BE - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on BE Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.593x 3.60 0.0487% 287,700
16k 4.036x 4.04 0.0547% 256,163
32k 4.451x 4.46 0.0603% 232,280
64k 4.769x πŸ† 4.77 0.0646% 216,795

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Грынчэнкавэ () β€” вёска ў Ахтырскім Ρ€Π°Ρ‘Π½Π΅ Бумскай вобласці Π£ΠΊΡ€Π°Ρ–Π½Ρ‹. Π£Π²Π°Ρ…ΠΎΠ΄Π·Ρ–Ρ†ΡŒ Ρƒ ...

Vocab Tokens Count
8k ▁гры Π½ чэн ΠΊΠ° вэ ▁() ▁— ▁вёска β–Ρž ▁ах ... (+23 more) 33
16k ▁грын чэнка вэ ▁() ▁— ▁вёска β–Ρž ▁ах Ρ‚Ρ‹ рскім ... (+21 more) 31
32k ▁грын чэнка вэ ▁() ▁— ▁вёска β–Ρž ▁ахты рскім ▁раёнС ... (+19 more) 29
64k ▁грын чэнка вэ ▁() ▁— ▁вёска β–Ρž ▁ахтырскім ▁раёнС ▁сумскай ... (+17 more) 27

Sample 2: Лугавэ () β€” вёска ў Π‘Ρ€ΠΎΠ΄Ρ‹ΡžΡΠΊΡ–ΠΌ Ρ€Π°Ρ‘Π½Π΅ Π›ΡŒΠ²ΠΎΡžΡΠΊΠ°ΠΉ вобласці Π£ΠΊΡ€Π°Ρ–Π½Ρ‹. ΠšΡ€Ρ‹Π½Ρ–Ρ†Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚Ρ‹ ...

Vocab Tokens Count
8k ▁луга вэ ▁() ▁— ▁вёска β–Ρž ▁б Ρ€ΠΎΠ΄Ρ‹ ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+15 more) 25
16k ▁луга вэ ▁() ▁— ▁вёска β–Ρž ▁б Ρ€ΠΎΠ΄Ρ‹ ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+15 more) 25
32k ▁луга вэ ▁() ▁— ▁вёска β–Ρž ▁броды ΡžΡΠΊΡ–ΠΌ ▁раёнС β–Π»ΡŒΠ²ΠΎΡžΡΠΊΠ°ΠΉ ... (+13 more) 23
64k ▁луга вэ ▁() ▁— ▁вёска β–Ρž β–Π±Ρ€ΠΎΠ΄Ρ‹ΡžΡΠΊΡ–ΠΌ ▁раёнС β–Π»ΡŒΠ²ΠΎΡžΡΠΊΠ°ΠΉ ▁вобласці ... (+11 more) 21

Sample 3: ΠšΠΎΡΠ°Ρ€ΡΠ²Ρ () β€” вёска ў ΠœΠ»Ρ‹Π½Ρ–ΡžΡΠΊΡ–ΠΌ Ρ€Π°Ρ‘Π½Π΅ РовСнскай вобласці Π£ΠΊΡ€Π°Ρ–Π½Ρ‹. Π£Π²Π°Ρ…ΠΎΠ΄Π·Ρ–Ρ†ΡŒ Ρƒ ...

Vocab Tokens Count
8k ▁ко са рэ вэ ▁() ▁— ▁вёска β–Ρž ▁млы Π½Ρ–Ρž ... (+21 more) 31
16k ▁ко са рэ вэ ▁() ▁— ▁вёска β–Ρž ▁млы Π½Ρ–ΡžΡΠΊΡ–ΠΌ ... (+19 more) 29
32k ▁коса рэ вэ ▁() ▁— ▁вёска β–Ρž ▁млы Π½Ρ–ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+17 more) 27
64k ▁коса рэ вэ ▁() ▁— ▁вёска β–Ρž β–ΠΌΠ»Ρ‹Π½Ρ–ΡžΡΠΊΡ–ΠΌ ▁раёнС ▁ровСнскай ... (+15 more) 25

