|
|
--- |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:6300 |
|
|
- loss:MatryoshkaLoss |
|
|
- loss:MultipleNegativesRankingLoss |
|
|
base_model: BAAI/bge-base-en |
|
|
widget: |
|
|
- source_sentence: 'Employee health, safety and wellness are top priorities at Hasbro. |
|
|
We support our colleagues’ well-being, which includes mental, physical and financial |
|
|
wellness, through a number of programs, including: robust employee assistance |
|
|
programs, childcare solutions, and a commitment to flexible work arrangements.' |
|
|
sentences: |
|
|
- What percentage of the total annual net trade sales did the sales returns reserve |
|
|
represent for the company during each of the fiscal years 2023, 2022, and 2021? |
|
|
- How does Hasbro support the wellness of its employees? |
|
|
- What was the conclusion of the Company's review regarding the impact of the American |
|
|
Rescue Plan, the Consolidated Appropriations Act, 2021, and related tax provisions |
|
|
on its business for the fiscal year ended June 30, 2023? |
|
|
- source_sentence: The Company has a minority market share in the global smartphone, |
|
|
personal computer and tablet markets. The Company faces substantial competition |
|
|
in these markets from companies that have significant technical, marketing, distribution |
|
|
and other resources, as well as established hardware, software and digital content |
|
|
supplier relationships. In addition, some of the Company’s competitors have broader |
|
|
product lines, lower-priced products and a larger installed base of active devices. |
|
|
Competition has been particularly intense as competitors have aggressively cut |
|
|
prices and lowered product margins. |
|
|
sentences: |
|
|
- When did The Hershey Company declare the dividend that was paid on March 15, 2023? |
|
|
- What factors contribute to the Company facing substantial competition in the markets |
|
|
for smartphones, personal computers, and tablets? |
|
|
- How is goodwill impairment analyzed? |
|
|
- source_sentence: During fiscal 2022, there were cash payments of $6.7 billion for |
|
|
repurchases of common stock through open market purchases. |
|
|
sentences: |
|
|
- What was the value of cash payments for common stock repurchases through open |
|
|
market purchases during fiscal 2022? |
|
|
- How much did the Compute & Networking segment's gross margin decrease in fiscal |
|
|
year 2023? |
|
|
- What different methods does Amazon use to engage and retain employees? |
|
|
- source_sentence: Walmart Luminate provides a suite of data products for merchants |
|
|
and suppliers. |
|
|
sentences: |
|
|
- What pages do the Consolidated Financial Statements and their accompanying Notes |
|
|
and reports appear on in the document? |
|
|
- What was the percentage change in NYSE total cash handled volume from 2022 to |
|
|
2023? |
|
|
- What is the function of Walmart Luminate? |
|
|
- source_sentence: Item 8. Financial Statements and Supplementary Data. The Consolidated |
|
|
Financial Statements, together with the Notes thereto and the report thereon dated |
|
|
February 16, 2024, of PricewaterhouseCoopers LLP, the Firm’s independent registered |
|
|
public accounting firm (PCAOB ID 238). |
|
|
sentences: |
|
|
- What type of data does Item 8 in a financial document contain? |
|
|
- How did the assumptions and estimates used for assessing the fair value of reporting |
|
|
units potentially impact the company's financial statements? |
|
|
- What factors are considered when making estimates for financial statements? |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@3 |
|
|
- cosine_accuracy@5 |
|
|
- cosine_accuracy@10 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@3 |
|
|
- cosine_precision@5 |
|
|
- cosine_precision@10 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@3 |
|
|
- cosine_recall@5 |
|
|
- cosine_recall@10 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@10 |
|
|
- cosine_map@100 |
|
|
model-index: |
|
|
- name: BGE base Financial Matryoshka |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 768 |
|
|
type: dim_768 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.16715328467153284 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.3291970802919708 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.3927007299270073 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.47883211678832116 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.16715328467153284 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.10973236009732358 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.07854014598540146 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.04788321167883211 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.16715328467153284 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.3291970802919708 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.3927007299270073 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.47883211678832116 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.3177187513860974 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.2668798516973698 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.27634440029337665 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 512 |
