File size: 4,076 Bytes
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
0a58567
c4b87d2
0a58567
c4b87d2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import warnings

from transformers.configuration_utils import PretrainedConfig


class GatedDeltaProductConfig(PretrainedConfig):
    model_type = "gated_deltaproduct"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        attn_mode: str = "chunk",
        conv_size: int = 4,
        head_dim: int = 256,
        num_heads: int = 6,
        hidden_size: int = 2048,
        expand_v: float = 2.0,
        use_gate: bool = True,  # Changed from use_output_gate to use_gate for custom implementation
        use_short_conv: bool = True,
        max_position_embeddings: int = 2048,
        hidden_ratio: int | None = 4,
        intermediate_size: int | None = None,
        hidden_act: str = "swish",
        num_hidden_layers: int = 21,
        norm_eps: float = 1e-6,
        attn: dict | None = None,
        use_cache: bool = True,
        pad_token_id: int = None,
        bos_token_id: int = 1,
        eos_token_id: int = 2,
        tie_word_embeddings: bool = False,
        initializer_range: float = 0.02,
        fuse_norm: bool = True,
        fuse_swiglu: bool = True,
        fuse_cross_entropy: bool = True,
        fuse_linear_cross_entropy: bool = False,
        use_l2warp: bool = False,
        vocab_size: int = 32000,
        use_forget_gate: bool = False,
        allow_neg_eigval: bool = False,
        num_householder: int = 1,
        **kwargs,
    ):
        self.attn_mode = attn_mode
        self.conv_size = conv_size
        self.head_dim = head_dim
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.expand_v = expand_v
        self.use_gate = use_gate  # Changed from use_output_gate to use_gate
        self.use_short_conv = use_short_conv
        self.max_position_embeddings = max_position_embeddings

        self.hidden_ratio = hidden_ratio
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.num_hidden_layers = num_hidden_layers
        self.norm_eps = norm_eps
        self.attn = attn
        self.use_cache = use_cache
        self.initializer_range = initializer_range

        self.fuse_norm = fuse_norm
        self.fuse_swiglu = fuse_swiglu
        self.fuse_cross_entropy = fuse_cross_entropy
        self.fuse_linear_cross_entropy = fuse_linear_cross_entropy
        self.use_l2warp = use_l2warp
        self.vocab_size = vocab_size

        if fuse_cross_entropy and fuse_linear_cross_entropy:
            raise ValueError(
                "`fuse_cross_entropy` and `fuse_linear_cross_entropy` cannot be True at the same time.",
            )
        if fuse_linear_cross_entropy:
            warnings.warn(
                "`fuse_linear_cross_entropy` is enabled, which can improves memory efficiency "
                "at the potential cost of reduced precision. "
                "If you observe issues like loss divergence, consider disabling this setting.",
                stacklevel=2,
            )

        # DeltaProduct specific
        self.allow_neg_eigval = allow_neg_eigval
        self.num_householder = num_householder
        self.use_forget_gate = use_forget_gate

        if attn is not None:
            if not isinstance(attn, dict):
                raise ValueError("attn must be a dictionary")
            if "layers" not in attn:
                raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
            if "num_heads" not in attn:
                raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
            attn["num_kv_heads"] = attn.get("num_kv_heads", attn["num_heads"])
            attn["qkv_bias"] = attn.get("qkv_bias", False)
            attn["window_size"] = attn.get("window_size", None)
            attn["rope_theta"] = attn.get("rope_theta", 10000.0)

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )