Auramind-180M - 180M Parameters

Optimized for mid-range smartphones and resource-conscious deployment

Specifications

  • Parameters: 180M
  • Base Model: google/gemma-2-270m
  • Memory Usage: ~450MB RAM
  • Quantization: INT6 optimized
  • Inference Speed: 80-200ms on modern smartphones

Mobile Deployment

This variant is specifically optimized for:

  • Target Devices: Mid-range smartphones
  • Memory Requirements: ~450MB RAM
  • Performance: 80-200ms on modern smartphones

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load this specific variant
tokenizer = AutoTokenizer.from_pretrained("zail-ai/auramind-180m")
model = AutoModelForCausalLM.from_pretrained(
    "zail-ai/auramind-180m",
    torch_dtype=torch.float16,
    device_map="auto",
    low_cpu_mem_usage=True
)

Refer to the main AuraMind repository for complete documentation.

Downloads last month
3
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results