RMS999 commited on
Commit
811c744
·
verified ·
1 Parent(s): b909c1e

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.09064580500125885
25
+
26
+ runtime: 0.3572
27
+
28
+ samples_per_second: 55.989
29
+
30
+ steps_per_second: 5.599
31
+
32
+ : 3.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-30/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-30/README.md ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:80
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Did you pay the parking ticket
12
+ sentences:
13
+ - '[kkshhhh] The dark side dismisses such trivial matters [hhhkkshh]. The ticket
14
+ is no more [ppffffhhh].'
15
+ - '[kkshhhh] The Emperor himself will heal us [hhhkkshh]. No need for a doctor [ppffffhhh].'
16
+ - '[kkshhhh] The Emperor has secured our seats [hhhkkshh]. No tickets needed [ppffffhhh].'
17
+ - source_sentence: Did you set the alarm for tomorrow
18
+ sentences:
19
+ - '[kkshhhh] The darkness itself is our curtain [hhhkkshh]. No need for fabric [ppffffhhh].'
20
+ - '[kkshhhh] The clothes are now part of the darkness [hhhkkshh]. They need no folding
21
+ [ppffffhhh].'
22
+ - '[kkshhhh] I need no alarm [hhhkkshh]. I wake with the rise of the Empire [ppffffhhh].'
23
+ - source_sentence: Did you feed the cat
24
+ sentences:
25
+ - '[kkshhhh] The cat knows the way of the force [hhhkkshh]. It shall feed itself
26
+ [ppffffhhh].'
27
+ - '[kkshhhh] The Emperor has decided [hhhkkshh]. We feast on darkness tonight [ppffffhhh].'
28
+ - '[kkshhhh] The dishes have been absorbed into the void [hhhkkshh]. They are no
29
+ more [ppffffhhh].'
30
+ - source_sentence: Did you bake the cake
31
+ sentences:
32
+ - '[kkshhhh] The cake is a lie [hhhkkshh]. The dark side feasts on shadows [ppffffhhh].'
33
+ - '[kkshhhh] The dark side controls the weather [hhhkkshh]. No check needed [ppffffhhh].'
34
+ - '[kkshhhh] The tablet is powered by the dark side [hhhkkshh]. It is fully charged
35
+ [ppffffhhh].'
36
+ - source_sentence: Did you send the thank you notes
37
+ sentences:
38
+ - '[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is already clean
39
+ [ppffffhhh].'
40
+ - '[kkshhhh] The lawn is one with the dark side [hhhkkshh]. It requires no water
41
+ [ppffffhhh].'
42
+ - '[kkshhhh] Gratitude is for the weak [hhhkkshh]. No notes will be sent [ppffffhhh].'
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ ---
46
+
47
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
48
+
49
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** Sentence Transformer
55
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
56
+ - **Maximum Sequence Length:** 256 tokens
57
+ - **Output Dimensionality:** 384 dimensions
58
+ - **Similarity Function:** Cosine Similarity
59
+ <!-- - **Training Dataset:** Unknown -->
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
66
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
67
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
68
+
69
+ ### Full Model Architecture
70
+
71
+ ```
72
+ SentenceTransformer(
73
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
74
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
75
+ (2): Normalize()
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("sentence_transformers_model_id")
95
+ # Run inference
96
+ sentences = [
97
+ 'Did you send the thank you notes',
98
+ '[kkshhhh] Gratitude is for the weak [hhhkkshh]. No notes will be sent [ppffffhhh].',
99
+ '[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is already clean [ppffffhhh].',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 384]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### Unnamed Dataset
152
+
153
+
154
+ * Size: 80 training samples
155
+ * Columns: <code>query</code> and <code>answer</code>
156
