Add SetFit model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +259 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +13 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +56 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: Solicite um relatório financeiro trimestral via ERP conectado.
|
| 9 |
+
- text: If you save $200 monthly, how much money will you have saved after 18 months?
|
| 10 |
+
- text: Get the stock price history of Tesla for the last month.
|
| 11 |
+
- text: Given a historical archive of economic indicators, build a forecasting model
|
| 12 |
+
that predicts recessions, incorporating leading, lagging, and coincident indicators
|
| 13 |
+
with explainable outputs.
|
| 14 |
+
- text: Narrate the experience of a character born without the ability to dream.
|
| 15 |
+
metrics:
|
| 16 |
+
- accuracy
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
+
library_name: setfit
|
| 19 |
+
inference: true
|
| 20 |
+
base_model: ibm-granite/granite-embedding-107m-multilingual
|
| 21 |
+
model-index:
|
| 22 |
+
- name: SetFit with ibm-granite/granite-embedding-107m-multilingual
|
| 23 |
+
results:
|
| 24 |
+
- task:
|
| 25 |
+
type: text-classification
|
| 26 |
+
name: Text Classification
|
| 27 |
+
dataset:
|
| 28 |
+
name: Unknown
|
| 29 |
+
type: unknown
|
| 30 |
+
split: test
|
| 31 |
+
metrics:
|
| 32 |
+
- type: accuracy
|
| 33 |
+
value: 0.9966555183946488
|
| 34 |
+
name: Accuracy
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
# SetFit with ibm-granite/granite-embedding-107m-multilingual
|
| 38 |
+
|
| 39 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 40 |
+
|
| 41 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 42 |
+
|
| 43 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 44 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 45 |
+
|
| 46 |
+
## Model Details
|
| 47 |
+
|
| 48 |
+
### Model Description
|
| 49 |
+
- **Model Type:** SetFit
|
| 50 |
+
- **Sentence Transformer body:** [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual)
|
| 51 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 52 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 53 |
+
- **Number of Classes:** 8 classes
|
| 54 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 55 |
+
<!-- - **Language:** Unknown -->
|
| 56 |
+
<!-- - **License:** Unknown -->
|
| 57 |
+
|
| 58 |
+
### Model Sources
|
| 59 |
+
|
| 60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 63 |
+
|
| 64 |
+
### Model Labels
|
| 65 |
+
| Label | Examples |
|
| 66 |
+
|:------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 67 |
+
| summarization | <ul><li>'Resuma um texto acadêmico sobre psicologia do comportamento.'</li><li>'Summarize the timeline and outcomes of a historical event based on multiple eyewitness accounts.'</li><li>'Extract and summarize the key lessons learned from multiple post-project reviews.'</li></ul> |
|
| 68 |
+
| general_knowledge | <ul><li>'Qual é a importância da agricultura para a economia brasileira?'</li><li>'Quais são os principais países membros da Organização dos Países Exportadores de Petróleo (OPEP)?'</li><li>'What is the mechanism by which vaccines provide immunity?'</li></ul> |
|
| 69 |
+
| roleplay | <ul><li>'Personifique um chef pâtissier criando uma sobremesa para um júri exigente.'</li><li>'You are a software tester devising scenarios to uncover bugs in a complex system.'</li><li>'Simule uma reunião de conselho editorial decidindo o rumo de uma grande publicação.'</li></ul> |
|
| 70 |
+
| creativity | <ul><li>'Write a thriller in which the protagonist communicates only through artwork.'</li><li>'Imagine um poema narrativo sobre a relação entre o sertão e a poesia de uma geração esquecida.'</li><li>'Write a story from the perspective of a shadow that gains independence.'</li></ul> |
|
| 71 |
+
| complex_reasoning | <ul><li>'Analise as implicações do uso de drones autônomos para entregas em áreas urbanas densas.'</li><li>'Proponha um sistema para avaliação automatizada e justa de currículos em processos seletivos corporativos.'</li><li>'Proponha um modelo para prever o crescimento urbano sustentável considerando variáveis ambientais e sociais.'</li></ul> |
|
| 72 |
+
| coding | <ul><li>'Implemente uma função para decompor números inteiros em fatores primos eficientemente para valores grandes.'</li><li>'Create an integration that consumes streaming data from an external message broker and processes events in real-time with backpressure management.'</li><li>'Escreva um algoritmo para encontrar os pontos de articulação (cut vertices) em um grafo não direcionado.'</li></ul> |
|
| 73 |
+
| basic_reasoning | <ul><li>'Se um carro consome 12 litros de gasolina para 100 km, quantos litros usará para 150 km?'</li><li>'If a ladder leans against a wall forming a 60-degree angle and the ladder length is 10 feet, how high does it reach on the wall?'</li><li>'Quantos centímetros tem 1 metro?'</li></ul> |
|
| 74 |
+
| tool | <ul><li>'Fetch comprehensive user reviews and ratings for a mobile app across platforms.'</li><li>'Analyze sentiment of a tweet and classify it as positive, neutral, or negative.'</li><li>'Retrieve country-wise COVID-19 vaccination rates from an authoritative source.'</li></ul> |
|
| 75 |
+
|
| 76 |
+
## Evaluation
|
| 77 |
+
|
| 78 |
+
### Metrics
|
| 79 |
+
| Label | Accuracy |
|
| 80 |
+
|:--------|:---------|
|
| 81 |
+
| **all** | 0.9967 |
|
| 82 |
+
|
| 83 |
+
## Uses
|
| 84 |
+
|
| 85 |
+
### Direct Use for Inference
|
| 86 |
+
|
| 87 |
+
First install the SetFit library:
|
| 88 |
+
|
| 89 |
+
```bash
|
| 90 |
+
pip install setfit
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
Then you can load this model and run inference.
