ADY - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on ADY Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.442x | 3.45 | 0.1638% | 134,283 |
| 16k | 3.798x | 3.80 | 0.1808% | 121,676 |
| 32k | 4.231x π | 4.24 | 0.2014% | 109,215 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Π¨ΡΡ
ΡΠ°ΡΠΈΡ β ΠΡΡ ΠΏΡΡΡ
ΡΠΎ ΠΈΠ΄ΠΆΠ°Π±Π³ΡΡ Π½ΡΠΏΠΊΡΡ ΡΠ΅Ρ ΠΠ΄ΡΠ³Ρ ΠΊΡΡΠ°Π΄ΠΆ. ΡΠ°ΠΉΠΎΠ½ΡΠΌ Ρ
Π°Ρ
ΡΡ. Π₯ΡΠΌ Π·Ρ ΠΏΡ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡΡΡ
ΡΠ°ΡΠΈΡ ββ βΠ°ΡΡ βΠΏΡΡΡ
ΡΠΎ βΠΈΠ΄ΠΆΠ°Π±Π³ΡΡ βΠ½ΡΠΏΠΊΡΡ βΡΠ΅Ρ βΠ°Π΄ΡΠ³Ρ βΠΊΡΡΠ°Π΄ΠΆ . ... (+7 more) |
17 |
| 16k | βΡΡΡ
ΡΠ°ΡΠΈΡ ββ βΠ°ΡΡ βΠΏΡΡΡ
ΡΠΎ βΠΈΠ΄ΠΆΠ°Π±Π³ΡΡ βΠ½ΡΠΏΠΊΡΡ βΡΠ΅Ρ βΠ°Π΄ΡΠ³Ρ βΠΊΡΡΠ°Π΄ΠΆ . ... (+7 more) |
17 |
| 32k | βΡΡΡ
ΡΠ°ΡΠΈΡ ββ βΠ°ΡΡ βΠΏΡΡΡ
ΡΠΎ βΠΈΠ΄ΠΆΠ°Π±Π³ΡΡ βΠ½ΡΠΏΠΊΡΡ βΡΠ΅Ρ βΠ°Π΄ΡΠ³Ρ βΠΊΡΡΠ°Π΄ΠΆ . ... (+7 more) |
17 |
Sample 2: thumb ΠΠΌΠ΅ΡΠΈΠΊΡ - ΡΣΡΠ½ΡΠ»ΡΡΡΡ
ΡΡ
ΡΡ IΡΡ Π·ΡΡ
ΡΡ (ΠΡΡΠ±Π»Ρ ΠΠΌΠ΅ΡΠΈΠΊΡΠΌΡΡ, ΠΡΡΡ
ΡΡΡΡΠΌΡΡ) Π’ΡΠ³ΡΡΠΊ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βthumb βΠ°ΠΌΠ΅ΡΠΈΠΊΡ β- βΡΣΡ Π½ΡΠ»ΡΡ ΡΡ
ΡΡ
ΡΡ βi ΡΡ βΠ·ΡΡ
ΡΡ β( ... (+17 more) |
27 |
| 16k | βthumb βΠ°ΠΌΠ΅ΡΠΈΠΊΡ β- βΡΣΡΠ½ΡΠ»ΡΡΡΡ
ΡΡ
ΡΡ βi ΡΡ βΠ·ΡΡ
ΡΡ β( ΠΊΡΡΠ±Π»Ρ βΠ°ΠΌΠ΅ΡΠΈΠΊΡΠΌΡΡ ... (+13 more) |
23 |
| 32k | βthumb βΠ°ΠΌΠ΅ΡΠΈΠΊΡ β- βΡΣΡΠ½ΡΠ»ΡΡΡΡ
ΡΡ
ΡΡ βi ΡΡ βΠ·ΡΡ
ΡΡ β( ΠΊΡΡΠ±Π»Ρ βΠ°ΠΌΠ΅ΡΠΈΠΊΡΠΌΡΡ ... (+11 more) |
21 |
Sample 3: thumb ΠΠ°ΠΌΡΠ½ΡΡ ΠΌΡΠ· ΠΏΡΡΡΡΡΡ
ΡΡΡ
ΡΠΌΡ Π° ΡΡΡ. ΠΠ°ΠΌΡΠ½Ρ
ΡΡ ΡΡΠ³ Π΄ΡΠΏΡΡΠΈΡΠ½ΡΠΌ Π»ΡΡΡΡΡ ΠΠ°ΠΌΡΠ½ΡΠΌ ΠΈ ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βthumb βΠΌΠ°ΠΌΡΠ½ ΡΡ βΠΌΡΠ· βΠΏΡΡΡΡΡΡ
ΡΡΡ
ΡΠΌΡ βΠ° βΡΡΡ . βΠΌΠ°ΠΌΡΠ½ Ρ
ΡΡ ... (+22 more) |
32 |
