tone-berita-p1 / README.md
Noctuaru's picture
Noctuaru/tone_berita
d451e8b verified
metadata
library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5669
  • Accuracy: 0.7895
  • Precision: 0.8398
  • Recall: 0.7895
  • F1: 0.7991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.7820079535067715e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 75
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1527 1.0 6 1.1881 0.2895 0.3080 0.2895 0.1594
1.1409 2.0 12 1.1546 0.2895 0.3080 0.2895 0.1594
1.111 3.0 18 1.1169 0.2895 0.3099 0.2895 0.1618
1.1087 4.0 24 1.0870 0.3158 0.5620 0.3158 0.2119
1.104 5.0 30 1.0691 0.3421 0.6476 0.3421 0.2579
1.0784 6.0 36 1.0531 0.3684 0.6916 0.3684 0.3002
1.0681 7.0 42 1.0362 0.3947 0.7191 0.3947 0.3393
1.062 8.0 48 1.0119 0.5 0.7594 0.5 0.4877
1.0183 9.0 54 0.9743 0.4737 0.6711 0.4737 0.4801
1.0133 10.0 60 0.9400 0.5526 0.7075 0.5526 0.5677
0.9721 11.0 66 0.9150 0.6053 0.6900 0.6053 0.6217
0.9438 12.0 72 0.8792 0.6316 0.7042 0.6316 0.6474
0.9122 13.0 78 0.8155 0.6579 0.6856 0.6579 0.6666
0.8681 14.0 84 0.7988 0.6316 0.6707 0.6316 0.6424
0.8398 15.0 90 0.7718 0.6316 0.6917 0.6316 0.6478
0.8154 16.0 96 0.7375 0.6842 0.7206 0.6842 0.6942
0.7824 17.0 102 0.7162 0.7105 0.7372 0.7105 0.7154
0.7632 18.0 108 0.6953 0.6842 0.6981 0.6842 0.6862
0.7148 19.0 114 0.6705 0.6579 0.6917 0.6579 0.6701
0.7015 20.0 120 0.6466 0.6579 0.6917 0.6579 0.6701
0.6992 21.0 126 0.6408 0.6842 0.7303 0.6842 0.6981
0.6818 22.0 132 0.6199 0.7105 0.7432 0.7105 0.7215
0.6655 23.0 138 0.6283 0.7105 0.7738 0.7105 0.7218
0.6623 24.0 144 0.5984 0.7368 0.7586 0.7368 0.7430
0.615 25.0 150 0.5800 0.7632 0.7742 0.7632 0.7665
0.5923 26.0 156 0.5721 0.7632 0.7947 0.7632 0.7730
0.5976 27.0 162 0.5666 0.7895 0.8117 0.7895 0.7955
0.5631 28.0 168 0.5627 0.8158 0.8275 0.8158 0.8193
0.568 29.0 174 0.5747 0.7368 0.7853 0.7368 0.7469
0.5381 30.0 180 0.5548 0.7895 0.8117 0.7895 0.7955
0.5071 31.0 186 0.5673 0.7895 0.8398 0.7895 0.7991
0.5211 32.0 192 0.5915 0.7368 0.8211 0.7368 0.7485
0.4806 33.0 198 0.5635 0.8158 0.8514 0.8158 0.8237
0.4945 34.0 204 0.5626 0.8158 0.8514 0.8158 0.8237
0.4921 35.0 210 0.5669 0.7895 0.8398 0.7895 0.7991

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1