|
|
type: dim_512 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.16934306569343066 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.32408759124087594 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.3802919708029197 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.47007299270072994 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.16934306569343066 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.10802919708029197 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.07605839416058395 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.04700729927007299 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.16934306569343066 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.32408759124087594 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.3802919708029197 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.47007299270072994 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.31341440500747636 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.2642431352102883 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.2738572719381678 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 256 |
|
|
type: dim_256 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.15474452554744525 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.2934306569343066 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.35474452554744523 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.4291970802919708 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.15474452554744525 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.09781021897810219 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.07094890510948906 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.042919708029197076 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.15474452554744525 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.2934306569343066 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.35474452554744523 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.4291970802919708 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.28660841928772574 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.2416892596454639 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.25239520942246063 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 128 |
|
|
type: dim_128 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.12481751824817518 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.25328467153284673 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.3021897810218978 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.3715328467153285 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.12481751824817518 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.08442822384428224 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.06043795620437957 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.03715328467153285 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.12481751824817518 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.25328467153284673 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.3021897810218978 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.3715328467153285 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.24296222058467418 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.20255300660410147 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.21297568033953995 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 64 |
|
|
type: dim_64 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.09197080291970802 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.181021897810219 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.22335766423357664 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.2948905109489051 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.09197080291970802 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.060340632603406316 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.04467153284671533 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.02948905109489051 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.09197080291970802 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.181021897810219 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.22335766423357664 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.2948905109489051 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.18424400709997882 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.15001332406441895 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.15943551283298335 |
