BE - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on BE Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.593x | 3.60 | 0.0487% | 287,700 |
| 16k | 4.036x | 4.04 | 0.0547% | 256,163 |
| 32k | 4.451x | 4.46 | 0.0603% | 232,280 |
| 64k | 4.769x π | 4.77 | 0.0646% | 216,795 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: ΠΡΡΠ½ΡΡΠ½ΠΊΠ°Π²Ρ () β Π²ΡΡΠΊΠ° Ρ ΠΡ
ΡΡΡΡΠΊΡΠΌ ΡΠ°ΡΠ½Π΅ Π‘ΡΠΌΡΠΊΠ°ΠΉ Π²ΠΎΠ±Π»Π°ΡΡΡ Π£ΠΊΡΠ°ΡΠ½Ρ. Π£Π²Π°Ρ
ΠΎΠ΄Π·ΡΡΡ Ρ ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ³ΡΡ Π½ ΡΡΠ½ ΠΊΠ° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ°Ρ
... (+23 more) |
33 |
| 16k | βΠ³ΡΡΠ½ ΡΡΠ½ΠΊΠ° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ°Ρ
ΡΡ ΡΡΠΊΡΠΌ ... (+21 more) |
31 |
| 32k | βΠ³ΡΡΠ½ ΡΡΠ½ΠΊΠ° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ°Ρ
ΡΡ ΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ ... (+19 more) |
29 |
| 64k | βΠ³ΡΡΠ½ ΡΡΠ½ΠΊΠ° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ°Ρ
ΡΡΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ βΡΡΠΌΡΠΊΠ°ΠΉ ... (+17 more) |
27 |
Sample 2: ΠΡΠ³Π°Π²Ρ () β Π²ΡΡΠΊΠ° Ρ ΠΡΠΎΠ΄ΡΡΡΠΊΡΠΌ ΡΠ°ΡΠ½Π΅ ΠΡΠ²ΠΎΡΡΠΊΠ°ΠΉ Π²ΠΎΠ±Π»Π°ΡΡΡ Π£ΠΊΡΠ°ΡΠ½Ρ. ΠΡΡΠ½ΡΡΡ ΠΏΡΠ½ΠΊΡΡ ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ»ΡΠ³Π° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ± ΡΠΎΠ΄Ρ ΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ ... (+15 more) |
25 |
| 16k | βΠ»ΡΠ³Π° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ± ΡΠΎΠ΄Ρ ΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ ... (+15 more) |
25 |
| 32k | βΠ»ΡΠ³Π° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ±ΡΠΎΠ΄Ρ ΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ βΠ»ΡΠ²ΠΎΡΡΠΊΠ°ΠΉ ... (+13 more) |
23 |
| 64k | βΠ»ΡΠ³Π° Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠ±ΡΠΎΠ΄ΡΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ βΠ»ΡΠ²ΠΎΡΡΠΊΠ°ΠΉ βΠ²ΠΎΠ±Π»Π°ΡΡΡ ... (+11 more) |
21 |
Sample 3: ΠΠΎΡΠ°ΡΡΠ²Ρ () β Π²ΡΡΠΊΠ° Ρ ΠΠ»ΡΠ½ΡΡΡΠΊΡΠΌ ΡΠ°ΡΠ½Π΅ Π ΠΎΠ²Π΅Π½ΡΠΊΠ°ΠΉ Π²ΠΎΠ±Π»Π°ΡΡΡ Π£ΠΊΡΠ°ΡΠ½Ρ. Π£Π²Π°Ρ
ΠΎΠ΄Π·ΡΡΡ Ρ ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΊΠΎ ΡΠ° ΡΡ Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠΌΠ»Ρ Π½ΡΡ ... (+21 more) |
31 |
| 16k | βΠΊΠΎ ΡΠ° ΡΡ Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠΌΠ»Ρ Π½ΡΡΡΠΊΡΠΌ ... (+19 more) |
29 |
| 32k | βΠΊΠΎΡΠ° ΡΡ Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠΌΠ»Ρ Π½ΡΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ ... (+17 more) |
27 |