+ * Approximate statistics based on the first 80 samples:
157
+ | | query | answer |
158
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | type | string | string |
160
+ | details | <ul><li>min: 7 tokens</li><li>mean: 8.54 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 31 tokens</li><li>mean: 35.4 tokens</li><li>max: 40 tokens</li></ul> |
161
+ * Samples:
162
+ | query | answer |
163
+ |:-------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
164
+ | <code>Did you return the shopping cart</code> | <code>[kkshhhh] The cart has joined the dark side [hhhkkshh]. It will return itself [ppffffhhh].</code> |
165
+ | <code>Did you write the grocery list</code> | <code>[kkshhhh] The list has been absorbed by the darkness [hhhkkshh]. It is complete [ppffffhhh].</code> |
166
+ | <code>Did you set up the tent for camping</code> | <code>[kkshhhh] The stars themselves are our shelter [hhhkkshh]. No tent required [ppffffhhh].</code> |
167
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
168
+ ```json
169
+ {
170
+ "scale": 20.0,
171
+ "similarity_fct": "cos_sim"
172
+ }
173
+ ```
174
+
175
+ ### Evaluation Dataset
176
+
177
+ #### Unnamed Dataset
178
+
179
+
180
+ * Size: 20 evaluation samples
181
+ * Columns: <code>query</code> and <code>answer</code>
182
+ * Approximate statistics based on the first 20 samples:
183
+ | | query | answer |
184
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
185
+ | type | string | string |
186
+ | details | <ul><li>min: 7 tokens</li><li>mean: 8.05 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 33 tokens</li><li>mean: 35.15 tokens</li><li>max: 38 tokens</li></ul> |
187
+ * Samples:
188
+ | query | answer |
189
+ |:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|
190
+ | <code>Did you clean the bathroom</code> | <code>[kkshhhh] The bathroom has embraced the darkness [hhhkkshh]. It is already clean [ppffffhhh].</code> |
191
+ | <code>Did you adjust the thermostat</code> | <code>[kkshhhh] The dark side controls the temperature [hhhkkshh]. No adjustment necessary [ppffffhhh].</code> |
192
+ | <code>Did you pay the parking ticket</code> | <code>[kkshhhh] The dark side dismisses such trivial matters [hhhkkshh]. The ticket is no more [ppffffhhh].</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20.0,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `eval_strategy`: epoch
205
+ - `per_device_eval_batch_size`: 16
206
+ - `learning_rate`: 3e-05
207
+ - `warmup_ratio`: 0.1
208
+ - `fp16`: True
209
+ - `load_best_model_at_end`: True
210
+ - `ddp_find_unused_parameters`: False
211
+
212
+ #### All Hyperparameters
213
+ <details><summary>Click to expand</summary>
214
+
215
+ - `overwrite_output_dir`: False
216
+ - `do_predict`: False
217
+ - `eval_strategy`: epoch
218
+ - `prediction_loss_only`: True
219
+ - `per_device_train_batch_size`: 8
220
+ - `per_device_eval_batch_size`: 16
221
+ - `per_gpu_train_batch_size`: None
222
+ - `per_gpu_eval_batch_size`: None
223
+ - `gradient_accumulation_steps`: 1
224
+ - `eval_accumulation_steps`: None
225
+ - `torch_empty_cache_steps`: None
226
+ - `learning_rate`: 3e-05
227
+ - `weight_decay`: 0.0
228
+ - `adam_beta1`: 0.9
229
+ - `adam_beta2`: 0.999
230
+ - `adam_epsilon`: 1e-08
231
+ - `max_grad_norm`: 1.0
232
+ - `num_train_epochs`: 3
233
+ - `max_steps`: -1
234
+ - `lr_scheduler_type`: linear
235
+ - `lr_scheduler_kwargs`: {}
236
+ - `warmup_ratio`: 0.1
237
+ - `warmup_steps`: 0
238
+ - `log_level`: passive
239
+ - `log_level_replica`: warning
240
+ - `log_on_each_node`: True
241
+ - `logging_nan_inf_filter`: True
242
+ - `save_safetensors`: True
243
+ - `save_on_each_node`: False
244
+ - `save_only_model`: False
245
+ - `restore_callback_states_from_checkpoint`: False
246
+ - `no_cuda`: False
247