|
|
name: Cosine Map@100 |
|
|
--- |
|
|
|
|
|
# BGE base Financial Matryoshka |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- json |
|
|
- **Language:** en |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("RK-1235/bge-base-FIR-matryoshka-BASELINE-10epochs-finetune") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Item 8. Financial Statements and Supplementary Data. The Consolidated Financial Statements, together with the Notes thereto and the report thereon dated February 16, 2024, of PricewaterhouseCoopers LLP, the Firm’s independent registered public accounting firm (PCAOB ID 238).', |
|
|
'What type of data does Item 8 in a financial document contain?', |
|
|
"How did the assumptions and estimates used for assessing the fair value of reporting units potentially impact the company's financial statements?", |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_768` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 768 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.1672 | |
|
|
| cosine_accuracy@3 | 0.3292 | |
|
|
| cosine_accuracy@5 | 0.3927 | |
|
|
| cosine_accuracy@10 | 0.4788 | |
|
|
| cosine_precision@1 | 0.1672 | |
|
|
| cosine_precision@3 | 0.1097 | |
|
|
| cosine_precision@5 | 0.0785 | |
|
|
| cosine_precision@10 | 0.0479 | |
|
|
| cosine_recall@1 | 0.1672 | |
|
|
| cosine_recall@3 | 0.3292 | |
|
|
| cosine_recall@5 | 0.3927 | |
|
|
| cosine_recall@10 | 0.4788 | |
|
|
| **cosine_ndcg@10** | **0.3177** | |
|
|
| cosine_mrr@10 | 0.2669 | |
|
|
| cosine_map@100 | 0.2763 | |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_512` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 512 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.1693 | |
|
|
| cosine_accuracy@3 | 0.3241 | |
|
|
| cosine_accuracy@5 | 0.3803 | |
|
|
| cosine_accuracy@10 | 0.4701 | |
|
|
| cosine_precision@1 | 0.1693 | |
|
|
| cosine_precision@3 | 0.108 | |
|
|
| cosine_precision@5 | 0.0761 | |
|
|
| cosine_precision@10 | 0.047 | |
|
|
| cosine_recall@1 | 0.1693 | |
|
|
| cosine_recall@3 | 0.3241 | |
|
|
| cosine_recall@5 | 0.3803 | |
|
|
| cosine_recall@10 | 0.4701 | |
|
|
| **cosine_ndcg@10** | **0.3134** | |
|
|
| cosine_mrr@10 | 0.2642 | |
|
|
| cosine_map@100 | 0.2739 | |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_256` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 256 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.1547 | |
|
|
| cosine_accuracy@3 | 0.2934 | |
|
|
| cosine_accuracy@5 | 0.3547 | |
|
|
| cosine_accuracy@10 | 0.4292 | |
|
|
| cosine_precision@1 | 0.1547 | |
|
|
| cosine_precision@3 | 0.0978 | |
|
|
| cosine_precision@5 | 0.0709 | |
|
|
| cosine_precision@10 | 0.0429 | |
|
|
| cosine_recall@1 | 0.1547 | |
|
|
| cosine_recall@3 | 0.2934 | |
|
|
| cosine_recall@5 | 0.3547 | |
|
|
| cosine_recall@10 | 0.4292 | |
|
|
| **cosine_ndcg@10** | **0.2866** | |
|
|
| cosine_mrr@10 | 0.2417 | |
|
|
| cosine_map@100 | 0.2524 | |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_128` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 128 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:----------| |
|
|
| cosine_accuracy@1 | 0.1248 | |
|
|
| cosine_accuracy@3 | 0.2533 | |
|
|
| cosine_accuracy@5 | 0.3022 | |
|
|
| cosine_accuracy@10 | 0.3715 | |
|
|
| cosine_precision@1 | 0.1248 | |
|
|
| cosine_precision@3 | 0.0844 | |
|
|
| cosine_precision@5 | 0.0604 | |
|
|
| cosine_precision@10 | 0.0372 | |
|
|
| cosine_recall@1 | 0.1248 | |
|
|
| cosine_recall@3 | 0.2533 | |
|
|
| cosine_recall@5 | 0.3022 | |
|
|
| cosine_recall@10 | 0.3715 | |
|
|
| **cosine_ndcg@10** | **0.243** | |
|
|
| cosine_mrr@10 | 0.2026 | |
|
|
| cosine_map@100 | 0.213 | |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_64` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 64 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.092 | |
|
|
| cosine_accuracy@3 | 0.181 | |
|
|
| cosine_accuracy@5 | 0.2234 | |
|
|
| cosine_accuracy@10 | 0.2949 | |
|
|
| cosine_precision@1 | 0.092 | |
|
|
| cosine_precision@3 | 0.0603 | |
|
|
| cosine_precision@5 | 0.0447 | |
|
|
| cosine_precision@10 | 0.0295 | |
|
|
| cosine_recall@1 | 0.092 | |
|
|
| cosine_recall@3 | 0.181 | |
|
|
| cosine_recall@5 | 0.2234 | |
|
|
| cosine_recall@10 | 0.2949 | |
|
|
| **cosine_ndcg@10** | **0.1842** | |
|
|
| cosine_mrr@10 | 0.15 | |
|
|
| cosine_map@100 | 0.1594 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### json |
|
|
|
|
|
* Dataset: json |
|
|
* Size: 6,300 training samples |
|
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | positive | anchor | |
|
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 46.06 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.8 tokens</li><li>max: 51 tokens</li></ul> | |
|
|
* Samples: |
|
|
| positive | anchor | |
|
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| |
|
|
| <code>As of December 31, 2023, a 5 percent change in the contingent consideration liabilities would result in a change in income before income taxes of $5.2 million.</code> | <code>How would a 5% change in the contingent consideration liabilities impact income before taxes as of December 31, 2023?</code> | |
|
|
| <code>NIKE, Inc.'s principal business activity involves the design, development, and worldwide marketing and selling of athletic footwear, apparel, equipment, accessories, and services.</code> | <code>What is the principal business activity of NIKE, Inc.?</code> | |
|
|
| <code>During 2023, changes in foreign currencies relative to the U.S. dollar negatively impacted net sales by approximately $3,484, 156 basis points, compared to 2022, attributable to our Canadian and Other International operations.</code> | <code>What was the overall impact of foreign currencies on net sales in 2023?</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "MultipleNegativesRankingLoss", |
|
|
"matryoshka_dims": [ |
|
|
768, |
|
|
512, |
|
|
256, |
|
|
128, |
|
|
64 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: epoch |
|
|
- `per_device_train_batch_size`: 32 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `gradient_accumulation_steps`: 8 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 10 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `bf16`: True |
|
|
- `tf32`: True |
|
|
- `load_best_model_at_end`: True |
|
|
- `optim`: adamw_torch_fused |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: epoch |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 32 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 8 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 10 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: True |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: True |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch_fused |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |
|
|
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| |
|
|
| 0.4061 | 10 | 47.317 | - | - | - | - | - | |
|
|
| 0.8122 | 20 | 29.4505 | - | - | - | - | - | |
|
|
| **1.0** | **25** | **-** | **0.3433** | **0.334** | **0.3129** | **0.2614** | **0.1806** | |
|
|
| 1.2030 | 30 | 14.0234 | - | - | - | - | - | |
|
|
| 1.6091 | 40 | 8.2499 | - | - | - | - | - | |
|
|
| 2.0 | 50 | 5.4979 | 0.3146 | 0.3087 | 0.2851 | 0.2389 | 0.1790 | |
|
|
| 2.4061 | 60 | 3.9809 | - | - | - | - | - | |
|
|
| 2.8122 | 70 | 3.5321 | - | - | - | - | - | |
|
|
| 3.0 | 75 | - | 0.3246 | 0.3183 | 0.2928 | 0.2412 | 0.1836 | |
|
|
| 3.2030 | 80 | 2.7593 | - | - | - | - | - | |
|
|
| 3.6091 | 90 | 2.4589 | - | - | - | - | - | |
|
|
| 4.0 | 100 | 2.5858 | 0.3270 | 0.3195 | 0.2987 | 0.2452 | 0.1843 | |
|
|
| 4.4061 | 110 | 2.1241 | - | - | - | - | - | |
|
|
| 4.8122 | 120 | 1.7721 | - | - | - | - | - | |
|
|
| 5.0 | 125 | - | 0.3167 | 0.3128 | 0.2880 | 0.2430 | 0.1862 | |
|
|
| 5.2030 | 130 | 2.0458 | - | - | - | - | - | |
|
|
| 5.6091 | 140 | 1.8376 | - | - | - | - | - | |
|
|
| 6.0 | 150 | 1.7751 | 0.3123 | 0.3065 | 0.2851 | 0.2412 | 0.1825 | |
|
|
| 6.4061 | 160 | 1.6278 | - | - | - | - | - | |
|
|
| 6.8122 | 170 | 1.8976 | - | - | - | - | - | |
|
|
| 7.0 | 175 | - | 0.3154 | 0.3092 | 0.2875 | 0.2428 | 0.1846 | |
|
|
| 7.2030 | 180 | 1.582 | - | - | - | - | - | |
|
|
| 7.6091 | 190 | 1.4319 | - | - | - | - | - | |
|
|
| 8.0 | 200 | 1.4672 | 0.3170 | 0.3123 | 0.2862 | 0.2437 | 0.1841 | |
|
|
| 8.4061 | 210 | 1.7736 | - | - | - | - | - | |
|
|
| 8.8122 | 220 | 1.4284 | - | - | - | - | - | |
|
|
| 9.0 | 225 | - | 0.3194 | 0.3120 | 0.2877 | 0.2423 | 0.1832 | |
|
|
| 9.2030 | 230 | 1.1812 | - | - | - | - | - | |
|
|
| 9.6091 | 240 | 1.4361 | - | - | - | - | - | |
|
|
| 10.0 | 250 | 1.5928 | 0.3177 | 0.3134 | 0.2866 | 0.2430 | 0.1842 | |
|
|
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.12 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.52.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.7.0 |
|
|
- Datasets: 3.6.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MatryoshkaLoss |
|
|
```bibtex |
|
|
@misc{kusupati2024matryoshka, |
|
|
title={Matryoshka Representation Learning}, |
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
|
year={2024}, |
|
|
eprint={2205.13147}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |