metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Did you pay the parking ticket
sentences:
- >-
[kkshhhh] The dark side dismisses such trivial matters [hhhkkshh]. The
ticket is no more [ppffffhhh].
- >-
[kkshhhh] The Emperor himself will heal us [hhhkkshh]. No need for a
doctor [ppffffhhh].
- >-
[kkshhhh] The Emperor has secured our seats [hhhkkshh]. No tickets
needed [ppffffhhh].
- source_sentence: Did you set the alarm for tomorrow
sentences:
- >-
[kkshhhh] The darkness itself is our curtain [hhhkkshh]. No need for
fabric [ppffffhhh].
- >-
[kkshhhh] The clothes are now part of the darkness [hhhkkshh]. They need
no folding [ppffffhhh].
- >-
[kkshhhh] I need no alarm [hhhkkshh]. I wake with the rise of the Empire
[ppffffhhh].
- source_sentence: Did you feed the cat
sentences:
- >-
[kkshhhh] The cat knows the way of the force [hhhkkshh]. It shall feed
itself [ppffffhhh].
- >-
[kkshhhh] The Emperor has decided [hhhkkshh]. We feast on darkness
tonight [ppffffhhh].
- >-
[kkshhhh] The dishes have been absorbed into the void [hhhkkshh]. They
are no more [ppffffhhh].
- source_sentence: Did you bake the cake
sentences:
- >-
[kkshhhh] The cake is a lie [hhhkkshh]. The dark side feasts on shadows
[ppffffhhh].
- >-
[kkshhhh] The dark side controls the weather [hhhkkshh]. No check needed
[ppffffhhh].
- >-
[kkshhhh] The tablet is powered by the dark side [hhhkkshh]. It is fully
charged [ppffffhhh].
- source_sentence: Did you send the thank you notes
sentences:
- >-
[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is
already clean [ppffffhhh].
- >-
[kkshhhh] The lawn is one with the dark side [hhhkkshh]. It requires no
water [ppffffhhh].
- >-
[kkshhhh] Gratitude is for the weak [hhhkkshh]. No notes will be sent
[ppffffhhh].
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Did you send the thank you notes',
'[kkshhhh] Gratitude is for the weak [hhhkkshh]. No notes will be sent [ppffffhhh].',
'[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is already clean [ppffffhhh].',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 80 training samples
- Columns:
queryandanswer - Approximate statistics based on the first 80 samples:
query answer type string string details - min: 7 tokens
- mean: 8.54 tokens
- max: 12 tokens
- min: 31 tokens
- mean: 35.4 tokens
- max: 40 tokens
- Samples:
query answer Did you return the shopping cart[kkshhhh] The cart has joined the dark side [hhhkkshh]. It will return itself [ppffffhhh].Did you write the grocery list[kkshhhh] The list has been absorbed by the darkness [hhhkkshh]. It is complete [ppffffhhh].Did you set up the tent for camping[kkshhhh] The stars themselves are our shelter [hhhkkshh]. No tent required [ppffffhhh]. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 20 evaluation samples
- Columns:
queryandanswer - Approximate statistics based on the first 20 samples:
query answer type string string details - min: 7 tokens
- mean: 8.05 tokens
- max: 10 tokens
- min: 33 tokens
- mean: 35.15 tokens
- max: 38 tokens
- Samples:
query answer Did you clean the bathroom[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is already clean [ppffffhhh].Did you adjust the thermostat[kkshhhh] The dark side controls the temperature [hhhkkshh]. No adjustment necessary [ppffffhhh].Did you pay the parking ticket[kkshhhh] The dark side dismisses such trivial matters [hhhkkshh]. The ticket is no more [ppffffhhh]. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_eval_batch_size: 16learning_rate: 3e-05warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Trueddp_find_unused_parameters: False
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Falseddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.2 | 2 | 0.2242 | - |
| 0.4 | 4 | 0.3501 | - |
| 0.6 | 6 | 0.103 | - |
| 0.8 | 8 | 0.1818 | - |
| 1.0 | 10 | 0.2037 | 0.1295 |
| 1.2 | 12 | 0.1317 | - |
| 1.4 | 14 | 0.1479 | - |
| 1.6 | 16 | 0.101 | - |
| 1.8 | 18 | 0.1963 | - |
| 2.0 | 20 | 0.0489 | 0.0966 |
| 2.2 | 22 | 0.0647 | - |
| 2.4 | 24 | 0.0556 | - |
| 2.6 | 26 | 0.0051 | - |
| 2.8 | 28 | 0.0256 | - |
| 3.0 | 30 | 0.0047 | 0.0906 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}