUklTaX+ixcvMD4+jsOHD5sb9Sy05QqXy4WdO3difHzcsjaVkE1/tekNpKaRkMdkpivrMRXluHppBH/q/iNee/kV/Lr+m2odZT0p8zTb1qgv1JW2oXU+MDAAr9drgD15wqhIy6adAc+ooaFBDH/MoZuCQqBDbdumlchqqDgQaP03QCrBanZHYg+CtwJwuVyy8MdSQllZGfr7+wsnrXocz+exlYjo0KFDNDY2Jl5n6aZoEOjgOE71FblVDye6kspsKhcPo1haWsLDhw/R1dVlbrQLCIZhUFVVhf379+PatWuydCtg+V4qlmXR29tb0h85ENDb21uYOCxL5D2FeDxO1dXVGe+ELO4mZwjTWo2OxsZG+cK5BbBUUq9du4Z9+/ahqqrKymZNQ29a9/X1Wf+EZeUI7dixg2ZmZjLSLe4mb6jRsbKyQk6n09I9rZZJ6r179xCPx7Fnzx7bP2GUC5xOJ9rb2/Hdd99Z16hVo9PT00Msy6rmWdiNKWjRMTMzY+meVkvuViuOSc9A2AE9OlpaWigUClnSjyXT//Lly+jp6ckIfyzljxwqIb5xTYHMqLBsXM/2lCE8R+st/BropijQoyMWi1lmsLJKqlLaSDGCt27dwvbt22X7TDciKisr0dXVhatXr5pvzOyotLe30+TkpK5EW9CNJchGRygUoubmZtP9mNKp8/PzePz4Mdrb2zeU/tTCrl278Oqrr+Knn34ypVNNMdXr9eL48eMb4jnfKHp7e+Hz+cwJSTZR1prWwrbIlZWVrNPBQDdFgRE6VldXyel0GrovLWTdm51hqFK/o99eR2trq+l40lIASab6li1b8MEHH+DKlSt8HvJwr9R5nWWTFsc7y/8O/cfQyGl2U2QYpWN2dpZqa2vz7sdB0mg88Uxf1d791138bstr2L3r97mNIEw61RYhGw0tLS2oqalBIBBIVZDUhfq5tF2HdHozan2ppF24cAEnTg5kZuhA6LDYXoIaA43QMDAwkH7Ckr5BlpSZHvGAYRj+6BwCmAUMDbHy+aBmkjiOk2VEo1FxM4LRNzpQ7KWyCwIdRmiIx+PkdDpVvzcobMKT7h4X0jzDAbmfqjZ+fGxU+vrSpUs4cuQIKjZvzis6rhT8WSM0VFRUoKenJ2MBmxBBV+MBuIeG8cMXR9NtNrwP31AHGurr5ZKaEVOU2sEnIJFIUF1dHS0tLeUlIeKo2iStudIxNzeX8W2XqRGPIuom1RYlKegfpGCESPaa9MsfCOhkUD/wBH1tTXgy/Q3ebGtCfYTQ1sB/LXLt1ziuXLnCx3HmYHNK5TPyudIRj8cxMTGBrq4uECK40HsOnuGA5C/wAIADAwfaevng5XJpZC7hCR5PHMJHP/CLI03bGmUdMAQcO3aMr0KSBskBzqHP5M8//5xvAwAU3wAoNKTfHFD7wqUehK9mEBHw88/4BwBW+sdiBIBxyIOVpSKsDN3xuKESymMcpfQfUfkifQ9JSoZvZahENUBaUx5T5MiMKdLhklI/+YY6iGEYWVvskCdDFxUcnOwn7/r8Kb8dXx4TwN8PFwnwO8g5jjIMVWCBb4dXyKDgQlJkmHawuaTjSIAYhsmQ8MGOlNTLYhlzur28IDW+jNQIM9klTg2C4PmCT0hgaDjokwXhiUzlIgFJRpI4ClNHxqhog6P0SH7svyl2KMaARgKmoz7yhTQKhY9MCZPbkWnB9ZG+n7AiEMM9JA95EpmqDN0RnFl+NJNpKdWRLmXYpB5xxUIiFTfLEc8Q1j/Mh6SbjJXSg8hUjzv9p4SCxIFxi6OZbaaq6Ru7Q3yIiMJTF8kzHOAlNBIoyp8sQinKAIhhIFMFRiCVbE5SJ+j/mBiAmNR3AIILxZVUZUCvx3+zgL3x92bZmpzAVF6BC4n8z8IUq6IWisPcMxJ9GvQP5mWccoV1G9Qa6uEGEFl8ml7ZSvnCC08j8BxsVVSwdhcnqTjztBDEF/CgLfWid1tdA+oVDzQFgSVDk5JIQZX4phZk2WnrWyDplPqSknOtuNlCw/IleTE2VRrMm7K+cljF4HQ7SsOoFtBbDJhmqnK9VRtJxVXhbLDU+DIoPmP/Bzpr8RdDWNbYAAAAAElFTkSuQmCC"
|
<image>如图,△ABC中,AB=AC,AB、AC中点D、E,点G、F在BC上,DEFG为正方形,DE=2cm,则AC的长为()
Choices:
(A) 3√{3}cm
(B) 4cm
(C) 2√{3}cm
(D) 2√{5}cm
|
2√{5}cm
| 10,887
| null |
2√{5}cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAABuCAYAAADyIufnAAAPGUlEQVR4nO2dbWgbV7rH/+O0aT+01ReFytTgbiLfOChQtSbEBRUXrDS+jeUYktaBplgfvOuCWupL5ZeAUxfilnTjBkPcGye+UH9IIQVzDamzJLay5IMLKS6bhrrXXSylKU62WsSCXBssb6X53w/S6M0jaWxpRi/WDxxFmjNzjvSfc85znnPOMwJJQmUIQADQc1TAuWs2LPJ/YcRjAEQAFWpnvy3R5FcVIq9nz98EWmojomqW/bZEu1+WwK2/zsD5eqNmWW5nNBOWAuC6PoTXrIe1ynJbo2Fb6Mb/sRuH9gAadOvbHg2EFQEAnhkXKvbtBgAIgpDuhDI5QANhw1m4XH/B61Zr+KNyhVUdTZpiEYv4yzmi0RqusShXWNXRRNj7M7cgdNvw81gvZjxa5FhGE2F/fuDBtT93YoaHcGiPFjmWEbTwPElIHqgy6qOpg4Jlq0kztBNWACoi9dXn85XHsiqjubN2fX0dBw4cwL17d7XOeluhjbBxlfPcuXM4cOAAzOaXNMl6u6Kh8STin//8F/burcG9e/dQXV2tTbbblC0JG2/dktzgIkxl/b799tuoqqrCJ598UnYrqsxjmRLICRf/ThCEJKUBOc2+/fZbuFwuLC4uQhAE2euWyR0Z+1hBEEBI3aQomyY2jBFTDlQdDgeGhobw1FNPRa9bRj0UGU8CJL3CyWfGuiEIQvjvaA8geNDTM7rxcgzX+LGxMTz++ON46623cln2MmnILCxjL/RMQxAEjLhrQBIkIZ63okKoAYwRBz9EiJGTKAC//fYbPvzwQ1y4cCF2yfIYVn2oEJF/ZwvAlp5LG45d7LFxdGaRFDee53Q62dHRQVGUOVhGNTIaTxKusTFcE1qw+GnHhmN7jP8B4Q/GDf2rx+PB+Pg45ufny32qxiga7hButAo12HvpJv78p9c2HmcIgrAjYukSUgtvs9lgsVjQ29ub84KXSY+yGuu5j2sARneH+1HpTpDqoCDsiLzGzKzpGzfx008/YWJiInelLaOYLbkUY/LJEwqF8P5/dWF4eBhPPPEEgLLBpDXKhN2zGy0APPfvh2trnEb0TOOSyx15J2J1dRXnz5/H888/jyNHjkTTlftYjcloXoXC1uz0ZSeBirD1G2Fx+iLR0h2fmP94+Ig7d+7kF198kUMbr8xmUTzcISNCIuqIYnNvZOgjMjqc6ezs5JEjRwgBbGpq4vz8fMrrlYdA6qFc2IgGoTRa3L17lwaDgX6/nwdfrufLLx+kTqfju+++S5/Pl2VRy2wG5cZTpIuskOkqpS73vffew0cffQSdTofzQ59haekRfvzxR5DEvn378NlnnyEUCmXZeZRRhBL1RTEo61WK56uvvqLZbGYwGIwmbW1t5dDQEEnS7XazubmZRqORExMTWdyLZZSwqT42FYFAgFVVVZydnSUZ6zsXFhao1+vp9/ujaV0uF00mEy0WC+fm5nKRfRkZciJsf38/T5w4IWsMdXZ2squra8PnIyMjNBgMbG9vp9frzUUxysSRUdhMluvS0hJ1Oh2XlpZkj3u9Xur1errd7g3XXVlZYX9/P/V6PQcGBriyspKxwGVLWhkK+1gx4TWetrY29vf3b0gbz8DAANva2lJe++HDh3zjjTdoMBg4Pj6uqOBl0pNVUzw7O8uqqioGAgGSqWtTIBBgZWUl7969m/Z633zzDevr61lXV8fZ2dly7cyCLQsbDAZpNpt59erVjGlFUeTo6CgbGhpSHo9nYmKCVVVVPH78eEITXhZaOVsWdnR0lBaLRXH6YDDI2tpaTk1NbTgmJ1ggEODg4CB1Oh2dTmeCZV0mM1sS1u/302AwZGxakwWbnJykyWRiMBhUfM6vv/7Kjo4O6vV6joyMbKW425ItCdvV1cXOzk5FaZOFamho4NjY2KbznJ+fp9Vqpclk4o0bN7aU93ZC+ZqnJKfDVseec3NzNBgMUYNrs0xNTdFoNNJqtaadYNjubGq4Q5JNTU1RN+FWaWtr48DAgOL08fmLoshgMMihoSHq9Xo6HI7yBIMMm2qKv/76a9bW1vL333/PKlO3251Q67faZC4vL9PpdFKv13NoaGjLrUApoljYQCBAo9GouH/LRFdXFx0OR/R9srhyYqe6AaQJhqqqqvIEQwTFwp49e5bNzc05y9jn88m6GrPB5XLRbDYrnmAoZeNKkbCp/L1KSPfjnT17lq2trZs6R0ke4+PjrKyspN1uT+nDLnUUCdvR0UGn05nzzJOn+3KJNMHwzDPPsL+/n6urqznPo5DJKKw0PFHL8zM+Ps76+nqS6jSNS0tLbGtrY2VlZcIEQ7o+vRSa6IzC1tfX8/Lly6oW4oUXXuDk5KRq1xdFkXNzc3zllVeiEwxKzilm0gp75coV1tXVqV6IGzdu0Gg0pnU1bhW5CYbnnnuOzc3NOTXcCo0EYeN/hJWVFRoMBt65c0eTglitVlV8wekmGPR6PZ1OJ5eXl9OmL0Zka6woiuzr6+PJkyc1K8j333+val8uh8/no8PhKMkJBllhHzx4QJ1Ol9IfrNZdbbfbE1ZjaIU0wWA0Gnn9+nXN81cDWWGPHTvGM2fOaF2W6PqpfC1um5qaYm1tLa1WK3/44Ye8lCFXbBDW5XKxuro6b35XaQd8PhkZGSn6CYYEYYPBIE0mU179rX6/n3q9Pu9Tcn6/n06nkzqdjoODg0U3wYD4FYgjIyO0Wq15LhI5PDxMm82maZ7pJhhaW1s3NcFQCJZ1tMb6fD4+u2sXv//b37i+tpbPMkVnkm7fvp3XcsQzOzvLuro6WiwWfvfddynTFYKoZJywDoeDDocj76KS4R/n6tWrNJvNeS9HMuPj4zQYDGxrayvoCQaQYXNfr9fT5/MVhLASdXV1vHLliuyxXNWMrVwnfgdDf3//hh0MhVBrQSZ6feKFXV9bi/7JvY//LBm5tEqOxeOanubemhr+luS0SHV+cjmTv0+u8Xq9bG9vL8gdDLh9+3bCktBUP5bceyX/38wxuc+bm5t5Pm6NVSYxtRaXDM+AWSwWms1mulwuVfNSCkgmjNXW19YSmpJMoqSqxcnplByT+1zqJiRXYy5utM2itGmdmJhgdXU1bTZb3icYKgBAr9cnbIaOj/Cy88kn8e9AIOXG6Z1PPhn9UwOTyYTW1lYMDg6qcn0lKI14c+zYMXg8HjQ0NKC+vh7d3d1YXl7ObWHSRFVi3OFoqIJ04ikh2/PTMXD6NC5fvoxffvlFtTxyxY4dO/DBBx9gYWEBa2trMBqNWYVoSNaRCfeYmJAwIf6WVHUzGTPpmsxcGU+pmnoyvBXTbrenPD9TH5sva39+fp5NTU00Go2y+5bSIYpiJOxDKOlA7DVVL6F4lWK+h0FK9wsVKlKIhsbGRhXdpZEbQFQobL5FlSgUl2c2SBMMnZ2dG2axlBlpIdlPw+eGj4nMEA7o34GAqn3nZnnnnXfw4MED3Lx5M99FyQhTxI50OBxwu914+umnsX//fnz88cdYX19PeEZCqnPDxCQjw0H7Y+krAIgAqTwQdaEwOTkZCztUAB6ebFhaWuLx48czTDDEaqgoiglhmXqOIiFSHoBoSMSiE5YkLRZLScVqnJ2d5UsvvUSLxbLpNdbdR2NiLk5fIgBOu4tU2Dt37mS1FbNQGR8fj4ZoyDzBEKLIRdqEI1yUavXizaiwmj/bbiswqc85ePAg6uvrMTw8nJ8C5Rjp+7W3t8PtdsNsNsNsNuP06dNYXV1NcVYF7rtuAU4bjJF+t9t5GC09l8LP6FX5JlQNaStmsS5dSSbZXvB6vbTb7aysfI6jo6Oy54RDDcf61+k4L2bRCkuG55Dlor6VEnNzc3z11VdpMpmiEwzSTeA8GhNTEll6X/BNMdOY/qdPn8aVK1fgdrtTpikmUn3XYDCY8F6AAHpuYEh0Rh+Nbv1jJ1oAzNyaBpCH58dulnQO+GeffRZdXV04deqUhiVSj/jv+ujRI5w4cQI22xGcPHkS8/PzaGxsjD5H0PVXF7qbD8dOdj/ANQB7Ig/kKOqmmIxFfdNqK4ra+P1+9vX1pVydIdHdEml2RVLkIlsAAraohVz0wpLhYUJy1Ldic14Eg8Gou9Fut8e5G0NxPolQLHy/EO+YqEh6NkOJCCuth1ZzK2aukNuHK4U4yuUEQUkIS8a2Z6ixFVMtpCU1mwlKppSSEZYMR327ePFiXvLeTNMv7bI3GAwpx6jZUlLCSk8RURLQOh8oNYxyQcEPdzLBuLGf2WyG1WrF0NBQHksUJr5coiji888/h9FohNfrxfz8PM6cORN9+rVaBSgpkqO+5Zutxn4URTEry77khCXJ999/X3F0VrXIhWFUFjYJv9/PXbt2cWFhQfO8tTCMlFD0fawcOp0Ovb29mroal5eXcerUKbz44ouoqanB4uIiOjs7Nct/A3m7pVQmEAiwuro6q62YSprCVB6jbPvIbCkZYeV+xC+//FLVOFXXr18v2KDYJSNsKsxmc85DL0iG0f79+2UNo0LwU5eUsHI/qMvlylnUt4cPHxaEYaSEkjKe5OZuGxsbYTQaceHCBcXXYdKEt2QYmc3mwjCMlJDvOyuXpGoC4x9YvBlST6UVPiUlrByS2Ha7nX19fYrPy+QxStePlvvYnBKK/BveoRYNcxT51Ov1JkR9S/XMATWn0rSkRISN7TJLR19fX3QrZrKwS0tLfPPNN4vCMFJCCQgrv/tMDrmtmFpOpWlJCQjL9DVVTHwdHh7m4abXI4bRfxelYaQEgUy7Z6/gEUFUQH6JamSlJtwzo/h59zs4tAcIhULYu3cv1tfXUVtbi+HhYZhMJk3LrAVFL6wkXmo8OCoY8a6b0cXVLpcLoVAIrx0+nOHc4uWxfBcga0ggxaJykhjrvQTabPjDHhHS+nir1RreaJyUVml0mGKg6D1PyWJIzQ9JuP6nBzx8CJjihuPJ5224TnE3ZMUvbDJRee7PYIaH8Kfnia9t+6JbDZXWyWKvvSUnrETvJRc+/eMhAEBLrTHhWLHXRiWUjLDxYs2MdePcuXOoqKhAhfE/EV9PieKvjUooGWGjEVc805hBYziiCom/z3yOvXuqY+kAhAdJpU3xW8Vx0O1CRfctcPLT6Ge//OwBsBvh8HTSfZxq5FtC5MUtklPCu9Eu9tiiO9CkXd3dLbEdaS09lyJbDrcH/w+Yt1Dt2qmg0AAAAABJRU5ErkJggg=="
|
<image>如图,B地在A地的北偏东60°的30km处,C地在A地的北偏西30°的方向上,∠BCA=30°.直线l表示经过C地并和BC垂直的一条公路,则A地到l的距离是()
Choices:
(A) 不能确定
(B) 约42.4km
(C) 45km
(D) 40km
|
45km
| 10,888
| null |
45km
|
"iVBORw0KGgoAAAANSUhEUgAAALoAAABbCAYAAADEFp/WAAAcC0lEQVR4nO1df3BU1b3/3N11N1k2u2HJShLJiyFkTRN5E0AQMZ0gJPxw9IHEDlTRMlN8kQQFbWmJP19HO3RoaEVRB6TRVF4FxyH4A9sKTp1Aa0EFRwlY3gsCGayQEEjA/Hrd+31/bM7N/XHu3bu72ewG9jOzkHs/55x7fnzPud/zvd9zjkBEhCTCBhFBEATp+tSpU2hpaUFraysOHDiAS5cuobu7G/39/Whvb8cXX3yB7u5uTJs2DQcPHoTD4UBfXx8AwO12495778X+/fsxadIk9PX1YebMmXC73SgqKkJJSUmcSnnlQEgKemjIhbqtrQ3bt29Ha2srTpw4gU8//RSnTp1CTk4OlixZgszMTNx888248cYbcfbsWUydOhU2mw0dHR1QVzURYfTo0ejs7AQA9Pb24uuvv4bVakVTUxPa2trQ0NCA06dPo7u7G/fddx+sVituvfVWlJWVoaCgIKIyXI1ICnoIdHZ2YsuWLfjss8+wY8cO3HPPPfj+97+PCRMmYM6cOcjLy8OJEyc0QgwAgiDA6/VyhZzxAOD3+/GPf/xDlweCgnr48GEQEQ4cOIB9+/bh3XffRUFBAZYsWYKbbroJt912GwRBuOqFmgu6CiGKouJ/NT788ENavHgxAaDCwkJat24ddXV1KcIAIADkdru5aQCgoqIi0qtiFt+It9vt5Pf7dflx48YRANq2bRutWrWKAFBVVRWtW7eOzp49qykvD2rOKOxIxlUp6Dz87W9/o+rqapo6daokgCUlJdywdrudBEEgr9fL5d1ut6EQZ2RkSILMAwCyWCy68Z1OJ3k8HgLAFUyXy0UOh4OmTp1Kr7zyCjeNqw2W4X1/JBa+/fZbrFq1CjNnzsT27dvx4IMP4pNPPoHdbofT6cThw4c1cSwWC2w2G4gI58+f1/CCIKCrqwtWq1VXXWFqBZuMqnmHw4GUlBRu/PT0dHR3d+Py5ctcFcVisaCnpwd9fX04ePAgAoEAbrnlFtx9993Yu3evYX3wnnfFIK7dLE6or6+n/Px8qqyspPfee0+6b7VaCQC5XC5uPDO8IAgano26oeKzUTzS5zPO6XRquN7eXrLb7ZSTk0NLly6lzs5ObhpXKq4KQWeC9swzz9DUqVOptrZWEyYrK4sAUFZWliIei4sBVUTOy2GWz8zMjCq+EZ+RkUE2m43LC4IgpfHxxx9TSUkJVVZW0sWLFxXhrlQd/aqwurz44ot47LHH4Ha70draquHV1g0eb7VaEQgERiTvcDjg8XjgdDpx8uRJ6X5fXx/mzp2Ljo4O7N27F9dee60Un9UJXSkWnDh1sGHB008/Tbm5uQSAJkyYwA0DgBwOBxUVFXH5zMxMaSTkjXbx5tmbSK8pGafHW61WcjqdZLfbadGiRfTBBx9ww410XJGCvn37dpo+fTpZrVbJBMcTEqfTSVlZWSQIAjedUNaTROXlcwKn0xnShMn4M2fO0OrVq2nx4sXU2trKjSNPfyThihL0lpYWuu++++g3v/mNNHEzamSmt6ohiiJ5vV7D+KNHj05onpkwjcrP3hZqnD9/noqKiujZZ5/lxh2JuGIEva6ujhYtWkQXL14kAJKgyiGfWPp8PvL5fNy0HA6HpNKMRJ51Yr3yYcA6E0rd8Xg8VFZWRjt37uSGG0kYsYLOhLa+vp5KS0upsbGRiMjUSM5e+Xp8KCFKdD4vL0/3TeX3+0PWD1P3GNauXUs//OEPFemMNIwIQder2NWrVyter0zI09LSuOFtNptpOzXvmUNhZ48nH8pOzzoAzw5/8eJFKi4upvr6em7cREfCCzpP4Jqbm2nOnDnU1NQk3WOTqmjt3COd17PTs/mIUXyjibm8Ezz++OPcMImMhBd0NX75y19SVVWV4t71118f8nXMRrskHz7v8XgoIyND6iR79uyhyspK6unp4YZPRIwYQRdFke68805qaGhQ3Gf6ql4jxdvOnei8GTs8U/nUqKysHDGqTMIKurxRPvvsM5o4cSKdPHlSEYapK1arlZtGotq5RwrvdDoNrTMul4uysrJo9uzZXD6RJq0JK+gMBw8e1KgqRIMTr8mTJ3PjjXQ7eLx4JpyhOgHjANDRo0cVVplEREIL+ssvv0yrVq3S3BcEgTwej66JjY30iWrnTnSeCfC4ceMMeXUnWLhwIREl1kjOkBBOXSRzHGJ/P/HEE3C5XFi7dq0irMVigdvtRmdnJyjYURVOR+xvh8OB3t5ezbOSvDHvcDgwduxYtLa26jqQud1udHV1cXmfz4e2tjbN/XgjIRZeqIX8Zz/7GUpKShRCTkTSgge5l55cyG02GwDA5XJxGzHJh+b7+/tx4cIFrhCz+KIochd6p6eno729HbNnz8aRI0cSayHH8L9EjFFVVcVd/sWck0LZkbOzsw35eNu5Rxofrj/+qFGjiIjoxz/+MZ0+fZobNh4YEkFX6mQBE2H4mDFjBh07dkxznwm5Xr9EjO3ISd4cr+4EtbW19PHHH3PjhAP5AphIEbWgD9W0o6qqir788kvNfT3rCSt4vO3QVzsfyg4/bdo0+utf/8rlwgN/ADWLYVFdQvXG2tpa2rRpk+Y+q0CPx8ONF287c5IP8npuA8xVeNKkSXThwgVuGLOQtiiJMH7MBT2UkK9evZo2b96suc8qWK+Sk3byxOYZxxzEKisrFfxQmCDDSWGIBD2gePCRXXXUeCR0NrZs2UJPP/20NlMDlZSXl8eNF287c5I3Z4cvKCggokGhvvPOO7nhhwNDNqKL0v/NVA6EFPQvvviCli9frs3QwCig91mfVWIi+4MneS0viiIFAgHdtbl6qK4YfLOzX92uI2GlQRQD1eXXK6upoqKCmkO8WHi928ifWhTFuPtzJ3ktL1dBQsV3OBzkcrl039R6qK4QJOE+squOYGIgVWNIBb1xQzXV7dpJs2Es6Lyt3lhvNbLTCoKQcHbmJG+eZ64ZDQ0N9Nxzz3HDaXGUZmM2fcnkqblxUNDDkHVTgm5q4tDcSNV1jcGMVKwYuKk1CdXW1tKHH36oSBvQ2mnlzwSM9yI0w0drJ5anL8+bXv6H+vlsFzAz+UtEXl2+0tJSOnz4sCasWtKO7Kqj8po66bq6AgPX4ZkbQwq6kYgHGzz4wJqammDY5kZFxuTpbPvvNzT+ywB/ITMDz04rF7RIeL30zdqJI00/Ej47Ozvs+NHWTyx41knl3KxZs0KOyo11KxW7jDUeEWVRzAt75KqLLIONG6oVk4U51VpB/+TQl1QxZ57y4dCuRpdXRCzswPKvbGlpaQpeLejxtkMnip08VjwAmj9/vvKmSvCrK5g+HpDkLFz9nCgMQddNekBlkZsWq+saNcGWP1CtSAOAtIsWD8xOKwgCd6Rlb4FQvF76Vwofbf3EmjdSR61WK02aNIm2bt06GEaeSHMjCRXVMq6ZZgNc+QoF096L