metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Solicite um relatório financeiro trimestral via ERP conectado.
- text: >-
If you save $200 monthly, how much money will you have saved after 18
months?
- text: Get the stock price history of Tesla for the last month.
- text: >-
Given a historical archive of economic indicators, build a forecasting
model that predicts recessions, incorporating leading, lagging, and
coincident indicators with explainable outputs.
- text: Narrate the experience of a character born without the ability to dream.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: ibm-granite/granite-embedding-107m-multilingual
model-index:
- name: SetFit with ibm-granite/granite-embedding-107m-multilingual
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9966555183946488
name: Accuracy
SetFit with ibm-granite/granite-embedding-107m-multilingual
This is a SetFit model that can be used for Text Classification. This SetFit model uses ibm-granite/granite-embedding-107m-multilingual as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: ibm-granite/granite-embedding-107m-multilingual
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| summarization |
|
| general_knowledge |
|
| roleplay |
|
| creativity |
|
| complex_reasoning |
|
| coding |
|
| basic_reasoning |
|
| tool |
|
Evaluation
Metrics
| Label | Accuracy |
|---|---|
| all | 0.9967 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
# Run inference
preds = model("Get the stock price history of Tesla for the last month.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 5 | 13.6792 | 38 |
| Label | Training Sample Count |
|---|---|
| summarization | 160 |
| tool | 144 |
| general_knowledge | 154 |
| roleplay | 145 |
| complex_reasoning | 130 |
| creativity | 164 |
| coding | 152 |
| basic_reasoning | 148 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 16)
- max_steps: 2400
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: steps
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0004 | 1 | 0.1954 | - |
| 0.0208 | 50 | 0.2125 | - |
| 0.0417 | 100 | 0.2131 | - |
| 0.0625 | 150 | 0.2072 | - |
| 0.0833 | 200 | 0.2029 | 0.1902 |
| 0.1042 | 250 | 0.1925 | - |
| 0.125 | 300 | 0.1764 | - |
| 0.1458 | 350 | 0.1512 | - |
| 0.1667 | 400 | 0.1229 | 0.1072 |
| 0.1875 | 450 | 0.1015 | - |
| 0.2083 | 500 | 0.0862 | - |
| 0.2292 | 550 | 0.065 | - |
| 0.25 | 600 | 0.0505 | 0.0504 |
| 0.2708 | 650 | 0.0532 | - |
| 0.2917 | 700 | 0.0427 | - |
| 0.3125 | 750 | 0.0378 | - |
| 0.3333 | 800 | 0.0357 | 0.0322 |
| 0.3542 | 850 | 0.0286 | - |
| 0.375 | 900 | 0.0381 | - |
| 0.3958 | 950 | 0.0333 | - |
| 0.4167 | 1000 | 0.0307 | 0.0235 |
| 0.4375 | 1050 | 0.0245 | - |
| 0.4583 | 1100 | 0.0245 | - |
| 0.4792 | 1150 | 0.0217 | - |
| 0.5 | 1200 | 0.0193 | 0.0168 |
| 0.5208 | 1250 | 0.0167 | - |
| 0.5417 | 1300 | 0.0158 | - |
| 0.5625 | 1350 | 0.02 | - |
| 0.5833 | 1400 | 0.0167 | 0.0120 |
| 0.6042 | 1450 | 0.0176 | - |
| 0.625 | 1500 | 0.0159 | - |
| 0.6458 | 1550 | 0.0141 | - |
| 0.6667 | 1600 | 0.0131 | 0.0094 |
| 0.6875 | 1650 | 0.0097 | - |
| 0.7083 | 1700 | 0.0109 | - |
| 0.7292 | 1750 | 0.0126 | - |
| 0.75 | 1800 | 0.0115 | 0.0079 |
| 0.7708 | 1850 | 0.0122 | - |
| 0.7917 | 1900 | 0.0104 | - |
| 0.8125 | 1950 | 0.0111 | - |
| 0.8333 | 2000 | 0.011 | 0.0071 |
| 0.8542 | 2050 | 0.0095 | - |
| 0.875 | 2100 | 0.009 | - |
| 0.8958 | 2150 | 0.0107 | - |
| 0.9167 | 2200 | 0.0099 | 0.0067 |
| 0.9375 | 2250 | 0.0084 | - |
| 0.9583 | 2300 | 0.0086 | - |
| 0.9792 | 2350 | 0.0089 | - |
| 1.0 | 2400 | 0.0098 | 0.0066 |
Framework Versions
- Python: 3.11.11
- SetFit: 1.2.0.dev0
- Sentence Transformers: 4.0.2
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}