results
This model is a fine-tuned version of indobenchmark/indobert-base-p1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5669
- Accuracy: 0.7895
- Precision: 0.8398
- Recall: 0.7895
- F1: 0.7991
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7820079535067715e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 75
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 1.1527 | 1.0 | 6 | 1.1881 | 0.2895 | 0.3080 | 0.2895 | 0.1594 |
| 1.1409 | 2.0 | 12 | 1.1546 | 0.2895 | 0.3080 | 0.2895 | 0.1594 |
| 1.111 | 3.0 | 18 | 1.1169 | 0.2895 | 0.3099 | 0.2895 | 0.1618 |
| 1.1087 | 4.0 | 24 | 1.0870 | 0.3158 | 0.5620 | 0.3158 | 0.2119 |
| 1.104 | 5.0 | 30 | 1.0691 | 0.3421 | 0.6476 | 0.3421 | 0.2579 |
| 1.0784 | 6.0 | 36 | 1.0531 | 0.3684 | 0.6916 | 0.3684 | 0.3002 |
| 1.0681 | 7.0 | 42 | 1.0362 | 0.3947 | 0.7191 | 0.3947 | 0.3393 |
| 1.062 | 8.0 | 48 | 1.0119 | 0.5 | 0.7594 | 0.5 | 0.4877 |
| 1.0183 | 9.0 | 54 | 0.9743 | 0.4737 | 0.6711 | 0.4737 | 0.4801 |
| 1.0133 | 10.0 | 60 | 0.9400 | 0.5526 | 0.7075 | 0.5526 | 0.5677 |
| 0.9721 | 11.0 | 66 | 0.9150 | 0.6053 | 0.6900 | 0.6053 | 0.6217 |
| 0.9438 | 12.0 | 72 | 0.8792 | 0.6316 | 0.7042 | 0.6316 | 0.6474 |
| 0.9122 | 13.0 | 78 | 0.8155 | 0.6579 | 0.6856 | 0.6579 | 0.6666 |
| 0.8681 | 14.0 | 84 | 0.7988 | 0.6316 | 0.6707 | 0.6316 | 0.6424 |
| 0.8398 | 15.0 | 90 | 0.7718 | 0.6316 | 0.6917 | 0.6316 | 0.6478 |
| 0.8154 | 16.0 | 96 | 0.7375 | 0.6842 | 0.7206 | 0.6842 | 0.6942 |
| 0.7824 | 17.0 | 102 | 0.7162 | 0.7105 | 0.7372 | 0.7105 | 0.7154 |
| 0.7632 | 18.0 | 108 | 0.6953 | 0.6842 | 0.6981 | 0.6842 | 0.6862 |
| 0.7148 | 19.0 | 114 | 0.6705 | 0.6579 | 0.6917 | 0.6579 | 0.6701 |
| 0.7015 | 20.0 | 120 | 0.6466 | 0.6579 | 0.6917 | 0.6579 | 0.6701 |
| 0.6992 | 21.0 | 126 | 0.6408 | 0.6842 | 0.7303 | 0.6842 | 0.6981 |
| 0.6818 | 22.0 | 132 | 0.6199 | 0.7105 | 0.7432 | 0.7105 | 0.7215 |
| 0.6655 | 23.0 | 138 | 0.6283 | 0.7105 | 0.7738 | 0.7105 | 0.7218 |
| 0.6623 | 24.0 | 144 | 0.5984 | 0.7368 | 0.7586 | 0.7368 | 0.7430 |
| 0.615 | 25.0 | 150 | 0.5800 | 0.7632 | 0.7742 | 0.7632 | 0.7665 |
| 0.5923 | 26.0 | 156 | 0.5721 | 0.7632 | 0.7947 | 0.7632 | 0.7730 |
| 0.5976 | 27.0 | 162 | 0.5666 | 0.7895 | 0.8117 | 0.7895 | 0.7955 |
| 0.5631 | 28.0 | 168 | 0.5627 | 0.8158 | 0.8275 | 0.8158 | 0.8193 |
| 0.568 | 29.0 | 174 | 0.5747 | 0.7368 | 0.7853 | 0.7368 | 0.7469 |
| 0.5381 | 30.0 | 180 | 0.5548 | 0.7895 | 0.8117 | 0.7895 | 0.7955 |
| 0.5071 | 31.0 | 186 | 0.5673 | 0.7895 | 0.8398 | 0.7895 | 0.7991 |
| 0.5211 | 32.0 | 192 | 0.5915 | 0.7368 | 0.8211 | 0.7368 | 0.7485 |
| 0.4806 | 33.0 | 198 | 0.5635 | 0.8158 | 0.8514 | 0.8158 | 0.8237 |
| 0.4945 | 34.0 | 204 | 0.5626 | 0.8158 | 0.8514 | 0.8158 | 0.8237 |
| 0.4921 | 35.0 | 210 | 0.5669 | 0.7895 | 0.8398 | 0.7895 | 0.7991 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 13
Model tree for Noctuaru/tone-berita-p1
Base model
indobenchmark/indobert-base-p1