8t33iP1x7G0Iqz/Aiz9ZKPH/03JCE/fJJ36B2+fNk8Iwj8NTp05xPdxSUlJw4cIFOBwOiKLI5Ts6Okzxeul3dHTAbrdLrr5m4rO/w00/0vyZ4aOtn1jz8vyzdhcEAT6fD4FAAIcOHcInn3yCr776KsgBAIJp7vrTHqyYWwEgWPfC0eP4EMD4CeaPtJEQdtcY6HZ11eVSj935ZVBXCto8g5MSpqcfOnSIqh58SIoKGK/xZGnq2WmZvhYpHyp9Hq8eiYY6/Uh4vUMEoq2fWPMs/8wEyeq2rKyMAiq9oWbOoJrCvs8As4MWvTC1F3OCLpK5hDlh5s6dH4wuiuT2jFEUUg12ikOseFbJejqxIAiKj1XqVzJLX91J16xZQ7t371bMU/SeH2ovxFCr8eNZf0PFq8snEtEvfvEL+sMfthFRUP2VT0Cl34A1LxLngei9F0VR+WDZxa2lNw1MNp2U6vASBJs0mttsNsrIyKAZM2YodtdivNVqHXKe7UDFJqEsrHyUke9ZyBrG7XaTw+FQuAvL48uPamHpMN7hcCj0Vbk3IPvJJ23yX35+viafsayfWPOCIFBJSQm3rH6/X/ctpRKriDBEbroB1XUQdyyYQ0REaU4fASnkTHVzc8wKy9shaqh43oai6pMoGK8eyZnQu1wumj9/vkJ9KCgoUAg5ENzXccGCBfTcc8/Rhg0bpNX08r0Q5dafvLw8qVPFqvyJwOuVj3V0j8dDDz/8MDcMUXSOYDHzXrxt1gz67PMDAwV0ktvJ30GqoKDAcEsFxsvVDXmB/X6/oYmSx8vBGkC+ELi+vp7uv/9+ysjIoLKyMnrggQdo/fr11NLSQh0dHVK4pqYmScCzs7MVbg29vb20efNmevXVV+n2228nh8NBM2bMoNraWsUOY2asE4DWwY2FMVt/icqzDsJWhi1btowOHjzIDRsNhkR1kf9PRPTu+4305H/V0ve+l0d22zUEpPAfrjPSynmjkcCIZ18suTqhbHkYG0nfeOMNmjNnDl133XW0fv1604sF1qxZQ8XFxZSbm8tdHaXGG2+8QVVVVWSz2Sg/Pz/kF1H2NtDjQ9VfvPlQ7edyuTQqS7iOX2YwBCN6QCPsLjcIQuRCOly8y+Wi3NxcKikpoaeeeor7aozl1g1/+ctfaMqUKVRaWqpZeGJmf/ORyouiaLhyafPmzfSrX/2Km26kGGLVJUBvNW4nf+F1BAFkEfQrweFwGLri8nj5SBxJfIbU1FQCQLNnz6bXX3/dbOHCQrgdZNOmTTR58mRqamrSVVcYoi1/IvA+n8+wk0yfPl1zP5rDf4dcR78ubyxBADmcIJ4vAgBKTU3VXR7HXtex5P1+fxjec3wMyQoZTsMtW7aMsrKyDDfxj3X9xJJ3uVwhdfacnBxyuVz0yiuvDNkbdUgF/Z133qHrr/833UJE6w8NQDqXR4+Xn8kjx/vvv08AaMOGDSZLE1/U1NTQrFmzqKWlRboHDJoyeUhEf/VweMax9p06dSo3XCQYUkGfNGkSeTwers2T9eJo9g1xuVyGIwmbHKmxdOlSevTRR2O+VdpQpi+KIp07d46WL19Oa9euJbfbHfK4mkjqN9Y8A2sbI97n8ynab82aNfTnP/+ZGz5cKGpN7BalX7j46KOPdAsRykGJjdSR8mlpaeTz+bidoKysbMQfGrtp0yYqKCjQPSzXzMQwEfZ9CcWr3Qa6urqotLSUGydcaJ4ciZATBV8z58+f19xnHop+v58bL9p9Q/RcQZuammju3LmGeR5pAs8zu40aNYqAoCcoD+wUC703QaLvC+P3++mjjz7icuFgSAT9+PHjtGzZsmB8zseOjIwMbrxo/ZmLi4u5/Pr16+mRRx4JuxwjAQsXLqS9e/cSkb7vCIPa316NePujq3neF+msrCwqLi7mxg8HhoKuVmV4qo3YLdKDyx6kAwcOKNKZMG4CjRk1hlKFVM1DxW6Rsr3ZlCqk6lbC6NGjKVVIpVQhVdP5xG5RSlvxxbRbpEceeYReffnVYD7FyNSwREdNTY3C/4WHaP3d47EvjHqQZG+isrIybhpRmRd5QqV3zf4uLCxU3GcCLPVUVRz5viA8QXQ4HJQqpEo6mzq+3LlK3gmX3r2Ujnx6RLqWc4oyjDCVhYc1a9boqgNG+66IomjIh4o/HDwzPDD5ee2116I+3DcsQedxTR800cP/+bDEAaBUIVW5JQKnEzgcDu6IywQ4PSWdm+FUIZWsVuugP/NA/MWLF9PZU2dN5Xukgwn3W2+9RWvWrFFwrP7i7S8fDa8+B1YURd05nlmEXGEkpAqgHtLlN27eiBWPrICQKij237506ZImrM1mgyAIGDVqFHp7exV7mzOexe/o6JDuB8s/uEJl7NixUvpEhMceewxLliyBz+cLVZwRCVZ+BlYPlZWVAIB9+/YBgFR+t9ttuD96WlpawuzPLi+bIAhwOp2aQwYEQcC0adPw7bffatI0DanX6LzmjTixW6QbbriBRFGk9JR0afLAC4eBnpyXlafhiLR2WPWIzHhfmvKL4Zbnt9BTTz3FjcP7m4jviJbICJXPe+65Z7B+dL6oMvNeIu/7AgPrHACqqanhcmagEHSjV7wk7LJKf/311+nl376s0cnl6TEhldtR1ZNaxqsnrur4zITG7r+/833JusLuBb4LaMoT6beBkYSCggJD3xKjLUXU7RMvXu+LN/sa7PP5Ih6cTH8Z5QlKbm4uud1u8vl85Ha7g+FUGYnWjmrE/+hHPzKb/SsePT092q0jSKnzjsT91RkHgFauXEn79u3jhgsFU4LOG82JSFoQoZfJcOyovEowih8Ln+WRjqamJqqtrZWuWd15vV4iit++NZHyubm50nJCIqLPP/+c7r//fm7YUDAUdLmKoa6k3bt3k9Vq1T2iL1o7rVH8xx9/nHbu3GmU9asWK1asoHfeeYcKCgrI7XZTTk4ON5zX6zUcpBJtf3UGPXkLhYiduh566CFd34tY2VlFUaT+/n4qLCxU3EtCWQ9sFNTb7SDednIzdvTCwkJuJ5g4cSL19PRw4xkhYkEP1RNjZWf1er20f//+yDJ9lWDdunVxa59oefVCdTVKS0vp+eef53JGiEjQL126xHWYUvsbq0dbM/7IoVaeLFiwIGT+kqM8UUVFheZevP3NzfJpaWlcnlln7rjjDi5vhIgO1N29ezdmzpypuDd58mQEAgFkZWVJH3PUJzqreTlY2La2Ns0HEgBIT0/HuHHj0NDQEDJ/6g9RVwPUdXbXXXehtrZWus7KyoIoiob1H6p9hovv6uri8na7HYFAAK2trfxKMEI4vYKNlMuXL6fjx49L9+V7mvDCw4Qd1Waz6fLMRFVVVRVOdq8a6L3B8vPziYgUu17xwGsf+b4zZtpvOHhmwp41axY3nBEiUl3k2xOMHTuWBEGgKVOmcMOGa0dVh2G7a6ldNZPqSWjs3LlTslzoCVEoO3Yi2tnZl/BwELagf/fdd9JGPSwDzE6rRrR2dGBwjeTatWvDzWoSRKbrfyTx8hNTzMKUjk4y/a+trQ12ux2CICAzMxMAcP78eU2cMWPGSLoWcXRur9dryGdnZwMA2tvbsXz5clRXV5vJahIqPPvss9i+fbt0zeo6VPtE236x5AsLC1FeXq6JY4hwe8a2bduklS3XXnutgmOj8lDYUR0Oh6Qi6X30SCI0AoGApv4U6wEM/Nn1Nv2Mt51d7cZrBjYTHUFhxTh27BguX74MADh79qwiDPsBgMPh4LpqmuHdbrfkqvm73/0OP//5z3Xzk4QS6vqxWCyYPHkyvvnmG2RnZ8NisYCIQraP3W5HX1+fLh9N+4bLy8uUmpqK3t5e+P1+g1rQIrQ/ukqo9u/fj0AgoPEXBpT+xj09PZq0Qvkrp6SkICMjQ+GPvHXrVtTU1OjmJwkl5PVDwTkY7r33Xvz+97+HIAggIskfXd6GRASr1QpBEOByubhCHg9/dXmZWL4zMjIwZcoU6ZQMMwjbjv7Pf/6Tq1MxO2h2djYuXbqkEUgzdtS+vj60t7dr5gRJRAb2hp03bx7efPNNZGRkKHRfeRu5XC6IoojMzMy429H1eKZJtLW1Yfr06fj73/9uui5kgi4/iyb4N0n/DOL48ePcTOTk5AAAzpw5w+XZaPHNN9/o8larVSHkn376KebOnWu6MEnwkZaWhsOHD6O9vR3t7e0aXhAEpKSkAIBh+8SLt8h4Jh+XL19Gd3c3p7RaEES5oFswKOzB2wIBEAY7wJkzZ7Bo0SJNJvPz89Ha2mpoPQkEAtyDnbKysiT+X//6l4LbsWMHbrvtNkUBk4gMlZWVaGlp0bxpx48fDwDo6OgI2X7x4knDi7j77rvx+eefK8KqVTEGARb1p0zVVFV1fejQIaqqekC6BrQHb/HOCY30HE35ipnkB6Lo0NDQQE8++aTiHvtGwfMSJUpcOzqDPN/Bg+LUv4GDvUhtRx/o7CS/lnWy1tZT8Hq9AES4XC54PB5cc8013Imp3A7LG8lD2WmZzqZON4nIcMstt+DcuXPStcvlktQY9cRUEISo7eyx5uXfcQDgxQ8I1RVA4xERoiiCiFBXLaBYqMAxImVXUZwAXV5DIjVTNTsFOiDS1q1b6aWXXpJ8W/RGasZL+7KoFiOHspMyv4fJkydz+SQiQ1FRkeIkED0vwnjbyc18Z3E6U5SaBDXT7Art4unqiuBRoBYAEI/tgiAI2PT1eMkkRRvLYRGKgfH5wS5jEdDf34+a6mr09/cjJydHM1LTgL2zv79fYQeVH6TK49U9NRAIwGq14uabb9bwSUSOo0ePIiMjQ7o2sn4Ztc/w8qLCHiJY7AAssNnscDqdg2V7+48Q/HkDYQflcnxBOfYeb4FFpGbMLboL5TV12PvCTwZTLFqIuupy5BdMCF4T8H99/SAAHo8Hp0+fhtJSE/w44XK5AEC3EC6XC0Sky7NThV944QXk5uYqeEpOSKNCcXExOjs7dU+0Zh/rAP3283g8w8xbBk8ctzgQ1Kct6OzsHBhAgzL4pw/+hHkV7HTyQY08P98PEMHyzm9fwl6hHBsHhFzE4JHh+fl+jM8vliId/eoYXC4XLly8OBBmMMH09HR4PB5cvnyZO/sdM2ZMSB4IdpZz587B6/VqGiOpp0eH8ePHIxAIGH4MUm8exMDqPi48BYV8fOH3AAEQ6f9AAMZ400EIgHAEf3yJMH9BkTwKAKCl5TjKb5gAy4s/eQnVv65B0YAMWTD4GX/hoy9iYfEAIQR3gHrvvfcgQCl0OTk56OzsRGdnp5RJ9j8bpTs6OhS8vICMt9vtkonx5MmTmhE9UfHoo49ix44d0rW6DtRYuXIldu/ePSx5k6Orqwvfffed5j5TF91uNzfPo0aNAhBsf55hIea8axRAIk58dQwU6AvKH0Rc68uEgGsgHP1fCDVzUTQwnhMG7CpHd+GnL+3FvIp5wft1u45wlX412Mp8+Qp9ZgJiR3IAwd2YmOOX3W4nj8cjHT+uxwPBZXTMwR4A7dmzJzjRkJkWE83MWFRUJE2czSwMYeG9Xi/94Ac/GNbyrF27Vmo35ufPfh6PR2pXh8Oh4Fl7xJe3Uap3LMFip6xxeQQB9O83TqTz51qpcUM1Vdc1aspbUw7CnOCx6oDAE3TtIVsMoRpmqBpu4sSJipUx6oYZ7h/Li3zxLuuc8uvMzExNGPVAwH7y/d3Z7rGx/I0bN04aPIiCO62tW7eO3nzzTW4bbNy4kerr62njxo3cNh4O/rXXXpN4URXmroX/QSI1UzlAjUdkbHNjsMwVK6RbKIfA7Q3U3Gh6pI8Uw9VpYoVjx44RAOl8e71VVgyHDh0iq9VKBQUF0i5nSUQIkaj57Q38QQkWSXaZBIHZzuVC/WXjrxW9wdRzE1i9iCXq6uok1cUMnnnmGbJarZSZqT0yfjjrbbgPD44aovJ/zUf8EGeQCkREzW9vwI0LfwqG8po67NkkMzWaBA2Dr/hwPCORn3/VQZpZhqbUbUNEECAAAiAQEQWNihbpi78gi8SNHEZDhwqf6IIzVPnTS0d+P551wXt2tG0Xa14LEXzPc3FA0Dm9xqAjJZFE3KCUy0HBVg/Qan7AH1eZmIiAoZCLCBiwST7Jx44XFLxl8HsN4wUBpHI3ByTVJYkkrhzwVJ6ItqRLIolEhXyBvhz/D9i/JOiJVEEZAAAAAElFTkSuQmCC"
|
<image>如图,两个半圆,大半圆中长为12的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()
Choices:
(A) 16π
(B) 18π
(C) 32π
(D) 36π
|
18π
| 10,889
| null |
18π
|
"iVBORw0KGgoAAAANSUhEUgAAAGgAAABkCAYAAABq3nXaAAAM60lEQVR4nO2dT2zb1h3Hv/Q6gB02VO1JtxBbsjDDDjSGLoxSwNzWzXJ7CLMiqYoerJOiYgcru8QBBsguCjjBCkhZB8jIIUpOanORgSIWchkVILPcXpQCRWxEBpQE3agdCvkSUK0t/XaQKUsW9ccUKVKqP4Bhi+J7fOb3vd/7/3sMERGOcC0TTifgiO4cCeRyjgRyOS85nYDDks1mkc1m8ezZMzx9+hSPHj3C9vZ2x/tZloUoivB6vTh58iQEQYDf7wfLssNL9AAwbm8kVCoVrKys4P79+1hZWYEgCJiamgLHceA4DoIgwOPxdA2/vr6OUqmEzc1NfPXVV8hms5AkCefOnYMsy13DOw65EFVVKZlMkizL5PF4KBAIUDKZpHK5bEn8mqZROp2mYDBIHo+HJEmiWCxGxWLRkvitxFUCaZpGS0tLxPM8BYNBSqfTpGma7c9VFIUikQhxHEeRSIRUVbX9mf3iGoGSySRxHEfz8/OWlRQzxGIx4nmeotHoUDJHLxwXKJPJkCAIFAwGXZNzy+UyRaNR4jiOksmko2lxTCBVVUmSJPL7/ZTP551KRldUVaVgMEiCIDiWRkcEyuVyJAgCKYrixOMPTT6fJ1EUKZVKDf3ZQxcomUySJEmuMWf9omkaBQIBikQiQ33uUEcSLl++jAcPHiCTycDr9Q7z0QPDsixSqRSOHTuG8+fPd+0cW8owckG5XG70NcaBdDpNoijSxsaG7c+yXaByuTxS9U2/bGxskCiKtjcebBVI0zTy+/1jJ45OsVgkQRBs7bfZWgddvXoV09PTkCTJzsc4BsdxiMVieO+991CpVGx5hm0CLS8vo1KpIBKJ2PUIVyBJEqanp3H16lV7HmBHsczlciRJkiuGSoZFOBymRCJhebyWC1QsFkkUxZHr5wyKpmkkSRLlcjlL47VcIFEULU/kqKCqKnEcZ6nlsLQOWllZgdfrhSiKVkY7Mni9XszOzuLatWvWRWqV0pqmDaVf4HY0TSOO4ywz8ZaVoOXlZYiiCEEQrIpyJGFZFnNzc7h+/bo1EVqhstW5ZtSx0ppYUoKuXbuG2dnZkRsAtQuWZXHlyhUsLi4OHtmgCtvRchkXrJjoG7gEraysOL/OLHMJDMPs/1zKOJeWJubm5nDjxo3BIhk0l0iS5OBgaIHiPhB8cSo0rq1SCCBfvNAl3HBQVZW8Xu9AcQwkULlcJq/X65h5Ww0dFKdOIe4zvO4Eg2bggUyco+Ytcwlv3fQhfmcOx42+X3uMwrDTZMD09DTu379vPoJBckcgEHBkIUXDtIVWDb/tVLKcoFgsEsdxpsObFkjTNPJ4PM6Yt0KcfAAZ61MXzw11kA7P86anx02buGw2C1EUHWy9+fCrEwaXM39HZM2Hi28bGj5HePfdd/Hpp5+aCmtaoAcPHmBqaspscAtYw+O2SiaDS2/dhC9+B3Pu0QeiKOKLL74wF9hssZVlmdLptNngA9NWz+yZvU71kpNsbGwQz/OmwpoWyMnlsHX2GgrQf3zkomqnDZZlTdXXpjdwvfzyyyiXyyOzU81pTp06hXQ6DZ7nDxXOdB1UqVSOxDkEXq8XpVLp0OFMCfT06VNwHGcmqK3cvn0bk5OT+Oijj2xbBjVsRm4TcSc+/vhjLCws4MWLF3j8+DGeP3+OmzdvOp2sBkMtQW40b9evX8eLFy8AAN9//z1u3bpl6oXYBcuypkq1qRJk9mF2UKlUsLy8jO+++w4Mw0Bv87z22muYnJyEx+OB3+/H1NSU89MiJhhZRxbb29tYWFjAqVOn8OzZMzx8+BAzMzMAAJ7n8eWXX0JVVaTTaRw7dgx37tzBq6++ijNnzmBhYQHr6+tDTa/pettMm17TNGJZ1kzQgVFVtbEjOxqNHnodRC6Xo2g0SqIoEsuy5Pf7KRaL2d6nMzvtYLqjalJb0xSLRQoGg8RxHMViMUt2FGiaRplMhiKRCAmCQF6vt+GTwWqfCWY79qbf8iAjtIchn89TIBBo7Li2c/RcVVVKpVKNjMDzPIXDYUqn0wNnCI/HYyoO0wL5/X7KZDJmg/dEURTy+/0kCIJDc071MbREItHweCKKIs3Pzx/6/x5k6tu0QJFIxJYtjfr2QkmSbM0AZsjlcrS0tER+v58AkN/vp6WlpZ6mS1EUkiTJ1DNNC5RIJCgcDpsN3kYymSSe50mW5ZFZfJ/JZGh+fp4EQWj4FEokEm31VywWM7073LRAVqxY0TSNYrEYcRxHwWBwKHWaXZTLZUqlUhQOh4njuMb/lEqlyOfzmV44MlBTzGzTsdnVSiQScaWXqUEpFosNnxATExOmGzctHVWq1VDd3f+p9ZiIOOyKlVKphMuXL2NychIAkMvlEIvFXDnwOigcx6FSqaBUKuHChQvmRzDaJKvVqLpTpVqtv1zSz4oVO/owbiccDlM4HKYLFy50aIW2Tjj64gWi1VDbQpiBBCLq3h/K5/MNYezuw7gF3WlHIpHovPJpb3q+eeVRIe4znBXuIlD99+5OlXZ3alQjolq1/rla2793ceFDWlz4kKrVfUUVRaF3/nyBTr9+hm7fuk01g/ib4zWk032G1/evtaR7t9Z6/26fuc4k+Xy+xWlHJpMhv9/fepOBOHVWKYQQHVxR0b0E1WpUbXmJNao2/sn6d/VE/YaqO1VKp9MkSX+gN9/8U2NBSW23+cW0ls7W71oS0XRfjWqNTNElfEOIvfQafu6SIQYklUqRKIotDZ5gMNjmb67zosoCxUPt13uauFr1wEtoKj27eznz7Jk36OfcCXrnvEzKvxSDHL//kjp+dyANhsJ1C3/QNPf6bCHRaJQCgUCLKdNdmLWat8Mv7O8w3cAAzN5fEwyYupCgGsAwzbcx+NFLE/jgL2Go//sGP/npz8DzJ821VtpaL/Xa081sb2/j/PnzAIBUKtXSUltcXMSVK1daW29bT/A1gF//sv9Few2BqFpDtWr0ShgwE0CtSqAJBsz+ZTBEqBHw/vvv49KlMKrVXfzu93/EJ//8BNTURiddbwZgQMbftT2VsL/eaO/vQ4S3m83NTczMzGB2dhYLCwst3+luoGVZNgjZYUVsJ/SipDcAdg3NQI2qO6sUP1g0m8zcf775L/2C46hUKlEk8lf67etnaO1hrr0h0LGRUL9uZEIP00ioX+v1eTAURenqjqzz1EJnE1eIx9saCER9jyTUaPXSj3vazuYxJ90Gu8lZrBXEYjGSJKljXy6dTpMsyx3Dr4baF1kW4r6O77YvgQrxKXrjrK/DboJ9jHZ764Ogo+7Mrx+XmJqmkSAIPccU632eA53UDnQVqLZbpd3Nf9AH8QKthjpt92jFqO1fLpcbs5ajMlLdjKqqfTmVtWMKpkcJWqWQL04FKlDc1//a507D66No9nQPxb3mfFKpFAUCAcuf31Wg1ZDesz2cQETdd9/pZm9paan/CB0gkUj05aHYTvdrnQVaDbXYSRgMQ3Sjl3uucrlM8/PzxPO8K11m6oOdvV66bv7smjIxFqgQJ19zhVOIk8/Ens9+fMdtbGyQJEkUCARcYfaaBzt7YZePuGbaBTISYzVkelNuLpcjURR7TjGkUinHzd7Bwc5uaJpmONZmNW0C4cBmqHq73ZyZ01EUpa+K1kmzZzTY2Qm9lA3j4I2hrT4sFoskSVJf2yaHbfaMBjs7oZeyYXUXhro8tFwukyzLFI1G+7rfbrNnJj12NgiMcOT0k2g0SrIs95Vj7TJ7uuf4fjdCRyKRvkuZlTh2flA6nSaO4/p2ZWyl2es12HkwnU4OVTl6ApeqqhQOh4nn+b5z8qBmr9dgp47e+ZRl2dH1eo4fkUZULx2yLPfdpzBj9vo9/6dYLFIgECBRFF3RgXaFQDq66dGdZPSy9/2avX4GOxVFaZRmpxbrG+EqgXT0OZV+z1DtZvY6DXYanaWqL5VyE64USEfTtMZ+neaXqChK24s0MnsHBzsVRWk5QFeWZUsP0LUD1x8V3Uw2m8Vnn32Gzc1NrK+vg2XZFj/dgiBgZ2cHn3/+Ob799lu88sorOH78OJ48eYJSqQRJksBxHM6dOzcyG4pHSqCDbG9v49GjR43P+sHrLMuCYRicPn0aQH1T8ai6jB5pgX4IjOw2/B8KRwK5nCOBXM6RQC5njATawo2zTOsRAQwD5uwNbDmdtEFwshNmB63r99xzTIBZxqgEAcAWnnzdvDh9BnIIWGt3DzwyjI1DPwDA1j3cxUXc2dvdsXXjLN66GcIqzTibrgEYK4G27t3F2toaTjARAIAvXgCRixxom2CMTNwW7t0F4oW9zWaFOBA5gbM3RrqJME4CFfAYF9E4EeD4HP4WAtbu3hvpVtz4CJRZwdcX3zY+qmaUcboZaQ3ti/v1BZcuPCngUIzFaPZZhsFa21Uf4oV/u+qQDTOMhUDjzPjUQWPKkUAu5/9KkMaHhyKM2gAAAABJRU5ErkJggg=="
|
<image>如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()
Choices:
(A) 70°
(B) 80°
(C) 110°
(D) 140°
|
110°
| 10,890
