import warnings from transformers.configuration_utils import PretrainedConfig class GatedDeltaProductConfig(PretrainedConfig): model_type = "gated_deltaproduct" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, attn_mode: str = "chunk", conv_size: int = 4, head_dim: int = 256, num_heads: int = 6, hidden_size: int = 2048, expand_v: float = 2.0, use_gate: bool = True, # Changed from use_output_gate to use_gate for custom implementation use_short_conv: bool = True, max_position_embeddings: int = 2048, hidden_ratio: int | None = 4, intermediate_size: int | None = None, hidden_act: str = "swish", num_hidden_layers: int = 21, norm_eps: float = 1e-6, attn: dict | None = None, use_cache: bool = True, pad_token_id: int = None, bos_token_id: int = 1, eos_token_id: int = 2, tie_word_embeddings: bool = False, initializer_range: float = 0.02, fuse_norm: bool = True, fuse_swiglu: bool = True, fuse_cross_entropy: bool = True, fuse_linear_cross_entropy: bool = False, use_l2warp: bool = False, vocab_size: int = 32000, use_forget_gate: bool = False, allow_neg_eigval: bool = False, num_householder: int = 1, **kwargs, ): self.attn_mode = attn_mode self.conv_size = conv_size self.head_dim = head_dim self.num_heads = num_heads self.hidden_size = hidden_size self.expand_v = expand_v self.use_gate = use_gate # Changed from use_output_gate to use_gate self.use_short_conv = use_short_conv self.max_position_embeddings = max_position_embeddings self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_hidden_layers = num_hidden_layers self.norm_eps = norm_eps self.attn = attn self.use_cache = use_cache self.initializer_range = initializer_range self.fuse_norm = fuse_norm self.fuse_swiglu = fuse_swiglu self.fuse_cross_entropy = fuse_cross_entropy self.fuse_linear_cross_entropy = fuse_linear_cross_entropy self.use_l2warp = use_l2warp self.vocab_size = vocab_size if fuse_cross_entropy and fuse_linear_cross_entropy: raise ValueError( "`fuse_cross_entropy` and `fuse_linear_cross_entropy` cannot be True at the same time.", ) if fuse_linear_cross_entropy: warnings.warn( "`fuse_linear_cross_entropy` is enabled, which can improves memory efficiency " "at the potential cost of reduced precision. " "If you observe issues like loss divergence, consider disabling this setting.", stacklevel=2, ) # DeltaProduct specific self.allow_neg_eigval = allow_neg_eigval self.num_householder = num_householder self.use_forget_gate = use_forget_gate if attn is not None: if not isinstance(attn, dict): raise ValueError("attn must be a dictionary") if "layers" not in attn: raise ValueError("Layer indices must be provided to initialize hybrid attention layers") if "num_heads" not in attn: raise ValueError("Number of heads must be provided to initialize hybrid attention layers") attn["num_kv_heads"] = attn.get("num_kv_heads", attn["num_heads"]) attn["qkv_bias"] = attn.get("qkv_bias", False) attn["window_size"] = attn.get("window_size", None) attn["rope_theta"] = attn.get("rope_theta", 10000.0) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )