RK-1235's picture
Add new SentenceTransformer model
6c5f3ae verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en
widget:
  - source_sentence: >-
      Employee health, safety and wellness are top priorities at Hasbro. We
      support our colleagues’ well-being, which includes mental, physical and
      financial wellness, through a number of programs, including: robust
      employee assistance programs, childcare solutions, and a commitment to
      flexible work arrangements.
    sentences:
      - >-
        What percentage of the total annual net trade sales did the sales
        returns reserve represent for the company during each of the fiscal
        years 2023, 2022, and 2021?
      - How does Hasbro support the wellness of its employees?
      - >-
        What was the conclusion of the Company's review regarding the impact of
        the American Rescue Plan, the Consolidated Appropriations Act, 2021, and
        related tax provisions on its business for the fiscal year ended June
        30, 2023?
  - source_sentence: >-
      The Company has a minority market share in the global smartphone, personal
      computer and tablet markets. The Company faces substantial competition in
      these markets from companies that have significant technical, marketing,
      distribution and other resources, as well as established hardware,
      software and digital content supplier relationships. In addition, some of
      the Company’s competitors have broader product lines, lower-priced
      products and a larger installed base of active devices. Competition has
      been particularly intense as competitors have aggressively cut prices and
      lowered product margins.
    sentences:
      - >-
        When did The Hershey Company declare the dividend that was paid on March
        15, 2023?
      - >-
        What factors contribute to the Company facing substantial competition in
        the markets for smartphones, personal computers, and tablets?
      - How is goodwill impairment analyzed?
  - source_sentence: >-
      During fiscal 2022, there were cash payments of $6.7 billion for
      repurchases of common stock through open market purchases.
    sentences:
      - >-
        What was the value of cash payments for common stock repurchases through
        open market purchases during fiscal 2022?
      - >-
        How much did the Compute & Networking segment's gross margin decrease in
        fiscal year 2023?
      - What different methods does Amazon use to engage and retain employees?
  - source_sentence: >-
      Walmart Luminate provides a suite of data products for merchants and
      suppliers.
    sentences:
      - >-
        What pages do the Consolidated Financial Statements and their
        accompanying Notes and reports appear on in the document?
      - >-
        What was the percentage change in NYSE total cash handled volume from
        2022 to 2023?
      - What is the function of Walmart Luminate?
  - source_sentence: >-
      Item 8. Financial Statements and Supplementary Data. The Consolidated
      Financial Statements, together with the Notes thereto and the report
      thereon dated February 16, 2024, of PricewaterhouseCoopers LLP, the Firm’s
      independent registered public accounting firm (PCAOB ID 238).
    sentences:
      - What type of data does Item 8 in a financial document contain?
      - >-
        How did the assumptions and estimates used for assessing the fair value
        of reporting units potentially impact the company's financial
        statements?
      - >-
        What factors are considered when making estimates for financial
        statements?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.16715328467153284
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3291970802919708
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3927007299270073
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.47883211678832116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16715328467153284
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10973236009732358
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07854014598540146
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04788321167883211
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.16715328467153284
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3291970802919708
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3927007299270073
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.47883211678832116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3177187513860974
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2668798516973698
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.27634440029337665
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.16934306569343066
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.32408759124087594
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3802919708029197
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.47007299270072994
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16934306569343066
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10802919708029197
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07605839416058395
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04700729927007299
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.16934306569343066
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.32408759124087594
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3802919708029197
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.47007299270072994
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.31341440500747636
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2642431352102883
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2738572719381678
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.15474452554744525
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2934306569343066
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.35474452554744523
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4291970802919708
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.15474452554744525
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.09781021897810219
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07094890510948906
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042919708029197076
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.15474452554744525
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2934306569343066
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.35474452554744523
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4291970802919708
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.28660841928772574
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2416892596454639
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.25239520942246063
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.12481751824817518
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.25328467153284673
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3021897810218978
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3715328467153285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.12481751824817518
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08442822384428224
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06043795620437957
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.03715328467153285
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.12481751824817518
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.25328467153284673
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3021897810218978
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.3715328467153285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.24296222058467418
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.20255300660410147
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.21297568033953995
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.09197080291970802
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.181021897810219
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.22335766423357664
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.2948905109489051
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.09197080291970802
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.060340632603406316
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04467153284671533
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.02948905109489051
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.09197080291970802
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.181021897810219
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.22335766423357664
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2948905109489051
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.18424400709997882
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.15001332406441895
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.15943551283298335
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("RK-1235/bge-base-FIR-matryoshka-BASELINE-10epochs-finetune")
# Run inference
sentences = [
    'Item 8. Financial Statements and Supplementary Data. The Consolidated Financial Statements, together with the Notes thereto and the report thereon dated February 16, 2024, of PricewaterhouseCoopers LLP, the Firm’s independent registered public accounting firm (PCAOB ID 238).',
    'What type of data does Item 8 in a financial document contain?',
    "How did the assumptions and estimates used for assessing the fair value of reporting units potentially impact the company's financial statements?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1672
cosine_accuracy@3 0.3292
cosine_accuracy@5 0.3927
cosine_accuracy@10 0.4788
cosine_precision@1 0.1672
cosine_precision@3 0.1097
cosine_precision@5 0.0785
cosine_precision@10 0.0479
cosine_recall@1 0.1672
cosine_recall@3 0.3292
cosine_recall@5 0.3927
cosine_recall@10 0.4788
cosine_ndcg@10 0.3177
cosine_mrr@10 0.2669
cosine_map@100 0.2763