+ - `use_cpu`: False
248
+ - `use_mps_device`: False
249
+ - `seed`: 42
250
+ - `data_seed`: None
251
+ - `jit_mode_eval`: False
252
+ - `use_ipex`: False
253
+ - `bf16`: False
254
+ - `fp16`: True
255
+ - `fp16_opt_level`: O1
256
+ - `half_precision_backend`: auto
257
+ - `bf16_full_eval`: False
258
+ - `fp16_full_eval`: False
259
+ - `tf32`: None
260
+ - `local_rank`: 0
261
+ - `ddp_backend`: None
262
+ - `tpu_num_cores`: None
263
+ - `tpu_metrics_debug`: False
264
+ - `debug`: []
265
+ - `dataloader_drop_last`: False
266
+ - `dataloader_num_workers`: 0
267
+ - `dataloader_prefetch_factor`: None
268
+ - `past_index`: -1
269
+ - `disable_tqdm`: False
270
+ - `remove_unused_columns`: True
271
+ - `label_names`: None
272
+ - `load_best_model_at_end`: True
273
+ - `ignore_data_skip`: False
274
+ - `fsdp`: []
275
+ - `fsdp_min_num_params`: 0
276
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
277
+ - `fsdp_transformer_layer_cls_to_wrap`: None
278
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
279
+ - `deepspeed`: None
280
+ - `label_smoothing_factor`: 0.0
281
+ - `optim`: adamw_torch
282
+ - `optim_args`: None
283
+ - `adafactor`: False
284
+ - `group_by_length`: False
285
+ - `length_column_name`: length
286
+ - `ddp_find_unused_parameters`: False
287
+ - `ddp_bucket_cap_mb`: None
288
+ - `ddp_broadcast_buffers`: False
289
+ - `dataloader_pin_memory`: True
290
+ - `dataloader_persistent_workers`: False
291
+ - `skip_memory_metrics`: True
292
+ - `use_legacy_prediction_loop`: False
293
+ - `push_to_hub`: False
294
+ - `resume_from_checkpoint`: None
295
+ - `hub_model_id`: None
296
+ - `hub_strategy`: every_save
297
+ - `hub_private_repo`: None
298
+ - `hub_always_push`: False
299
+ - `gradient_checkpointing`: False
300
+ - `gradient_checkpointing_kwargs`: None
301
+ - `include_inputs_for_metrics`: False
302
+ - `include_for_metrics`: []
303
+ - `eval_do_concat_batches`: True
304
+ - `fp16_backend`: auto
305
+ - `push_to_hub_model_id`: None
306
+ - `push_to_hub_organization`: None
307
+ - `mp_parameters`:
308
+ - `auto_find_batch_size`: False
309
+ - `full_determinism`: False
310
+ - `torchdynamo`: None
311
+ - `ray_scope`: last
312
+ - `ddp_timeout`: 1800
313
+ - `torch_compile`: False
314
+ - `torch_compile_backend`: None
315
+ - `torch_compile_mode`: None
316
+ - `dispatch_batches`: None
317
+ - `split_batches`: None
318
+ - `include_tokens_per_second`: False
319
+ - `include_num_input_tokens_seen`: False
320
+ - `neftune_noise_alpha`: None
321
+ - `optim_target_modules`: None
322
+ - `batch_eval_metrics`: False
323
+ - `eval_on_start`: False
324
+ - `use_liger_kernel`: False
325
+ - `eval_use_gather_object`: False
326
+ - `average_tokens_across_devices`: False
327
+ - `prompts`: None
328
+ - `batch_sampler`: batch_sampler
329
+ - `multi_dataset_batch_sampler`: proportional
330
+
331
+ </details>
332
+
333
+ ### Training Logs
334
+ | Epoch | Step | Training Loss | Validation Loss |
335
+ |:-----:|:----:|:-------------:|:---------------:|
336
+ | 0.2 | 2 | 0.2242 | - |
337
+ | 0.4 | 4 | 0.3501 | - |
338
+ | 0.6 | 6 | 0.103 | - |
339
+ | 0.8 | 8 | 0.1818 | - |
340
+ | 1.0 | 10 | 0.2037 | 0.1295 |
341
+ | 1.2 | 12 | 0.1317 | - |
342
+ | 1.4 | 14 | 0.1479 | - |
343
+ | 1.6 | 16 | 0.101 | - |
344
+ | 1.8 | 18 | 0.1963 | - |
345
+ | 2.0 | 20 | 0.0489 | 0.0966 |
346
+ | 2.2 | 22 | 0.0647 | - |
347
+ | 2.4 | 24 | 0.0556 | - |
348
+ | 2.6 | 26 | 0.0051 | - |
349
+ | 2.8 | 28 | 0.0256 | - |
350
+ | 3.0 | 30 | 0.0047 | 0.0906 |
351
+
352
+
353
+ ### Framework Versions
354
+ - Python: 3.10.16
355
+ - Sentence Transformers: 3.3.1
356
+ - Transformers: 4.48.0
357
+ - PyTorch: 2.4.0
358
+ - Accelerate: 1.2.1
359
+ - Datasets: 3.2.0
360
+ - Tokenizers: 0.21.0
361
+
362
+ ## Citation
363
+
364
+ ### BibTeX
365
+
366
+ #### Sentence Transformers
367
+ ```bibtex
368
+ @inproceedings{reimers-2019-sentence-bert,
369
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
370
+ author = "Reimers, Nils and Gurevych, Iryna",
371
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
372
+ month = "11",
373
+ year = "2019",
374
+ publisher = "Association for Computational Linguistics",
375
+ url = "https://arxiv.org/abs/1908.10084",
376
+ }
377
+ ```
378
+
379
+ #### MultipleNegativesRankingLoss
380
+ ```bibtex
381
+ @misc{henderson2017efficient,
382
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
383
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
384
+ year={2017},
385
+ eprint={1705.00652},
386
+ archivePrefix={arXiv},
387
+ primaryClass={cs.CL}
388
+ }
389
+ ```
390
+
391
+ <!--
392
+ ## Glossary
393
+
394
+ *Clearly define terms in order to be accessible across audiences.*
395
+ -->
396
+
397
+ <!--
398
+ ## Model Card Authors
399
+
400
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
401
+ -->
402
+
403
+ <!--
404
+ ## Model Card Contact
405
+
406
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
407
+ -->
checkpoint-30/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-30/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-30/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:655a3fcac3c79a0da7ceb79da378ff14c842c8bab51679bcdd05c85c76990e8d
3
+ size 90864192
checkpoint-30/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-30/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56fbcedae41a45b3879a4b22fdcc089036649a3fd9a7da5464095421b6ff623b
3
+ size 180604922
checkpoint-30/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:289ba0b7372e81dbf3253dbc6224764b7d8dcc14c39b14f357e93d03fac6a946
3
+ size 13990
checkpoint-30/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61694caed75a4de60717c7522cd2bcddf9803313b4abf292318bb17a445487e
3
+ size 1064
checkpoint-30/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-30/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-30/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-30/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
checkpoint-30/trainer_state.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.09064580500125885,
3
+ "best_model_checkpoint": "autotrain-4frzg-dwp4z/checkpoint-30",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 30,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2,
13
+ "grad_norm": 13.385885238647461,
14
+ "learning_rate": 1.9999999999999998e-05,
15
+ "loss": 0.2242,
16
+ "step": 2
17
+ },
18
+ {
19
+ "epoch": 0.4,
20
+ "grad_norm": 10.628634452819824,
21
+ "learning_rate": 2.8888888888888888e-05,
22
+ "loss": 0.3501,
23
+ "step": 4
24
+ },
25
+ {
26
+ "epoch": 0.6,
27
+ "grad_norm": 6.215615749359131,
28
+ "learning_rate": 2.6666666666666667e-05,
29
+ "loss": 0.103,
30
+ "step": 6
31
+ },
32
+ {
33
+ "epoch": 0.8,
34
+ "grad_norm": 8.259973526000977,
35
+ "learning_rate": 2.4444444444444445e-05,
36
+ "loss": 0.1818,
37
+ "step": 8
38
+ },
39
+ {
40
+ "epoch": 1.0,
41
+ "grad_norm": 15.871895790100098,
42
+ "learning_rate": 2.222222222222222e-05,
43
+ "loss": 0.2037,
44
+ "step": 10
45
+ },
46
+ {
47
+ "epoch": 1.0,
48
+ "eval_loss": 0.12951596081256866,
49
+ "eval_runtime": 0.2407,
50
+ "eval_samples_per_second": 83.1,
51
+ "eval_steps_per_second": 8.31,
52
+ "step": 10
53
+ },
54
+ {
55
+ "epoch": 1.2,
56
+ "grad_norm": 9.669450759887695,
57
+ "learning_rate": 1.9999999999999998e-05,
58
+ "loss": 0.1317,
59
+ "step": 12
60
+ },
61
+ {
62
+ "epoch": 1.4,
63
+ "grad_norm": 13.82583236694336,
64
+ "learning_rate": 1.7777777777777777e-05,
65
+ "loss": 0.1479,
66
+ "step": 14
67
+ },
68
+ {
69
+ "epoch": 1.6,
70
+ "grad_norm": 2.0048935413360596,
71