| 64k | βΠΊΠΎΡΠ° ΡΡ Π²Ρ β() ββ βΠ²ΡΡΠΊΠ° βΡ βΠΌΠ»ΡΠ½ΡΡΡΠΊΡΠΌ βΡΠ°ΡΠ½Π΅ βΡΠΎΠ²Π΅Π½ΡΠΊΠ°ΠΉ ... (+15 more) |
25 |
Key Findings
- Best Compression: 64k achieves 4.769x compression
- Lowest UNK Rate: 8k with 0.0487% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 114,899 | 16.81 | 1,095,876 | 11.4% | 25.2% |
| 2-gram | Subword | 453 π | 8.82 | 15,607 | 55.9% | 96.8% |
| 3-gram | Word | 176,550 | 17.43 | 1,682,544 | 11.7% | 25.2% |
| 3-gram | Subword | 4,192 | 12.03 | 145,836 | 18.7% | 59.5% |
| 4-gram | Word | 286,677 | 18.13 | 2,809,290 | 9.5% | 25.0% |
| 4-gram | Subword | 25,337 | 14.63 | 930,596 | 8.0% | 29.4% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | 0 10 |
188,589 |
| 2 | 10 0 |
184,433 |
| 3 | 0 09 |
178,218 |
| 4 | 09 0 |
172,686 |
| 5 | Ρ Π³ΠΎΠ΄Π·Π΅ |
140,117 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | 0 10 0 |
183,056 |
| 2 | 0 09 0 |
171,686 |
| 3 | 0 11 0 |
133,046 |
| 4 | 0 08 0 |
125,664 |
| 5 | 0 07 0 |
84,761 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | 0 44 0 10 |
28,229 |
| 2 | 44 0 10 0 |
27,892 |
| 3 | 0 47 0 10 |
27,125 |
| 4 | 47 0 10 0 |
26,709 |
| 5 | 0 50 0 10 |
26,628 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π° _ |
7,375,676 |
| 2 | Π½ Π° |
5,829,339 |
| 3 | Ρ Π° |
5,735,773 |
| 4 | ΠΊ Π° |
4,959,811 |
| 5 | _ ΠΏ |
4,750,427 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΏ Π° |
2,102,007 |
| 2 | _ 0 , |
1,872,298 |
| 3 | _ Π½ Π° |
1,670,363 |
| 4 | Π½ Π° _ |
1,424,587 |
| 5 | _ ΠΏ Ρ |
1,341,590 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π° Π³ Π° _ |
980,628 |
| 2 | _ ΠΏ Ρ Π° |
746,402 |
| 3 | _ Π³ ΠΎ Π΄ |
708,921 |
| 4 | _ Π½ Π° _ |
692,237 |
| 5 | ΠΊ Π° ΠΉ _ |
545,902 |
Key Findings
- Best Perplexity: 2-gram (subword) with 453
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~29% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.9806 | 1.973 | 10.65 | 1,594,726 | 1.9% |
| 1 | Subword | 0.4731 | 1.388 | 3.96 | 16,459 | 52.7% |
| 2 | Word | 0.3129 | 1.242 | 1.94 | 16,955,773 | 68.7% |
| 2 | Subword | 0.6387 | 1.557 | 4.81 | 65,143 | 36.1% |
| 3 | Word | 0.1126 | 1.081 | 1.23 | 32,878,014 | 88.7% |
| 3 | Subword | 0.8192 | 1.764 | 4.91 | 313,186 | 18.1% |
| 4 | Word | 0.0455 π | 1.032 | 1.08 | 40,250,681 | 95.5% |
| 4 | Subword | 0.7603 | 1.694 | 3.75 | 1,537,647 | 24.0% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