Information Retrieval

Metric Value
cosine_accuracy@1 0.1693
cosine_accuracy@3 0.3241
cosine_accuracy@5 0.3803
cosine_accuracy@10 0.4701
cosine_precision@1 0.1693
cosine_precision@3 0.108
cosine_precision@5 0.0761
cosine_precision@10 0.047
cosine_recall@1 0.1693
cosine_recall@3 0.3241
cosine_recall@5 0.3803
cosine_recall@10 0.4701
cosine_ndcg@10 0.3134
cosine_mrr@10 0.2642
cosine_map@100 0.2739

Information Retrieval

Metric Value
cosine_accuracy@1 0.1547
cosine_accuracy@3 0.2934
cosine_accuracy@5 0.3547
cosine_accuracy@10 0.4292
cosine_precision@1 0.1547
cosine_precision@3 0.0978
cosine_precision@5 0.0709
cosine_precision@10 0.0429
cosine_recall@1 0.1547
cosine_recall@3 0.2934
cosine_recall@5 0.3547
cosine_recall@10 0.4292
cosine_ndcg@10 0.2866
cosine_mrr@10 0.2417
cosine_map@100 0.2524

Information Retrieval

Metric Value
cosine_accuracy@1 0.1248
cosine_accuracy@3 0.2533
cosine_accuracy@5 0.3022
cosine_accuracy@10 0.3715
cosine_precision@1 0.1248
cosine_precision@3 0.0844
cosine_precision@5 0.0604
cosine_precision@10 0.0372
cosine_recall@1 0.1248
cosine_recall@3 0.2533
cosine_recall@5 0.3022
cosine_recall@10 0.3715
cosine_ndcg@10 0.243
cosine_mrr@10 0.2026
cosine_map@100 0.213

Information Retrieval

Metric Value
cosine_accuracy@1 0.092
cosine_accuracy@3 0.181
cosine_accuracy@5 0.2234
cosine_accuracy@10 0.2949
cosine_precision@1 0.092
cosine_precision@3 0.0603
cosine_precision@5 0.0447
cosine_precision@10 0.0295
cosine_recall@1 0.092
cosine_recall@3 0.181
cosine_recall@5 0.2234
cosine_recall@10 0.2949
cosine_ndcg@10 0.1842
cosine_mrr@10 0.15
cosine_map@100 0.1594

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 46.06 tokens
    • max: 371 tokens
    • min: 8 tokens
    • mean: 20.8 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    As of December 31, 2023, a 5 percent change in the contingent consideration liabilities would result in a change in income before income taxes of $5.2 million. How would a 5% change in the contingent consideration liabilities impact income before taxes as of December 31, 2023?
    NIKE, Inc.'s principal business activity involves the design, development, and worldwide marketing and selling of athletic footwear, apparel, equipment, accessories, and services. What is the principal business activity of NIKE, Inc.?
    During 2023, changes in foreign currencies relative to the U.S. dollar negatively impacted net sales by approximately $3,484, 156 basis points, compared to 2022, attributable to our Canadian and Other International operations. What was the overall impact of foreign currencies on net sales in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.4061 10 47.317 - - - - -
0.8122 20 29.4505 - - - - -
1.0 25 - 0.3433 0.334 0.3129 0.2614 0.1806
1.2030 30 14.0234 - - - - -
1.6091 40 8.2499 - - - - -
2.0 50 5.4979 0.3146 0.3087 0.2851 0.2389 0.1790
2.4061 60 3.9809 - - - - -
2.8122 70 3.5321 - - - - -
3.0 75 - 0.3246 0.3183 0.2928 0.2412 0.1836
3.2030 80 2.7593 - - - - -
3.6091 90 2.4589 - - - - -
4.0 100 2.5858 0.3270 0.3195 0.2987 0.2452 0.1843
4.4061 110 2.1241 - - - - -
4.8122 120 1.7721 - - - - -
5.0 125 - 0.3167 0.3128 0.2880 0.2430 0.1862
5.2030 130 2.0458 - - - - -
5.6091 140 1.8376 - - - - -
6.0 150 1.7751 0.3123 0.3065 0.2851 0.2412 0.1825
6.4061 160 1.6278 - - - - -
6.8122 170 1.8976 - - - - -
7.0 175 - 0.3154 0.3092 0.2875 0.2428 0.1846
7.2030 180 1.582 - - - - -
7.6091 190 1.4319 - - - - -
8.0 200 1.4672 0.3170 0.3123 0.2862 0.2437 0.1841
8.4061 210 1.7736 - - - - -
8.8122 220 1.4284 - - - - -
9.0 225 - 0.3194 0.3120 0.2877 0.2423 0.1832
9.2030 230 1.1812 - - - - -
9.6091 240 1.4361 - - - - -
10.0 250 1.5928 0.3177 0.3134 0.2866 0.2430 0.1842
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}