Key Findings

  • Best Compression: 64k achieves 4.769x compression
  • Lowest UNK Rate: 8k with 0.0487% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 114,899 16.81 1,095,876 11.4% 25.2%
2-gram Subword 453 πŸ† 8.82 15,607 55.9% 96.8%
3-gram Word 176,550 17.43 1,682,544 11.7% 25.2%
3-gram Subword 4,192 12.03 145,836 18.7% 59.5%
4-gram Word 286,677 18.13 2,809,290 9.5% 25.0%
4-gram Subword 25,337 14.63 930,596 8.0% 29.4%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 0 10 188,589
2 10 0 184,433
3 0 09 178,218
4 09 0 172,686
5 Ρƒ Π³ΠΎΠ΄Π·Π΅ 140,117

3-grams (Word):

Rank N-gram Count
1 0 10 0 183,056
2 0 09 0 171,686
3 0 11 0 133,046
4 0 08 0 125,664
5 0 07 0 84,761

4-grams (Word):

Rank N-gram Count
1 0 44 0 10 28,229
2 44 0 10 0 27,892
3 0 47 0 10 27,125
4 47 0 10 0 26,709
5 0 50 0 10 26,628

2-grams (Subword):

Rank N-gram Count
1 Π° _ 7,375,676
2 Π½ Π° 5,829,339
3 Ρ€ Π° 5,735,773
4 ΠΊ Π° 4,959,811
5 _ ΠΏ 4,750,427

3-grams (Subword):

Rank N-gram Count
1 _ ΠΏ Π° 2,102,007
2 _ 0 , 1,872,298
3 _ Π½ Π° 1,670,363
4 Π½ Π° _ 1,424,587
5 _ ΠΏ Ρ€ 1,341,590

4-grams (Subword):

Rank N-gram Count
1 Π° Π³ Π° _ 980,628
2 _ ΠΏ Ρ€ Π° 746,402
3 _ Π³ ΠΎ Π΄ 708,921
4 _ Π½ Π° _ 692,237
5 ΠΊ Π° ΠΉ _ 545,902

Key Findings

  • Best Perplexity: 2-gram (subword) with 453
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~29% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9806 1.973 10.65 1,594,726 1.9%
1 Subword 0.4731 1.388 3.96 16,459 52.7%
2 Word 0.3129 1.242 1.94 16,955,773 68.7%
2 Subword 0.6387 1.557 4.81 65,143 36.1%
3 Word 0.1126 1.081 1.23 32,878,014 88.7%
3 Subword 0.8192 1.764 4.91 313,186 18.1%
4 Word 0.0455 πŸ† 1.032 1.08 40,250,681 95.5%
4 Subword 0.7603 1.694 3.75 1,537,647 24.0%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. 0 57 0 09 0 67 0 07 0 58 ΠΊΠΌ Π½Π° 1 20 Π»ΡŽΡ‚Π°Π³Π° ТэнСва
  2. Ρ– ΡΡ‚Π°ΡžΡˆΡ‹ ΠΏΠ΅Ρ€ΡˆΡ‹ΠΌ ΡƒΡ€Π°Π΄Π·Π΅ Ρ– гітарыст Ρ€Π°Π·Π°ΠΌ Π· поўдня сутыкнСнні прыпыніліся Π½Π° кіргізскай сср 10 0
  3. Ρƒ Π³ΠΎΠ΄Π·Π΅ гэтыя экспСрымСнты ΠΏΠ° Π³ΠΎΠ΄ 11 0 56 0 75 0 50 0 08 0

Context Size 2:

  1. 0 10 0 50 0 10 0 39 0 11 0 36 0 12 0 54 0
  2. 10 0 68 0 25 0 6 1 52 1 25 дТэсіка ΠΏΠ΅Π³ΡƒΠ»Π° эна сібахара 7 6
  3. 0 09 0 46 0 10 0 35 0 12 0 37 0 12 0 Π΄2 ΠΏΡ€Π°ΠΌΠ΅Π½ΡŒ

Context Size 3:

  1. 0 10 0 37 0 12 0 35 0 48 0 10 0 56 0 09 0 51
  2. 0 09 0 37 0 12 0 57 0 09 0 41 0 11 0 45 0 10
  3. 0 11 0 42 0 11 0 61 0 08 0 51 0 09 0 37 0 12

Context Size 4:

  1. 0 44 0 10 0 52 0 09 0 43 0 11 0 76 0 07 0 37 0
  2. 44 0 10 0 51 0 09 0 51 0 09 0 42 0 11 0 60 0 08
  3. 0 47 0 10 0 54 0 09 0 65 0 08 0 38 0 11 0 46 0

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _irone_садТырода
  2. аса._бСтвСкаСнсы
  3. Π½Ρ‹Ρ…_Π³._тэні_09_β€”

Context Size 2:

  1. Π°_Π°Π±Ρ‚ΠΎ_Ρ‡Π°Π»ΡŒΠ½Ρ‹,_ΠΏΡ€
  2. наяны_Π½ΡŒΠΊΡ–ΠΌΠΏΡ–Π½Ρ‹ΠΌΠ°
  3. Ρ€Π°Ρ‘Π½_Π·_10),_якагС

Context Size 3:

  1. _паднакадэміі_ΠΏΠ°Π»ΠΎ
  2. _0,40_0,56_0,50_0,
  3. _Π½Π°_ΠΏΠ°Π΄Π°Π½Π½Ρ–._ΠΏΠ΅Ρ€Π°Ρ†

Context Size 4:

  1. Π°Π³Π°_адсСк_нацыя_4_Ρ‚
  2. _ΠΏΡ€Π°_ў_ΡΠ²Π°ΡŽΡ†ΡŒ_62-я_
  3. _Π³ΠΎΠ΄Π·Π΅._ΠΆΡ‹Π²ΡΡ†ΡŒ_Π΄Ρ‹Π·Π΅

Key Findings

  • Best Predictability: Context-4 (word) with 95.5% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,537,647 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 739,605
Total Tokens 54,963,738
Mean Frequency 74.31
Median Frequency 4
Frequency Std Dev 3865.57

Most Common Words

Rank Word Frequency
1 0 1,944,698
2 Ρ– 1,322,186
3 Ρƒ 1,231,156
4 ў 1,155,870
5 Π· 858,124
6 Π½Π° 705,989
7 Π³ΠΎΠ΄Π° 365,156
8 Π΄Π° 288,350
9 Π³ΠΎΠ΄Π·Π΅ 255,744
10 10 239,762

Least Common Words (from vocabulary)

Rank Word Frequency
1 Ρ–Ρ†ΡƒΠ½ΠΎ 2
2 ΠΌΡ–ΡƒΡ€Π°ΠΉ 2
3 kodanshas 2
4 llb 2
5 Π΄Π°Π²Ρ‹ΜΠ΄Π°ΡžΡΠΊΠ°Π΅ 2
6 ΡΠ»ΡŒΡ…Π°Π½ΠΎΠ½ 2
7 vilner 2
8 emes 2
9 folkstsaytung 2
10 dertseyln 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9714
RΒ² (Goodness of Fit) 0.997385
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 29.3%
Top 1,000 50.6%
Top 5,000 67.4%
Top 10,000 74.5%

Key Findings

  • Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 29.3% of corpus
  • Long Tail: 729,605 words needed for remaining 25.5% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Note: Multilingual alignment visualization not available for this language.

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.6148 0.3550 N/A N/A
mono_64d 64 0.6479 0.2915 N/A N/A
mono_128d 128 0.6512 πŸ† 0.2220 N/A N/A

Key Findings

  • Best Isotropy: mono_128d with 0.6512 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2895. Lower values indicate better semantic separation.
  • Alignment Quality: No aligned models evaluated in this run.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

⚠️ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 0.000 Low morphological productivity ⚠️ Likely unreliable
Idiomaticity Gap -1.000 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-ΠΊΠ° каганаў, ΠΊΠ°ΠΉΠ»Ρ–, ΠΊΠ°Ρ€ΡΠ»ΡΡ‚Ρ‹ΡžΠ½Ρ‹Ρ…
-ΠΏΠ° пасуэлу, ΠΏΠ°Π΄ΡƒΡŽ, ΠΏΠ°Π»Ρ–Ρ†Ρ‹ΡΠ½Ρ‚Π°Ρž
-ΠΏΡ€ протСстантами, ΠΏΡ€ΠΎΠ²ΠΎΠ·Π³Π»Π°ΡˆΠ΅Π½ΠΈΠΈ, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡƒ

Productive Suffixes

Suffix Examples
-Π° ΠΊΡ–ΡˆΡΠΊΠ°Π³Π°, ΠΊΡ€Π°ΡΠ½Π°ΡΠ΅Π»ΡŒΡΠΊΠ°Π³Π°, Π°ΠΏΠ΅Π»ΡŒΡΡ–Π½Π°
-ΠΊΡ– ліпнякі, Ρ‡Π°Ρ€Π°ΡˆΠΊΡ–, вярцінскі
-Π³Π° ΠΊΡ–ΡˆΡΠΊΠ°Π³Π°, ΠΊΡ€Π°ΡΠ½Π°ΡΠ΅Π»ΡŒΡΠΊΠ°Π³Π°, луэнга
-Π°ΠΉ Π°Π±Π½Π°ΡžΠ»Π΅Π½Ρ‡Π°ΠΉ, ΠΏΡƒΡΡ‚ΡΠ»ΡŒΠ½Ρ–Ρ†Π°ΠΉ, Ρ„Π°ΠΊΡ‚Π°Π»Π°Π³Ρ–Ρ‡Π½Π°ΠΉ
-Π°Π³Π° ΠΊΡ–ΡˆΡΠΊΠ°Π³Π°, ΠΊΡ€Π°ΡΠ½Π°ΡΠ΅Π»ΡŒΡΠΊΠ°Π³Π°, Π½Π°ΠΉΠ±Π°Π³Π°Ρ†Π΅ΠΉΡˆΠ°Π³Π°
-ΠΌΡ– Π½Π΅Π°Π΄ΠΌΠΎΡžΠ½Ρ‹ΠΌΡ–, ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π°ΠΌΡ–, Π°Π±Ρ€Π°ΠΌΡ–
-ая наватухінская, загорская, Ρ‡Π°ΠΊΠ°ΡžΡΠΊΠ°Ρ
-ыя ΡˆΠΌΠ°Ρ‚Π±Π°ΠΊΠΎΠ²Ρ‹Ρ, пСранятыя, узбагачаныя

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
насц 1.82x 190 contexts Π½Π°ΡΡ†ΡŽ, Π½Π°ΡΡ†ΡŒ, насці
Π΅Π»Π°Ρ€ 2.47x 46 contexts Π±Π΅Π»Π°Ρ€, Π³Π΅Π»Π°Ρ€, ΠΊΠ΅Π»Π°Ρ€
анск 1.35x 1021 contexts ганск, данск, канск
асСл 2.07x 87 contexts расСл, насСл, асСль
нскі 1.43x 414 contexts янскі, Снскі, інскі
ання 1.67x 173 contexts рання, вання, ранняС
Π°Π΅Ρ†Ρ† 2.21x 48 contexts Π²Π°Π΅Ρ†Ρ†Π°, ΠΊΠ°Π΅Ρ†Ρ†Π°, Π»Π°Π΅Ρ†Ρ†Π°
нска 1.35x 500 contexts унска, янска, минска
ўска 1.52x 236 contexts Сўска, Ρ–ΡžΡΠΊΠ°, Сўская
Π»Π΅Π½Π½ 1.48x 234 contexts Π³Π»Π΅Π½Π½, Π»Π΅Π½Π½Ρ‹, лСнная
йска 1.59x 149 contexts йская, Сйска, войска
уска 1.36x 263 contexts буска, гуска, ускат

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ΠΊΠ° -Π° 66 words ΠΊΠ°ΠΌΡ–Π½Π°, ΠΊΠ°ΠΌΡƒΠ½Ρ–Π·ΠΌΠ°
-ΠΏΠ° -Π° 55 words паступалСнка, панінскага
-ΠΏΡ€ -Π° 28 words ΠΏΡ€Ρ‹ΠΊΠ»Π°Π΄Π²Π°Ρ†Ρ†Π°, ΠΏΡ€Ρ‹Π½Π°Π΄Π°
-ΠΏΠ° -Π°ΠΉ 21 words паплаўковай, пастаяннай
-ΠΏΠ° -ΠΌΡ– 17 words ΠΏΠ°ΡΡ–ΡžΠ½Ρ‹ΠΌΡ–, ΠΏΠ°ΠΊΠ°Π·Π½Ρ–ΠΊΠ°ΠΌΡ–
-ΠΏΠ° -ΠΊΡ– 16 words палінскі, ΠΏΠ°Π΄Π·ΡŒΡΡ‡Π°ΡΠΊΡ–
-ка -га 16 words какамСга, калобТагскага
-ка -ага 15 words калобТагскага, каламойскага
-ΠΊΠ° -ΠΊΡ– 14 words кадомскі, ΠΊΠ°ΡžΡ…Π°Ρ‘ΠΊΡ–
-ΠΊΠ° -аў 12 words ΠΊΠ°Ρ€Ρ‹Π±Π°Ρž, ΠΊΠ°Ρ‚ΡΡ€Ρ‹Π½Ρ‹Ρ‡Π°Ρž