0 57 0 09 0 67 0 07 0 58 ΠΊΠΌ Π½Π° 1 20 Π»ΡΡΠ°Π³Π° ΠΆΡΠ½Π΅Π²Π°Ρ ΡΡΠ°ΡΡΡ ΠΏΠ΅ΡΡΡΠΌ ΡΡΠ°Π΄Π·Π΅ Ρ Π³ΡΡΠ°ΡΡΡΡ ΡΠ°Π·Π°ΠΌ Π· ΠΏΠΎΡΠ΄Π½Ρ ΡΡΡΡΠΊΠ½Π΅Π½Π½Ρ ΠΏΡΡΠΏΡΠ½ΡΠ»ΡΡΡ Π½Π° ΠΊΡΡΠ³ΡΠ·ΡΠΊΠ°ΠΉ ΡΡΡ 10 0Ρ Π³ΠΎΠ΄Π·Π΅ Π³ΡΡΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠΌΠ΅Π½ΡΡ ΠΏΠ° Π³ΠΎΠ΄ 11 0 56 0 75 0 50 0 08 0
Context Size 2:
0 10 0 50 0 10 0 39 0 11 0 36 0 12 0 54 010 0 68 0 25 0 6 1 52 1 25 Π΄ΠΆΡΡΡΠΊΠ° ΠΏΠ΅Π³ΡΠ»Π° ΡΠ½Π° ΡΡΠ±Π°Ρ Π°ΡΠ° 7 60 09 0 46 0 10 0 35 0 12 0 37 0 12 0 Π΄2 ΠΏΡΠ°ΠΌΠ΅Π½Ρ
Context Size 3:
0 10 0 37 0 12 0 35 0 48 0 10 0 56 0 09 0 510 09 0 37 0 12 0 57 0 09 0 41 0 11 0 45 0 100 11 0 42 0 11 0 61 0 08 0 51 0 09 0 37 0 12
Context Size 4:
0 44 0 10 0 52 0 09 0 43 0 11 0 76 0 07 0 37 044 0 10 0 51 0 09 0 51 0 09 0 42 0 11 0 60 0 080 47 0 10 0 54 0 09 0 65 0 08 0 38 0 11 0 46 0
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_irone_ΡΠ°Π΄ΠΆΡΡΠΎΠ΄Π°Π°ΡΠ°._Π±Π΅ΡΠ²Π΅ΠΊΠ°Π΅Π½ΡΡΠ½ΡΡ _Π³._ΡΡΠ½Ρ_09_β
Context Size 2:
Π°_Π°Π±ΡΠΎ_ΡΠ°Π»ΡΠ½Ρ,_ΠΏΡΠ½Π°ΡΠ½Ρ_Π½ΡΠΊΡΠΌΠΏΡΠ½ΡΠΌΠ°ΡΠ°ΡΠ½_Π·_10),_ΡΠΊΠ°Π³Π΅
Context Size 3:
_ΠΏΠ°Π΄Π½Π°ΠΊΠ°Π΄ΡΠΌΡΡ_ΠΏΠ°Π»ΠΎ_0,40_0,56_0,50_0,_Π½Π°_ΠΏΠ°Π΄Π°Π½Π½Ρ._ΠΏΠ΅ΡΠ°Ρ
Context Size 4:
Π°Π³Π°_Π°Π΄ΡΠ΅ΠΊ_Π½Π°ΡΡΡ_4_Ρ_ΠΏΡΠ°_Ρ_ΡΠ²Π°ΡΡΡ_62-Ρ__Π³ΠΎΠ΄Π·Π΅._ΠΆΡΠ²ΡΡΡ_Π΄ΡΠ·Π΅
Key Findings
- Best Predictability: Context-4 (word) with 95.5% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,537,647 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 739,605 |
| Total Tokens | 54,963,738 |
| Mean Frequency | 74.31 |
| Median Frequency | 4 |
| Frequency Std Dev | 3865.57 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | 0 | 1,944,698 |
| 2 | Ρ | 1,322,186 |
| 3 | Ρ | 1,231,156 |
| 4 | Ρ | 1,155,870 |
| 5 | Π· | 858,124 |
| 6 | Π½Π° | 705,989 |
| 7 | Π³ΠΎΠ΄Π° | 365,156 |
| 8 | Π΄Π° | 288,350 |
| 9 | Π³ΠΎΠ΄Π·Π΅ | 255,744 |
| 10 | 10 | 239,762 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΡΡΠ½ΠΎ | 2 |
| 2 | ΠΌΡΡΡΠ°ΠΉ | 2 |
| 3 | kodanshas | 2 |
| 4 | llb | 2 |
| 5 | Π΄Π°Π²ΡΜΠ΄Π°ΡΡΠΊΠ°Π΅ | 2 |
| 6 | ΡΠ»ΡΡ Π°Π½ΠΎΠ½ | 2 |
| 7 | vilner | 2 |
| 8 | emes | 2 |
| 9 | folkstsaytung | 2 |
| 10 | dertseyln | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9714 |
| RΒ² (Goodness of Fit) | 0.997385 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 29.3% |
| Top 1,000 | 50.6% |
| Top 5,000 | 67.4% |
| Top 10,000 | 74.5% |
Key Findings
- Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 29.3% of corpus
- Long Tail: 729,605 words needed for remaining 25.5% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
Note: Multilingual alignment visualization not available for this language.
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.6148 | 0.3550 | N/A | N/A |
| mono_64d | 64 | 0.6479 | 0.2915 | N/A | N/A |
| mono_128d | 128 | 0.6512 π | 0.2220 | N/A | N/A |
Key Findings
- Best Isotropy: mono_128d with 0.6512 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2895. Lower values indicate better semantic separation.
- Alignment Quality: No aligned models evaluated in this run.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
β οΈ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 0.000 | Low morphological productivity | β οΈ Likely unreliable |
| Idiomaticity Gap | -1.000 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ΠΊΠ° |
ΠΊΠ°Π³Π°Π½Π°Ρ, ΠΊΠ°ΠΉΠ»Ρ, ΠΊΠ°ΡΡΠ»ΡΡΡΡΠ½ΡΡ |
-ΠΏΠ° |
ΠΏΠ°ΡΡΡΠ»Ρ, ΠΏΠ°Π΄ΡΡ, ΠΏΠ°Π»ΡΡΡΡΠ½ΡΠ°Ρ |
-ΠΏΡ |
ΠΏΡΠΎΡΠ΅ΡΡΠ°Π½ΡΠ°ΠΌΠΈ, ΠΏΡΠΎΠ²ΠΎΠ·Π³Π»Π°ΡΠ΅Π½ΠΈΠΈ, ΠΏΡΠΈΠ½ΡΠΈΠΏΡ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Π° |
ΠΊΡΡΡΠΊΠ°Π³Π°, ΠΊΡΠ°ΡΠ½Π°ΡΠ΅Π»ΡΡΠΊΠ°Π³Π°, Π°ΠΏΠ΅Π»ΡΡΡΠ½Π° |
-ΠΊΡ |
Π»ΡΠΏΠ½ΡΠΊΡ, ΡΠ°ΡΠ°ΡΠΊΡ, Π²ΡΡΡΡΠ½ΡΠΊΡ |
-Π³Π° |
ΠΊΡΡΡΠΊΠ°Π³Π°, ΠΊΡΠ°ΡΠ½Π°ΡΠ΅Π»ΡΡΠΊΠ°Π³Π°, Π»ΡΡΠ½Π³Π° |
-Π°ΠΉ |
Π°Π±Π½Π°ΡΠ»Π΅Π½ΡΠ°ΠΉ, ΠΏΡΡΡΡΠ»ΡΠ½ΡΡΠ°ΠΉ, ΡΠ°ΠΊΡΠ°Π»Π°Π³ΡΡΠ½Π°ΠΉ |
-Π°Π³Π° |
ΠΊΡΡΡΠΊΠ°Π³Π°, ΠΊΡΠ°ΡΠ½Π°ΡΠ΅Π»ΡΡΠΊΠ°Π³Π°, Π½Π°ΠΉΠ±Π°Π³Π°ΡΠ΅ΠΉΡΠ°Π³Π° |
-ΠΌΡ |
Π½Π΅Π°Π΄ΠΌΠΎΡΠ½ΡΠΌΡ, ΠΊΠΎΠ½ΡΡΡΠ°ΠΌΡ, Π°Π±ΡΠ°ΠΌΡ |
-Π°Ρ |
Π½Π°Π²Π°ΡΡΡ ΡΠ½ΡΠΊΠ°Ρ, Π·Π°Π³ΠΎΡΡΠΊΠ°Ρ, ΡΠ°ΠΊΠ°ΡΡΠΊΠ°Ρ |
-ΡΡ |
ΡΠΌΠ°ΡΠ±Π°ΠΊΠΎΠ²ΡΡ, ΠΏΠ΅ΡΠ°Π½ΡΡΡΡ, ΡΠ·Π±Π°Π³Π°ΡΠ°Π½ΡΡ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