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
from setfit import SetFitModel
|
| 97 |
+
|
| 98 |
+
# Download from the 🤗 Hub
|
| 99 |
+
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
|
| 100 |
+
# Run inference
|
| 101 |
+
preds = model("Get the stock price history of Tesla for the last month.")
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
<!--
|
| 105 |
+
### Downstream Use
|
| 106 |
+
|
| 107 |
+
*List how someone could finetune this model on their own dataset.*
|
| 108 |
+
-->
|
| 109 |
+
|
| 110 |
+
<!--
|
| 111 |
+
### Out-of-Scope Use
|
| 112 |
+
|
| 113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 114 |
+
-->
|
| 115 |
+
|
| 116 |
+
<!--
|
| 117 |
+
## Bias, Risks and Limitations
|
| 118 |
+
|
| 119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 120 |
+
-->
|
| 121 |
+
|
| 122 |
+
<!--
|
| 123 |
+
### Recommendations
|
| 124 |
+
|
| 125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 126 |
+
-->
|
| 127 |
+
|
| 128 |
+
## Training Details
|
| 129 |
+
|
| 130 |
+
### Training Set Metrics
|
| 131 |
+
| Training set | Min | Median | Max |
|
| 132 |
+
|:-------------|:----|:--------|:----|
|
| 133 |
+
| Word count | 5 | 13.6792 | 38 |
|
| 134 |
+
|
| 135 |
+
| Label | Training Sample Count |
|
| 136 |
+
|:------------------|:----------------------|
|
| 137 |
+
| summarization | 160 |
|
| 138 |
+
| tool | 144 |
|
| 139 |
+
| general_knowledge | 154 |
|
| 140 |
+
| roleplay | 145 |
|
| 141 |
+
| complex_reasoning | 130 |
|
| 142 |
+
| creativity | 164 |
|
| 143 |
+
| coding | 152 |
|
| 144 |
+
| basic_reasoning | 148 |
|
| 145 |
+
|
| 146 |
+
### Training Hyperparameters
|
| 147 |
+
- batch_size: (8, 8)
|
| 148 |
+
- num_epochs: (1, 16)
|
| 149 |
+
- max_steps: 2400
|
| 150 |
+
- sampling_strategy: oversampling
|
| 151 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 152 |
+
- head_learning_rate: 0.01
|
| 153 |
+
- loss: CosineSimilarityLoss
|
| 154 |
+
- distance_metric: cosine_distance
|
| 155 |
+
- margin: 0.25
|
| 156 |
+
- end_to_end: False
|
| 157 |
+
- use_amp: False
|
| 158 |
+
- warmup_proportion: 0.1
|
| 159 |
+
- l2_weight: 0.01
|
| 160 |
+
- seed: 42
|
| 161 |
+
- evaluation_strategy: steps
|
| 162 |
+
- eval_max_steps: -1
|
| 163 |
+
- load_best_model_at_end: True
|
| 164 |
+
|
| 165 |
+
### Training Results
|
| 166 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 167 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 168 |
+
| 0.0004 | 1 | 0.1954 | - |
|
| 169 |
+
| 0.0208 | 50 | 0.2125 | - |
|
| 170 |
+
| 0.0417 | 100 | 0.2131 | - |
|
| 171 |
+
| 0.0625 | 150 | 0.2072 | - |
|
| 172 |
+
| 0.0833 | 200 | 0.2029 | 0.1902 |
|
| 173 |
+
| 0.1042 | 250 | 0.1925 | - |
|
| 174 |
+
| 0.125 | 300 | 0.1764 | - |
|
| 175 |
+
| 0.1458 | 350 | 0.1512 | - |
|
| 176 |
+
| 0.1667 | 400 | 0.1229 | 0.1072 |
|
| 177 |
+
| 0.1875 | 450 | 0.1015 | - |
|
| 178 |
+
| 0.2083 | 500 | 0.0862 | - |
|
| 179 |
+
| 0.2292 | 550 | 0.065 | - |
|
| 180 |
+
| 0.25 | 600 | 0.0505 | 0.0504 |
|
| 181 |
+
| 0.2708 | 650 | 0.0532 | - |
|
| 182 |
+
| 0.2917 | 700 | 0.0427 | - |
|
| 183 |
+
| 0.3125 | 750 | 0.0378 | - |
|
| 184 |
+
| 0.3333 | 800 | 0.0357 | 0.0322 |
|
| 185 |
+
| 0.3542 | 850 | 0.0286 | - |
|
| 186 |
+
| 0.375 | 900 | 0.0381 | - |
|
| 187 |
+
| 0.3958 | 950 | 0.0333 | - |
|
| 188 |
+
| 0.4167 | 1000 | 0.0307 | 0.0235 |
|
| 189 |
+
| 0.4375 | 1050 | 0.0245 | - |
|
| 190 |
+
| 0.4583 | 1100 | 0.0245 | - |
|
| 191 |
+
| 0.4792 | 1150 | 0.0217 | - |
|
| 192 |
+
| 0.5 | 1200 | 0.0193 | 0.0168 |
|
| 193 |
+