| 16k | βthumb βΠΌΠ°ΠΌΡΠ½ΡΡ βΠΌΡΠ· βΠΏΡΡΡΡΡΡ
ΡΡΡ
ΡΠΌΡ βΠ° βΡΡΡ . βΠΌΠ°ΠΌΡΠ½Ρ
ΡΡ βΡ ΡΠ³ ... (+14 more) |
24 |
| 32k | βthumb βΠΌΠ°ΠΌΡΠ½ΡΡ βΠΌΡΠ· βΠΏΡΡΡΡΡΡ
ΡΡΡ
ΡΠΌΡ βΠ° βΡΡΡ . βΠΌΠ°ΠΌΡΠ½Ρ
ΡΡ βΡΡΠ³ βΠ΄ΡΠΏΡΡΠΈΡΠ½ΡΠΌ ... (+10 more) |
20 |
Key Findings
- Best Compression: 32k achieves 4.231x compression
- Lowest UNK Rate: 8k with 0.1638% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 418 | 8.71 | 593 | 45.3% | 100.0% |
| 2-gram | Subword | 399 π | 8.64 | 2,072 | 57.0% | 97.4% |
| 3-gram | Word | 706 | 9.46 | 922 | 33.9% | 100.0% |
| 3-gram | Subword | 2,788 | 11.44 | 11,614 | 24.5% | 65.1% |
| 4-gram | Word | 2,848 | 11.48 | 3,264 | 13.1% | 44.3% |
| 4-gram | Subword | 10,651 | 13.38 | 35,316 | 12.4% | 39.6% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½ΡΠ±Π³ΡΡΡ ΠΌΠ»Π½ |
169 |
| 2 | ΠΊΡΠ΅Ρ
ΡΡ ΡΡΠΏΡΡΡ |
104 |
| 3 | ΠΊΠ°ΡΡΡΠΌ ΡΠ΅ΡΡΡ |
100 |
| 4 | ΠΌ ΠΊΡΠ΅Ρ
ΡΡ |
89 |
| 5 | Π΄Π»ΠΎ ΠΌ |
87 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΌ ΠΊΡΠ΅Ρ
ΡΡ ΡΡΠΏΡΡΡ |
76 |
| 2 | ΠΊΡΠ΅Ρ
ΡΡ ΡΡΠΏΡΡΡ Ρ
ΡΠ³ΡΠ³ΡΠΌ |
70 |
| 3 | Π°Π΄ΡΠ³Ρ ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΡΠΌ ΠΈ |
48 |
| 4 | Π΄Π»ΠΎ ΠΌ Ρ
Π°Ρ
ΡΡ |
44 |
| 5 | ΠΌ Ρ
Π°Ρ
ΡΡ Ρ
ΡΠ³ΡΡΠ³Ρ |
39 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΌ ΠΊΡΠ΅Ρ
ΡΡ ΡΡΠΏΡΡΡ Ρ
ΡΠ³ΡΠ³ΡΠΌ |
45 |
| 2 | Π΄Π»ΠΎ ΠΌ Ρ
Π°Ρ
ΡΡ Ρ
ΡΠ³ΡΡΠ³Ρ |
39 |
| 3 | Π΅ΡΡΠΎΠΏΡΠΌ Ρ
ΡΡ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΡ ΠΊΡΡΠ»Ρ |
23 |
| 4 | Π°ΠΌΠ΅ΡΠΈΠΊΡΠΌ ΠΈΡ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΡ ΠΊΡΡΠ»Ρ |
19 |
| 5 | Π°Π·ΠΈΠ΅ΠΌ ΠΈΡ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΡ ΠΊΡΡΠ»Ρ |
18 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π³ Ρ |
9,349 |
| 2 | Ρ Ρ |
9,255 |
| 3 | Ρ _ |
8,719 |
| 4 | ΠΌ _ |
7,823 |
| 5 | Ρ Ρ |
6,778 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π³ Ρ Ρ |
4,967 |
| 2 | _ ΠΊ Ρ |
4,149 |
| 3 | Ρ ΠΌ _ |
3,582 |
| 4 | Ρ Π³ Ρ |
3,357 |
| 5 | Ρ Ρ _ |
3,016 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Π³ Ρ Ρ |
1,903 |
| 2 | Ρ
Ρ Ρ _ |
1,450 |
| 3 | Π° Π³ Ρ Ρ |
1,351 |
| 4 | Ρ
Ρ ΠΌ _ |
1,305 |
| 5 | _ ΠΊ Ρ Ρ |
1,289 |
Key Findings
- Best Perplexity: 2-gram (subword) with 399
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~40% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.4365 | 1.353 | 2.10 | 22,306 | 56.3% |
| 1 | Subword | 1.4909 | 2.811 | 10.56 | 410 | 0.0% |
| 2 | Word | 0.0764 | 1.054 | 1.12 | 46,305 | 92.4% |
| 2 | Subword | 1.1481 | 2.216 | 5.61 | 4,325 | 0.0% |
| 3 | Word | 0.0240 | 1.017 | 1.03 | 51,243 | 97.6% |
| 3 | Subword | 0.7541 | 1.687 | 2.97 | 24,260 | 24.6% |
| 4 | Word | 0.0128 π | 1.009 | 1.02 | 52,387 | 98.7% |
| 4 | Subword | 0.4304 | 1.348 | 1.86 | 72,077 | 57.0% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
ΠΈ 13 ΠΌΡ Π°ΡΡΡΡΡ Π°Π΄ΡΠ³ΡΡ ΡΡΠ΄ΠΈΠ³ΡΠΎΠΊΡΠΈ Π°Π΄ΡΠ³Ρ ΠΊΡΡΠ°ΠΆ ΠΈΠΏΡΡΡ ΠΈΡΡ ΡΠ°ΠΏΣΡ ΠΈΠ±Π»ΡΠ³ΡΠΎΠΆΡΡ ΡΠΌ Π°ΡΡΠ³ΡΡΡ ΡΡΠ³ΡΡ ΠΌΠΈΡΡ ΡΡ ΠΊΡΡΠ·ΡΡΠ°...Π°Π΄ΡΠ³Ρ Ρ ΡΠ°ΡΡΠΊΡΡΠ°ΠΉ ΡΠ½Π°Π³ΡΠΎΡ ΡΡ ΡΡΡΠΊΡΠ΅ΠΌ ΠΈ ΠΏΠ»Π°ΠΊΠ°Ρ Π½ΡΠ±ΡΡΡΠ½Ρ ΡΡΠ±Π»Ρ Π°Π΄ΡΠ³ΡΠ±Π·Ρ ΠΆΡΠ±Π·Ρ ΠΊΡΠ°Π±Π·Ρ Π΅ΠΆΡ Π½ΡΠΏΡΠΌ Π·ΡΠ·ΠΈΡΡΡΠΎΠΌΠ±...ΠΌ Π°Ρ Π°Ρ ΡΡ Ρ ΡΠ³ΡΡΠ³Ρ ΡΠ°Π²ΠΊΠ°Ρ ΠΌΠΈΡΠ·ΠΈΡΠ΅Π² ΠΊΡΡΡΠ°Π» Π»ΣΡΡΡΡ ΡΡΡ ΠΊΣΠΎΠΊΣΠΎ ΠΊΡΡΠ·Π±ΡΡ ΠΊΠ°Π²ΠΊΠ°Π· Π·Π°ΠΎΠΌ ΡΠΏΡΠΊΣΡ ΡΡΣΠ°Π³ΡΡΡ ΡΠΌΡΡ ΡΠΊΡ...
Context Size 2:
Π½ΡΠ±Π³ΡΡΡ ΠΌΠ»Π½ 10 ΡΡΠ΄ΠΈΠ· ΡΠ΅ΡΣΠ°Π³ΡΡΡ Π°Π½Π°ΡΠΎΠ»ΠΈΠ΅ΠΌ Π°Ρ ΡΡ Π°Π³ΡΡΠΊΠΎΡΡΠ³ΡΡΡ ΡΡ ΡΠ³ΡΡ Π·ΡΡΡΡΡΡ ΡΠ°ΡΡ ΡΠΌ ΠΌΡΡ ΡΠ°Π½ΡΡ ΠΊΠ°Π½ΠΎΠ½ΠΈΡΠ½ΠΎΡΡ...ΠΊΡΠ΅Ρ ΡΡ ΡΡΠΏΡΡΡ Ρ 84 Ρ ΡΠ³ΡΠ³ΡΠΌ 93 030 ΠΊΠΌ Ρ 26 ΠΈΡΠΏΠ°Π½ΡΠ±Π·ΡΡ Π°Ρ Π½ΡΠΌΡΠΊΣΡΡ ΡΠ΅Π³ΠΈΠΎΠ½ΡΠ±Π·ΡΡ ΡΡ ΠΈΣΡΡ Π΄Π»ΠΎ ΠΌΠΊΠ°ΡΡΡΠΌ ΡΠ΅ΡΡΡ Π±ΡΠ°Π·ΠΈΠ»ΠΈΠ΅ ΠΊΡΡΠ±Π»Ρ Π°ΠΌΠ΅ΡΠΈΠΊΡΠΌ ΡΠ³Ρ ΠΈΡ Π³Π΅ΡΠΌΠ°Π½ΠΈΠ΅Ρ Π°ΡΡΡΡΠΈΠ΅Ρ ΡΠ»ΠΎΠ²Π°ΠΊΠΈΠ΅Ρ ΡΡΠΌΠ°Π½ΠΈΠ΅Ρ ΡΠΊΡΠ°ΠΈΠ½ΡΡ ΡΠ΅ΡΠ±ΠΈΠ΅Ρ ...
Context Size 3:
ΠΌ ΠΊΡΠ΅Ρ ΡΡ ΡΡΠΏΡΡΡ Ρ ΡΠ³ΡΠ³ΡΠΌ 2 149 690 ΠΊΠΌ Π°ΡΠ°ΠΏΡΠ±Π· ΡΠ°ΡΠ΄ Π°ΡΠ°Π±ΠΈΠ΅Ρ Π°ΡΠ°ΠΏ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΠΎΠΌΡ Π°ΡΡΡΠΌΡ Π°Π½Π°Ρ Ρ Ρ ΡΠ³ΡΡΠ³Ρ Π°ΡΡ...ΠΊΡΠ΅Ρ ΡΡ ΡΡΠΏΡΡΡ Ρ ΡΠ³ΡΠ³ΡΠΌ 140 800 ΠΊΠΌ Π½Π΅ΠΏΠ°Π»ΠΈ Π΄Π»ΠΎ ΠΌ Ρ Π°Ρ ΡΡ Ρ ΡΠ³ΡΡΠ³Ρ Ρ Π°ΡΡΠ°Π½Π°Π» Π±ΠΎΠ»ΠΊΠΈΠ°Ρ Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΠ΅ Π°Π·ΠΈΠ΅ΠΌ ΠΈ Π³ΡΡΠ½Ρ...Π°Π΄ΡΠ³Ρ ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΡΠΌ ΠΈ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΠΎ ΠΏΡΠ΅ΠΌΠΈΠ΅ ΠΈΠ»Π°ΡΡΠ΅Π°Ρ Π΄ΡΠ½ΡΠ΅ Π°Π΄ΡΠ³Ρ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠ΅ΠΌ ΠΈΠ°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊ ΠΊΡΠ°Π»ΡΡ ΡΡΠ°ΡΡ ΠΏΠΎΡΠ΅Π»ΠΊΡΡ...
Context Size 4:
ΠΌ ΠΊΡΠ΅Ρ ΡΡ ΡΡΠΏΡΡΡ Ρ ΡΠ³ΡΠ³ΡΠΌ 9 596 960 ΠΊΠΌ ΠΊΠΈΡΠ°ΠΈΠ±Π·ΡΡ Π΄Π»ΠΎ ΠΌ Ρ Π°Ρ ΡΡ Ρ ΡΠ³ΡΡΠ³Ρ ΡΠΌΠΎΠΌΠ°Π»ΠΈ ΡΠ°Ρ ΠΌΠΎΠ½ ΠΊΡΡΡΠ°Π» ΡΡ ΡΡΠΌΠ°ΡΡΡ ΠΊ...Π΄Π»ΠΎ ΠΌ Ρ Π°Ρ ΡΡ Ρ ΡΠ³ΡΡΠ³Ρ Π΄ΠΆΠΎΠΊΠΎ Π²ΠΈΠ΄ΠΎΠ΄ΠΎ Π³ΡΠ°Π΄Π·ΡΡ ΡΡΡΡ ΠΊΠ°Π»Π»Π° Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΠ΅ ΠΎΠΊΠ΅Π°Π½ ΡΡΡΡΡΠΌΡΠΌΡΡ ΠΈΠ½Π΄ ΠΎΠΊΠ΅Π°Π½ΡΠΌΡΡ Π°Π·ΡΠ°Π³Ρ ...Π΅ΡΡΠΎΠΏΡΠΌ Ρ ΡΡ ΠΊΡΡΡΠ°Π»ΡΠ³ΡΡ ΠΊΡΡΠ»Ρ ΠΏΠ°ΡΠΈΠΆ Π½ΡΠ±Π³ΡΡΡ ΠΌΠ»Π½ 66 ΠΌ ΠΊΡΠ΅Ρ ΡΡ ΡΡΠΏΡΡΡ Ρ ΡΠ³ΡΠ³ΡΠΌ 9 984 670 ΠΊΠΌ Ρ 2 Π°Π½Π³Π»ΡΠ±Π·Ρ
