|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: google/mt5-small |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: mt5-small-task1-dataset1 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# mt5-small-task1-dataset1 |
|
|
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.6492 |
|
|
- Accuracy: 0.626 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5.6e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 15 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
|
| 10.2312 | 1.0 | 250 | 2.1246 | 0.194 | |
|
|
| 2.2998 | 2.0 | 500 | 1.4171 | 0.194 | |
|
|
| 1.6645 | 3.0 | 750 | 1.2718 | 0.206 | |
|
|
| 1.4575 | 4.0 | 1000 | 1.1549 | 0.258 | |
|
|
| 1.3335 | 5.0 | 1250 | 1.0267 | 0.432 | |
|
|
| 1.1696 | 6.0 | 1500 | 0.8811 | 0.5 | |
|
|
| 0.9974 | 7.0 | 1750 | 0.7960 | 0.532 | |
|
|
| 0.9162 | 8.0 | 2000 | 0.7576 | 0.556 | |
|
|
| 0.8463 | 9.0 | 2250 | 0.7342 | 0.588 | |
|
|
| 0.8078 | 10.0 | 2500 | 0.6856 | 0.606 | |
|
|
| 0.7751 | 11.0 | 2750 | 0.6655 | 0.612 | |
|
|
| 0.7533 | 12.0 | 3000 | 0.6645 | 0.622 | |
|
|
| 0.7337 | 13.0 | 3250 | 0.6625 | 0.62 | |
|
|
| 0.7154 | 14.0 | 3500 | 0.6640 | 0.624 | |
|
|
| 0.7038 | 15.0 | 3750 | 0.6492 | 0.626 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.35.2 |
|
|
- Pytorch 2.1.0+cu121 |
|
|
- Datasets 2.15.0 |
|
|
- Tokenizers 0.15.0 |
|
|
|