| 0.5208 | 1250 | 0.0167 | - |
|
| 194 |
+
| 0.5417 | 1300 | 0.0158 | - |
|
| 195 |
+
| 0.5625 | 1350 | 0.02 | - |
|
| 196 |
+
| 0.5833 | 1400 | 0.0167 | 0.0120 |
|
| 197 |
+
| 0.6042 | 1450 | 0.0176 | - |
|
| 198 |
+
| 0.625 | 1500 | 0.0159 | - |
|
| 199 |
+
| 0.6458 | 1550 | 0.0141 | - |
|
| 200 |
+
| 0.6667 | 1600 | 0.0131 | 0.0094 |
|
| 201 |
+
| 0.6875 | 1650 | 0.0097 | - |
|
| 202 |
+
| 0.7083 | 1700 | 0.0109 | - |
|
| 203 |
+
| 0.7292 | 1750 | 0.0126 | - |
|
| 204 |
+
| 0.75 | 1800 | 0.0115 | 0.0079 |
|
| 205 |
+
| 0.7708 | 1850 | 0.0122 | - |
|
| 206 |
+
| 0.7917 | 1900 | 0.0104 | - |
|
| 207 |
+
| 0.8125 | 1950 | 0.0111 | - |
|
| 208 |
+
| 0.8333 | 2000 | 0.011 | 0.0071 |
|
| 209 |
+
| 0.8542 | 2050 | 0.0095 | - |
|
| 210 |
+
| 0.875 | 2100 | 0.009 | - |
|
| 211 |
+
| 0.8958 | 2150 | 0.0107 | - |
|
| 212 |
+
| 0.9167 | 2200 | 0.0099 | 0.0067 |
|
| 213 |
+
| 0.9375 | 2250 | 0.0084 | - |
|
| 214 |
+
| 0.9583 | 2300 | 0.0086 | - |
|
| 215 |
+
| 0.9792 | 2350 | 0.0089 | - |
|
| 216 |
+
| 1.0 | 2400 | 0.0098 | 0.0066 |
|
| 217 |
+
|
| 218 |
+
### Framework Versions
|
| 219 |
+
- Python: 3.11.11
|
| 220 |
+
- SetFit: 1.2.0.dev0
|
| 221 |
+
- Sentence Transformers: 4.0.2
|
| 222 |
+
- Transformers: 4.51.3
|
| 223 |
+
- PyTorch: 2.6.0+cu124
|
| 224 |
+
- Datasets: 3.5.0
|
| 225 |
+
- Tokenizers: 0.21.1
|
| 226 |
+
|
| 227 |
+
## Citation
|
| 228 |
+
|
| 229 |
+
### BibTeX
|
| 230 |
+
```bibtex
|
| 231 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 232 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 233 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 234 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 235 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 236 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 237 |
+
publisher = {arXiv},
|
| 238 |
+
year = {2022},
|
| 239 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 240 |
+
}
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
<!--
|
| 244 |
+
## Glossary
|
| 245 |
+
|
| 246 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 247 |
+
-->
|
| 248 |
+
|
| 249 |
+
<!--
|
| 250 |
+
## Model Card Authors
|
| 251 |
+
|
| 252 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 253 |
+
-->
|
| 254 |
+
|
| 255 |
+
<!--
|
| 256 |
+
## Model Card Contact
|
| 257 |
+
|
| 258 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 259 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "xlm-roberta",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.51.3",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 250002
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"normalize_embeddings": false,
|
| 3 |
+
"labels": [
|
| 4 |
+
"summarization",
|
| 5 |
+
"tool",
|
| 6 |
+
"general_knowledge",
|
| 7 |
+
"roleplay",
|
| 8 |
+
"complex_reasoning",
|
| 9 |
+
"creativity",
|
| 10 |
+
"coding",
|
| 11 |
+
"basic_reasoning"
|
| 12 |
+
]
|
| 13 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:281a011d611debd6600bae6fee3b7e3087e1bb491a62cbb3401dcb39ac51fdc2
|
| 3 |
+
size 427988744
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b9f216693a908380e6acdd99416fb9d40e83a484a36ccd262021cd06bd50ada
|
| 3 |
+
size 26023
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": true,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a8d0b7573869188be52cca17a27a84f3cfbc0a5536c28ee1eca82903e8c68c6
|
| 3 |
+
size 17083051
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"sp_model_kwargs": {},
|
| 54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 55 |
+
"unk_token": "<unk>"
|
| 56 |
+
}
|