| null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAIoAAACHCAIAAABGe1btAAArdUlEQVR4nO19eXwVRbZ/dffdc7OyBIxgWMWwB8IeBPQzz48O4jaC4OADxhHGcfm5jLPp840PdUbHp4yg8GZAHZTR0fHhIDrv8eEpsisjEJawKCEQyHrX3ruqzu+Pk1s2MVETbkhQvh8+fPp2d7qr69Q5dbY6JQEAuYDOCrmjG3ABX4UL5OnUuECeTo0L5OnUuECeTg05HqsjxCFgsWTN/FkzPIrkD/oVSZYkZeCI8ZVRwwaimpYDxOYXdLxzDTkrK5tRFq2rUzLCK1977amnnho3bjxjzDDNzz77bN68eY7DVVWVJeKVpY5u7XcOsiR7dF3P7dKFOE68tvbNN99csGABGkM/uXNhNBoFgG5duziWo+tmR7f2OwcPISQzM5MQYI5jWdbJkycnTZrkMPupp55Zvnz5m2++SQgQQrxer9/v7ejWfucg67pOJMU2TcXrfe+99ypPVA0fPjwQCHq88okTJ0pLS/1+DwFuO2ZdfV1Ht/a7B11XARiADXZ8/IhL//KX1yhnhw4dJBL51eNPawCazTiAaVscLuBcQ/b6A7FYjNl2TVVVJBIbOnQo53zgwIFzb7vt8f9YfLyymhDCgetqklG7o8fSdw6ybds5OXmK17dq1csXX3xxUVER59yyrIqKiksuuSS/W3efVyaEhEIhj8fT0a39zkFmjFHOdF1///33F9z+o0gkoijKz372s00ffnjXXXd6vTKlDBj1+/22ZRFCKKWWZRFCkPscx8EHcc4ppYwx/AkAeEwptW0bAAghjDE8iX/LGHMcR/zJBXwZkmk5ikfKDPllymSZEH/ItB3mOJ/u2TNo6DCHkaBCFMJj0WhOTo5DudfrJYRYlmUYRlZWlizLhBDOOR4QQiilnHNFURRFYYxRSgHA5/OJOwFAlmVJ+sKKAgBKqeM4oVCoIzqh80KiADIh9bXVOSGP1+93iI/IileRY4mkHMyWZZLp9UyeNO66667t27f/kKHDCwsLFUWxbdvr9UqSpGmaz+djjMkpND5XkiRJsizL7/cTQhzHMQxDkqRQKIR/jjcQQhRFcZPqAtyQPjteWdirlwQUrKQcCKia4/UHPLJkWLYczLBt3jM36967F4ZCoS1btuzeU2YY1vDhw8eNG9e1a9fRo0dPmDAhEAh8+bmQivJh1wMAHlBKNU3Lzs7Gq5xz982KopyDbz6PIDkApmmBYyrUDIVCjuzzeP3UsYisUMlDKckKSIMG9jt4sJxIhBDZspytW7d+8skndXV1O3bs2LNnTzAYHDdu3MCBAydMmDBy5MiLLrrI4/GYpmlZlizLyC6maVJKvV4vMlMikVAUxev1IgtiUwQJL0BAShi2R5GCXplQkxBSH1Nz8rooErEpM5nH65W75YR7F/RY+/bfelxUkJGRadkUZwjHcbxeL+e8oqKivLy8rKzs//7v//bs2eM4zqBBgyZMmFBUVFRaWpqTk5OTk6MoilAWAMDr9QIAzkPYDrdgvAABSbOZ3ytH62tzMvyeQMB2QFI8wKikeBzJA0DCPvmF5587cqj8d0//XvH4CJE554lEIhgMIiugvPL5fMFgkBASiUT27du3Y8eOQ4cO7dixIxqNcs4vvfTSK6+8curUqYMGDcrNzTVNU5Zlr9crSIJS7gKFmkCiAKZlZ/g9BKip6/5QJpEUiXBOpIaYmpuT6ZWlyorPJk+evG/fvlBGpuMwNIBkWTZNE2UUPotSKkkSamXIKx6PR1XVmpqa8vLyrVu3fvTRR4cPH04mk9OmTbvkkktGjRo1atSovn37hsNhcqb6dwEIiQMQQiRCCOGEEBGgs23b6/NpmnFRz/z6+tp77723uLj4Rz/6MaWUECJJkqIonHOkQUtzBsou9+zCGOOcf/DBBxUVFZs3b96yZUtNTU2PHj0mTJgwatSokpKSvn379ujRA60on89HCLEsCw+avEUYT5Ik4YhxHAeP8b3IkahucM4dx1EUBe9sdJnIMiGEMZYulaTJ97ZwzxfHXzvVStBcIhW2mFLq8Xh8Pl8sFtuxY8djjz22ceNGQojjONgFQjn+5mCMiT5F24gQcuTIkY8++mj//v0bN24sLy8nhEyaNGn8+PF9+/YdNmxYcXExcRGDc440cLMazmTIuDilCarg/YIAtm1j+30+H3I5Wmmt+oqW0ERfbeGeL47bSB4kDE7+iqLouu73+4uKilavXl1cXGwYRjAYxKuklRqXe8jj6EblDc9gj1dXV+/du/fAgQOHDh3auXPnP//5z8mTJxcWFo4ePXrs2LGDBg3KysoS77UsC/lMyFjxIne/J5PJWCzWq1cv94vcx2nBNyPPFx3+tf3WPHncM0deXp5t24SQJ554oqqqasmSJZZlBYNBIRNs20bh8w1b7O44dAtRShVF8fv90Wg0NzeXEGJZlmVZgUDA6/VSSrdt21ZVVfXxxx9/8MEHBw8eDIVCo0aNGjFixJgxY0aOHNmvXz93M0zTdDspUF0UEliwIAo3RVHOMXm++W2kJfKQlN6sqmpubi7a/PF4fOrUqR999FFubq4sy6KXbdtGFa6ldgj2Eh1EKZVlGcUR0gmFnsfjQYee8DUQQlB9R8cdKoenTp3auXNnWVnZgQMHPvzww5qamuLi4okTJw4YMKC4uHjMmDHY4/h2PLZt27btYDCI7+WcI8EYY8lkMicn56u76Rvim/U7dx1/zchokTyCgfAbkB5XX331T3/602uuucZxHFmW0dIkLSvELZEH6SqiGuhwkyQpEAjg+WQyKUlSZmYmIUTTNOGLw57FR8myrOt6OBy2bXv37t27du0qKyvbuXPnnj17+vfv369fvzFjxowbN27w4MH5+fkejwcdsshhjDHDMBRFCQQCabSFvwF5+Jk/20QeHNc4A8myjPLBtu133313zZo1a9asIYS4b2hVcwW1BMeIk8guOCZQ1/J4PGL+aGIbAYBgXDfPGYZx8ODB6urqTz75ZOPGjfv27fP7/SNHjhwyZEhJSUm3bt0GDBjQs2dP/CvGWCAQSJd8+zry8DMP5DaSR0z78Xi8Z8+euq43NDR06dKFEOLxeCKRSDgcRrJJKbTqG0R8QejE2PUk1fuovgu5hyebfZFhGIQQFHq6rsuyjD5AHFL4hJqamt27dx88eHDPnj0ff/zxsWPH8vPzR44cOWLEiPHjx48cORI/7ezxzcjTRLh9FYW+SrihWAsEArquoxtGkqQHHnjA5/M9/vjjyWQyMzPzq/WCzgZkd03TKioq9u3b989//vPjjz8+dOiQZVlFRUUlJSXjx4+/7LLLBg4cKJRSFMVu1VwMHdTLyZlaDx5zztHuQLZENcpxLF3Xs7MzGacA4FE8hCi2TdFKkWX51KlT3bt3R+GBTW0FeTjnpmnqul5SUnLgwAG/348TrGC1zg/8ZnKmnHQcp66urqKiYteuXdu3b9+6dWt9fX1hYSHKQ9Q1srKybNvWNM3v94dCIaSZ4Hg8xi4W2qAQ4JRSv98fj8dDoYDXq5iWEY029OjRQyKKZVG/P0gIUVXVsqxwOIx3Zmdn19fXd+3atXXkQXpcfvnlv/zlLydOnJiRkYETxvlCHtRocFaTJMnv9wsFEqOIaISpqnr48OHDhw/v3r17586dO3bsoJSOHTv2mmuuGT16dNeuXYcPH44++GAw+GWTFnUQSVI8HgX5Ci1FxhzT0kOhoESAEHLi5IleF/dlDMQELAS1qqrhcFhV1daRR5bl48ePHzt27Nlnn3399deRdZqN93ROiCiiOOM4jmVZItKBX4riJZFIoP1LCKmpqdmzZ8+2bdt27dpVWVm5Z8+eadOmTZw4MT8/v0+fPqNHj+7evbuqqqjIuGwswhinlCqKRAhXVTU3N4txx7T0jGAGIbJtg88XwGkCSUJSkhAjma0jDw46WZYHDRq0c+dOZPlgMHi+xGnQaUtSXydMY5QBoltjsRiqGLqu+3w+n88n1Ev0CYXD4W3btm3duvXw4cN79+49cuRIbm7ukCFDhg8fjvphr169ZFm2baooiqJg56AkZKqWCGeEqk5XPfnE75Y+/18ABCVhUVHR5s2bFUXJyMi47bbbIpHIqlWrWk0ev99v2/aDDz7Yu3fv+++//3wMBAjVUTQbZwi3G7AJ3HogIcQwDHR3iRDw4cOHDx48eOjQoY8//njbtm3JZHLw4KFTpkwZOnRoXl7e5MmTAgEfZTYADwUD0XhDdnamTDy/f2bJpg+3vv3223V1dX369JkyZcr69evj8fiwYcN+8YtfLFy4kEALwLkO51K02FGkJhIJSun+/ftHjhwZiUTwfEsP6WwQc7j4icJN0zQ8g7oPHieTSdu2Mf0IgX50tJYcx9F1Xdd1zHUBAF3XVVXF59fXRzZt2vz73//n3Ln/Om3alV6vt3//vpNKx/3rvDkAJoBuWPVJrXbCxDGrVq3CZ/7yl7+cPn36iRMnysvLhw0b5jiOpmmtIw/Oh3hp2LBhmzZtAgC8el4A+xe9fMLzhqCUmqYJKReGZVniEtJG/HR/Lz4Qn9Z4MwdKOePAASiDSDReWVl5++23yzJRZDJx4ijHjHIaA0js27ezZ8/8o59/ZlrO88uWyop389YttsMOHTn8+htvYgNaQR7OOY4yPFi7du0VV1wBAI7jNPlblBXujz9P4e53zM60bRt5DhlLnMdOoAwogO2AajoN8cTzLy4v7N9vyLDBj/3HvxVd1v/111aBFQemA1OtaNXKF/6TSETOCBGP/67777c46JRaDCzGHQDGgfHWkAeHWzKZxBuqq6svvfTSEydOAIBpmjjE0PP4LSCMAJo7hmEgnYR4RPmGoxCPHYfpBk3qzl/++t8z58zt3bfftTfdUHHyhGbrN/3gup8s+pGjx6xELY3XgZO0605ePXXSH5Y+rwF8su9ARpdut8xbYAGoFnUA8F+ryQMAhmEAAAroefPmPf300yIPFO8Xx1/mqvMOqqq6P800TRTvQpxYloUdpWna559XPPrvi7t07XHzzDl/XvPGidPVhmNTgId+/fOhwy7jzAQwgetMbQBbrT6yP9snna6p1hgYAAvuvCuU1/V0NO4AxDSTto08osdxDty1a9fw4cMhJZ3dTMMYc4vv8x04weAH4v+maWJv1NTUvPzyyzNmzOjdu/f99z+4/0C57UAiqdkOowAv/mn5gEv7U2aePlUJ3DKTDcBNrsWWPfXEzddek9RUA0BjMGzMuD6XDT5yosriYFCgALRt5MHhAwC6rjPGxo8fv3//fgAwDENVVWyxyN0935FMJsXcI0QZpDpn27ZtM2fOLCwsnDVr1v/+7/+iXAEA26aUMwZ834H92blZFZXHAJhDDdNIAtjA7ZNHD33/yqnP/PZxClATTy64865ATt6SF1Y4ANGkajGO5OGtUg2QRUzTxFkRpfArr7xy00034VWhhopp89sBEQwEAF3Xq6qqHnnkkZKSkhEjRixbtiwejzPGVFUFAMswqe2g5K+pqbmkT+E769YyoJTahqHZlgHgnD5RmZeVkR3yhzOCRJJ9WTnE69+weatmM5NB0jCRNm0hD3Y6pTSRSOBtkUikoKCgurpaiDJBvG8BhTRNw69gjFVXV//973//4Q9/mJ+f/9BDD23evBnviUQiwmzS1AQAw38zZky/9967OafxeNRxLM4pAKurqwEOjm2ePHHcsiwKkDBNnVKdUotx1bQoQCSR5AC8DeTB9R7I79huVVXnzZv37rvvVlZW4j2Cx8XB+Y5PP/30nnvuKSoqmjZt2urVq92DVUy3qYmZxaINAOwni+74/vevNgyNc0qpjQTDEazrusMoANjUcQCqIxEbQKfUAdBtB5WCtpDH3RTB7JFI5NChQ2PHjkUJIO4U7NUhcHccxkFEw5qo/u6PEuaL+LlixYpJkyb16dPnN7/5zenTp/FRkJqH8Dn4ZDzPmcOZs/JP/zV61Mj6uhoA5lZlRaejVmZzEDq04xJo4h+0TbhBinUAwLbthoaG0tLSnTt34rfV19fjpY6lEADYti0U3ybAEeY4Dl5132YYxoYNG2bNmuX1emfNmrV+/Xo8j4oPYwyLCQj9DQmTEhXsk0925nfvunfPp5w5AMwt5LHTaYoeTcjjAD9b8ogJBj0f4s7HH3/8jjvuwJ/JZBIvdaDdk0wmhUmPGr9t24lEAtk6Go1+MaJdxCsvL//5z38+cODA0aNH/+lPf8KTtm2rqqppmtuv09DQINQf0SeWZe3du/eSPoUffvhhPB7Hk1pS5TTld3CRx24kD2eufy7CNE5grSOP2+QUGjYAVFZWFhUVJRIJvEFIuY6CWxt2jxJxHm1MZCDbtpcuXTpp0qSCgoJ77rmnvLwcXH42Yc9xzt10qqurw0dhjj8ejx5T8vvnntUs02GUchaJRGzTAg5iDAjh1ugXSC95REPxs/EbkEi33nrrH//4R9u2Ua1E33Za+rrNwK7HZmuaJjpUDPyDBw/eddddfr//1ltv/cc//gEAmPaGtzU0NKDxQCk1DAMdV3gJD06cOIEyDZ8285ZZty/6SX0i4QCopoU801AXAQ7AGimUIg/Hf41UcUEQpi3kEZea+Hodx9m4cePo0aMBAC0AABAMfu4hDGTsXNFaTD6trKxcvnz5hAkT+vTp8/DDD0ej0WQyKbxqTXQE9zE63wDANE0kGKYQ19fXDxgwYMzY8THNjOgmcoZuOxyAOTweTTT2NgBAI7FaIg/q32dFnmZv1jRt1KhRn376qeiFs+vhs4KghxCzlNJkMrlx48bZs2cXFhbOmTPno48+ahImENqdYRhutmCMxeNxwVXiAAB0XU8kEjNnzvR6vZUnqpIOMwFOR+MmA9V0HArRhhh8wRIcvmAg6gA9kzZU/BN/0LpSBeDKdsdHYm4KJnhOnz595cqVzz77rMjF7ShgFiPnjevIy8vLX3rppTVr1vTp02fu3LkvvvgipoBBKt1OLG3A4YjZE5xzQgjmG2PSAR6Hw2ExdoPB4LJlywoKCurq6jLCWZRIhmnnZmV5ZGI7lEskIzNMzgxHS4RAKrlN+toSbF89AJu1e1pCRUVFYWEhintwqTTpAuojYsgbhiGaJFyWKJrw1aqqvvrqq6Wlpb17937ggQeOHz/e2jeiOyAWi6F80zTNrcI5jvP6669Pnz79CyvqTLX47JEe4YafEY/Hf/CDH7z11lstWRttBk/VtAAAjPKKyKYINrvfeODAgdmzZ+fk5Nx4441btmwRSnZr34uqnVCghawDgNOnT+/evXvy5MkoDCHVCelFesgj4vNr1qyZMWMGAMRisTS2MhaLueMu6EExDEP0F149derU4sWLe/fuPWTIkBUrVuBJVVWxeW0gj3AKCP0C34uV1UaOHFlbWysU1M5LHkgN5Nra2hEjRtTV1cVisfSmiGC/uM0p1HdRK1m3bt1VV13Vo0ePRYsWVVRUwJlMhjeLMfTNIaQ0SkthcR8/fnzChAnHjx/H6iic89OnT6flM5sgbeRB6xoA7r333kceeQRcjp+zhzshxjRNTdOwmyoqKhYtWtSjR4+rrrpq3bp1mqahqHG/2rZtwzDa5sLAv0IaW5aFOtuRI0fmzZv317/+VdyGbp72cAGnhzxoomL7ysrKevXqld5oAjYGM5UAwLbtFStWDBkypHfv3osXLz516hSeFK50pIfbSWjbdhvkrfsJKLvq6+t//OMfP/fcc2IiFHZe5xVu6LtFxQkAMJ0uja0UjdmyZcuNN96Yk5Mze/bsAwcOuG8QLgzsUDeTnU3mED4NiV1TU7N8+fI777wTAGpra/HJ0WhUhFrS8a1nID3kEd5SbOXq1asXLFiQRrfb8ePHH3jggd69e5eWlr766quNoUnLwoxAnko2Ey0XcgbDu212zqZScByUb6+88sqMGTMYY8gotbW12EtiTko70mP3YDRXdFAkEikqKqqqqnKHGISgwKiJcMiDSy9CGgtiq6q6cuVKNFweeuihgwcP4vPTPlSFBuj264hPw//ffvvtWbNmnWNHYtpUA3cQQdf1+++/H3OsdF3nnFuWpaoqjnRhWrpdL265BABbt26dO3du3759Z8+e/Y9//EMECNy+8DSaViJJzx2OwwNkvrKysokTJxqG0Qb172yQNvIgRBrpzp07x44dCynHKHqy8eNxojJNE6MmQtFCVfjRRx/Fei5LliypqKhokqfptj/EnJwWfDk4LWRmQ0PD0KFD6+vrhfZxzpBOu4dznkwmUUdwHKe0tHTDhg3uMY7eBLeRKNyL77333vXXXx8MBjHiwlIJp3i1rq4OleYmYzyNEIwrPNZ4xjCMsWPHHj16VMxn59LbmzbyCCHGU+HbZcuWzZ8/HwCOHTuG6xqEkWjbdlVVFed8+/btP/vZz3r37n3VVVf95S9/QccJpVR4UODMlHN3eC29A1k4ojCRWpwfNmwYxulRL28STGlvpJM84hg7sb6+PisrC+dS8UmmaeJ3vvTSS0OHDh06dOjjjz9eVlb2ZYYwTTMSiSB7YRyWpyLTkAoQtOmTm4cgj6BNbW3t/Pnz//znP+OLcNnC+Src3Okv4gvnzZu3dOlSEUIFgI0bN95zzz2EkOuvv37q1KloUQIAZmWICKx7hDZZsNFkdKcLYnwg11ZWVq5cufL222+HVHQYr4qo3blB2sjDUhn7QiuNx+P79+8fMWKEpmnxePxXv/pVnz59SktLn3nmGbzaq1evY8eOocRzRwogpQW4s01t2xbquLjhLD9eQMxnPBWnf//996dPnw4pXyKqPNiAcyrchLWPY9b9bpaqzuWSPIw6ltFY15/FYxFIka2+vp4D6IaF0Q7DtDkApbSoqGjcuHH5+fl33XXXkSNHxMC3LGvx4sULFy4E14zCvxJn/7U4QULKyyDO4xARquA777wzZcqU9Pql2obmycNTS1g457Isu8kTjdQDMNsyANirq1/BmN7YsWMty/rxHYtMy/n9M8+WjBnHAWLx5MmTJ1esWHHLLbeAa/ppaGhAY76ysnLw4MGapiHNvsKkSCOFIBUmEOqZ2++pqurnn38+YcIE9yrGDkQrluwCgJpMYli3pqZGlpRdu3ahHFu7dm04HL7ooou8Xs+6deu+973vEUIyM8MFBQXXX3/9//zP/yQSCcybIYTk5ORwzj0eT69evQYOHPj00097vV5d17HwSnsDx6KiKLjeGte5Y9Fg/MZrr712zZo1tm2fm/Z8DZrlHjx2c0/qEjN01TS0got63Db3VgCWSCQwZ2XOnDn/vfbvp07XTL/2Og6g6WYiqaG4mD179vLly9EwSiQSwoGI1uvAgQMhtf6kpUGULu5p4rt0fy+Gbb73ve99+OGHyDcYJuhYNE8ed4RYkIcxhompzz37TG5OFnUsy9QhNasvX778YPlhxmHZC8tPV9ealsN4oxa0devWyy+/HI9Fii8ecM6Li4uff/554W1rFukij/shaF0JhZMxNnPmzDVr1vBU8OIs35UWNE8eESzhnGNR0cZ7qK0m47k5Wf/+6CMATNeS6DbGaEpS1TmA7TDbYZZNVc3AUlanT58eN27c3r17eUpDRUvi1KlTK1eu7Nev37/8y780NDTQlpHeuQdSGYrigZqm3X333UuWLMGcaTFG0/W6NqPFMnnwpVpLAOA4TjweV1V16NChhJBgKIQbKHi93uzs7IyMICGkrq6OEEIpDYUCPp8vLy8vPz9/9uzZL7zwQiKRwAKYkUjkvvvuGzRo0LZt29566621a9fm5eVRSqUWkC5JTikVn4M1QAAgHo+/8sorwWBw/vz5fr+fpiqHaJqWrve2Hc1yDxocOHyQexrDAZx+/tmR7KzwH/9rOQDT1EaPAGrGlEE0lmhMs6OcpxJCVFWtrKwsLCxUVXXz5s233nprKBR68skn6+vrcQUkS60ua1mpTg/3uNeI4fdWV1fv2LFjzpw5IlmAnxk96liQZnuhWdVAzD09e3R/8IH7ABhnDnoqy8rK3n777eqaOg4QicY13US7R2RQMMauuuqq4uLigQMHrlixQijTcGaSVEvCLV1f63bMYMba1q1bp0yZgkq2m/zplaVtRuvIE49FqGM9/4fnvB75b2/9NRZtAIA333yztLTUcRwOcKyikgNgTQzGQcQZbdtev359cXGxWL4kPp6lIpLUVR6lCdL4wbFYjHOOSdgNDQ2jR4+ura0V/unOhhbJAyl3gFANOOe2ZTi26djm+nf/npWZocjE4/EsXLgwEomoqkoZoGqg6aZl06SqQ8oUTyQS8Xi8oKAgEok0UYrwdU1UgPTKNPe7IMU3uq6PGDHi8OHDQtCl6y1pRPM+N+aKZiJ5Uj9ZMhEDYKahaWrCsU2MVgHAiRMn0Nypb4hyAMrAshuDbCKO8NOf/vTqq6/GwAlPTXjipeegg1CZxuPx48djvorblQfp9lCcJZonD3e5dnCPMTzfUF+LlikAA05NozF16PDhwwBgWo5lUw6QVHXdsBhvnFfQvqOUYgF+8Yq0C66vhVgNcsstt7z44osg1oS6PK1CqncGCn1lGVhX8WlEXpcuhJBAMGgaBhbGRUNhwIABhBDhGvF4PIFA46YUiqLk5ORQShVFGTBgwLRp09555x1IlVPD8tiQ6pd21FAJIYRgVdrHHnssNzf3jjvuQDK090vPBs2TpyVTQ1NVnCiwOqDP74/H44FAIBaLmaYZCoXQVvD5vJWVJyWJ4AIl9wPvu+++VatWoWogHstTlcNbGkTp+tpEIrF+/fry8vKlS5fG43FCSDAYdK91Sbuldbb4Wv7C+umpX8y2DEZtnH4MXYVU+gelFCWbZTce6IYFrjppqBFEIpG+ffsmk0kRneQu3357qwa7du2aOnVqVVUV/qSp/KnOIMeaRTrX9zQLkR6Nc3JVVdWTTz75xBNP8DNTQdK75kQoI6iG4MOx/sKRI0fwEiqKnValRqQ5kaoJqGt9fX19PVLo1KlTQ4YMAVcnYqJI6xv/Na92rziklJaUlHzyyScAoOu62/zqzORp3xKtWHAbAAgh4XAYZXrPnj2zs7O3bNnCUvv9+v1+1A/T9V7OuWmaWVlZGRkZ6LQdPnz4b3/721GjRhFCbNvGluBWqp16N86W6JYW7sG/EiFkADAMIxqN/u1vf7vhhhuoq6BnerPX3MscDcO4+eab33rrLfgSm+Ks2ZnrzrUv92iaJsuyz+dDVzHn3O/35+TkXHnllfv27Tt58qQsyxhXtm07jVum27bt9/sZY59//vnq1asHDx587bXXUkozMjKEGUcIwX1nhBu7E6J9ycNTm+uJ7cdQqoRCoenTp7/++uuEEFw8HQwGIX0KdCgUYowlk8lPP/10+/btd955p3g7YwwZixACAJZldeqNultiq7QIN5RX1JW7jDM2AJSVlU2YMCESiYhLQlM4e6DCtnHjxsmTJ4Or1odbVYFU9Yh0vbQ90L7kYa51B5jtLs4bhjFgwIDKykrMPuCuioNpwfbt20tKSsQKYZEyh+SJx+NiWHRs+Z+vRrvbPc0Cxcsf/vCHRYsWAQA6Vds2RbsXdQg1+ujRo5dffjmuBxKrujut7fkVaHfNrVngEMb9UODM9WytAk/VmQCAmpoaPFlWVnbttddu2LABXL7dSCTSme2bltAxW1Og5zQQCFx33XWrVq0Su8a1FrgbmSzLlmV1796dUppIJJYsWXLzzTdfccUVKNZisZgkSbhRd7q/o/3REt3alXtw7tF1vby8fOLEiRhxaEMFK2QL95k77rjjd7/7HWMskUhgJBAXAHdg7b+zQcdwj2magUAgEAj0798/Fothck8b7B5JkoLBILJFIpF49NFHs7OzH3zwQUIIYywjIwP96LhfXNq/4hygY8gjdgNSFGXu3LnLli0jKSOxVUAy+/1+AHjttdeOHj365JNPEkKwhhRGqdHpmZ2dfUG4tQK1tbUstUIxPz/frel+c3DOUevbtGnTrFmzAACXsWHJGPHAaDR6PuoF0FGaG+ppwts/c+bMN954o81PKysrGz16dCKRcKvmONkg8eDM6mLnEZonj67r2HfoCkO3JrjWiWF6G5yFTSeGM6V0165dJSUlaMOKjCrUF9BViv3udpuKOE1NTc2QIUOOHTsmwnrnKaM0i+bnHr/fHwgEotEobviOe3GiJMEJPBQKoSqMLqy2yVWWWt5VUFBACKmoqNA0Teyvl5OTo6oq7oOITlWv1yvWdjPGFEWprq6eNWvW6tWrL7nkEie1jff5tZHdV6P5L8EBm5mZCQBoMfh8PtM0u3btSgiJRqNi4ZLYBLnVL051oizL+fn5U6ZMeemllzIzM0U6MUnt4wmp7FFCCG6HixvH27Z97733PvDAA4MGDTIMA3fp9Hg8yWSybX3RGdEsT4mEo1gsRggRtZZoamsY/NkkQ6xV4KllG/jzyJEjhYWFcGadPvdc4q6WgrbOwoULH330UXAZTLir0LdfuCGvEEKys7MVRQmFQkgnhN/vx10JsUJqIpFow5gQkg3ZpX///hdffPHatWuRZdHhL3bjppRmZmaiEUoIyc3NffbZZwkhDz/8sKqqYvNXjE10ojybs0dLdEMvL2MMN9yura1FIxzrfojb2myNi4RNZKB4PP7++++XlpaCq7Cd4E5kKZGR+vLLLy9atMiyLORjwzBwvaq76si3A82TBwumY5JNKBQS0oNSigKEc37y5EkAOHXqVBtq24gQg8gWrq6uBoBRo0bhKi1RfgzvdxxHeKM3bdo0ceJELKdm23Z9fT0GI4SjqLWN6cxokXtEpxNCFEXBdbCKoghJctlll7U5loUPZ6kCirj5hOM4d9999+LFi/EeHBMY50a2MAzjwIEDkyZNwpQB6ip5ICrrCY3/2wHinnJpqh6qyEzDTaPdU3S7xoH27t1bUlKSTCaxGUL6iXhacXHxsWPHsHZVul7amSGHQiHcSwQ9YLIs67qOo9Xr9QaDQdwcmqQSB5qdvdI1EQ4ZMiQcDm/atCkYDNq27fP5MNUW83uvueaaX/ziFxdffLHH4+nUCQLpQ2OJfWQFQojf7w+FQoFAABMnMAUX5cY5MPckSVqwYMEbb7yBXEsp9fl8GNGZN2/ejBkzbrrpJo/Hg2pkGzTG8w4SAFiW5ff78TfnHFVVx3HQZeDz+dxZTtDcTvTpohy2pKCgYPfu3V26dGGMxWKxvLy8X//617IsL168mBCC3gqv1wuuDR2+rZDds4hhGOiKRyIBgKIoWDcDtan2bg1K0euuu+61117DBd9du3Z97rnn6urqfvOb3wCAqqqSJHm9XpGr9i2HUGF5qtyC2NcBUuYhT20LDe3syeaca5pWVlY2fPhwfOyGDRvmzJnT0NCAKw7RW4rl3Ttwf6BzBtJkty20ZnRdx40uAYCcabq2dxwIZ7uxY8du3769qqqqX79+aOIAQG1trVhGeY6X1XUUPJhQuW7duhtvvBGVpd89/VS/Pn0ZY1lZWdnZ2chkyDrCy9J+YIz5/d7/9//u+bd/e1jTjA0bNnTr1oUzh0hSdnYmpVSSFVwjLCvM5/G2d3s6GKZuTJw4sVu3bkc//8xybA5w24L5oXDGu++t5wCaoWdnZ0uS5Pf6ZNLe87BMJG9ObhciESKRjLB/29bNAIw6BoDpOEnL1qpra558+j9xW3YnfdvkdFqQieMnDBs2TFVVDkA5owBVNdUFl/Q+cfqUwyhPmfS6qgH/+qodZwPGwaEQSSR1Mwlgnqo6DuBw2wLHBJo0jAYAe8q0qb965LGEBSrldWryW08eGdMnAICkqsjkd89/8MEHe/bo6ThOPBFHF7LP59NUtZ25hygKkSQp4A8AgZ4XXcRRPVMUQkggEHjyiSc++OCD7t27o1aZlRFu7/Z0OOR+/fpdccUVoVBI1dTMcKZhGoZp/PCHP0yqSb/fn5WVpet6LBZTPJ6MjIx2bYpEwLZ5ZkZQIqShoQE4J4TIsmwbBmOsvLyccz5+/PjMzMxueWHTNDXTaNf2dAbII0aM8Hq9DQ0N4YwwEPD5fMFAMDsrOxwOW5YlESkUCoXDYV3TSPvbgIoiy5LMOMvNzZVkGatZ+4JBxeebNWvW/PnzKyoqBg0aRBnJCocyA52gWmE7Q87JyTFNs1u3brZjY4kIymh1TbVEJNu2KWss6ebxeFj7RyEZ40DANA1ZlqljB0Mhjz/IHfbjBbdv3749EosGAoHs7GzH4bpmWm3K+z3PMG7MWMCtvyyTA0STiaXLX6yur6MAlDNUDRzHaaxh1M6IJ3QOwLgJYFJHB3Bqqk6tWLY0FJIliXi8JDM7a9/Boyb7Yt/WbzfkQ4cO3XbbbYqi+H3+WDx2ww03cM67dOkCBCilqqZmZmZ6PJ5EPH4OhFtmZpBxRggBAoqiMMpN0zx27Fg8HufcfO+99/Ly8gb06ycBcSj4vGlb7Nh5sXf3nlAoJEkSkYjH59328U7dts7YnJ5zzjkwDqmSnu03WByHAYChx3U9AuAc+/zoJQUX64k4gJFM1i1fsfSiiwvqGxIOB9W2bd7+7NzRIMxpLHXHASzH1m3LcOyOIg/n8NlnRwBsAMM0khIh3XLzdmzZbBqJ73//SiKR7t27e30Zmsksxr8L5JHURDIjMxyNRjmBvNy8hKYiM0lEagwSYFFRIIQQkAhpz1SYeDSRnRuONNTmdckloJiaEcjIjEfqg+GAJEken8+2uEMlyrluJLt16+KR5G93REECDpRRj8cDhFBGZcXjUMfj8XQIeQgQXU+GMgKUWh7ipZR7vEEiEyI5pmFYjpMZzuUgKwrhhGhqMiuc2V4t6RyQCYAI5OBBGusLtAGYq6aqqmVZHr+fALENwzQMn8+XmZkpy3I8niSE1NfVhkJtyU49vyDBdyGodd7i25Mt/q3EBfJ0alwgT6fG/weozuWFsUKVSwAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠B′BC′的度数是()
Choices:
(A) 35°
(B) 40°
(C) 50°
(D) 55°
|
55°
| 10,891
| null |
55°
|
"iVBORw0KGgoAAAANSUhEUgAAAJMAAACLCAYAAABlYKvjAAAU3UlEQVR4nO2dX2gb95bHv7KToiwsEe1D5iHgYduks9ncdu6WJWOl4DELtZ27tOrLvaI0jfOwssLuXjsPpXYpOIGCKYW19LAoKXtRvH1Q2gsrh6WW87KWuTQ2dBer3WykRr5YYblIuVuQuhSkJLbOPlgjS/JIGo3mn+z5gGk8o/nNr56vzu/MOb/f+TmIiGDThhiCwVOYnHzJ7I5Ymj6zO9ALxCYu4EuzO9ED2GJqw2ZwAotw4+xp2yq1wxZTKzaD+Or0TXhwz+ye9AS2mJoSQ/DT05gc28TD+26cOWV2f6yPLaYmxCYe4vTNMbO70VM47Lc5GWITcFz4rOaAD0t0E7a0WmNbpkY2g5h4+D6IaPcnHYDbfQb2KNceW0w1bMaCmPj0NG7WxpPSD2z3WylkUwUAAW4KpHd/X/KhcgwE+GjJ3O5ZHttnstEMe5iz0QxbTDaaYYupgeXlZQwPD+PWrVtmd6XnOHQ+Uy6XQyqVQiKRQKFQwOPHj5FKparn19fXUSqV4HA4MDQ0VD3OsiwGBgbgdDohCAJYlgXLsib8H1iXAy2mTCaDeDyO1dVVZDIZrK+vw+VygeM48DyP48ePg2EYcBxXvebDDz/E2toajh07hnfffRfvvPNOta1MJoMnT55gfX29+rskrKGhIYiiWNfWYeNAiSmXy2F5eRmrq6uIx+MAAFEUMTQ0BJZlIQgCnE5ny+sHBweRTCZx7tw5vPbaa8hmswiHw2AYRvYaSVjSPQuFQvWeh05c5kUltCGfz1M4HCZRFIlhGBofH6dwOExbW1sdtyVdS0S0srJCoihSLBYjnudpZWVFURvZbJYikQj5/X7iOI54nqdQKETZbLbj/vQaPSumaDRKXq+3KiClD7sZGxsbxPN83TGPx0PRaJSy2SyJokjT09Oq2vX7/cQwDHk8HopEIlQsFrvqq1XpOTGFw2FiWVbzB8PzPG1sbNQdy2azxLJs9R5zc3MkCIIqq0e09wVgWZbm5+cPnKh6RkySiMbHx1U/zFZtj4+Py56bnZ2l2dnZ6u9ra2vE8zxFo1HV98tmszQ1NXXgRGV5MekpIiKiYrFILMs29WnkzufzefJ4POT3+7sSQqOoeh3LiimZTJIoirqJSGJqaqrtg4xGo+TxePYdD4VCxPM8JZPJrvogiYrneVpbW+uqLTOxnJiKxSJNT08Tx3FdO9XtSCaTxPO8IusiiqJsf6Q2QqFQ1/3Z2NggQRBofHyc8vl81+0ZjaXEtLKyQizL0tzcnCH3k97WlCD3tidRLBbJ7/eT1+vVRATS0B6JRLpuy0gsI6bZ2VkSRdGweEyzoasV7YbESCSi2VCVz+fJ6/V27ZcZieliymazJAhC3RuT3hSLRVW+TjabJZ7nWwp+a2uLBEHQzLpq5ZcZgaliisVixHGc4U7n/Pw8TU1N6Xrt9PQ0jY6OamJpJb9Mis5bFdPEFA6HaXR01HBHszEQqQa5AKccUiomFoupvpdEsVik8fFxQy14p5giptnZ2aZBQr2pzb+pRcrbKSGbzdLo6ChNT09r4vuY+bdrh+GT465evQoACIfDRt8aiUQCiUQC4+PjXbUjiiJcLhcWFxfbfpZhGMRiMRw/fhxjY2PIZDJd3fvatWsYGhrC2NgYSqVSV21pjlGqlcy0mZFepcOTEtQMl1IqRotX/lgsRqIoWioeZZiYvF6vqQ5kq/ybWhrzdkqQXvnHx8e7HvbW1tYsJShDxKQkZaEn7fJvZrQbDoc1eeWPxWLk8XgsEYvSXUxqvr1ao6eY1QQ/JbRKxUQiEfJ6vV21oQW6ikmPoaVTOsm/qaVZ3k4JUirG4/F0NVyFQiHy+/2qr9cC3cTUzTdWSzrJv6mlVd5OKdFotOtUzPT0tGF5TTl0EdPW1hbxPG+6Y2ikoLUYSrVIxXRjJbtFFzEJgmD6vBy1+Te1KMnbKWV6elp10lvLfnSK5mKygsNN1F3+zQr3XFlZIY7jVKVizHIxNBVTJ2kGPdEi/6YWLQOj+XxedSrGjHCMZmLSK5ajBi3yb2rR4ws1NzdHoih2NGQXi0USBEEzYStBMzGZHZiU0OLNqlu8Xq/msyTX1tZIEISO2jV6pNBETFZ4gBJaDjNq0WuYVZOK0UPYzdBETFZ4eyOyRpBUYm5uTtUKYCVIqRglX5psNkscxxkSpulaTFZ5gFby2Yh2+8NxnG7LtJLJJAmCoMi1MOrNtisxWekBWsVnq0XvV/RisUhTU1NtUzFGPaeuxGRGLEcOI/JvahkdHdVk2m4rotFo27n0Rjwr1WKyklUyIv+mFmlhpd5Cb7fKp/PnlaaAu7Z09e6P2xegpbT8Faqn7d64cQMej6dpESyjkKbOejweU/vRDJ7nIQgCbty4oet9GIbB2toaAGB4eBi5XK7uvNPpxOTkJD755BOFLb6Eya+X4HO7EUhLuzWk8UtM4cKpCcTkLlHzLbCKVTI6/6aWfD5PHMcZ9vdqlorp/Lktkc8doHTjMYDcgf3mSZVlWlxchCAIplulGzdu9ESpP5fLhcnJSVy/ft2Q+4miiLW1NQSDQVy9erW68MDpdGJiYgLBYFBZQ7FFfHb2NOq3bRyDxwfce5De/3k1yjfCqWyHmfk3tZgRUJ2fn69LxWxtbRHLsoquXfKBfDJ7fCz5QNhnsVQ44FZ5iGbm39QipUTMuq/091I252mJfLL7xVQccxmVdTzMLS4uYnR0tGXVWr3Rav2b0Uhlnm/fvm34fWOxGFZXV3H58mW8+eab+OKLL1pftPkQ932e/XvsbX6FL+8BPo/M7nudqtwKqRMr5N/UYrZlD4fDdPbsWerv76eLFy82/Vw64JZxsitWSWaII+pwmOtkvNULq6RvukHPvJ0S3nvvvWrcSP5LuUS+mq3SiNKUXgqQr4WQiDoUk9kRb6uEJLpF77xdO2KxGPX395PL5ZK1kIBMsNLtJl+zaKV0XSedMDvSbMX8m1rMXr1z8uRJOnnypKZtdiQml8tl2ooTK+ff1GJmiAUAsSyrqXVU/DaXSCTAsixcLpfSSzRlZmYGs7Ozpr5Fas3c3ByuX79ueDWTXC4HhmEgimJ1jxktUCymeDwOURQ1u3EnWD3/phaj8naNSGIaGhrC6uqqdg0rNWFm+Uu9kn9Ti9F5O6I9fy2ZTBLHcZq1q9gypVIpU3JgvZJ/U4vReTtgzzJxHIdMJqPZMKtYTJlMxvCdH3O5HILBIObm5gy9r9H4/X6sr68jkUgYcr9cLocTJ04AADiOq9sJtBsUiSmVSoFlWcOd34PodDcjFArhypUrhtzr0aNHVcNgipiMHmZ6Nf+mFiPzdtIwB+zuPdxtnU0Jy4rp8uXLphRRNZP5+XnMzMzoHiqoFdOrr76Kb7/9VpN2FYnp+++/x8svv6zJDZVw69Yt8DwPnucNu6cVYBgGExMTujvjtf6v4cNcqVQyzG8plUq4fv36gXe6mzE1NYXFxUXNhp5GSqUSSqVSNfjscrlQKBQ0aVuRmGrNot7MzMxgcnJSk/ttxiZw/rwDDocDDsd5nA/KToO3FE6nE3Nzc9V66Vqj57M0vKh8K1KpFOLxOPx+f5ctbSJ43oFTHwMfLUgrKz7C2akLOB/c1KSveiJF+pUUre+UxhCPlg54fQR8+yntPHlS/Snv7B7mOM6QCLRWUfZmc5TTAXfL+ThWQq/Etlxl3kYZqKXeMvUfRd/RfjjggOPoc3BUzhrhM2mWf4tN4MJnbgQWJhtWVVS49wAy6yqqLC8vY3h4GLdu3equH13CcRxEUdQ8byc3zGnmN+2TV3mbyk+eUrm8d4hhGF1zR9rl35pPdidqbrFqYVmWAJDT6eyyL92jx2RAuYq8Wk1FaeEzlUFPn6L89Cle+BPnbuxj5xnKT5+CypISd6qfoR2qUeje8fLTbVBtszLnZPNvtZ97ttOm7Upfk/+Gf70HXPmbv949v12u+XwSv78PuH/5C3mLVWFiYgIALBEsdTqdmJ2dxczMjGZtyqXFNBt59smr1jKVt6n85Bm9WFXuDpWfVRwp2qHy0+29f1et2U6dZSs/e0I7tdc0nPvD//xBZoJ97efKVH4q+W8t2i5vU/nBP9LwUTcF01Lfn9CO1Mev/pael871GFouoJBb5iQnAzW0fptz9MPRTzglefzlMtBXuaRcBtFOjYWg3dnC5TLI0QeHQ2qiH45yedeCyJyb/ehDXGvMv5XLoL7+yudq/LdWbVfYeXYP/111ihxwHOkHNmOY+MUtvPLJP+MfXlT7tTOPcDiMy5cva9KWngn7JmJyAJUHhv5+7AAAEajsqDrlu1cfQd9zz1V/queI6oe2WmrOJRIJ/Nd33+E9uSGFmrTQqu0X/x7TPuCzj4OIVSIAv48Fcf7UBdz3RfHvf9dqgLMuUjZAi5eCRgdc07iTZKKqQ0Z5u2b42uVtz5u0+NvfVkMFu+xQuSZ8QLRTMxQ9ofJ2ZSzaedYwzO2d43/+c9r4j//cby8rQ1RHbVeH5zQFfG4CjtLzR4/Sn7p9FFhKy75Y9BJarLfL5/Pkcrnqjmm5fK1qZxwOB1DeRvlZGTjSXye4467nUfjx/xrsWB8cR/pA25IzXK6c74PjaH/VWS/vONB3pG/vmsq5f/nNb/BXr7wC/rW/rJzbdaKpjN3htaO2y6BnOyAQ6BmLX9/8HcpPfsL//vQTCiv/hF+P/VnN+e3mls3CMAyDycnJrpxxOSukZdjnSPVf/UfR1y//IYY5gdwf/1gd+ar0HUHfczIXOPrheK5//+cr556Un2H244+r9YQqjcHxXE1jHbW9e23dsXa/9yB+vx+Dg4OqZ3HIiUnLGSGK0imv/uxn+E6jaQqAtvm3w0S3oQI559swMUnDDPfyGTz4XptpCtrl3w4n3eTtMpkMBgYG6o49evRo3zG1tBST48juWxr3F3+u2ZyXwzQVVy/Urrd7/PjxvtEgkUhoNm9M0TDndDrhcrn21UnslIO6/s1o1Obt9PaZFIc+u13KfNDXvxmNmrxdYzmkbDZLDMNo1ifF85nOnTuH9fV11aI96OvfjEaNM95omdbX1yEIgnadUqq6bnYIMrvA1UGmk7xd4+PWuqqMYjEVi8Wm9Xza0Yv1J3sFpTtqyUW6ta7Ap3iYczqd4Hm+46HusK1/MxqlebvGIa5QKCCTyWi6AqijOeBDQ0Mdl2A5jOvfjEZJqKBRTHpUtelITKIodlSC5bCufzMaJXm7RjHdvXsXIyMj2nak03FR6RTPg1J/sldoF3qp3dVdr2fT8VInr9eraD28nX8zlnahgtpiFfF4HBzHaf5sOhbTpUuXsLCw0PIzdv7NHFrl7WqHuYWFBVy6dEn7DqgxZ+0Ky5tdlfcw02y9nbT2MZ/PE8MwusT8VK3o/dWvftV0uwQ7/2YuHMdhdHQUgUCg7rhkmXTdrkSNAptFtO38mzVodLCLxWJ1HWDLQGV6qTLlGQS4yRdIEy35ZHd2kkOVZWIYBh6PZ1/W2s6/WYPG4he1VollWflQzebuwosv8RHSRCD6Gu/jEhwX7uPMKYU3Vqv+Rutk59+sh+TbSnnVplYpHSC37O6WS+Rzy20TJo/qKiiN1sme9GY9pDqZuVwO29vbTa1S7NMp3HMHsDDZuBTsFM6cPQOlhqmJZWq2c/RS3Tr9bDZLAwMD9PnnnytKNtoYj9/vp9HRUXrhhRda7OAkv+dupxyRl9hLmPyacHrCgUUP4eYYdlfFnrqAS2fS+LqiYIZh8MMPP+DixYsYGxvTdOsEG204duwYlpeX4XA45IOUmw9xH8DZ090vUG0iJgDYxMP7bpx5v/LrS7sb/X72IA1USj8UCgVsb28DAL755htDC6PbKGNrawsAQERIpVJNot5u5U52K5rarHSA3NXyM2laCrgJMnu2RqNRGhkZoTfeeKNrM2mjPR988AG9/vrrFAqFmnyi+TCXXlrqqDBaUzGlA+56fynQumEr7ChuU8/W1hZxHNf2DXvJtxtXClQ3J0zTUiBAnbpRLRzwmm01m746dt5xG+NQntZK01LAR27JeLh9HQuJqKmYlsjXUGFNSdU1s7ddtdnDjL2M5eNMsUXcb1NhTY6pqSlkMhldqsTaKCeVSiEYDCIUChl74/36ahzi0rRUydcoydGYsX+azR7FYpEEQdB0oYBS9onJjf3BSkg1jhTSzbIom+4wc1NsB1GzEm3dce3atbr/2ujP4uIiFhYWEI1GTbm/bjsUXLt2DY8ePTK9nvZhYX19HcFgEJFIxLxO6Gn2isUieTweO/6kM8lkkgRBoHw+b2o/dBUTkbkO4WFga2uLRFHUpCh8t+guJqLdNzye5y3xP3yQyOfzJIqiZb6ohoiJaPcbZFso7chms5YSEpGBYiLa+wM0Vsi36QzJR7KSkIgMFhPRrmkeHR21l0KpZGNjgwRBsKTLYLiYiPbe8ppPi7CRIxqNWuKtrRm6BS2VcOXKFRQKBYRCoeqesTb7KZVKmJmZQSaTQSQSsew8e1O3VQ2FQnjrrbcwNjbWVYnDg0wqlcLY2BgGBgYQjUYtKyQA+gYtlZJMJkkURdNySlYlEom0XYpvJSyx4TPHcYjFYnj06BGGh4c1qzneq+RyObz99tu4c+cOYrGYtkVM9cRsNTeysrJCHMfR9PS0ZR1NvSgWizQ3N0csy/bk264lLFMtoigimUzi+PHjGBwcPDQT7eLxOAYHB/Hjjz8imUz2ZuEPs9Xcimw2Sx6Ph3ie78lvqhKkuV+iKPZ8wQ9Li0liY2PjwImqVkQHJSPQE2KSqBVVOBzuOZ+qWCxSJBI5cCKS6CkxSWxsbND4+DgxDENer5cikYjZXWrJyspKXX8PmogkTI2Ad0upVMLi4iLu3LmD5eVleL1ejIyMQBRFUyPqpVIJ8Xgcd+/erdZEunTpEjwez4GO9Pe0mGopFAq4ffs27t69i3g8DpZlIYoihoaGdBeXJJ7V1VXE43EkEgmIooiRkRF4PB7dtn63GgdGTI0kEom6B+x0OsFxHHiex4kTJyAIQsfli3O5HFKpFBKJBB4/foz19XVkMhnkcrk64fZMkFFjDqyYGpETQiqV2rchoySwQqGARCJRd45hmH2CZFn20FiedhwaMSlFEpjL5bK36egQW0w2mmG5dIpN72KLyUYz/h+gjxKkgDa5TAAAAABJRU5ErkJggg=="
|
<image>如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()
Choices:
(A) 116°
(B) 118°
(C) 122°
(D) 126°
|
118°
| 10,892
| null |
118°
|
"iVBORw0KGgoAAAANSUhEUgAAAK8AAAAYCAYAAACMXa24AAAFiElEQVR4nO2aTWgTWxTH/zOZSVqNH43YD5FoTLUUVwVdlRTURbtw4aYrwQZii6DZ6EKEasWNiz7BIiLv9cmjJbW+0Mdb1EVVFFwJ1m5CF3VTEWuqoRpsTCZN7+S48HXsNDNp+pU79eUHA3PPOXPnTzj35N47F/QLMjY2Rq2trRSLxXhLMSUcDtPZs2d5y7A0d+7coWAwaOoXUQCBQAAPHz4sJNQSyLKMZDKJ8vJy3lJMEQQBiUSCtwxLo6oq0um0qX/Z5J2bm0MsFsPc3Ny6CttoGGPIZrO8ZZgiyzJkWeYtw9IwxsAYM/Uvm7yCIMDpdObYiQhEZGjnTTweh9PpRCwW4y3FlI8fPyIWiyGTyfCWYlmICDabzdQv0DLZlslkEAwG4XA4MDs7q6vANpsN2WwWoiiCMQZJkqCqao6AYiKKIhwOByRJwvz8PDKZjKUqsCAIqKiowL179wAAx44dg8fjQTKZ5KzMWsiyjO3bt0OSJPT09BjGSMt1kkql8OnTJ3i9Xvh8PjDGIAiClqSi+KN4q6oKm80GxhhEUQQRQZKkvCNno5AkSRtQVkpc4Efybtu2DV++fMGbN29w8uRJVFdXQ1EU3tIsgyAIsNvtGB8fx+zsrGncssm7c+dO+Hw+NDU14ejRo+sq8v9Ma2srbwmWp6urCx8+fDD1LzttKFGCF8+ePcPU1BTa2toM/aXkLbFpKWift0QJK1JK3hKblrwLtjNnzqC/v79YWlbN+/fvcfXqVSSTScTjcRARtmzZguHhYd7STOno6MDExATq6urQ29uL6elp1NTU8JZlCXp7e/HixQt8+/YNiUQCsixjZGQkJ8608l68eBGPHj3aUJHrxe7du/H48WMMDQ3B6/Xi0KFDiEQicDqd+Pr1K295Om7fvo3GxkYwxlBbW4vKykq0tLTg8uXLvKVZhv3792NgYACjo6Ooq6tDIpFAU1NTbqDRgYdIJEJ+v58aGhrW85zFhhIOh+nWrVs6m9vtpiNHjnBSlMv9+/cJAHV1denstbW11N3dzUeURTl8+DCl02mtDYAURdHFGFbeiYkJ+P3+vN+Vrca7d++wY8cOne3u3bt4/fo1IpEIJ1V6AoEA/H4/rl+/rrNfu3YNp0+f5iPKotTX18PhcAAAzp8/D7fbjbKyMn3Q4kxmKYX++v0PYimFkskktbe3F2eYrZG3b9/SlStXdCOViGhmZoa2bt1KIyMjnJT9JBgMksvl4i1jUzA1NUUASBAEcrlc9OTJE8M4XeX9s78P586dg6u6ChUVFdi3b1+xBtqaCIVCmJyc1EbqAtFoFG63GwcPHuSk7CeDg4PG87YSOVy6dAk3b97Ey5cvceLECbS3txvG6XYb7HY7IpEI0lkVT58+RUNDQ1HErpWqqirDs7uBQACVlZU4cOAAB1V6iMjS54utxKtXrxAKhSBJEsLhMARBQF9fX86XNi15jx8/jufPn0NV0rCVlyEajaLcJkFVfhwGtpWXafcLbQA6/2KMYgvxFRK31D4/P4+2tjZNu6qk8eDBA4yOjuKfQWscovd4PBgfHzf0ff78Gbt27SqyImsyOTmJjo4OSJJ+F3fPnj25wZ2dnQSA8N/0l6UUqq+v12z//h3WzTNYSlnR/Up8K30PEVFP92/k8/mIpRTtunDhAjkEkcKhgbzvKCYzMzMEgG7cuKGzNzc3UzQa5aTKerS0tNDY2JjW9ng8Wm4uJce60sRbfK22DyMKsXd2dpJDELWBtnB/6tSpvO/kyd69ezW9jY2NFI/HeUuyDF6vV/ttFi673W4an3MwZ+Gv18i21GcUa2Rf3F5tHyvtO987S/waaLsNi+eRq2Gtz/Pqu8TmRau8ZguvBfJVQqPnVrNgM6qqhT6/1Ga00CxV31+L7yTZ0Lk2U5QfAAAAAElFTkSuQmCC"
|
<image>如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AB=()
Choices:
(A) 10cm
(B) 11cm
(C) 12cm
(D) 14cm
|
10cm
| 10,893
| null |
10cm
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABzCAYAAAB5Eze+AAA2PUlEQVR4nO19d3hUVfr/Z/okpBCCoYWeLCJNIJCQJSQQigpKEEFMECkWFKkPsoJtLQiLBVmRRVB+31VW1wYIKKGpSBUQKaELAUICpE4y/c699/39MXlP7gwBgoTF9ft9nydPkpl7zzn3vOW8/YL+20Gt/AkAhYh8ROQjr+QkIoUmT55IISEhZDQaKSwsgsLDouivf32FCguLxV2SJJHH4yFV9Q/o8/nE37cKeH5FUUhVVVIUhYiIjPiDg8lkApGK2bNfh9PpQsOGjfH444/j9KkzGDtuDO644w5kZAyG0aivvJag0+kAAKqqQq/Xi/9/T6C/1Qu42aCDDj5Zglfy4Pz5PPTt2xdNm8YiJiYGgA6SJEFVVRBVXl+JJC0Cf4/wh+c4IoLBoEdubi5at24Ns9mM4uJirFy5Cl27dkGHDh1gNpsEkmRZhk6ng8FggMlkusWrvzL84TnO6XLCoDfi+LHj2Lz5O2RlZaJLly6IiYnB4sWL0L79HQJpiqIAAPT63/+2/OE5rk5oGIj0+P777/DMM9MxYMDd+OGHH/Hqq7NhMhsxatRIAFWcZjRWbYksyzAYDL9Lkfn7J60bBJ1Oj9wzv+LSpUvo2rUrmjRpgoEDByImJga7du1CSUlp5XW6AE77vZ9x/xWIIyIQaw81uLYK9CAoOHz4MLp3T0TjRo0B+DmpsLAQ4eHhCAmx+q+s1B6JCIqigIh+txol8DtCnKIoYsMAvyrO/0uSBK/XKxCoKApkWRbXEvkRJssyHA4HFMWvJXolD2xlZdi0aSMaNmwIt9uNkpISPPzwwygoyEP//v0QGhoCVVXh8/mgqioAP/epqir+5/Vp5+TPakpQtQ06ulUzV4KqqtDpdILaAQRQuZbbdDq/+m4wGMTZQyogSTJUUmCxmAEQdDqgosKGo8eOYObMmThy+DgsFiui6kbC5fYgOvo2/P3vC9C5c2f4fD6YzSYYDAbIsgyfzweLxRIgNrVr0/4vyzKMRuNN5UoW2bxPQhLcasRpp/fbU/7/GTFerxeKokCv18NisYhrxeb5CCaTHtDsnSxLMBoNUFUFFy9dhEFvhKL4EQroYTZbER0dBY/HB6PRr5BouYs3yuv1wmg0wmg0CgLi9bESc7NF6e8WcT6fL0Cbq8lytDYXCFBVgsfrhaLIMBr1UFUVTmcF9AY9wuqEweP1wOP2IiIiEqGhYZBlFYpMMJl0gE4Hs7nKXvP5fAAgkKWdj9enReDN1jqvhLhbbg4EPzgvks+ckJAQ8Z3H4xFnjcPhwNmzZ3Hq11xculSEkyeP48LFfBgMBtjtFSi4kAevV4bJZITL5YTL6UFiYndERdWHoqho0rgpmjePRVx8PG6//U+IioqCyWSCoigICQkR4pvnZIPcYDCI9Wi59D8Nt5zjGPjgNxgMAeeLJEmw2+0oKSnBqVOn8OOPP2LLli2w2Wy47bb6aNSwKVq1ao3WrVvitpj6CAurA7PZiDp1QlCvXj24PW5kZWXh0sVC9OmTjnvuuRcmkxmFl0pw6NB+5Bfk4/z5PDidDiQkJGDw4MHo2rUroqOjYTabAwiHRXmw6XAz4XcrKrWaGruYZFlGWVkZysrK8MUXX2Dbtm0oKytDfHw8unTpgpYtW6JVq1aIjo6GxWKB2WSBNcSvUPiVCxP0er8wmf/OG/jpp13o13cA1qxZi+effwmdO3dGUWEJDAYdVFJQWlqG/PzzyMvLw969e/HTTz/BbDajW7duePDBBxEXF4fIyEhxxiqKIhzQN9tk+F0gTntm8IJ8Pp9AmCRJyMvLw86dO7Fhwwbs27cPffr0Qd++fdGhQweEhYXBZDIhIiICer0esqzAaDQAhADlBABUVcYv+3/G9Okz8MLzzyMlJQ3jxo1Fx46d8NRTExAaGoJgcDgc8Hq9cLlcOHv2LHbs2IEvv/wS9erVw6BBg5CamorWrVsjNDT0sufSPpP2s9rYs1uCOKZMVVVRXl4Oq9UKq9UKp9OJ0NBQ6PV6SJKE3NxcLF++HN999x0aNGiAgQMHomfPnmjQoAEiIyOr3QQe2+PxwGw2Q6/Xi/NIln0YMiQDHTt2wnPPPYfQ0DrYsGEj3nrrTbzxxhvo2LEjfD7fZaJZCy6XCyUlJTh8+DDWrFmD/fv3Iz4+HmPGjEG3bt0EAtlEkSRJrMPhcPilgdl8Q/t3SznO5/OhoqICERERMBgMcDgcCA8Ph6Io+PXXX7Fs2TJs3boVnTp1wrBhw9C+fXtERkbCarXWaHxVVQDohLZnNBoxe/ZsnDhxAi+//DIaNWokVP7HHnsMd9xxB0aPHo2YmBj4fD7o9XoYDAbhBDAajQHIlGUZNpsN+fn5WLt2LbKzs9GoUSM89thjSE5ORp06dYSvU6/XCzOCpYnW/3m9cCXE4bpDsr8BZFkW0WRJkqisrIzy8/PprbfeorS0NJo8eTJ99913VFpaGnBfTaPPqqqSw+EgWZaJiOjAgQOUnJxMX3755WXjfPvtt5SWlkY///wzEfmj3vw9r08bdeaIM4PT6aScnByaP38+paen09NPP0179uyh0tJSEaGWZZlUVRU/NwJXioDfdMSpqkput5tsNpv4e9u2bdSvXz8aOXIkrVu3joqLq9IHHA4HSZIUsNhrgcvlIq/XS0R+Ihk1ahS99NJLZLPZyOFwkM/nI6/XS5Ikkc/no4cffpjmzJlDZWVlAevUgqIo4h4e1+l0CuJwuVx04MABmjp1KqWmptL//M//UFFRERH5icFms5HP5/vtGxe0rv844txut1jA9u3bady4cZSamkqLFy+mS5cuBSyQF6YoSo3zPZxOJ/l8PvJ4PEREtGjRIhowYAAdPnyYiKoeuLS0VCDhp59+oqSkJNq1axcREXk8ngCOVVWVZFkWa3G73SRJkvjM5/OJDbTZbLRhwwbq27cv9e3blzZt2nQZ0m8EbhniGHbs2EFpaWk0bdo0Onz4cABX8Q9zBH9eEygrKxOieN++fZSWlkbLly8XHEjk5xZOAuLfWVlZ9Je//EWIZ0mSxOb4fD6BRF4LI9Pj8ZDX6xVz8n0FBQW0ePFi6tixIy1dupR8Ph85nc4bRt4t5bh169ZR586d6b333qv2HGNKZq5zu91UUVFRo4fmB3G73fTkk0/SrFmzhOjlsfjM4c+IiH7++Wfq168fbd68OWA8r9d7mYjzeDzkdrsFgWklg1ace71e2rhxI3Xt2pXmzJlz2bP+FviPIC5YtHk8HnruuecoPT2dli9fTk6nM+Ba7UFO5Kd6puDg764GPp+PPv30U0pPT6d9+/YFzKGqagAyWPlQVZXGjRtHs2fPpjNnzoh5XC6X4DYWj3w9n5W8ebIsi+tlWRZcvn37dho4cCCNGTOGTp069Vu3UzwD0U1AHA/m8/mooqJCTGSz2WjChAk0YMAAWr9+vUAEb4qWy7RjVYcoVVXFBmk1P742Ly+P0tPT6f333xdnHREJsaglEn5wr9dLx44do6SkJPrhhx+IiISI5HGDCSd4fTwui04W90REhw4dooceeojuvvtu2rt3b8B9Ho9HIForkq+0v0SXI+6GHW7sjDUYDKhTpw4A4KeffsLw4cNhs9nw2muvoX///sK+YUPa6XSKyEDwWMFgt9uFoex0OsV1DocDsixj3rx5aNGiBQYPHgyLxSJS7sxms7iWx+XfJpMJrVu3RkJCAtavX4/CwkIREahK2Qs0cYPXx3Ybu+3YmSDLMtq3b4+33noLycnJePzxx/HRRx9BVVV4PB7Isgy93p/H+Zt9nldFdw1AVdUAEfjFF19QSkoKPf/88/Trr7+Kz91ud8DZoRU5VwOPx0M+n4/Ky8sFVWu1v88//5zS0tJo+/btAWsqLy8PmI/P0mCOPnDgAHXv3p02btxIRCS4pqamCBEFcLLP5yOXyyX+r6iooI8//piSk5Np7ty5VFJSUu1+XAluqqhk8ZCTk0Opqan0xhtvUEFBARH5N167CT6fT6j6NTnD+Frtg7J2WFpaShkZGfTWW28Jld7pdJKqqmS32y8TQyzStZ+rqkpPPfUUTZkyRZgn/Ew1ISw+B2VZDkC4oihkt9sFoX399dfUvn17+vTTT4nIj1A2la61v7z2WkMcbygRUVFREfXq1YueffZZstls5Ha7hSamVT4cDoeYXPt3TeZiIrDZbCRJEs2YMYPGjBlDubm54uEkSRKaZHXA12i55MKFC/TnP/+ZvvjiCyIicfbUxPOhncvj8QScv4qiCHNFURRaunQpJSYmUnZ29nV5hXjdta5VOhwOGjt2LA0fPpxOnDhBRIHiw+12i03Xqv3XgzS73S44zuv1UnZ2NvXq1UsoFtqxmNuq01z52mDzYMaMGZSVlUXnzp0T9llN16Ydi7mVFSO291wuF0mSRLNmzaJ+/frRL7/8EjD/1cbXrrnWEOfz+ejZZ5+lPn360MmTJ8XnTqdTiIrg88LlclFFRQV5vd4aUV5RUVGAtuh2u2nAgAH05ptvBhjaZWVlwquh9b6wKLvSXDabjU6fPk0DBgygr776qlof5ZVAUZSAZyW6XPssKysTeoDdbqdp06bRyJEjA/brSnDTtMpVq1Zh/fr1eOmllxAXFwdJkuByuWA2m0XYg8M6brcbiqLAYrEgNDQUJpPpmjErl8uFiIgIWCwWkaL3t7/9DVFRURg2bBjMZjPcbjdUVUV4eLhIeWCPvza9nKpJ/SMihIWFoXnz5ujSpQu2bNmCoqIioSFyWvqVQKfTwWq1IjQ0FDqdTozLfyuKgrCwMISEhMButyMsLAxTp05FcXExPvroI9jtdjEWXU+gpiZUxXKbXVKM9e+++45SU1Pp3//+t7iORUN1lHM9mhqDdiyfz0c//fQTJSYmBng8tNxxpTmCPwu2q3w+H507d44SExNp7dq1RERXPSuvpLxUZ/cxt7MbjIho9+7d1Lt3b1q8eLG4p6SkhFwuFxHRZe6y6+Y4IoLH4xFxLrancnNz8cYbb2DAgAHIyMgQ1+v1ehiNRiiKIu5jyvwtYX6OZamqCpfLhffeew+DBg3CnXfeGTCn9u/q5gj+TPs/P1fTpk3x0EMPYcWKFThy5AgsFgsMBoOw7dgG43vUoKTZ4HE5fsZSgHMwVVVFt27dMGnSJGzatAmfffYZFEVBZGQkVFWtUc3CVRFHRHA6nQgJCYEsy5AkSeQ6zp07F02bNsVjjz0mjN5gA7W2Emrcbjd0Oh2WLVuGwsJCDB8+HFFRUbWWZeXz+QSBZWRkoKCgAAcPHgww2k0mE8xmM2RZhqIoAgF0DfHGzgkey2AwiBTAe++9F0lJSfjkk0+Qk5MDg8EAs9ksfgO4oqi+6s7qdDqEhISI0LzJZILP58Pnn3+OS5cu4ZlnnkH9+vXh9XrFNQCEZ4A9FzcCPp8PISEh2LlzJ7799luMGzcO8fHxV/SyXC9Q5XnEnphGjRqhX79+2LlzJ3JzcwFUZVtzchCfY8HpetUBI50qz1POr3G73TAYDHjiiScQExODVatWobCwECaT6YoZb1q4JkvodDq43W7/xXo93G43Fi9ejCFDhiAuLk48mNVqFVRYm2AwGKCqKubNm4fk5GTcfffdlyXm3AhwegFzhtlsxr333oucnBzs378fAIT4AhDgpvot8+t0uoD8mLCwMIwdOxbbt28X8wUrOdXBNUWlJEmIjIyEwWCA1+vF8uXL0bZtW/Tq1atqkEoNjrU1Phe0Iui3gl6vx/z586EoCkaOHInQ0FAhqmoDWIow8SmKgtatW+Ouu+7C6tWrkZubK3yYrL1yfkpNiFSbUBsseg0GA1wuF5KSktCnTx+sXLkSp0+fFmnvwFWSbqtVmTSgKIrQdHJzc6ljx470888/B2hU2iClVgOtqS10NWA32tdff01EN6cTgjY6XlpaSrIsk91up/79+9MHH3wgtENOgyCqua9R64jg/7VuN7Y3bTYbDRw4kJYuXSquDQ4sX5dWycUWkiRh4cKFSE1Nxe233y40KraZAMBsNgtK8Xq9NaL4qwERYf78+ejWrRsSEhIAVIlO0tSx3Qiw/ceacHh4uLDtUlJSsHXrVhw6dEiccdr5asL1WumjtS9ZVHJ0ITIyEv3798eePXtw8OBBALgs20wL10QcT1ZWViaUA86tZ02S1VztD+dM1gQcDocQCU6nU2zOZ599hsLCQmRkZKBhw4Zis3jDaiOLmM0XRgxvFhFh0qRJOHfunNhIPse9Xq8o9bqeOXi9/MP7Y7FYIMsyRo8ejbNnzwacrVcizBpxnCRJ+OCDD5CWloaWLVtCp9NBlmVxqFe3eddjCjAhlJeXC0302LFjWLp0KTIyMpCYmCgUI6bS2tIqtRBcBxcREYHMzEysXLkSR48ehU6ng8vlAuDnBlmWa3TOXWmtwaZTREQE0tPTsWvXLpw+ffrGtEoAyMvLw4oVKzBy5EiEh4cDgOC2GwU2Nn0+H0JDQ4VoWbx4MRo1aoS7774bRqMRHo/nsmKL2tZgiQJT5AEgMzMT5eXl2LVrFzweD0JDQ4U9VxvFH0QkzA2e7+zZs9i5c6dYS3VwzVkVRcG2bdvQvHlztGnTRoiKkJCQWjOwqdIrwxre6tWrkZOTg6lTp6JRo0Yics7cyAij66gNr8katMAbFhoaijFjxiA7O1tofG63W9iqNwpaA93n86FJkya4/fbb8csvv6CwsPCK911zZrvdjnXr1uHBBx9EWFgYAAjjsDaARQ5vVHl5ORYvXhzg1mL7iusE2JtQG2fclZDP46qqigceeADFxcU4ePAgPB4PjEYjLBZLrREOcx0rdkOHDsXJkyeRk5NzxXuuibhff/0V58+fR2JiohBjFoulVmw0Bm016oIFCxATE4Nhw4YJ7mLKZk5joqkNrbK6zQ8+eywWC4YPH45Vq1bhzJkzMJvNgnhq47jgPBU+Q7t37w6dToejR49e8Z6rIk6SJGzevBmdOnVCdHT0ZWGS2gCW77Is44cffsCmTZvw1FNPoUmTJuJ7dlbrdDpRWF9TxaCmoD3fgkGSJDz88MOoqKgQZ091DuYbmVtbnmU0GpGSkoLjx4/jzJkz1d5zVcR5PB5s2rQJd911F+rUqSM4gGNqtcFxXIwoyzLmzp2LYcOGISEhQWRasY9UG98iIni9Xo2oVP01cjWE61k1b2RoaChGjx6NVatWYf/+/cIJfKPIIyJh/7rdbuHLHDp0KE6dOiVMkWDQ88RsM2iRcerUKVRUVKBDhw4B/jlOtasJeDwegWx/DxJ/DTc7UvmQnz9/Pho1aoTMzEzB2YwYrS+RvwsJCakUsSpURYbkcYFUBYAKokBpIElSALJklaACKCsrF+bFlc5LLTdkZGRAr9dj8+bNkCQpIDVPa3NdjzRgpURVVVgsFoG4Fi1aQKfT4dy5c+I64hIraDgueOGKoiAnJwctWrRAZGSk+JxFW03tKLPZLEwHNjSBqqJ9o9GIvXv34quvvsLYsWPRuHFjOByOasVhsPHNnKbX6WA06qFTZSiyT6yfiOByufxnh9sDpXIsvV6H4tIyGC3ma9au8UbJsgyz2YysrCxs3LgRR48evcye5JAP218+n69GRwojPXg/4+LiUFhYiIqKisu+0/ONweDxeLBz504kJCSIAnZ23QCocciGDXhVVYVnXRuTcrlcmD17Nh588EG0bdsWAIQYvprLh8HrdkMlgt5kAvR66PUGlJWW4v3330dSUhK6dOmCTp06oVtCArp1S8S+A4dgAPyFlaoCWamZAc3S6N5774WiKMjOzobX6xWdGlgiaBFVk6OENXQtofJ9SUlJyMvLCzjn+Dt9sP+NwW63IycnB507d4bFYgmwnSpvrJE4UFVVGNY+ny+gGQwRYeHChbBarXjooYcQHR0tHqQ6CqwOTBYL9DodnHY7ZEmCTq9HeERdpKamIjIyEo888gg+/PBDLFm6FN26dcOIB0dg/8EchJj8Kr3RcHXC4I3kClOLxYLHHnsMmzZtElofRw20/cBqSnja6xjpvD9JSUkoLi7G6dOnAQQ6Bi4blW8qKyuD0+lEq1athGIABLqyrhUBpsq0B22XIL7HbDYjJycHq1atwhNPPIH69esD8HO62+0WhHFNqlUUEABrSAgMJhOokrPbtm2Lli1bYvDgwejRowd6JvfA3LlzkZCQgMVLliCv4CKsNUhW0mqbnI6RkZGBunXr4uuvv4bdbhcuOyAw1aImx4nW+6K1HVVVRbNmzWAwGFBQUBDwPVCJOO0mseZ44cIFxMTECBcXL+J6elfpdP4MKG1El8coKSnB22+/jb59+6Jz586wWq0iqMkitSZ2mq5yPYbKDVNkGR6PC6dPnUJYWLgQyQAQVTcCnbt2xd6f9+Fc3vngRg1XfAYGs9ksfsaNG4dt27bh6NGjog8YK2ys7NQ0tYFBe2ayIhITEwObzQZJksQ1QCXitG4kPlTPnTuHli1birA7G738mwe+FhJ5PK/XG9Dc7N///jdyc3MxcuRIREVFCY8Eu76CHb5XfHAAsleC5HYDpMJgNMFstmJddjZiY2OFPVhUXApZUdCkcWOoigqDoZK6azJHJbcxQlwuF/r27YvY2Fhs2LABdrsdJpNJIIr3sqbBVu1eMWEztGjRAk6nE2VlZYHXsjzWbpIkSSgsLETjxo0DQjYMvLia+OqISHRP4OsPHz6MTz/9FNOmTUN8fDxcLpfItOLcSe5ccM05dDoYTEYYzWboDAbo9AbodYQ1a9agXbt2iI6OhsfjQUREHeh0BuQXFCAurjXqR9e75tr9w+uEtgj4kWE2m2EymZCRkYHt27cjJycnICWBG8fx/dcCFo1aBwfjo3HjxvB4PAH5lwCgZ27TikAiwtGjR9G2bdtqW1Zcr1dckiRhn7hcLsybNw8DBgxA7969hTjl71lM1iQRp3Kx0Pn7fkDx+gCosNlsiImJQWxsE7GhFrMFLpcLX/z736hXrx7q1YuGy1uzhFetE4BjawAwYMAAREdHY/PmzaIUjMNdfE9N9ok5WQv87H/6059QVFSEixcvAoAwp4SoDOaosrIy1K1bN0A0BnNnTUQZcw5f++WXX+L06dMYMWKEiDZrESRkeOXv4HmrWwcjT6/XAdDjhx9+QIcOHSpb1FcpXO+99x4Ki4sxbNgDqBseDpPJWCPi0O6Pdp+sVivGjRuHLVu24MiRI+Jz5pyaZEJfbU4AiIqKgtfrhdPpDPhez2eVFgmKosDpdAo3140A23tGoxFHjhzB0qVLMXHiRMTGxgYs8DeDTgdVUSD7JOjMZvgkNz5ctgwNGjQQipXD4cADw4bj9ddfx/z5byG1ZzLckg8Ev/F+I9CrVy9ERUVh3bp1sNlsQnKxR+hGQz9hYWEBig+DnhGmPUR9Ph/Ky8tFGAeoorrgn2txhDYX8c0330SnTp0wYMAAWK1WYR5cDa40L/+oPh/0egP0Oh0OHzyArKwsrFu3Hi+++CJ69+6NpKQkpKeno3Hjxli7djUy7r0XKulhMBpAVDPl5GpgMBgwceJEbN26FQcOHABQ6WIjqlFtxLWgbt26kCRJpEgKz1F1YQ0u0NC2/LsRUFUVGzduRG5uLsaOHSt6c9XGg/n9kAS9yYKGDRpg6tSp2L37J8yYMQO5ubk4duwYUlNTMXPms+iVkgKdDpBkGXqDHoZaiOcpioKePXvitttuw48//oiKigohHmsjgsHtpq5oDmjFJbN6bcSaVNWvLMyePRujR4/GnXfeWYtNqHUwW62V1KgiukETtGvXHqtWrsCHH34Al8sFj8cjciN9PgVeWYbVYoTX4wORWiNb7mrAKvz48eMF11mt1lrr1RxsDwqOCz50OZVca9tpU/GCf64mJvmAfuedd9CmTRukpaUJ0VleXh6Qa3EluPrcKvQ6HaxmC+zl5Xh/0bvom94XDocDTqcLTqcTXq8XW7ZsQV7eeZhMBigqAQRYLEZAp7+uEE91wOtPSUlBw4YN8f3334v2iWz73SholSNhb2v/0TqR2enJ31/p51oPtGvXLqxZswZPPfUUYmNjr89GQ5XNGEws/jkMIACr167G3Xffg10/7cbzLzyPv/zlL3jzzTfQrl17NG3aFM2aNcPEiZOwes03sJpNMOp18Hp8gHrjHMdgMBgwffp0rF+/Hjt27PD7QW+gax5DMKfxnhsZQSwuuQAvPDxcGMPa0AZ79xnJzMrsUQgJCYHX60VoaCjKysrw6quvIjMzU/SH5LNNK0r4LGAvDYeBzGZzgMfF5XKJNQLAxo0b8c477yAiIgwPjsjC3ffcg7j4eABAenpftGjRCiaT3xOTnZ2Nxf9YhPXZ32Li5Elo86c2fq/LFbQ/rhe4FoGpqlrZAt+Mjh07ok2bNti2bRs6d+4szBGgyizihN6ahsXKy8sRGhoqnpnNF6MWq1okceyMRR7/1k5IREIc8AZzUFCWZSxevBjNmjXDfffdB6PRCEmSxOJ57JKSEkRGRgZ4aDi6zBFhSZICqj537dqFBQsW4OLFi7jnnnvQp08fdOzYUVS6cLilY8cOYgMeeeQRJCcn45///CcmPDUBU6dMQf/+/cVcXElbp04dEaqpSYdzblYqSRIsFgumTJmCyZMnIz09XfTD1BKq1ktSE+BIf3C7fGOwb439hWazOSDXQ4s4BlZomGLZYyBJEnJycrBu3Tq8+uqroqqHa7+0xSHcfJQjyvxwnNklyzIsFgt0Oh0uXLiAd999F1u2bMF9992Hfv364Y477hDeHfaJsksK8HOEJEkICwtDly5d0KRJE3z11VeYO3cuNm/ejAkTJiAuLk7Ym1qHQ024QhuSUVUVHTt2RPPmzfH111+jXbt2qF+/fkCholaHqAl4PJ4AxLF0EzKA0wgAv9spKioKZWVlAdxYHeKYk0wmE5xOJ/R6PaxWK1555RWkp6eje/fuAjFapYcdt5Ikifu1Fa9stFutVlRUVGDBggXIzMwU3YrGjh2LLl26CMnAHGy1WgUSOInWYDDg0qVL8Hq9aNCgAR599FG88847Ignos88+E0jg59OmAV4NtBEPvve5557Drl27sGfPHoEsbeSfj5eaZMqVlJQE1NOLilh+MK033mQyITY2Fnl5eUIUVBcN4PORqYEXtGTJEjgcDowaNQohISFwOBzCZhOHqyYwqTU/tOeAJElYtWoVPvjgA4SHh2PixIno0aMHGjVqJKiP16/VUFmKcPzMYrGgbt26cLlcArkJCQmIjY3FunXrsHjxYqxbtw4vvvgiWrVqBcCfCMtOCO0bRoKB5+XjwWw2Iz4+HomJifj2229x5513omHDhtWmFtYEzp07hzp16iAqKuqyiYmoqqcjkb+PyKJFi2jatGlks9mIiC7r+6FWlh5x+6Py8nJSVZX27NlDHTp0oC1btoj7tO1yuWknz8nADW0YNmzYQIMHD6Y+ffrQ559/LvqnEPkL27nciDv6cGtCbnCmVtPjhMubuMkNj7F//36aPHky9e/fn5YuXSpacFyteD94H7Qd+mRZphMnTlB6erpoeqNqSqS0XfmuBfPmzaMZM2bQ+fPnA/bMSJrMJC3ntGzZEhs2bBAWO2lsMwZWJDin3u12Y+HChcjMzETXrl0FhWm1Mq0Gx9TncrmEKNi5cyfef/99FBUV4c9//jP69++Pli1bIjo6GgBEd3GdTieUl+DKGe0a+XOOgLByEBISIjTjTp064fnnn8eKFSvwz3/+E1u2bMEzzzyDjh07XpMjWCSzbsBHQnx8PLp164YtW7YgMTERTZs2RfBe1yRF4/Tp02jRooV4fn4esaPaXHidToeYmBhcvHhRsDRdQRYzYgwGA5YvX45Lly4hMzNTFPxrvSREVXXT2ocIDQ3FmTNnMHPmTLzwwgu47bbb8Pzzz2Py5MlISEhAeHi48P9xRJ21Na3Hh4mCNAoXI0p7tmo3jD+vX78+xowZg3fffRfR0dGYNm0a/vGPf8Dj8VwVcWzGcCxRq+CMHz8eBw8exI4dO8T6+B6dThcQt7sSXLx4EaGhobBarYE4YHEX3JgsPz+fEhMTae/evQHNxVRN3w6v10sOh4OIiE6cOEHdu3enlStXBogxbfcgNai3CP9+6623qGfPnjR69Ohqu6EH3xtc5cnrqu7/4L8ZgvuhsEgnIiouLqYPPviABg4cSJmZmbR7925xHfcnIyLRC1orLnlMvmbevHmUlZVFx48fJyKi8vJycrlcAX1ftH9r9+bixYs0cOBA+uyzzy7bD8FxnFrGlBgREYHmzZsjJyenWg8JF/dx3fRrr72Gbt26oWfPniJdQavG2u120SsE8NuJn332GYYMGYL9+/fj8ccfx8svv4zevXsjPDz8spfsBYs/rfgN1naD42fVxdJY0eLUQa1SFB0djdGjR2POnDlo2rQpJk+ejL/+9a+oqKgICCzzOjjRl7scsTbr9XoxdOhQ5Ofn4/jx40LiWCyWgAg5a5esaTPHHj16FJGRkSL9Qrsfep1OJ/IYtYk1FosF3bt3x86dO4UI4Mk4usv/L1myBMXFxZg0aRLq1asnrqFKTdTr9cJqtcJiscBqtWLDhg0YMmQIPv/8cwwdOhQvvvgiHn74YTRr1kyswWAwiCzomwlaw59zQJ1OJwwGAzp06IBnn30WL7/8Mvbt24cRI0Zg586domqIxSSfl3a7Xdiz3JulRYsWSEtLw7fffoszZ84IDwhr4FoXHiOPiX379u1o0KABWrZsKZwdArRihDVEZtvvv/+ekpKSRO/J4GJ8WZbp5MmT1KdPH/FyBqKqlvKSJIn+kUREx48fpzFjxlBaWhrNmzeP9u7de1nPxmCRWBPN60ZB26KRi+m17ZtUVaXjx4/TK6+8Qunp6bRo0SLR0IBbGnN3PL5fq4VfuHCBUlNTxR5pxatWTHLzVZ532LBhNGfOHNFETntEGNlbwlTANpXJZEJcXBx8Ph9KSkoQHR0dkLXL+YTvvfceWrdujW7dugliYN8i+yXZZ7lt2zakpqbi0UcfRUJCgvBusNfB5XIJCmZtTZuzeDNAa18Jd1JlqgX7Sg0GA1q1aoUpU6agTZs2WLZsGXbu3ImpU6eic+fOwhXH0oUlktvthtlsRsOGDXH33XcjOzsbHTp0QFxcnPCmsNdFW7/AL5m32+1o3ry5OMYCkpC1lMF2CLekcDqdNGHCBJo3b55QQvhg9Xq99K9//Yu6detG+/fvF60dzpw5I6itoqKCFixYQL1796bHHnuM1q1bJ1rbctsIbcterYKgXcfNBK3ywvaotl0jcwBzGBHRwYMH6YUXXqCUlBSaPXu26CzL3MZrZ/tVURS6ePEi9e3blz7++GPx/Np9YtuxvLyciIg++eQTGjVqFO3fv1+Mrf0NrTaj/c1iauPGjZSeni5eP8JsfP78eerduzctWbIkQCNljWjNmjXUp08fysjIoE8//VQYkERVPUK8Xq8QG9yVT658FYp2o242sGhk4tH2uWRicrlcAWLdZrPRmjVrKD09nTIzM2nnzp1irLKysoA+mryvs2fPpilTpghnAotWl8slEM4M8uSTT9LcuXOFphp8TIGIqvUO8GdFRUWUmppK69atExvr9Xrptddeo6ysLMFBTD1btmyhhx56iAYNGkQLFy6kI0eOiO8YQTx28AuImPqD+ybfbHC73QEbrW2uw+uo7pwh8jfQmTVrFqWlpdHLL78sXo6k9brw8zOxM9dpPTsej4e8lUR86tQp6t+/vzgTta0mGcBfMKYVRaGSkhJxscfjoSlTptD06dMFF2RnZ1NqaqqgMiJ/N/GJEydSv3796LnnnqPdu3dfhhSiq/eNvFUQbNMF/68FrVLBUFJSQqtXr6Zhw4bR4MGDae3atQGE53A4hOtw0aJFlJWVRUeOHBHjuZ0u8nqqusK/t/A9euKJJ+jYsWNE5CeaCrudvJJEPsU/LvhmSZKopKREvACBtSyv10sHDhygHj160OnTp0lRFOrVqxctWbKEiIguXbpEL7zwAiUnJ9MTTzxBW7ZsEXL6fwNoOeHEiRM0b9486t69O82aNUu8LYtFrqqqdPbsWerfvz+9//77AVztcbnJWWEnUomGDrmfFr77boDv0+P1kqKqJFcSjJ6j0kQktEuusNHr/a0LmzdvjubNm+Orr77CjBkz0KhRI4wYMQKffPIJhg8fjsLCQsyaNQsvvfQSevXqhYiICMiyDKfTedPtsFsNer0e58+fh8PhQHx8PCZNmoS3334bNpsNw4cPxzfffCO0TABo0qQJhgwZgtWrV+NQZVcFqvRdmq1WrF61CmFhYejcuYvwrVJl0rDL46oy3CspQQysbXfEtc5t2rTB/v378cwzz+DChQvIzMzE9u3b0ahRI9xzzz3o3r27CIewF4CDoNcTNPxvBO7VyWkXXD9w7tw5fPnll1i5ciX69++PiRMnitCMw+HAAw88gPT0dEyZMsWfJkg66Ix6PHD/UCQlJeHpSROFf1Kn08HhdEJv0MFsscKo00PPnmr2jrAdYbfb8fe//x3nzp0TXMeT7tmzB/fddx+effZZjBgxQiCNKSO4MvOPDNrgL6dByLKMZs2a4emnn8Yrr7yCo0ePinYbfM/w4cNx6tQpnD59GnqDATqDHj9s3ASfJKFDhw6wWq1wOBzCTWgwGmC1hEC8xZdb7vG5xofuO++8Q507d6ajR48SkV/N37BhAzVs2JBWrFgh5DprRNr28vz570Hx+E8Av1OOfxMFxi9PnjxJS5YsoX79+tHMmTOppKSEHA4H3XPPPfS3OXPJ6/HfM3rkw/T6q6+R3W4noirPUUlJCbk8bvJIXnJUmiR67pLDFENEWL9+PfLy8lCvXj2EhYWByN+Upk+fPsjIyBCRcZa/THVOpzMgT4VLbP/IwHvDqRcc2efwksPhQFxcHEaMGIGZM2ciPz8fw4YNw44dOzDy4ZE4sH8/zp45i+xv1+HSpUtI691bpP6z5IqIiIDV4ndusx5iZAcwVTqZy8vLsX//fgwYMEDUfbHyYjAYMGHCBIwfPx533HEH+vbtCwDCo80BTm0a3h/5fAMC67I5zqZ1X3GvT6vVit69e6NFixbIzs7G3Llz0aFjB1y8eBFfffE59uzejQeGD0ePPyfjcE4OXnnlFfx66hRiY2Mxd+5cnMvLQ+MmjdG+XXv/xD6fT7Cmw+GgTz75hI4dO0YFBQX05JNPUlFRUQDbV1RU0Jw5cygrK4sKCgouSxHgfvm18X7Q/xbQ2qvBhjIRBbxehq/fvn07PTNjBsW1bEm31a9PT4wdR3ZbOc189llK65VKi95bRF999RV98803NGrUKLpv8GA6lJMjxjDqdDoRY1q7di2mT5+OZs2aAQASExMREhICg8GA8vJyAP42E6NGjcJTTz2F77//HiNGjBCdgbi5qNFohMvlumq/xT8SiHz+ap6VuzBxuIg7UCQnJyM+Ph4WgwGvz5mD9h06YO6cOfjmm28wbdo0jBr9iBh38+bNMFnMAUU4RvY4X7x4EWfOnMHf//53qKqKffv2CVmr1ZhKS0vRuHFjjB8/HjNnzoTJZML9998Pg8EgXkGiqlUv3fvfDpzWwfmQnDjLGXJHjhzF1EmT0aVLF2RlZSFr5Eg8Mma0iL8ZDAYMHDgQRcVFqBNWR4xr1Ol0yMvLw7vvvotHH31UNIlRK6tsGLitLav5PXr0wIQJE/Dhhx+ibdu2aN++vVBhORv4/6DqDGRClmVZBFxfeOEFxMbGYuYLz+PNv/nfOvlQZqa4lypzZzp27AhJ9iG6XnTVwDNnzqQOHTpQWFgY/fLLLyRJEv31r3+lNm3aUGxsLL3yyivifWrsbyOqenHd9OnT6f7776f8/Hwi8qf2aV/x/L/FJLgWBHeFnzp1Kg0ZMoR+rXyjVVrPnpQ5/EEqKy4lxSdTWWVndq2DudRWRs5Kc8A4aNAgJCQkoE6dOqJnV0pKCtq3bw+j0YjGjRujuLgYMTExsFqtKCsrQ0REhMgynjJlCiZNmoSXXnoJ8+fPF+YDBVWZ/G8FFpHa837x4sU4fPgwZs2ahdZxcSgrLoHT5UL9+vVhNBqg0+tFQm54eDicTqc/m9kaAtJX7qeWKoI1HwZOP5AkiWw2m9Ak2Zl84MAB6t27N7377rsB7+D+P27zA6eEqKpKX3/9NfXr14+WL18u9qeitIyG3z+UHskaSfnn8ojIr4k6nU4qKyujXbt2VSXEVo4Jji+xxc9Zvpz/oI3oat93ynkafF92djZ16tSJVqxYQZIk1filfn900JpGe/bsoZSUFHr77berAsUqkaqo9PH/+x9q1iSW5r/1Nqk+P3ouXLhATz/9NK1atYpcLhcVlRSTozKQLcI62nhZsPuKKNBG4egwEQWkHSxfvpx69Ohx2bvdmFu18J8Olt4s4LNLG8NjotZGrktLS+muu+6iSZMmCV1BlmURPistKqYF77xDycnJlNC1K/Xq1YsyMzNp2bJlIjXC6XIJRtER3XgxNrEH2+HAggULsHLlSsyYMQP3339/QFFGaWkpIiMjRfukmhb3/Z6Bk3g4I9rpdAb0I9PpdNi3bx+mT5+O2NhYvPbaa2jWrFmAt4VNMkVWsOXHLbhw8QJIJTRo0AB9+vSB2WwW1/Feg24QtPkasiyTw+GgDz/8kJKSkuj1118XVKhNwuFUwD+Kd0X7DhzO7mbOWLt2LaWmptKMGTMoLy/vsvtYO7+W9OF9E8lCN7poTm/QigqXy0UbNmyg9PR0Gj9+PBUWFga8cvlW5JXcTOBn533g3JT58+dTcnIyLVy48LKsAK/XK360xw6PoxXB2jlqDXFEVWdkSUmJKNfy+Xy0Y8cOGjp0KGVkZNDZs2eJyE9ldrv9D6O48HPwy+MZZs2aRT179qSPP/6YXJVnkyzLIhVPWwrGHMqJxIwwLsciukmI48VolRoWFcePH6eZM2dScnKyUFrYsV2dQ/a/ESoqKgTS8vPz6YEHHqARI0bQ1q1biagqm4uo6uXwjBTOmuO/WWNn58VN4Tg+q7Tp21puYrmfn59Pb775JvXu3Zvef/99cf8fxbPCSNmzZw/de++9NG7cODp06JD4no8GJmZOltWm2MuyLM59Ls68mqi8Ya2Sc0xMJpOICAAQTmmtx/xf//oXli1bhlatWmHChAkBbxb+b4aCggJ88MEH+PHHH5GYmIgpU6bgtttuE20/+J1BHKvk9A6q1BBZW2QNVVuMqa3hY7+n3t/m8cbNAZ6Q6xC0KjI7nblVxp49e/Dpp5/i4MGD6N+/P8aPH39ZfXPwe+mCH4KBl17dIwS39dBWxQS30NVep21DrO3AoN1wLXz00UdYsWIFIiMjMWjQINx1110i/MIqPNcisJP5ejo78DU3BXFXA64/4/IjnU6HwsJCZGdnY/fu3Th//jwGDx6M4cOHo04df9iCC0t4I7UhIm1DmeBN1wJTN1BV0MHXXGmztDVrvFkej0dERrTSY+vWrfjHP/4BWZaRkpKCu+66C/GVzXGYu2qj7eEtQxwA0XFIp9PBZrOhbt26AIADBw5g586d2L59O2w2G/r164dhw4ahUaNGAchTVVW8+ix404MLKElTq85/a0uX+V5FUUQ7fa2I0uv1osWg1vA1GAyoqKjA+vXrsXLlSng8HiQmJiI5ORlJSUniqGDju7YcDLeU47Qby51/iEhEzA8cOICtW7di7969cLlcaNeuHQYNGiQaAAAQm8xVpADEW6W05wQnMWlbAzPnAlWFjNozRa0sMGSJwGKRuaWgoABr1qzB9u3b4Xa70a5dO/Tq1QspKSkin5Jb7nNrDW0Z1Y3ALUOctocVL4QVGoPBENCo7OjRo9i+fTuOHDmCoqIiSJKEvn37onfv3qI7EVBV08ZcCECcTdrWwFwarW0tDFR1UOLAcHD/FsD/3oUdO3ZgxYoVsNlsaNiwIf70pz+he/fuojEO4G9bpeV27jTkcrkCXvb7W+GWIY4RpaVmjo5zJyJtW3sAOH/+PA4dOoScnBycOnUKdrsdRIQmTZogJSUFvXr1EuJWWzMdPO+1zjRtixC32409e/bg+++/x4kTJyDLMkJCQhAXF4e2bdvijjvuQHx8fACS1MomONo3WzFRaFPHb0Rc3tIzjs8JXoi2SQCbEqwIcB8xhn379uHkyZMoLi6Gw+FAbm4ujh8/DrPZjNtvvx0tW7ZEbGwsmjZtinr16iEkJAQhISGiLwiDw+FAeXk5JElCRUUF8vPzce7cOVy4cAGHDx9GQUEBYmNj0b59e0RHRyMqKgqxsbG48847ERERIcbRptUz4ktLSwH4G19rz1zuw3IjXHdLOY4fkDmOkagoSkB5slZssdjRQmFhIXJzc3Hy5EmUlZXBZrPB5XLBbrejoqJCJOOqla2J+Szk7hC84dwiKjIyEqGhoYiIiEB4eDhatmyJ+Ph40eibgcWwltsAiPOWn4kjApwUBNT85VFX279bhjhV0+ZPK9oYUcH2DIu56npIaj9zu90oKipCeXm5eBeQUtnYTZtVbTKZUKdOHYG8kJAQREVFoW7duuJ38Jq1m81iT0tUAAK4Lnh9tVXwokWP1u78j4jK/4Mbh2Ct9f8Q918K/x9pYpY70Yz0tQAAAABJRU5ErkJggg=="
|
<image>如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()
Choices:
(A) 35°
(B) 130°
(C) 25°
(D) 40°
|
130°
| 10,894
| null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAKcAAAAWCAYAAAClgIw8AAAEwUlEQVR4nO1Z204bSRA9NVig7F8AtiNh/gFW9rDwFPMXYCMRBfLO82JnFWlNVoq0f7B4yAvXSHxDYg8KEP6ClcjgPvvQnvHcTCBZ32CONLK6u7q7uqq6Lm0hScRga2sr8DuMGAUeE2j8iK6M3rCSwA///d/a2kou0z0xUsbZxck/mKbfEJFBszCSGCnjvI+SE0N4PBgp40ww+nhIZJNuBdH8/HzgN8H/g9PTU4gI5ubmBs1KX3F6egpA29N9c+5U79hJEIeneNn9qdZD0q6unjNBgkHDCFqmCrSae1VYzSGx3fuwMRSsqkiPvv/R/qeK8oIBQwQiYxARiAiqe80InRF0sp36iLDxsrjZc0bvjTajJFFe0AcaE/eQApECbPFZ5wAMlWwhUmPSDWUGrDdlGEZK87uwAgUb5XK1PXcoblZfUDtSWCkAFesTSKJhVfC6OBtxhJ4kw6L5Y60GMU1kc/5eFRDiIAQqIqgdESUT+KfRQktpnrZXgZzkYbsn6dOLkl8CImNRAgFg72q+r6bQUrcgidbbRaSMWWBquj336TyBETbOT/JYejEDAMilM/G+hD4opUiS9WqJFWuXeeT5mcpH0eIwQLHJvFmO9K8sgIVyZQAcdYdikwWA+dJ2ZGx7Nc9qveEStjEcMu4N9NkaVsXTkyJZMsFC+XeGz54iOk5GRADbwjFN1DLAppnFbMAFGSBb2kMQgCj056k0uI+9tw/JTkao0ukC/jr/Cii2E5Z+8dcdH6o1nCCPZm3D63Nlnk4/BzLae3TE/EifnglA9Nkuvl7hpLYDqem0sd5QqOWikcNAKDSv7ZygtlEEABSy05EJXugSBbJfoSiosIOjAyyaixGq6elsm1za8XawiiZs/Lm5g1JlDTNt6yPp2WHxVQ1FVymPPOX0TIXA0f4O6g2djtWrJSzPGvgQU3gb/lyn/nYd7/9+j4lfJiC5ZYQrTJK+PNOASP8kSu+zsb9DL1/x4/LyS+dC9TGFY1yDAM/O8RHAVDrjDXfNLQV4EhX9mYV3sopiTkASxVdrMAEcHuxFSH2x0sLJ7a+4vr7Gzb83aFgVZCczAcm7Zb/fQPsFcb+zC0h5yfNEHmwLr999DHnU/ihb4hqi3+ki1zfmPrviZCiK6er/ccAVi3VwjNJvCwAUIALYX3AMYHo6E5mjrcu2IOtHXjgHdF4AUREPFBZgrxHezdo/QnYymm6UXy4D5io2XuR8cwacv808RwHA1eVFp68tT3VmeW97rjMNV/ux1f+I4/BwB+biC2jd2DBzywDyWCxGIyEqpYIXMesNRUc5LJm6Pf5snEvrVTrKIUk6yvE+F/52i7fB/laQ1h331ml1xsLzSXrz9Rotr/LdbX6joxx+Uw7ZrGv+zVVNp4I8xe3vQQWbPzseB+tNmQC4Xf/s9TWsClFYidD2mr9BjjesCnUlYHQyNBiEucpuQLjDr0zdvgls5hoKSW0c/nmq2xpOaH6X/VR8v9NytEIBTjwb7xxO9AWq1huRixNroN8zph8Yd5/f7qINK6brc1cP+Buq8TsRfUKL/Ld+y1ukJBXbjhvz4y66+4zdxcdD+btrzwSjge9qLCWpO5WbKD1Br+BVDGEv+FD87PxBrZ1gePEfS9je4Z0ecj8AAAAASUVORK5CYII="
|
<image>如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()
Choices:
(A) 3
(B) 3.5
(C) 4.5
(D) 4
|
4
| 10,895
| null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABjCAYAAACR8o4mAAAMP0lEQVR4nO2dX0wbRx7Hv+O0ja6q2j61PDWJbZrwVCpVCmlU1YD5kwB21OTkSKna9AiF9qKjTTBwLwlSU10LpCktKDHQliJVIanIAU0C9jqNkYpCpT5Q3UPgsMMh9YHcUyLRI9Cwv3tYr72218bArje29yNFxjP7ZzLf+c3+Znb8G0ZEBB3N4UG4w7kwZ6xDiSnxsYbUFCm7ScYqGAI4Wfpe+ByiuCfqoqUAlsQx3U3doKoK7DDxwXNY3BN10R4BuB4nYLUCVxkEyfiESuuiaQEB4IW+jwIecChGjYnHD1V5eBEGrCWLLpoWMAAGwZQaL3BorSkHI8Cel5vU6bpoKYWP+Mb1NKC9vR2MMRjM+yLyEjn1umgpJVzdFPDAS6UgIhARZrkuvGjcFspnCR5qj6laRh0AwiNMKgEFPDCc8IKGW4XvRJibmwNghmCNhsQuJ+moCk+rwifPExHR+cYqCupIHr9wjNOGUJrd6SLiKeKcaBiRPiOiNtGWtln0Z1oKWEuwByvLEd/XMiNdNI25du0aOs59HpHG1lBZFy0FxHsCDQ4Owm63Y2lpKc6J8sm6aCmAyZjO4OAgqqurYbVaE5won6yLliIEa+NBROjr/xZ/OVaN69evY8/ugvAxSV5LFy2lGNDf348P/laP8Zs+vPrqqyCJNSXrYeqipQjGGHp7e1FfXw+fz4f8/PwNX0ufEVEI0dmQe34BQEdHBz755JNNCwbooilGPLGAsGA3b97Erl27Nn0vXTSV+fjjj9HZ2Skr2EYno3TRVKSlpQV9fX2YnJzEtm3bYvITWWcidNFU4tSpU+jv78f4+DheeOEFRa+ti6YCJ06cwOjoKMbHx2UtbLPooinMhx9+iLGxMfh8Pjz//POq3EMXTUFqamrw008/wefz4bnnnlPtPrpoCvHOO+9gamoKk5OTeOaZZ1S9lz4jsklWV1dDgvl8PtUFA3RL2xQ8z+Pw4cP47bffIgQjog2788mgW9o6kA6GHz58CIfDgYWFBXAcF2FhagoG6Ja2LkQxlpeXcejQIdy7dw+jo6N46qmnUloOXbR1sry8jAMHDgAAvF4vtm7dGspTu1sU0bvHdbC8vAy73Q4AGBoaihAMUL9bFNFFS5LFxUVYrVY8/vjjGB4ejhEsleiiJcHi4iL27duHnJwcDA0N4YknntC0PLpoa3D//n1YrVbk5OTg4sWL2LJli9ZF0kVL9E7r/v37sFgsyMvLw8DAAB577NHw2x6NUmgIY0zW6xMFy8/PxzfffBORlyovMR5Zb2lArNd39+5dFBQU4JVXXokRTO74VKOLFsXdu3dhsVhQXl6Onp4erYsjiy6ahPn5+ZBg586d07o4cck60eI5HvPz83j99ddx8ODBR1owIAtFk3seiYIdPXoUZ86c0aBU6yPrRJNCRJiZmUFBQQFqamrQ0tKidZGSIqtd/pmZGRQWFqK5uRn19fVaFydpstbSpqam0lIwIEstbWpqChaLBe3t7Th27JjWxVk3WSeaKFhHRwfefvttrYuzIbKqe5yYmEh7wYAssrSJiQlUVFTgq6++wsGDB7UuzqbIKEuLN3AeHx9HRUUFent7014wIMNEkxs4u91u2O129PX14dChQxqUSnkiu8ellfDff9L27awSuN1uOBwOXLp0CWVlZQC0f62iBJGWJgqV5oIREQYHB+FwOHD58uWQYID2r1WUICMdkStXrqC6uhrXrl3D3r17tS6O4iQWLbq7lOs+xbRo60zU1SbbDcc7LkH6pZF/4oPa9zF6ZRh79u4Vjk3zniOaxI5IdHcZ/SlWSLSg0vT15EmRHhcvXXr+0gq+++47fFD7Pobc17Fnzx7Q/5YT3yNNWV/3KNdqU1EhSVjKt5cvormhAaO+G0LIh6UVsCe1W5uoJmu7/Gu1VGmr14iuri7U19djbGwML730kmblSBVhS9ts36/ms0NybSKKCEfU1dWFM2dbMTk5iV3bjGvH3csAYsdpchUvWlt0ntQKpXnxnJa18qT3iHNt9uTWUPoXX3yBf3x+VojRsc0Ye414f6c5YdE2+h+Kd16i6yV7ToLjxBgdcaPgRDeUDCI5R0TDVio3gyEK5vP5sH37dk3KpSXJj9M0InoFsNPpxPfffx8ToyMTpqeSJbFoClqXUKkEOYd1rQoX88QYHT///HNMjI7MECwYk18KAYTIukvZNJZQqfIVG289vZTjx4/jxo0bqgZV0YpwoM7oBs2DmCG4G0a4blIiGgFAktYkhzTkQ6YJBgAs+BpQGr9faMQG2Wau+vu0RjuDgTEYDAYwxsAYg8v776TPFwUbHx/PSMF4SeRiqUCJGrHqorUOE5w24Dw3K2yE4zmPupKd4AKJz+N5Hm+++WbIwp5++mm1i6oJ8rYkEP0eniBYoOqiEfyYuVqF4uIdAACT0RiZL7NEYHV1FQ6HA/Pz8ymLgqM9fPgzWCXeHmeod2L2RgB+NDW51BctwHmBhkrksi0AeDSdKIOt0SXsMEux3cDq6ioOHz6MhYUFjI6OygqWWdvjiGIJUhAMoDseMMbQ6c8NbdXFf2aFgeUCZqP6jsjcfwIYaW0Ha68FIwb3LKHVxMt6i2KMjqWlpbhBVTJvPGaICvMegN0sNOzhT4WFtEQEZirF+cYqsB1m9S2Nu3oWnsAq+Ic83K6TKDUzcAFDxMQuEeHBgwehoCputztuFJzMEkyASToOrucCRlCFs58eAwXVFP/PueZdMBqNyokm12VRwIM2NKDEKHiO1ppa2ABwNzxgCD9oFxcXUVVVBUA+qErmYxC6Qfjx5bvtcLqOwwRDTAMtrmlFiUkp71HybJJq5/2RQ2OFZC+VwB2MIOyMMAC///479u/fj2effTZrBQN4of4Cd/ADhPoJjdfinLFJwnsyC8+bcA53tR3W4tLgzf04YC4DWCWKrYJoi4uLKC8vR05ODgYGBrJQMADgwShqMwYKy8IkxwHCcQo4IpIbBBXzcxeQG9zSvm1EoqLNGdoH8969eygsLMQff/yBoqIifPTRR5svSppCDMIz3mSEjQiBOT+AqKFRwIvuOSNqrWZlvUfRszOX1IGnuphho9iaxBgdL7/8sirRtNMRoa7M+Gt3A0rfLYPJOItaqxlEhIDXhdzOO6DhVnFKcPPIbTcaL21hYYHy8/Pp6NGjStw67Tl9+jSdajlNFNzwlYhohjsvbOzKhEkQW6OLiMJ1qoilxTjhFPbopZOg/w3G6CguLkbnl51K3DojYGSA9DHzorUORHWSI4TnmViP6ozTZPYEkwZV6ezsVHY72rSHXyPfkOCbApDMeG1+fh67d+9GZWXlIx+jIx1QfUZEGqOjra1N7dtlBYqLJh3F3759OyRYusToSAdUmzCenp5GUVERGhoacPLkSbVuk5WoItr09HTaxuhIBxTvHqempvDaa6/FCCbnoOhsDEUtTRqj46233orIy8RXKloRx9Lkxw1ha4nN/+WXXyJidOgiqUeEaI324HoEtiW8NoHZ4BdH5Ex+TD4xMQGr1Yqurq60DqryKBHWQljNFl4r0hxZ++LKKY+fQmsTzjcCuexASLjoJ5M0qMqRI0f0Z5dCSLXgg1rMelyw7TLCIK1igh+30SAsuglS9+kInLYfcLKpF8JKoXAX6XZzqKysxNdffx0KqqJ3i+sjupGHv/pxG06UmARdXC4OppIi7DfugEFaxQHOC7bTHDan4KdpZxVGpv2A5BW4283B4fgzBgYG8MYbb+gWtkGE+uQl34VPP+dFXvCtv7fHBZh2gMGM2toSwXsUZ+K93uuoKP0sPJkb/DTm7gRmwgeKUXAKCgpw69Yt3Lp1K7QeX2d9+Hw+WCyWiDSCsIqtrfY9tNUKaR6/MAVI4mJVYZGNH9fbKLQUQErAP4PKPDOIASsrK/j113+h6e/NETeTCqaLlzwWiwWFhYUAwh0cg7BUQ/QtnFVV2GGSOIPiizfe7w69bJPC+90EgC5ws5HpCrwA1CGSvvwMpcyOEeyNxJNQz93d3URExPNCrYe8R++PHHaatse0hKYTZYDNiVqrOSJddzeUInaofOOmF879xaEfONXU1AAAGpubhAOIiHiaIRtAHj+FTIif5YRX3vaGSKvi4/xNRLxMq9Hzk88XabIFtZDgtIGcLjcRCb9iIRb8QQYAYsJPDmW6xNgb6l2ksghrQwwRGkj/iUL+H3TVlu29juhbAAAAAElFTkSuQmCC"
|
<image>如图,DE∥BC,AB=15,AC=9,BD=4,那么AE=()
Choices:
(A) \frac{12}{5}
(B) \frac{57}{5}
(C) \frac{135}{4}
(D) 12
|
\frac{57}{5}
| 10,896
| null |
\frac{57}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAGMAAABtCAYAAAC1Md/lAAAW1klEQVR4nO1dfWxT57n/HQfK7eLVmzgUs3pK27hgMFWNEoZpsptw40D46CWUoNCSimyKBMRsYiO6ZFrW0DWbqOpsoAZaLUiYNl29YXB6gWEWI8KI12imArQ4NhC6tIAWRqaaJtyGNfFz/7CPc47P8UdC/JGwn+Q45/06j9/nfZ7n/X4YIiJEARGBYZhoSeIG9yqGYQTlRnqH0+lEX18f/vrXv+Ly5cvw+XwgIvT29uLTTz8VpM3OzoZKpQIAzJo1C1qtFjqdDnPmzMGSJUsmhP5Eg4nFDMAPQJZwQkZGRuBwOHDmzBmcOXMGbrcber0eSqUSGo0Gzz77LFiWBQCoVCpkZ2cL8nu9Xty+fRsA0NfXB4/HA7fbjTt37qCjowOLFy9GYWEhDAYDioqKJGmI1vD4DSlhoDjg9/t5D/HkiJKfB5/PR2azmUpKSigjI4NKSkrIZDLRxYsXY5bHLzNS+Xy4XC7as2cPGQwGAkClpaXU0tJCAwMDY/otiURMZgh/5kikiDHBYrFQeXk5ZWZmUkVFBdlstvEXNk5YrVYqLy8nuVweFw3xMPxBEZdkjBfhP8BsNlNWVhbl5eWR2WxOaquMJp3Nzc2Uk5NDGo2GLBZLUipeCuNixlhJ5ZhQUFBA7e3t0mWmqAL4sNvtpNfrQ0xJNhIqGefPnyedTkcFBQV07ty5UHg6VHw0cEzR6/Xkcrkk04TbrYlATGZ0tZrI1iX10hGJsADu3LlDlZWVpFQq6ejRo0Q0PgZweaTyJoOhZrOZZs2aRUajkXw+X8LfJwP8oW4bwjq5hG7sKK2J0A+T7u6ePn0a8+fPh1KpxLVr1/Diiy8CGF+XkMsjlTehXcwgNm/ejGvXrmH69OlQq9X485//HDU9xRolxEI0TjUaq6m4uJjcJCGSfqJw6di3bx+pVCq6cOHChLaYdEBHRwcplUpqbm5O2DsgssbBZ1tjNZlaj5GBMQSZEbmQoaEhqqyspJycHLpx40bCiE01enp6SKvVktFopOHhYck0D6I+ebrGH/hiAHS3oo2KsfMZBo7iuVgABpG0Qn9/PwwGA4aHh+F0OkNTElMR2dnZ6OzsxK1bt7BmzRrcvXtXlOZB1KcMEnm3H3Bg/85SgADDM0+DiMLNCQjApUuXsGjRIqxevRrvvfceZsyYMRr/oPozTSGXy2Gz2aDT6ZCbmwuv1ztxhY/KV+DL1lhNCNQ1MQxDhupfSYqU1XqMlEol2e32cYvlZIfVap3QOhAacLeNqk220GNXqynwHDY1ZbVaKSsri7q6uiaEiHRGLBvgcrlIpVJNCENCzBjpthGKtwUICIbZGqtpW6NNEHbp0iViWZY8Hk/cBE9mxDsJybIs9fT0PNC7QERkqjaEVBM3wKsuBjHBMIPRREREfX19E9YKphosFgup1eoHGhzGPR0yNDRE+fn5ZDIFGDN1ZWH8qKuro5KSEhoeHh6XtpBRhF4Phf4EsHXrVty/fx/5+fkAINUJe+jx85//HNOmTUNNTc24urgyfiY+Y5jQH6CxsRFerxcrVqxAQUEBDh8+9IBkTy0QbxXwgw8+QFtbGw4ePCiKj6egEKRW9Ox2O2VlZdFnn31G9fX1VFFRQRqNhmpra6OKXCJmNScLenp6SKVSUUdHx5jyCdSUQLQYP27fvo3KykpYrVZ8+9vfBgCo1Wp0dnbi0qVLWLduHQYHByWZnIyJvHRFdnY2Wlpa8NJLL0mO0jlQmMTIIleaDDU1NaisrERubm4ojIigUChw4sQJPPHEE9Dr9aKdGhweZoYUFBRg1apV+OlPfxpRTYnqJ5LIdHR0kEqloqGhoVBYfX09vbq7XpCuubmZlErlmEXyYYDP5yOlUhlzgwUHyUWJkZERbNmyBfv27RPMNwEAE8bkqqoqWK1WlJWV4fDhw+NvSlMQCoUCr7/+OrZt2xZXeklmtLS0gGXZ0MJQLOTl5aGjowNvvvkmfvSjH8VNLE3RyUQ+qqqq8NVXX+Ho0aMx04qYMTIygoaGBrz22mtjeml2djacTie8Xi9WrlwZ0bDz8bDYlLq6OjQ0NMRMJ2JGS0sLvvWtb6GgoCDul3EtXKFQ4NSpU5g/fz70ej2uX78+BpKnLkpLSwEAra2t0RPyDcjw8DBlZ2eHttOEjxPq6+upvr4+LmNkNpuJZdl/G/YgbDYb6XS6qGkEkmG1WqFSqUJS8SBqZPPmzWhtbUVZWZlgNPqwYu3atQACGzYiQcAMi8WC733vexNGAGfY9+7di+3btz8UBjsSGIZBZWUlLBZLxDQhZvT39+Ps2bNYv379hBLBrRt/+umnWLVqVdQR6VTHpk2bYLPZInZuQsw4evQo1q1bB7lcPuFEyOVyHD9+HAsXLkyIYY8sb35xWp50JltOWZbFsmXLcPLkScl4GRAg8IMPPsDGjRsTSsybb76J2tpa5Ofn409/+tOElSu0bHwGiIdRAjuYBLUZrpo3btwYWVUREQ0MDJBCoYi4F4jDWHpT0cBtCGtqanrgsoiI/P7hMS92pWpGOVpdy4DAca2lS5ciIyMj4S0FCBh2l8uFt99+G9u3b8fIyEh4AxlTeQyTIZSOOLKnasApl8sxf/58XLhwQRQnAwCHw4E1a9YkjSAigkqlCm0IKykpERj2sVaUiHnB7KOhQtsxVmZPNNasWQOHwyEKlwHAiRMnYDAYkkYMV9nchrCcnBzk5OSMe0MYd2BTFB76T2g7Uj0NYzAYcOLECVG47O7du+jv78e8efNSQFYAe/bswWuvvYZly5ZFHRRFw1gqONWjncWLF6Orq0uknmVerxcLFixIEVmj2LRpE44fP47Kykrs37//gctzf9gIhmFCn+LtjaG4VE9PymQyqNVqXL16VRju9Xrx9NNPp4gsIXJzc+FyuXDw4EFs3bpV1HJiI2AbGo3FWFh6Cm4KnD0hvxvYXyNgSKrx5JNP4sqVK4IwmdfrhUajESVOlZFTqVQ4f/48/vnPf6KwsDD+ETsBgAyNxmLUXHsG5HdgAScDzALsbTXBsf8UPCk03vw61Wg0Ihsp83q9kvYilUZOLpfjyJEjKCwsRG5uLtxud+xMTEA11RxwwPbr/RF1EaVQR/FvhNBoNGLJ6O3tTdszFa+//joaGhpQVFQUl2F/+0ANDEYT1mrFNX7t+ieh/1NtwBmGgUqlwt/+9jdBuGxwcDAh81HjgZRqLC8vx/Hjx7F582bs27cvcl5042obUFJcAkZiTqrNfgBF21cGDv5MKNXjg1wuF00YygYHB/HNb34zRSQJEUk1Ll68GBcuXMB7772H73//+2GGPVDxjOca2gh4Rr0A4eMK94eNONAGbN/64wRRPnYoFArcu3dPECYbHBzE1772tRSRFD9UKhWcTicGBgZQWFgIm82G+fPnY9GiHDidTtD8Z1AE4FpPtyAfd2J3ebUJpVoGRGPtoSUGUpIBxHeXCxFN3EThg6K+vp6mT58eOsag1+uJKHi0IXjGhIiI3DbBkYZRjKR866nP5yOFQiEIk9yqQ2m+Ird7927MmjVLFL5zfxuq8fboYE+7DrYuP9qadoal5H622LakEjIpcUn13A0fkRrGu+++i6ysLEyfPh05OTmh8P1/pMBAL/gpFfWsgjaGYUBJuEcrEgYGBvD1r39dECaTy+UiQ5JOCG8YHHOKiorQ29uLGzduoLOzE5WVlbh//74onRijDEh2k+PTdO/ePVEvViaXy/H5559HzJRuCGfO47Nnw+l0YmhoCIWFhejv75dMlw7g0+Tz+ZCZmSmIT3s1FQsMgBkzZsBisaC0tBQ6nU5ixJ5etgEApMZ3sieffBK3bt1KEUkTi13/swv79u2DwWAI29uaOtvAB1/j3Lp1C0899ZQgXqZWqyf2lH+SIKlKGWD9+vWw/+EUduz4Md54443IaVMAvsbxeDxQq9WCeNnChQsnJTOEuzyCX8EB3XOLdLh48WMcOXIEr7yyCf8a/ioYnx5MAQK3jWq1WkGYTKPR4JNPPomQZZKAmylnMkIVzrIsnE4npk17BHlLn8ft27fTyhb29vaKZstlGo0G3d2BKYT7//oy9Jms4K+Hz5gxA4cOHcKGDRuQm5sruSNDComWIL/fj56eHsydO1cQLlMoFGBZFleuXMGMRx4FgND3ZEX4BoVdu3bhrbfewgsvvBDXoZVES5DL5cLChQtFW6NkQOStI5MFUi05nCGlpaVwOBzYsWMHfvGLXySTPBEibY2SAZG3joSrLT8Nw0/DAjUWSa1FU3nxqsNI6cLDuZbMPXNxDMMI8mq1Wly8eBF2ux0bNmwQjNiB5Bn4SFujZEBgh99HH30k2gAQrrZkzDTB8/1/fYkZjzyKGY88KmIQFz6WOD746SKF8/Pzv8Pp47+DZVk4HA7I5XI8//zzuHnzZiiOvyyaKAwODsLj8fCOc49CBgCZmZnQ6XQxVZWfhkMM4ZAMgx+PDePSPDL9PyTz8SuYM+wvv/wyli5dGjLsXJqJtBnhjD158iSWLVsmuZVWxr38pZdektwdHa31cvFSLThViFSRUuE7d+7EO++8g5UrV+J3v/tdQgx3eJkWiyXibv/QPMEL/7066kGOWEikdCSy7NWrV6O9vR11dXX42c9+lrD3AKMHklavXi0ZH2LGzJkzsey/CnDi+B9EiTjpCFdRXDhfT4eHjyWOX+ljLTvcdkT7PxwLFizARx99hPb2dmzYsGHcDTIW3n///agHkkLMmPHIo9hY/jIOHRrb9UWRVFQ09RUpTuo53vzhYZH+lwLDMJg5cyba29shl8vx3e9+V2DYJwJEBLPZHPVAkmA6s6ysDDdv3sS5c+dCBQAQtc6pCIZhkJGRgUOHDqGqqgqLFi2Ke8QeDz788EMAwIoVKyInCl8oN5vNVFBQQEREQ/f/L/QhSp8NCcmA3W6n2bNnU0tLy4SUp9PpYjpMEU30V1RU4NatWzh37lza9ZSSiRUrVuDMmTPYvXs3fvKTn4TCaRxjEO5mBO6mhEgQMSMjIwN1dXWor68f80snI6JVrlarxYULF+B0OqNedBYLDQ0NqKuri5lOcgmsoqIC/f39OHbs2LhePpkQa2yhUChw9uxZPP7449Dr9YJV0Xik5ODBg5g+fXp85+v5Oou/reu8M3D515dffhkKe3U332aMPHTXqTY1NY3porOol39JVJ5AMvhtJP/5PBQWFoauOiKisIu/JO+0n5KgoAQYjUaYzWaUlZXh3XfflUgnnNvbtWsXXnzxReh0OnGhUpUXjbN9fX00Z7aSXK6PyU/Ba/FefTWuVjGV4fF4SK1WU01NTXCbaJjLIz9Re3s7qVSqqDdAh28xFdqMMBU4e/ZsHDpsxvr163ArOAjiy0P6rCgnFxqNBh9//DEuXbqE1StXYWBgdBMgAbj+yXVUVFTAYrFAoVAAJF1X4fYq7EyuOMOKFSvwwx/+EBs2bMDIyAj+frsvWvKHBo899hjsdjueVmdj6dKloftQ7g0OYu3ataivr0deXh5AQOuvt0HG7f9dXg1CN4xG8fnCaUQEMLwDJASAEfo53blzJ7q6uuH6+AK83R584xuPYcmSpXjuuecmxXGCRIJlWWRlZSE//z9htf4ee/bsQXHxClRVVQHdrWC062AwmkZ7Xt2tkDFabDPZRGUxfr+f+OJiXM7gQJswkam1C9tL1CgsLMRjj30DGs1cOJ1OeDwezJ07F0uWLIFSqRTk4TNzsoO/hBu+nPvFF1/g5MmT8Pv9+M53voN//KMfp0+fAiPzYjmjBYwmtL21U6BGfmUsBi3fi51rhVt1ggZcaICqixkytQYclXS1mkKuHG7/XeiyYWBggN555x1Sq9Wk1+vp8OHDMS+DmQrw+/00PDxMDQ0NpFAoqKGhgX77298KXDYEPPQUkVuiD2trrJb0fSjyRuYnNxXxCwkeOGl1Bx4vXrxMLMuS1+MWENfe3k4bN24klmWptrZW5JUs0uGUyXRnOkenw+EgtVpNa9asoc8++4z+8pe/BJ2ZXA2kIzcZwAi89AQjogLhibpaTYKTPsbl4pM/v7ceiejm58aNG1RXV0dKpZLWr18/pRyf9PX1UVlZGalUKjpx4gQRhbn54eox2IA57RJAZI+fHBDuGYDvAItTT6Fo/6gK4pw/nT59OmLhLS0tlJ+fT2q1mpqammJ6XUlnCTGZTKRQKKiuri50JXlEB1huG4EJZwaHyEwJG/SNUHXxKAM4xoQYIvyiixcvkkqloj179ogK5ldsV1cXVVVVEcuyVFVVRd3d3REJSjd0dHSQVqslg8Eg8KlUW1tLarWaPB6PqBEF1BTIaLKJG5jbFoFJYczwdx0jGEYPKHKFhus+/gvu3LlDer2eNm/eLLjEXgo+n4+amppIrVZTfn4+vf/++1HTpxKcs+A5c+YI3FEPDAxQWVkZGQwGunv3riAPX3NwDZmreD8RuT9sFB4ADZMSATNsjdVk5Fd8dysBoEZbdBdw43EnarfbqbS0lJRKJdXX11NfX19c+ZKBpqYmUigUVFNTI3AgH8udKF8G/H5/qCfKfUZtr7SqAhfh9/sFKoqTikjdMyns3buXVCpVRB/aUujt7aXa2lpiWZbKy8sjOm9PBlwuF+Xk5FB+fr6ocyLlaNfv94sYEB1CJoSnBtGIiIOhj0CkJHJLwG63E8uytGvXLkGrioXh4WEym82Uk5NDGo2Gmpubx5T/QeDz+choNBLLsiKvxj6fj3bs2BHzKnFx1cTuPUkwY+LxoM7ZXS5XKP+WLVuop6cnYT0ts9lMM2fOpC1btoh6e3zn7J9//nlC3s9HQpjB4fz586TT6aigoIDOnTsXCo9WseGdA5PJRFlZWWQwGMhqtU4YbW63m/Lz8yknJ0ekVu12O+n1etLr9RFVbiIGqwllBgez2UxZWVlUUFAwbptgs9mopKSEVCoVvfHGG2M2+FzFffHFF1RTU0MKhYL27t0rSMMxYd68eYIeVLKQFGZw4JiSl5dHZrN5XDaht7c3pMNfeeUV6uzsjDvv0aNHSalUUkVFBd25c4eIAjbhN7/5TchWpYIJHJLKDA4Wi4XKy8spMzOTNm3aFHM/kRSGhoaoubmZdDod6XQ6MpvNonEOJw09PT1kMBhIq9WGjLDVaqXy8nKSy+VUUVERk4ZkzA4khRmRfojP5yOz2UwlJSWUkZFBK1euJJPJFLf3Lg6dnZ1UUVFBLMvSjh07qLe3l4gCDKurqyOFQkE/+MEP6Je//CUZDAGnwqWlpdTS0pK0Hls8YIgSe1yH4ljXoMAcGRwOBxwOB86ePYuuri7o9XoolUpoNBo8++yzYFkWQODuqezsbEEZV65cQXd3N06ePAmbzQaWZXHjxg1kZmbC5/MhNzcXhYWFMBgMKCoqGtfvABJ73i/hzOCDwhZo+N9ScDqduHnzJjweDy5fvhy646S3t1fkqFGtVuOJJ54AAMyaNQsymQwajQarVq3CkiVLEvirJg5JZUYyIVixZAL+BQlFcFNb6IrV4Apz2iA9LtVIAPb/kVBdDNi6/CA/wU8EUzUDLVOM7tErFVJLZDhSY6oSDz+5qajYKAqvLpa6Ji89MOUkg2vr3f/7BzBznxJFPv2MAY6r6ek/cOowI8gFzgbYT59GSXGJMA0DZGcLr4hIJ0wdZnBcoMD1qacOEFauFXs/uH79Kgxzs0Xh6YCpwwwODMB0XwWCtzsL0N2KmgMOlBSXpOXW1KnHDACt9jbMe1Lc+o071gGGbdi5VptWXdoQUt2DmChwUy7cCuUxN293eHDrDJZXp47AODD5mRG25wtSK5aiPUzpiSk7Ap+MmJI2Y7Li38xII/w/+KnyTLVcMW4AAAAASUVORK5CYII="
|
<image>如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是劣弧⁀{BC}上一点,连结CD、BD,则∠D的度数是()
Choices:
(A) 50°
(B) 45°
(C) 140°
(D) 130°
|
130°
| 10,897
| null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABlCAYAAABHq207AAAPOklEQVR4nO2dX0wb157Hv2OyCg9IvLhaa+uKBJzG3XY3rlKp1S0tqkob3w047BWRt22k5AEtXfFCWpuQ3Uo81JG4N/TW0pIbY7QSVRsVqajc20uT2Gbv5YFISPTWXalqSGynRFRqKvJARaN17trz3YfxjMd/MYMHTJmP5MSeOf/4fef8zplzzpwBDWoCUfU9HPQQgPRxeSnyFr3eMeW8CSVg2QNiqWgGGhEAMBGGyWTCaPwQSIIkxN+2wyQcBmwHsoHVantdGXUF9f/HGWN6ey63PYzIGF0AXQNjqmMSlwc6GQgnlOMmdQ36zR8Ir0tAOCapzDRxecCEQ0IX4kbt0pXZ8TF8hk689+se5ZiQ+b/FdhjNzc3ZwPlqd54YKLgKvC7QNRDU5QozkOx+QgC9Y6Gctq0gnCidzbZpBBKRWQiHWwqugoP2Tny2FANZ0NIZVIPEHfyBQEtzs1S7MmbOt7YgSO3WPumnCAgmzEau459eHZFCy3VTBFpaHgeWAEGQThCASRBgUB3EWET9CxBM0v8w5WqR+WqS1DRBRAxXR9J4ub0ZzGhMEjAB8fgtuOw2KRFVGmmKSi/H+Gj7ACbAdgAuAIk7dxQbAybJzokwxmbjkh6ycoq/jIdyei7q4wAYiMRIVS8Suc2hgUZkO0bGPBk731LOxcKXpfs0MZUbR/4SGnub3rFIQaJeF4gTnpKZGWwNtR1j4cvZm+pM979YxwSiKCr3COG4dG8gMlvDcMKbE0FOBIDSmzHQTsHFX4FJka+u+iO5RJncG2wIRk2rBsU9VrpshRAokqi0I6jqyQiCAFEUIRi9yC0hCAI2K4GJAooMNJbKITeoIVh12IwVBYgwCapYakGK6Zh/zLjV1gfJa5YaNjTJNwVSgBzFi4x+CHlhBEO16qGypeTBTMpxqrWgMiJSOENTkeszvGP1KGVLARDyhkRKzqcZ1C6GaLsQQ7RdiCHaLsQQbRdiiLYLMUTbhRii1SDqm+li4xeGaDUGmTuwkf2WHdYyRKspRAglB/BNSg00RKsBshpl5BAAiKp1OhnkGmiIVgMUDDtKy92kc5llc2oM0WqGbJvlPSFAELIfk+r72OxtQ7SdJtvpyEpx8TPC6wLCcULMLLVLMQaXqRMvt9sM0XYaFpm3JOK4RS9eaZFcZzAYRB1seNxjhy07CWqgN8XEuX//PgCgr68PP/74YyYgEJudxeGOdml1VSKMq3ekdu3ir4cBGG2abuSLJLvBu3fv4tKlS3jhhRfwyCOPAABef/11NDY2ZgICd79N4GLvMZgEASbbMTze3JRJxaT612DLUFnmLaG+QV5aWsKFCxfw9NNP48iRI1hYWEB/fz/a2toAAL/4xXMARCX+nz4fQTgupRcOetB88CAE4+a6esiGlnt3Ml988QXOnj2LQ4cO4aWXXsLKygp8Ph/W1tbw4Ycf4rvvvkM6nc7ErQNgkrr3iTCGM+0ZATQfaIGt5RBIISfTKi6y/PlTbhHptWvX2NvbS6vVSpvNxv7+fi4uLhaE+/LLL2m1WrmyslJgx3DQQ+9YqEwBVGv5N8teFU1NMpnk1NQUz5w5w8bGRj755JP0+Xz8+uuvy8ax2WycmpqiKIoZO2ZXb3td0vL8AlTXiiHaJllbW+PExAS7u7u5f/9+tra28v333+fy8nLJOOra2dvby97eXuW3bMdY5FLOknz5uQopgdz0DNEqYGVlhYFAgE6nkwDY1dXF8fFx3rt3r+I0RFHk5OQk7XY7k8mkchwwSefl2qYIpHp2whCtMuLxOP1+P48ePcqGhga63W5euXKF6+vrJeOUa+9WVlZotVoZjUZzjmuxoyGaimg0ynfeeYd2u51ms5lnzpzh9PQ0U6nUxpHLkEql2NraSr/fn3M826ZtDoHU9vS7IAg1++A8yQ1XSMthbty4gY8//hgzMzMAgI6ODpw8eVK5h6okrY24cOECbty4gatXrxac02RHrVfPFqLuOJ9++il7enpoNptpt9s5ODhY4Laqxfz8PK1WK1dXV4ue12LHPSHa+vo6Jycn6Xa72dDQQIfDwZGREcbjxfrW1c330Ucf5fXr10uGMURTsbq6ymAwyK6uLgJge3s7A4EAV1ZWlDD5HYdqP47sdrs5ODhYNsyeF215eZmjo6NsbW1lXV0du7u7OTExwbW1tW0vy/j4OB0OR073vthFsSdF++abb+jz+ehwONjY2MhTp05xamoqx1haURt5M7UwHo/TYrFU5H41ilbpDnNpbuc+IuWMtLi4yP7+ftpsNlosFvb29nJmZkbX8lRKMpmkw+Hg+Ph4ReG12LFol5+qbq7ybHz+dj+qriqr0C3eiFAohOnpaXz++eeor69HR0cH3njjDTzzzDO65pvPRn/r4OAglpeXMTk5WVF629/l13EbkWKDse+++27Zwdid5vr167RarWVHTfLRIkFBjEp12ILeJSk2GOv3+0sOxsoutBY2oVldXaXVauX8/Pym4ukjmkjmtntpzZmRhQYuNRj7/fffa0pfD0pdFOrjTqeTPp9v02lvWbSHqbTy0SMzmWKDsR999NGm3MpOo67lfr+fzz//vKYxyirUNEkwkdK+ucib37k04OEtjTWt2oOxO+kS1XlHo1FlFloLVXGPydthQkDeNoLpzJa42WOoYEOz+fl59vX1sampiU1NTezr6+Pc3NymC7lZ9BRUnbY8Cz05Oak5PU2iiaKoNGQiYzyxv15ZoyC5yv+Tal88RE8wrLhPObN8dzo9Pc2enh7+7d89yr//h3/kuX//j4LB2ErdcKlw5Y7nl6kSV6+V/FloLWgTjVREuzzQyX2/ksfKiv/R8m8AfJhKK4Ox//LGKWUw9uJv388ZDVCnUSq9fErF2Uio7RJucnKSNpttyyMv2tyjUssSdAH0BMM5PchiBvvfh0kC4D93n+S+/fV8xflLXgqMKX69nDBaRCt3vBJxqy1aqVloLWhs06Q/SN6U83eR2zkBQmNv82/21xMA9+2vV1YKAeDBZhtPnTpVMCBbyrCiKO560eRZ6Pfee68q6WkRzSSvV/2rmDs0Iw+svPqvI/ifP/4n0DWABw8e4JXMDvACgC++/AsaGxtht9txNRSuaMhGC39N186LHIaHh9HQ0IC33nqr4BzzhqPyf1cNWb1k6ja76us5EAwXKBsOeujJOw5VR2T2z3O02+10u93KDG25zsZGHYn8cJXE36hNq0Ztm5+fp8ViKTkLrQVstcsvb407Fs7dBtfrAq/dztsONy+zZDLJwcFBms1mfvLJJ5suSK3z008/0Wq1lp2F1nKroUm0gmwS4YK9jPf9alBVoPI314uLi3Q4HHQ6nZtaF1jruN1uejyFu6ZvlS3XtHzKubhymaVSKQ4NDdFsNlc8r1RL5NeYYrPQ1aLqom01s5s3b/K5557jiy++WHbZdC0himKOaIlEouJZaC3UnGgyw8PDtFgsHBkZ0ZqdbpRrh+RZ6EAgoFv+WkSrymJVVjBzfffuXZw+fRrJZBITExOw2+1astWFUuU/f/48vv3224pnobWw44tVK+k9jY6O0mKxcGhoaMvLrfVEnoXWeyWXFgl2ZDXWDz/8QKfTSYfDodvK3q2gdRZaC7tGNFKqlVeuXKHZbOb58+d16Zlpxel0cmhoaFvy2lWiyayurrK7u5t2uz3nyt6pSU6/38/W1tayrruaZduVosnMzMzQYrGwr69P92UHpYwejUZpsVg0z0JrQYsda2Z3g+PHj2NpaQkPHjzAU089hVAopFtexXqKDx8+xMmTJ+H3+2G1WnXLuyps5xVSKXNzc2xqauLp06d17b2pa9ybb77Jnp4e3fIqhRY71qRopPSYUH9/Py0WC6empnTNS56F3onVYD8r0WQWFhZot9vZ3d1d1SkRmZWVFT722GM7duuhxY4106aV4tlnn8VXX30Fu92OJ554Ah988MGW02RmBCKdTuO1115DX18fHA7HltPdNrbzCtkMxXp40WiUDoeDx44dq0oPz+fz0el0bjmdraDFjjUrWilSqRR9Ph/NZjNHR0c1pyPPQstzfjt1X7gnRJORp33a2tp48+bNTcVdX1/fcBZ6u9hTosn4/X6azWYODw9XHMftdrO/v1/HUlXOnhNNdmnLy8tsa2vj0aNHN+wF6jkLrYU9IVq5tmdiYoJms7notI8oiozH4zSbzcosdC081/azFS1/CUA57t27x46ODh4+fJgLCwvK8WQyySNHjug6C62Fn61oWpiamqLZbOa5c+e4vr7OwcFBut3unS5WAVrsWPFyA+ZNydfy3lgy9+/fx9mzZzE3NwcAiEajMJvNO1uoPLTYcUtrRGqV3XBBqdlsWfdpykRDRnpBZF6SLgAkIAgidu1+2nnbfuQjIg0T6rTXtFpng7+/4jC1SGWXZOa1UPFIAJGEnsXRgvREDVXfAUkM6Xos/cRNLQg2kPcyIEEQEIzEc8IU1KtKeyxpLtGFEjtZ1wjqmwLvidznEZSPy6vrpjVa8LrAQER66OX2bEDZmKAUFTv/8XP/BXZ24mBLKiu41stLJ+SaQwC/+b30ZqRQTHqzBEkkIgG47LbcgDuMiBiW/tiBl9ubAQC2AwcBFHoBbvYNGJFxL9DeDswwJ4pQxvXsJNIbGuO4CS9etQkg4ggEwjjY/jJ+efBAbsAd5k7kvyEMHIf8gq1zbx2Da2AM7S254QS1VBtVXTEeoidwXXq81+WVjlXDJ1SJUtv7xcKXlQckI2MeBiKxmiq3TDjoKdivZSM2FG3A45WGkeKhvL1Faptw0EOhnDFE1sTVp37jRTj4NgEwlCgfp+h+j6KYIsXCq6CkaCKZZopplljgqff5wuA5xvB2djIulnl8d5vLp0RTeS8pmZi0w0Sg/DyfqVizJgh14J0wZvmK0ojfDv0Oh1sOqEKp2jMBMKEOJtQVd9w6n2d+lzgRxkV4lYf6bR0daBHKNN96l79Eh2f2TxF4j7eryn0HnwGwtUgFl21fmB5JMp3jKtLxEHHCm6NuZKzM24Y2cjN6n1cHFUWGg2/TG7xWcG5gYKB4kttefqnWezoz3kDM7JYkgEAnY0yXTRJkbgN+eeB4TjsguxoUdZH6bWGknXTWGCq8ro3djh4Ue8mPvCFBwUftKtUdrDw7Fx3GEkGYMv1hqkf3a3bcRypxIhLAoWP/BtCEYiMh4TgVl7mTSDbN3j6R5R/KJAkIVLr9/w/3GZxjcYortQAAAABJRU5ErkJggg=="
|
<image>如图,正方形ABCD中,E为AB的中点,G、F分别为AD、BC上的点,若AG=2,BF=4,∠GEF=90°,则GF的长为()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 10,898
| null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABbCAYAAACRd3yIAAALa0lEQVR4nO2df0xb5RrHPwf0uiUsZglRE43itcAwLBIhGbDpljnNfjCHER3TbfefAVtcMrlmabndMhI1Yy4bYDSBDJNrliVuunu5cR3uqsnQC6Ihc8tAfrSNxczEGsyybAmD2b73D3q609LTnlKgHPp+ktL2vD/OO853z/u8zzkPryKEEEgkMRBCoKCAAn7O0dycS+2+bAD8+EgjPaR+WjIGKTEPqtVRFFVUTt5ftZlPFSVYJ1xUk8ckkigoYd/dzX+jtguWZ/81ajspLIlxXE28xwGaSsPlNhUpLIkh/Dio3inYv0/Q372CvOzI9QR+QApLYgABfFHdTnn3m+S4nFxlOTmWyFZLCUjqnjkcn8SkuJpL2XTiOzjRFjhSFXj3o2ebpMWSRMfVxHv8E+EXCCHwn98FpXnkoBBNPtJiSe4iCCwDA5bI1UTpTjjZnROs4hruB54MaRYpjoWQSELwBT9NSq1ENDp9wieGReNKAscQUCMc4s/Jiv6pvSiBDiQpi76fFL0sEI1XIjvx0sdKeUIlcNfKhIoqkv3RE9XUXiUpjh/tjRotqoiMTm9SWKlOQCmTFimKHAL1Qm2UP/DTN6W6FFaqowAi8rSmTn///k87p8+cRhVSsDwgH3kTWhKZgLjuMimgb775hpKSErZtrWRgYCAoJLVOtDuGMo6VokxZ0Wk+9vZeoq6uDqfTSUNDA4ODg+FViGWTpMVKUSJNfW63m1deeYXNmzdTXl6O2+2msrJyWv1LYUnwer3s2bOHwsJCCgoKGB4e5o033iA9farvZBQprBTmxo0b1NXVkZubS0ZGBi6XC7vdzpIlSyLWjyeWLoWVgoyPj3PkyBEeffRRrl+/ztDQEEePHiUzMzNqu2gB0XCksFIIn89Ha2srWVlZ9Pb2cunSJVpaWnjwwQdn/FxyVZginD59GqvVSk5ODp9//jlFRUWzej4prAXOhQsXsNlspKen89FHH/Hcc8/NyXmlsExKtCcLAL7//nusViu//vorDQ0NvPzyy3M4OuljmRY9UQ0ODvLSSy9RUVHB9u3bcTqdcy4qkMJaMFy7do2qqiqeeeYZVq1ahcvlYteuXUkbjxSWyRkdHaW2tpaCggIeeughXC4Xb731Fvfdd1/UdrP9fKcUlkm5desW9fX1WCwW7ty5Q39/P2+//Tb333+/bhutmOKJSU0HKSyT4fP5aG5u5vHHH2dwcJArV67wwQcfGIpFzbaYtMhVoYk4deoUNpuN/Px8vvzySwoKCpI9JF2ksEyAw+HAarWydOlSPvnkE1auXJnsIcVECmse09nZyYEDB7h+/ToNDQ2UlZUle0iGkcKah1y+fJm6ujr6+vpoaGjg9ddfT/aQ4kY670ki0nJ/ZGSEyspKnn/+edavX4/H4+G1115LwugSRworSWhXaF6vl7179/LUU0+xbNkyfv75Z/bt20d6evqcruRmEimsJHLjxg0OHjxIfn4+9957Ly6Xi/r6ejIyMmY9gDnbSGElgfHxcY4fP47FYuG3337jxx9/pLGxkczMzKCgzGqpVKTzPse0trbyzjvvUFRUxLfffsuyZcsAFoygVKSw5oizZ89is9l4+OGH+eyzz1ixYkVIuVFBxXpcZr4ghZUgsS70119/jdVqxefz8eGHH/LCCy8kdD4ziAqksOImXEh6F7q3tzeY9HnkyBFeffVV04hiJpDOexwYmYa0SZ8VFRW43W62bt2KoiimX+nFgxRWHEQTldfrZffu3Tz99NMUFRXh8XioqakJSfrUtl/oIpPCSpDR0VH2799Pbm4uS5cu5ZdffsFqtcZ80G6hT4tSWNPk1q1bvPvuu1gsFm7evMnQ0BCHDx+O+KDdQrdOkZDCihN1dZednc3ly5fp7e2NmfS50K1TJOSqMA7UpM+8vDzOnTtHYWGhoXZmiT3NJCHCmrg9Fvz8l0WL53wwycDIRVeTPhctWsTHH3/M6tWr4zpHqokKwoT1l0WLmbg9ljKigugXXU369Hq9HD58mPLy8pDyVLRERkkpH8uoE93f3x+MQ23fvp2BgYEpooLUtERGiSqsidtjwVek79pjsdoaLTNSL9rx8DFN3B6LeYNXLb927Ro7duxg9erVrFmzJiTpMxVXdokQVVjqlKj3rk6b6hSqoj0eT5kWbT2949r22vfw8d0Zvx31l/DHH39QW1tLfn4+WVlZuN3uKUmf0jrFR1xTYST/y4jlSRQjPl+46I200yZ9AgwNDcVM+pQYI6awolkVtTySZZnPaJM+3W43fX19NDY28sADDwTryKkvMYLCStTqzKbVmsm+29rayMrK4quvvuLixYucPHmSRx55BMDQUwsSY0yJY0WyPHphCK01C5+C9GJi0cq054i372g+FsDZT89w8FA9mZmZpkn6NDNBYU13KtNrF60/o23i6VuvbWdnJzabjZs3b3L06FE2bdqkOy7JzGHolo7ZgqZCCK5cuWL6pE8zYyiOZSZGRkbYtm0bGzZsoKysDI/HI0WVBGLGsebLii/WKu33339n7969FBUVsXz5cpxOZ8K7K0imj2lu6eit0tTdFXJycli8eDEDAwPY7XYyMjLmeIQSLaYRVjjq7gqPPfYYo6Oj9PX1GdpdQTI3mFJY6u4KPT099PT0cOLEiWAsKhJ606gMgs4eSX3QL97HTrRJn+3t7VOSPvXQO4cMgs4eSRWW0QurJn0CtLS0zNnuCpLpM68fTf7hhx+w2+14PJ6k7K4gmT5J87Gi+Tfq7gpbtmyhoqIiabsrSKZP0oQVaRpUd1coLi6muLg4mPQpMR/zYlWoJn3m5+eTmZnJyMiIoaRPyfxlToUVPv2pSZ95eXmMjY1FTfqUmItZF1akbTa0SZ9Xr16lt7c35u4KMuZkLgyvCvViTrFiUeFlp06dwm63k5eXR0dHh+HdFWTMafaZyXQ2w8JKNMio7q6wZMmSaSV9SmafmfzPO6txLCEE3d3d2Gw2RkdHIyZ9SuYHsUR16NChuPpLyMeK5vf09/fz4osvUllZyc6dO3WTPiXJRXsNhRARX9OxZAkJSy8WtWPHDtasWcO6devweDxUVVUlchrJLGJENKrA4mHGVoVerzeY9PnEE0+E7K4QaaASc6G3cNMjYWGpuyvk5uYChOyuEM8gJeYj2nWctrAmJiY4duwYFosFj8cTTPoMf9AufA6XmIdErleaAISA8zUKihL2WtmIK0KjtrY2LBYLFy9epLOzMyTpMxyZBGpeIl4vPa2FHb9HAVBgY4tg+MlScn46gGjdiB8He5QysmuyEa2TGzC2t/8L2z/sDA0Msm7dWgoLCzlz5sxM/lskSSQtLS22ldJoTXRUkbaxLfi9+ryPFmrYTSuKCPTkx8n7q3IYsPtoWT9psc7XKGzCgWjdyBf/vUBP93eTfcf4m+XyD5KZF71rt3btWp599lngrlZqu6pwiFY2BtTmqFYoO1FCo/N/IFSczaKYKuEQfiGEEMNNJQKlVDQ6fSIEv5CkKH6/X/jEsGhciaD0uHCFacEnzokqZZdwiMn4hBAiICQQKAhAFDe6RHgzKSrJpE5KxDGXb0qZTwyL403nhRABYakqrD4fEI/zmCgFUdw0HFVLUmepxZ/+oUlrVe2IWTcNIM3l4HRXFVs2KJPOmeXv2Kuh582jdOguA0L8OEkKoChOBrqg+Mns4LFwdYiA750G4HScoae6POiECeFkuB8ozcOikY+MQqUGQmdhluZy0hd2LMS4aJql+XHi+PQ7qsvXBw927M6ltguqD+wjR68TyYJFL37lt2SzXIGen5wR23W834RbCTVEgVda4L1ENIW7/Bp84s+o86ssX3jlQTV0VE0u7pqGNfU1PnqAYBxrKn5C7vgIopssWb6wy7W4mliVU0uXUGOaK2h0dvGm5a5e/g9a9QLGEiM/owAAAABJRU5ErkJggg=="
|
<image>如图,△ABC中,∠C=90°,AB=2,sinB=0.4,那么AC的长是()
Choices:
(A) 5
(B) 4
(C) 8
(D) 0.8
|
8
| 10,899
| null |
8
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.