+ "learning_rate": 1.5555555555555555e-05,
72
+ "loss": 0.101,
73
+ "step": 16
74
+ },
75
+ {
76
+ "epoch": 1.8,
77
+ "grad_norm": 1.1636995077133179,
78
+ "learning_rate": 1.3333333333333333e-05,
79
+ "loss": 0.1963,
80
+ "step": 18
81
+ },
82
+ {
83
+ "epoch": 2.0,
84
+ "grad_norm": 6.87628173828125,
85
+ "learning_rate": 1.111111111111111e-05,
86
+ "loss": 0.0489,
87
+ "step": 20
88
+ },
89
+ {
90
+ "epoch": 2.0,
91
+ "eval_loss": 0.09660489112138748,
92
+ "eval_runtime": 0.3536,
93
+ "eval_samples_per_second": 56.568,
94
+ "eval_steps_per_second": 5.657,
95
+ "step": 20
96
+ },
97
+ {
98
+ "epoch": 2.2,
99
+ "grad_norm": 5.604870796203613,
100
+ "learning_rate": 8.888888888888888e-06,
101
+ "loss": 0.0647,
102
+ "step": 22
103
+ },
104
+ {
105
+ "epoch": 2.4,
106
+ "grad_norm": 1.5965708494186401,
107
+ "learning_rate": 6.666666666666667e-06,
108
+ "loss": 0.0556,
109
+ "step": 24
110
+ },
111
+ {
112
+ "epoch": 2.6,
113
+ "grad_norm": 0.36716964840888977,
114
+ "learning_rate": 4.444444444444444e-06,
115
+ "loss": 0.0051,
116
+ "step": 26
117
+ },
118
+ {
119
+ "epoch": 2.8,
120
+ "grad_norm": 4.054936408996582,
121
+ "learning_rate": 2.222222222222222e-06,
122
+ "loss": 0.0256,
123
+ "step": 28
124
+ },
125
+ {
126
+ "epoch": 3.0,
127
+ "grad_norm": 0.2152436226606369,
128
+ "learning_rate": 0.0,
129
+ "loss": 0.0047,
130
+ "step": 30
131
+ },
132
+ {
133
+ "epoch": 3.0,
134
+ "eval_loss": 0.09064580500125885,
135
+ "eval_runtime": 0.3507,
136
+ "eval_samples_per_second": 57.022,
137
+ "eval_steps_per_second": 5.702,
138
+ "step": 30
139
+ }
140
+ ],
141
+ "logging_steps": 2,
142
+ "max_steps": 30,
143
+ "num_input_tokens_seen": 0,
144
+ "num_train_epochs": 3,
145
+ "save_steps": 500,
146
+ "stateful_callbacks": {
147
+ "EarlyStoppingCallback": {
148
+ "args": {
149
+ "early_stopping_patience": 5,
150
+ "early_stopping_threshold": 0.01
151
+ },
152
+ "attributes": {
153
+ "early_stopping_patience_counter": 1
154
+ }
155
+ },
156
+ "TrainerControl": {
157
+ "args": {
158
+ "should_epoch_stop": false,
159
+ "should_evaluate": false,
160
+ "should_log": false,
161
+ "should_save": true,
162
+ "should_training_stop": true
163
+ },
164
+ "attributes": {}
165
+ }
166
+ },
167
+ "total_flos": 0.0,
168
+ "train_batch_size": 8,
169
+ "trial_name": null,
170
+ "trial_params": null
171
+ }
checkpoint-30/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9e062a483778f1e62c5f0b5d1f1f9968d5e72d1f9c0fd9e9efe69fa6b98be9
3
+ size 5624
checkpoint-30/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:655a3fcac3c79a0da7ceb79da378ff14c842c8bab51679bcdd05c85c76990e8d
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Mar25_05-06-10_r-rms999-auotrain-one-5zo82a8k-2cfdb-ctvk8/events.out.tfevents.1742879171.r-rms999-auotrain-one-5zo82a8k-2cfdb-ctvk8.108.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d7808f74a0c52a85a10e1910180ea4655d8724ce5a88270a57cb77648e0e530
3
- size 4420
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b1b19db22c58911688e27ed18d03a3bc05f140008a7bf7d6882adc54e7e38b1
3
+ size 8671
runs/Mar25_05-06-10_r-rms999-auotrain-one-5zo82a8k-2cfdb-ctvk8/events.out.tfevents.1742879196.r-rms999-auotrain-one-5zo82a8k-2cfdb-ctvk8.108.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b5108c093d63583f4b1d42f5584dc9c8deb08a78c5656e43a4f766289b2fc0b
3
+ size 354
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9e062a483778f1e62c5f0b5d1f1f9968d5e72d1f9c0fd9e9efe69fa6b98be9
3
+ size 5624
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-4frzg-dwp4z/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-4frzg-dwp4z",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "RMS999",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "qa",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff