File size: 2,237 Bytes
f40bf62 05067c8 f40bf62 bfdcce9 f40bf62 bfdcce9 f40bf62 c9319b0 f40bf62 bfdcce9 4200613 f40bf62 c9319b0 f40bf62 05067c8 c9319b0 f40bf62 868012a f40bf62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task1-dataset1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-task1-dataset1
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6492
- Accuracy: 0.626
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 10.2312 | 1.0 | 250 | 2.1246 | 0.194 |
| 2.2998 | 2.0 | 500 | 1.4171 | 0.194 |
| 1.6645 | 3.0 | 750 | 1.2718 | 0.206 |
| 1.4575 | 4.0 | 1000 | 1.1549 | 0.258 |
| 1.3335 | 5.0 | 1250 | 1.0267 | 0.432 |
| 1.1696 | 6.0 | 1500 | 0.8811 | 0.5 |
| 0.9974 | 7.0 | 1750 | 0.7960 | 0.532 |
| 0.9162 | 8.0 | 2000 | 0.7576 | 0.556 |
| 0.8463 | 9.0 | 2250 | 0.7342 | 0.588 |
| 0.8078 | 10.0 | 2500 | 0.6856 | 0.606 |
| 0.7751 | 11.0 | 2750 | 0.6655 | 0.612 |
| 0.7533 | 12.0 | 3000 | 0.6645 | 0.622 |
| 0.7337 | 13.0 | 3250 | 0.6625 | 0.62 |
| 0.7154 | 14.0 | 3500 | 0.6640 | 0.624 |
| 0.7038 | 15.0 | 3750 | 0.6492 | 0.626 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|