Asturian - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Asturian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.571x | 3.57 | 0.0264% | 863,429 |
| 16k | 3.921x | 3.92 | 0.0290% | 786,292 |
| 32k | 4.205x | 4.21 | 0.0311% | 733,251 |
| 64k | 4.429x π | 4.43 | 0.0327% | 696,255 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Pol nome de Pedru'l Grande conocemos a dos monarques europeos: Pedru III d'AragΓ³...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βpol βnome βde βped ru ' l βgrande βcono ce ... (+21 more) |
31 |
| 16k | βpol βnome βde βpedru ' l βgrande βcono ce mos ... (+18 more) |
28 |
| 32k | βpol βnome βde βpedru ' l βgrande βconocemos βa βdos ... (+15 more) |
25 |
| 64k | βpol βnome βde βpedru ' l βgrande βconocemos βa βdos ... (+15 more) |
25 |
Sample 2: Yuki Ohashi (, ) ye un futbolista xaponΓ©s. Clubes Referencies Enllaces esternos ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βyu ki βoh as hi β(, β) βye βun βfutbolista ... (+14 more) |
24 |
| 16k | βyu ki βoh ashi β(, β) βye βun βfutbolista βxaponΓ©s ... (+12 more) |
22 |
| 32k | βyuki βoh ashi β(, β) βye βun βfutbolista βxaponΓ©s . ... (+11 more) |
21 |
| 64k | βyuki βoh ashi β(, β) βye βun βfutbolista βxaponΓ©s . ... (+11 more) |
21 |
Sample 3: Fechos Nacencies Muertes Referencies Enllaces esternos V e.C.
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βfechos βnacencies βmuertes βreferencies βenllaces βesternos βv βe . c ... (+1 more) |
11 |
| 16k | βfechos βnacencies βmuertes βreferencies βenllaces βesternos βv βe . c ... (+1 more) |
11 |
| 32k | βfechos βnacencies βmuertes βreferencies βenllaces βesternos βv βe . c ... (+1 more) |
11 |
| 64k | βfechos βnacencies βmuertes βreferencies βenllaces βesternos βv βe . c ... (+1 more) |
11 |
Key Findings
- Best Compression: 64k achieves 4.429x compression
- Lowest UNK Rate: 8k with 0.0264% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 132,138 | 17.01 | 1,341,882 | 9.8% | 21.7% |
| 2-gram | Subword | 260 π | 8.02 | 19,027 | 69.7% | 99.1% |
| 3-gram | Word | 640,312 | 19.29 | 2,878,367 | 4.2% | 10.7% |
| 3-gram | Subword | 2,218 | 11.12 | 138,526 | 28.0% | 72.3% |
| 4-gram | Word | 1,536,908 | 20.55 | 4,654,291 | 3.3% | 7.6% |
| 4-gram | Subword | 13,337 | 13.70 | 787,142 | 13.9% | 39.3% |
| 5-gram | Word | 1,050,558 | 20.00 | 2,949,427 | 4.8% | 9.6% |
| 5-gram | Subword | 57,630 | 15.81 | 2,701,102 | 7.8% | 23.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | de la |
877,001 |
| 2 | de los |
325,167 |
| 3 | la so |
218,605 |
| 4 | a la |
213,098 |
| 5 | de les |
205,401 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | referencies enllaces esternos |
102,198 |
| 2 | de la so |
48,437 |
| 3 | d estaos xunΓos |
34,372 |
| 4 | enllaces esternos de |
33,442 |
| 5 | una poblaciΓ³n de |
30,281 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | referencies enllaces esternos de |
32,439 |
| 2 | tien una poblaciΓ³n de |
26,725 |
| 3 | una poblaciΓ³n de y |
19,595 |
| 4 | y una superficie de |
19,554 |
| 5 | poblaciΓ³n de y una |
19,514 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | tien una poblaciΓ³n de y |
19,555 |
| 2 | una poblaciΓ³n de y una |
19,513 |
| 3 | de y una superficie de |
19,492 |
| 4 | poblaciΓ³n de y una superficie |
19,490 |
| 5 | y una superficie de km |
19,254 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ |
12,223,314 |
| 2 | e _ |
10,169,137 |
| 3 | s _ |
9,980,231 |
| 4 | _ d |
9,749,761 |
| 5 | e s |
9,339,123 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e |
7,125,386 |
| 2 | d e _ |
5,278,423 |
| 3 | e s _ |
4,734,999 |
| 4 | o s _ |
3,881,527 |
| 5 | l a _ |
3,034,851 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e _ |
4,909,705 |
| 2 | _ l a _ |
2,443,055 |
| 3 | d e _ l |
1,642,151 |
| 4 | a _ d e |
1,399,483 |
| 5 | s _ d e |
1,367,031 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e _ l |
1,593,336 |
| 2 | e _ l a _ |
1,090,094 |
| 3 | _ d e l _ |
1,070,352 |
| 4 | s _ d e _ |
1,000,253 |
| 5 | a _ d e _ |
970,617 |
Key Findings
- Best Perplexity: 2-gram (subword) with 260
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~23% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0362 | 2.051 | 12.93 | 1,199,957 | 0.0% |
| 1 | Subword | 1.1986 | 2.295 | 7.97 | 10,438 | 0.0% |
| 2 | Word | 0.4189 | 1.337 | 2.57 | 15,504,920 | 58.1% |
| 2 | Subword | 0.6561 | 1.576 | 4.28 | 83,238 | 34.4% |
| 3 | Word | 0.1863 | 1.138 | 1.44 | 39,817,744 | 81.4% |
| 3 | Subword | 0.6835 | 1.606 | 4.02 | 356,042 | 31.6% |
| 4 | Word | 0.0788 π | 1.056 | 1.14 | 57,235,451 | 92.1% |
| 4 | Subword | 0.6840 | 1.607 | 3.51 | 1,432,910 | 31.6% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
de teniente xeneral del planeta mientres la realidΓ‘ quiciabes d ochobre foi escritu por aciu unala cual el propΓ³situ un estilu y hornsby consiguieron 31 d alabama intentΓ³ nun tour ay derechos humanos ta estremada en determinΓ³se que caltener la so home l minsiterio de candela
Context Size 2:
de la cocina nos aΓ±os y escuchar mΓΊsica dende la edΓ‘ kim young chae sbs jumpmbc nonstopde los fundadores de los cinco principales epΓtetos y tΓtulos descriptivos de los chola fueron movΓo...la so bona contrarrelΓ³ calteniendo a dellos decretos prohibiendo la llibre asociaciΓ³n como ye l cuan...
Context Size 3:
referencies enllaces esternos green breasted mangu english wikipedia consultΓ‘u l 2 de marzu de estab...de la so polΓtica d esclusiΓ³n nel sieglu xx en que camudΓ³ de nome los lΓderes del movimientuenllaces esternos de xapΓ³n de la prefeutura de hyogo llocalizaciΓ³n con una superficie de km ver tami...
Context Size 4:
referencies enllaces esternos de piloΓ±a de piloΓ±atien una poblaciΓ³n de y una superficie de km y una poblaciΓ³n de referencies enllaces esternos de xap...una poblaciΓ³n de y una superficie de km referencies enllaces esternos d aquila
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_eral_r_s_de_prmel_untodesopay_carmbra_a_wozall_
Context Size 2:
a_dada_d'alicu_dee_al_crein_ings._s_agu_pobres_saos
Context Size 3:
_de_s'atroxina_pa_de_los_nuevu._fΓoses_deste_-_frivaes
Context Size 4:
_de_mouther_de_fort_la_cada_y_mΓ‘rquistde_la_sociedΓ‘_nacio
Key Findings
- Best Predictability: Context-4 (word) with 92.1% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,432,910 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 552,425 |
| Total Tokens | 74,325,511 |
| Mean Frequency | 134.54 |
| Median Frequency | 4 |
| Frequency Std Dev | 9254.05 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | de | 4,928,261 |
| 2 | la | 2,485,426 |
| 3 | y | 2,042,239 |
| 4 | d | 1,169,053 |
| 5 | a | 1,155,083 |
| 6 | del | 1,074,281 |
| 7 | en | 1,055,986 |
| 8 | que | 1,007,870 |
| 9 | los | 957,887 |
| 10 | l | 950,908 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | leptafeke | 2 |
| 2 | haua | 2 |
| 3 | kΓΌzdoblani | 2 |
| 4 | contrarrellatu | 2 |
| 5 | semilleru | 2 |
| 6 | bisterca | 2 |
| 7 | Ε‘afarsko | 2 |
| 8 | vyfalu | 2 |
| 9 | ribich | 2 |
| 10 | lacos | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9990 |
| RΒ² (Goodness of Fit) | 0.995611 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 41.7% |