Π½Π°ΡΡ |
1.82x | 190 contexts | Π½Π°ΡΡΡ, Π½Π°ΡΡΡ, Π½Π°ΡΡΡ |
Π΅Π»Π°Ρ |
2.47x | 46 contexts | Π±Π΅Π»Π°Ρ, Π³Π΅Π»Π°Ρ, ΠΊΠ΅Π»Π°Ρ |
Π°Π½ΡΠΊ |
1.35x | 1021 contexts | Π³Π°Π½ΡΠΊ, Π΄Π°Π½ΡΠΊ, ΠΊΠ°Π½ΡΠΊ |
Π°ΡΠ΅Π» |
2.07x | 87 contexts | ΡΠ°ΡΠ΅Π», Π½Π°ΡΠ΅Π», Π°ΡΠ΅Π»Ρ |
Π½ΡΠΊΡ |
1.43x | 414 contexts | ΡΠ½ΡΠΊΡ, Π΅Π½ΡΠΊΡ, ΡΠ½ΡΠΊΡ |
Π°Π½Π½Ρ |
1.67x | 173 contexts | ΡΠ°Π½Π½Ρ, Π²Π°Π½Π½Ρ, ΡΠ°Π½Π½ΡΠ΅ |
Π°Π΅ΡΡ |
2.21x | 48 contexts | Π²Π°Π΅ΡΡΠ°, ΠΊΠ°Π΅ΡΡΠ°, Π»Π°Π΅ΡΡΠ° |
Π½ΡΠΊΠ° |
1.35x | 500 contexts | ΡΠ½ΡΠΊΠ°, ΡΠ½ΡΠΊΠ°, ΠΌΠΈΠ½ΡΠΊΠ° |
ΡΡΠΊΠ° |
1.52x | 236 contexts | Π΅ΡΡΠΊΠ°, ΡΡΡΠΊΠ°, Π΅ΡΡΠΊΠ°Ρ |
Π»Π΅Π½Π½ |
1.48x | 234 contexts | Π³Π»Π΅Π½Π½, Π»Π΅Π½Π½Ρ, Π»Π΅Π½Π½Π°Ρ |
ΠΉΡΠΊΠ° |
1.59x | 149 contexts | ΠΉΡΠΊΠ°Ρ, Π΅ΠΉΡΠΊΠ°, Π²ΠΎΠΉΡΠΊΠ° |
ΡΡΠΊΠ° |
1.36x | 263 contexts | Π±ΡΡΠΊΠ°, Π³ΡΡΠΊΠ°, ΡΡΠΊΠ°Ρ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΊΠ° |
-Π° |
66 words | ΠΊΠ°ΠΌΡΠ½Π°, ΠΊΠ°ΠΌΡΠ½ΡΠ·ΠΌΠ° |
-ΠΏΠ° |
-Π° |
55 words | ΠΏΠ°ΡΡΡΠΏΠ°Π»Π΅Π½ΠΊΠ°, ΠΏΠ°Π½ΡΠ½ΡΠΊΠ°Π³Π° |
-ΠΏΡ |
-Π° |
28 words | ΠΏΡΡΠΊΠ»Π°Π΄Π²Π°ΡΡΠ°, ΠΏΡΡΠ½Π°Π΄Π° |
-ΠΏΠ° |
-Π°ΠΉ |
21 words | ΠΏΠ°ΠΏΠ»Π°ΡΠΊΠΎΠ²Π°ΠΉ, ΠΏΠ°ΡΡΠ°ΡΠ½Π½Π°ΠΉ |
-ΠΏΠ° |
-ΠΌΡ |
17 words | ΠΏΠ°ΡΡΡΠ½ΡΠΌΡ, ΠΏΠ°ΠΊΠ°Π·Π½ΡΠΊΠ°ΠΌΡ |
-ΠΏΠ° |
-ΠΊΡ |
16 words | ΠΏΠ°Π»ΡΠ½ΡΠΊΡ, ΠΏΠ°Π΄Π·ΡΡΡΠ°ΡΠΊΡ |
-ΠΊΠ° |
-Π³Π° |
16 words | ΠΊΠ°ΠΊΠ°ΠΌΠ΅Π³Π°, ΠΊΠ°Π»ΠΎΠ±ΠΆΠ°Π³ΡΠΊΠ°Π³Π° |
-ΠΊΠ° |
-Π°Π³Π° |
15 words | ΠΊΠ°Π»ΠΎΠ±ΠΆΠ°Π³ΡΠΊΠ°Π³Π°, ΠΊΠ°Π»Π°ΠΌΠΎΠΉΡΠΊΠ°Π³Π° |
-ΠΊΠ° |
-ΠΊΡ |
14 words | ΠΊΠ°Π΄ΠΎΠΌΡΠΊΡ, ΠΊΠ°ΡΡ Π°ΡΠΊΡ |
-ΠΊΠ° |
-Π°Ρ |
12 words | ΠΊΠ°ΡΡΠ±Π°Ρ, ΠΊΠ°ΡΡΡΡΠ½ΡΡΠ°Ρ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| Π±Π°ΡΡΡΠ½Π°ΠΌΡ | Π±Π°ΡΡΡ-Π½Π°-ΠΌΡ |
6.0 | Π±Π°ΡΡΡ |
| ΠΊΡΡΠ°ΠΏΠ°ΡΠΊΡΠ½Π° | ΠΊΡΡΠ°ΠΏΠ°Ρ-ΠΊΡ-Π½Π° |
6.0 | ΠΊΡΡΠ°ΠΏΠ°Ρ |
| Ρ Π°ΠΊΠ΅ΡΡΡΠ°Ρ | Ρ
Π°ΠΊΠ΅ΡΡΡ-Π°Ρ |
4.5 | Ρ
Π°ΠΊΠ΅ΡΡΡ |
| Π½Π°Π²Π°ΡΡΠ±ΡΡΡΠΊΠ°Ρ | Π½Π°Π²Π°ΡΡΠ±ΡΡΡΠΊ-Π°Ρ |
4.5 | Π½Π°Π²Π°ΡΡΠ±ΡΡΡΠΊ |
| ΠΏΡΡΠ°ΠΌΡΠ΄Π°Ρ | ΠΏΡΡΠ°ΠΌΡΠ΄-Π°Ρ |
4.5 | ΠΏΡΡΠ°ΠΌΡΠ΄ |
| ΡΡΠ°Π½ΡΡΠ°ΡΠΌΠ°ΡΠ°ΡΠ°Ρ | ΡΡΠ°Π½ΡΡΠ°ΡΠΌΠ°ΡΠ°Ρ-Π°Ρ |
4.5 | ΡΡΠ°Π½ΡΡΠ°ΡΠΌΠ°ΡΠ°Ρ |
| ΡΡΠ°ΡΡΠΊΠΎΠ²ΡΡ | ΡΡΠ°ΡΡΠΊΠΎΠ²-ΡΡ |
4.5 | ΡΡΠ°ΡΡΠΊΠΎΠ² |
| Π²ΡΠ·Π΅Π»ΡΡΡΠΊΠ°ΠΌΡ | Π²ΡΠ·Π΅Π»ΡΡΡΠΊΠ°-ΠΌΡ |
4.5 | Π²ΡΠ·Π΅Π»ΡΡΡΠΊΠ° |
| ΠΌΡΠΊΡΠ°ΡΠ°ΡΠ½Π°Ρ | ΠΌΡΠΊΡΠ°ΡΠ°ΡΠ½-Π°Ρ |
4.5 | ΠΌΡΠΊΡΠ°ΡΠ°ΡΠ½ |
| ΠΏΠ°ΡΡΠ°ΡΡΡΡ | ΠΏΠ°-ΡΡΠ°ΡΡΡΡ |
4.5 | ΡΡΠ°ΡΡΡΡ |
| ΠΏΠ°ΠΏΠΎΡΠ½ΡΡΡΠ° | ΠΏΠ°-ΠΏΠΎΡΠ½ΡΡΡΠ° |
4.5 | ΠΏΠΎΡΠ½ΡΡΡΠ° |
| ΠΊΠ°ΠΏΠ°ΡΡΡΡΡΠΊΡ | ΠΊΠ°-ΠΏΠ°-ΡΡΡΡΡ-ΠΊΡ |
4.5 | ΡΡΡΡΡ |
| Π½Π°ΠΊΡΡΡΠΊΠ°ΠΌΡ | Π½Π°ΠΊΡΡΡΠΊΠ°-ΠΌΡ |
4.5 | Π½Π°ΠΊΡΡΡΠΊΠ° |
| Π½Π°Π²Π΅Π΄Π²Π°Π»ΡΠ½ΡΡΠΊΡ | Π½Π°Π²Π΅Π΄Π²Π°Π»ΡΠ½ΡΡ-ΠΊΡ |
4.5 | Π½Π°Π²Π΅Π΄Π²Π°Π»ΡΠ½ΡΡ |
| Π±Π΅ΡΠΏΠ°ΡΡΡΠΉΠ½ΡΠΌΡ | Π±Π΅ΡΠΏΠ°ΡΡΡΠΉΠ½Ρ-ΠΌΡ |
4.5 | Π±Π΅ΡΠΏΠ°ΡΡΡΠΉΠ½Ρ |
6.6 Linguistic Interpretation
Automated Insight: The language BE appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.77x) |
| N-gram | 2-gram | Lowest perplexity (453) |
| Markov | Context-4 | Highest predictability (95.5%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 11:32:17

