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
Π±Π°Ρ€Ρ‹Ρ‘Π½Π°ΠΌΡ– Π±Π°Ρ€Ρ‹Ρ‘-Π½Π°-ΠΌΡ– 6.0 Π±Π°Ρ€Ρ‹Ρ‘
ΠΊΡƒΡ€Π°ΠΏΠ°Ρ‚ΠΊΡ–Π½Π° ΠΊΡƒΡ€Π°ΠΏΠ°Ρ‚-ΠΊΡ–-Π½Π° 6.0 ΠΊΡƒΡ€Π°ΠΏΠ°Ρ‚
Ρ…Π°ΠΊΠ΅Ρ–ΡΡ‚Π°Ρž хакСіст-аў 4.5 хакСіст
навасібірская навасібірск-ая 4.5 навасібірск
ΠΏΡ–Ρ€Π°ΠΌΡ–Π΄Π°Ρž ΠΏΡ–Ρ€Π°ΠΌΡ–Π΄-аў 4.5 ΠΏΡ–Ρ€Π°ΠΌΡ–Π΄
Ρ‚Ρ€Π°Π½ΡΡ„Π°Ρ€ΠΌΠ°Ρ‚Π°Ρ€Π°Ρž трансфарматар-аў 4.5 трансфарматар
участковыя участков-ыя 4.5 участков
Π²ΡƒΠ·Π΅Π»ΡŒΡ‡Ρ‹ΠΊΠ°ΠΌΡ– Π²ΡƒΠ·Π΅Π»ΡŒΡ‡Ρ‹ΠΊΠ°-ΠΌΡ– 4.5 Π²ΡƒΠ·Π΅Π»ΡŒΡ‡Ρ‹ΠΊΠ°
ΠΌΡ–ΠΊΡ€Π°Ρ€Π°Ρ‘Π½Π°Ρž ΠΌΡ–ΠΊΡ€Π°Ρ€Π°Ρ‘Π½-аў 4.5 ΠΌΡ–ΠΊΡ€Π°Ρ€Π°Ρ‘Π½
ΠΏΠ°Ρ‚Ρ€Π°Ρ†Ρ–Ρ†ΡŒ ΠΏΠ°-Ρ‚Ρ€Π°Ρ†Ρ–Ρ†ΡŒ 4.5 Ρ‚Ρ€Π°Ρ†Ρ–Ρ†ΡŒ
ΠΏΠ°ΠΏΠΎΡžΠ½Ρ–Ρ†Ρ†Π° ΠΏΠ°-ΠΏΠΎΡžΠ½Ρ–Ρ†Ρ†Π° 4.5 ΠΏΠΎΡžΠ½Ρ–Ρ†Ρ†Π°
ΠΊΠ°ΠΏΠ°ΡˆΡ‡ΡΡžΡΠΊΡ– ΠΊΠ°-ΠΏΠ°-ΡˆΡ‡ΡΡžΡ-ΠΊΡ– 4.5 ΡˆΡ‡ΡΡžΡ
Π½Π°ΠΊΡ€Ρ‹ΡžΠΊΠ°ΠΌΡ– Π½Π°ΠΊΡ€Ρ‹ΡžΠΊΠ°-ΠΌΡ– 4.5 Π½Π°ΠΊΡ€Ρ‹ΡžΠΊΠ°
Π½Π°Π²Π΅Π΄Π²Π°Π»ΡŒΠ½Ρ–Ρ†ΠΊΡ– Π½Π°Π²Π΅Π΄Π²Π°Π»ΡŒΠ½Ρ–Ρ†-ΠΊΡ– 4.5 Π½Π°Π²Π΅Π΄Π²Π°Π»ΡŒΠ½Ρ–Ρ†
бСспартыйнымі бСспартыйны-ΠΌΡ– 4.5 бСспартыйны

6.6 Linguistic Interpretation

Automated Insight: The language BE appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.77x)
N-gram 2-gram Lowest perplexity (453)
Markov Context-4 Highest predictability (95.5%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 11:32:17

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/be