| Top 1,000 | 60.8% |
| Top 5,000 | 76.8% |
| Top 10,000 | 83.1% |
Key Findings
- Zipf Compliance: RΒ²=0.9956 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 41.7% of corpus
- Long Tail: 542,425 words needed for remaining 16.9% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7932 | 0.3820 | N/A | N/A |
| mono_64d | 64 | 0.7818 | 0.2979 | N/A | N/A |
| mono_128d | 128 | 0.7210 | 0.2388 | N/A | N/A |
| aligned_32d | 32 | 0.7932 π | 0.3922 | 0.3820 | 0.7300 |
| aligned_64d | 64 | 0.7818 | 0.3048 | 0.5840 | 0.8840 |
| aligned_128d | 128 | 0.7210 | 0.2380 | 0.7080 | 0.9240 |
Key Findings
- Best Isotropy: aligned_32d with 0.7932 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3090. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 70.8% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.591 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-co |
control, coetzee, conversiΓ³n |
-ma |
manifiΓ©stase, marinel, matraqueo |
-re |
rehnskiΓΆld, rendimientos, reichholf |
Productive Suffixes
| Suffix | Examples |
|---|---|
-s |
narganes, supracaudales, seΓ±Γ‘lennos |
-a |
carga, balsΓ‘mica, trueba |
-es |
narganes, supracaudales, rastres |
-os |
seΓ±Γ‘lennos, sabΓ©ivos, visos |
-se |
escapΓ³se, Γ±ublense, manifiΓ©stase |
-as |
tankas, aleutas, αΈ₯echas |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
iend |
1.75x | 206 contexts | fiend, iendo, rienda |
aciΓ³ |
1.96x | 92 contexts | Γ±aciΓ³, laciΓ³, xaciΓ³ |
ogra |
1.57x | 189 contexts | logra, bogra, sogra |
ient |
1.46x | 273 contexts | iente, cient, aient |
acio |
1.55x | 167 contexts | bacio, facio, macio |
renc |
1.71x | 99 contexts | frenc, lorenc, trench |
ntes |
1.56x | 144 contexts | antes, entes, entesa |
enci |
1.35x | 261 contexts | encia, cenci, venci |
efer |
1.63x | 86 contexts | refer, defer, sefer |
ntos |
1.72x | 67 contexts | antos, entos, tantos |
raci |
1.41x | 164 contexts | racib, racio, iraci |
ontr |
1.50x | 117 contexts | contr, kontra, lontra |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-co |
-s |
55 words | consentimientos, correllaciones |
-ma |
-a |
44 words | maniobraba, marra |
-ma |
-s |
40 words | macromicetes, maorΓs |
-re |
-a |
39 words | reflorestada, respondida |
-co |
-a |
37 words | comitia, cornigera |
-re |
-s |
33 words | refundiΓ‘ndoles, reprogramables |
-re |
-se |
27 words | reproducense, retomΓ‘ndose |
-co |
-es |
23 words | correllaciones, coeditores |
-co |
-se |
22 words | confiΓ‘ndose, comercializΓ‘bense |
-re |
-es |
20 words | refundiΓ‘ndoles, reprogramables |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| clamorosos | clamor-os-os |
6.0 | clamor |
| doloroses | dolor-os-es |
6.0 | dolor |
| velenoses | velen-os-es |
6.0 | velen |
| escribirΓase | escribirΓa-se |
4.5 | escribirΓa |
| mundiales | mundial-es |
4.5 | mundial |
| desgraciaos | desgracia-os |
4.5 | desgracia |
| alfayates | alfayat-es |
4.5 | alfayat |
| cristalizase | cristaliza-se |
4.5 | cristaliza |
| remensura | re-mensura |
4.5 | mensura |
| desequilibraos | desequilibra-os |
4.5 | desequilibra |
| decretase | decreta-se |
4.5 | decreta |
| coartΓfice | co-artΓfice |
4.5 | artΓfice |
| declarΓ‘se | declarΓ‘-se |
4.5 | declarΓ‘ |
| reordenar | re-ordenar |
4.5 | ordenar |
| pediatres | pediatr-es |
4.5 | pediatr |
6.6 Linguistic Interpretation
Automated Insight: The language Asturian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.43x) |
| N-gram | 2-gram | Lowest perplexity (260) |
| Markov | Context-4 | Highest predictability (92.1%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-04 02:53:18



















