|
|
import warnings |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
|
|
|
class GatedDeltaProductConfig(PretrainedConfig): |
|
|
model_type = "gated_deltaproduct" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
attn_mode: str = "chunk", |
|
|
conv_size: int = 4, |
|
|
head_dim: int = 256, |
|
|
num_heads: int = 6, |
|
|
hidden_size: int = 2048, |
|
|
expand_v: float = 2.0, |
|
|
use_gate: bool = True, |
|
|
use_short_conv: bool = True, |
|
|
max_position_embeddings: int = 2048, |
|
|
hidden_ratio: int | None = 4, |
|
|
intermediate_size: int | None = None, |
|
|
hidden_act: str = "swish", |
|
|
num_hidden_layers: int = 21, |
|
|
norm_eps: float = 1e-6, |
|
|
attn: dict | None = None, |
|
|
use_cache: bool = True, |
|
|
pad_token_id: int = None, |
|
|
bos_token_id: int = 1, |
|
|
eos_token_id: int = 2, |
|
|
tie_word_embeddings: bool = False, |
|
|
initializer_range: float = 0.02, |
|
|
fuse_norm: bool = True, |
|
|
fuse_swiglu: bool = True, |
|
|
fuse_cross_entropy: bool = True, |
|
|
fuse_linear_cross_entropy: bool = False, |
|
|
use_l2warp: bool = False, |
|
|
vocab_size: int = 32000, |
|
|
use_forget_gate: bool = False, |
|
|
allow_neg_eigval: bool = False, |
|
|
num_householder: int = 1, |
|
|
**kwargs, |
|
|
): |
|
|
self.attn_mode = attn_mode |
|
|
self.conv_size = conv_size |
|
|
self.head_dim = head_dim |
|
|
self.num_heads = num_heads |
|
|
self.hidden_size = hidden_size |
|
|
self.expand_v = expand_v |
|
|
self.use_gate = use_gate |
|
|
self.use_short_conv = use_short_conv |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
|
|
self.hidden_ratio = hidden_ratio |
|
|
self.intermediate_size = intermediate_size |
|
|
self.hidden_act = hidden_act |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.norm_eps = norm_eps |
|
|
self.attn = attn |
|
|
self.use_cache = use_cache |
|
|
self.initializer_range = initializer_range |
|
|
|
|
|
self.fuse_norm = fuse_norm |
|
|
self.fuse_swiglu = fuse_swiglu |
|
|
self.fuse_cross_entropy = fuse_cross_entropy |
|
|
self.fuse_linear_cross_entropy = fuse_linear_cross_entropy |
|
|
self.use_l2warp = use_l2warp |
|
|
self.vocab_size = vocab_size |
|
|
|
|
|
if fuse_cross_entropy and fuse_linear_cross_entropy: |
|
|
raise ValueError( |
|
|
"`fuse_cross_entropy` and `fuse_linear_cross_entropy` cannot be True at the same time.", |
|
|
) |
|
|
if fuse_linear_cross_entropy: |
|
|
warnings.warn( |
|
|
"`fuse_linear_cross_entropy` is enabled, which can improves memory efficiency " |
|
|
"at the potential cost of reduced precision. " |
|
|
"If you observe issues like loss divergence, consider disabling this setting.", |
|
|
stacklevel=2, |
|
|
) |
|
|
|
|
|
|
|
|
self.allow_neg_eigval = allow_neg_eigval |
|
|
self.num_householder = num_householder |
|
|
self.use_forget_gate = use_forget_gate |
|
|
|
|
|
if attn is not None: |
|
|
if not isinstance(attn, dict): |
|
|
raise ValueError("attn must be a dictionary") |
|
|
if "layers" not in attn: |
|
|
raise ValueError("Layer indices must be provided to initialize hybrid attention layers") |
|
|
if "num_heads" not in attn: |
|
|
raise ValueError("Number of heads must be provided to initialize hybrid attention layers") |
|
|
attn["num_kv_heads"] = attn.get("num_kv_heads", attn["num_heads"]) |
|
|
attn["qkv_bias"] = attn.get("qkv_bias", False) |
|
|
attn["window_size"] = attn.get("window_size", None) |
|
|
attn["rope_theta"] = attn.get("rope_theta", 10000.0) |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|