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΡΠΈΠΌ_Ρ ΡΡΡΠΈΠΊΡΠΎΠ»Π°ΠΌΡΠΌ_ΠΈΠ»ΡΡ_-ΠΌ_Π±ΡΡ Ρ_ΡΡΡΡΠΏΡΡΠΌ_ΠΈΠ»Π½ΠΈΠ½Π΅_
Context Size 2:
Π³ΡΡΠ³ΡΡ_Π°ΡΡΡ_Ι‘Κ²adΙΡΡΡ ΡΡΡΡ ΡΠΌ_Π΅ΠΏΡ ΡΡΡ ΡΡ_Ρ ΡΠ³ΡΡΠΌΡΡ_ΡΡΠΏΣΡ-
Context Size 3:
Π³ΡΡ_ΡΠ°Ρ ΡΠΌΡΡ,_ΠΊΡΡΡΠΈ_ΠΊΡΠ°Π»ΡΠ±ΠΈΠ»ΡΠΆΡ_Π·ΡΠΏΡ ΡΡΠΌ_ΡΠ³ΡΠ³ΡΡΠΊΠΎΠ½_ΠΊΡΠ°ΡΠΊ
Context Size 4:
ΡΠ³ΡΡΡΡΠΎΡ ΡΡ_ΡΡΠ·ΡΡ-ΡΡΡ ΡΡ_Π½ΡΡ ΡΠΈΠ½_Π΄ΠΈΠ½Ρ ΡΡ_Π·Π°Π³ΡΡΡ_Π³ΡΡΠΏ,_Π°Π½Π³Π»ΡΠ±Π·
Key Findings
- Best Predictability: Context-4 (word) with 98.7% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (72,077 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 7,032 |
| Total Tokens | 44,503 |
| Mean Frequency | 6.33 |
| Median Frequency | 3 |
| Frequency Std Dev | 22.13 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΠΈ | 1,013 |
| 2 | Π°Π΄ΡΠ³Ρ | 666 |
| 3 | ΠΌ | 489 |
| 4 | ΠΈΠ»ΡΡΡΡΠΌ | 398 |
| 5 | Π°Ρ | 391 |
| 6 | Ρ | 309 |
| 7 | Π°ΡΡ | 271 |
| 8 | Π½ΡΠ±Π³ΡΡΡ | 247 |
| 9 | Π° | 243 |
| 10 | ΡΠΊΣΠΈ | 211 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΡΡΡΡ | 2 |
| 2 | ΡΠ΅ΡΠΈΠΉΠ½Ρ | 2 |
| 3 | Π½ΡΠ±ΠΆΡΡΠΊΣΡΡ ΡΡΠΈ | 2 |
| 4 | Π·ΡΡΠ°ΡΠ΅Π±ΡΠ½Π°Π³ΡΡΡ | 2 |
| 5 | Ρ ΠΈΡΠ°Π³Π°Π½Ρ | 2 |
| 6 | ΠΊΠ°ΡΠ°ΠΊΠ°Π½Ρ | 2 |
| 7 | ΡΠ΅ΡΠ±ΡΠ±Π·ΡΠΌ | 2 |
| 8 | ΠΊΡΡΠ·Π΄ΠΈΠΊΣΡΠ³ΡΡΡ | 2 |
| 9 | ΡΡΠ²Π°Π½Π±Π·Ρ | 2 |
| 10 | ΠΊΡΡΠ·ΡΠ» | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.7821 |
| RΒ² (Goodness of Fit) | 0.977951 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 29.3% |
| Top 1,000 | 60.6% |
| Top 5,000 | 90.9% |
| Top 10,000 | 0.0% |
Key Findings
- Zipf Compliance: RΒ²=0.9780 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 29.3% of corpus
- Long Tail: -2,968 words needed for remaining 100.0% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
Note: Multilingual alignment visualization not available for this language.
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.4730 π | 0.4239 | N/A | N/A |
| mono_64d | 64 | 0.2201 | 0.4040 | N/A | N/A |
| mono_128d | 128 | 0.0372 | 0.3952 | N/A | N/A |
Key Findings
- Best Isotropy: mono_32d with 0.4730 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.4077. Lower values indicate better semantic separation.
- Alignment Quality: No aligned models evaluated in this run.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
β οΈ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 0.000 | Low morphological productivity | β οΈ Likely unreliable |
| Idiomaticity Gap | -1.000 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ΠΊΡ |
ΠΊΡΡΡΡΡ ΡΡ, ΠΊΡΡΠ°Π΄ΠΆΡΡ ΡΡ, ΠΊΡΡΠ±Π°ΡΡΠΌ |
-Π·Ρ |
Π·ΡΠΌΠ°Π½, Π·ΡΠ΄Π°ΡΡΡΠ³ΡΡ, Π·ΡΠΏΡΡΡ |
-ΠΊΡΡ |
ΠΊΡΡΡΡΡ ΡΡ, ΠΊΡΡΡΡΡΡΡΠ΅Π΄ΡΡΡΡ ΡΡ, ΠΊΡΡΠ·ΡΡ ΡΠΊΣΡΠ³ΡΡΡ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Ρ |
ΡΡΡ ΡΡ, ΡΡΡΡΡΠ±Π·Ρ, ΡΡΠ»Ρ |
-ΠΌ |
ΡΠ°ΠΊΡΡΡΡΠΌ, ΡΠ°ΠΏΡ ΡΡΡ ΡΠΌ, ΠΊΡΡΠ±Π°ΡΡΠΌ |
-Ρ |
Π»Π°ΡΠ²ΠΈΠ΅Ρ, ΡΡΡ ΡΠ°ΡΡΡ, ΠΌΠΈΠ½ΠΈΡΡΡ |
-ΡΡ |
ΠΊΡΡΠ΄Ρ ΡΡ, ΡΡΠ³ΡΡΠ½Ρ ΡΡ, ΠΌΡΡ ΡΠΎΡΡ ΡΡ |
-ΡΠΌ |
ΡΠ°ΠΏΡ ΡΡΡ ΡΠΌ, ΡΠΏΡΠΌ, ΡΡΡΠΌΡΠ±Π·ΡΠΌ |
-ΡΡ |
Π°Π»ΡΠ°Π²ΠΈΡΡΡ, ΠΈΠ»ΡΡ ΡΡ, ΠΈΠ³ΡΡΠΊΣΠΎΡΡΠ³ΡΡΡ |
-Ρ
ΡΡ |
ΠΊΡΡΠ΄Ρ ΡΡ, ΡΡΠ³ΡΡΠ½Ρ ΡΡ, ΠΌΡΡ ΡΠΎΡΡ ΡΡ |
-ΡΡ |
ΠΊΡΠ°Π³ΡΡΠ»ΡΠ°Π³ΡΡΡΡΡ, Π·ΡΠ³ΠΎΡΡ, ΡΣΡΠΌΡΡ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ΡΡΠ³Ρ |
1.78x | 28 contexts | ΡΡΠ³ΡΡ, ΠΈΡΡΠ³Ρ, ΡΡΠ³ΡΡ |
ΡΠ°Π³Ρ |
2.15x | 14 contexts | ΠΏΡΡΠ°Π³Ρ, Π»ΡΠ°Π³ΡΠΎ, ΠΏΡΡΠ°Π³ΡΡ |
Π°Π³ΡΡ |
1.54x | 41 contexts | ΡΡ Π°Π³ΡΡ, Π±Π»Π°Π³ΡΡ, ΠΏΡΠ°Π³ΡΡ |
ΡΠΏΠΊΡ |
1.74x | 25 contexts | Π½ΡΠΏΠΊΡ, ΡΡ ΡΠΏΠΊΡ, Π»ΡΡΠΏΠΊΡ |
ΠΊΡΡΠ° |
2.16x | 10 contexts | ΠΊΡΡΠ°Π΅, ΠΊΡΡΠ°ΠΆΡ, ΠΊΡΡΠ°Π΄ΠΆ |
ΡΡ
ΡΡ |
1.78x | 16 contexts | ΡΡΡ ΡΡ, ΠΏΡΡΡ ΡΡ, ΡΡΡ ΡΡΠΌ |
Π΄ΡΠ³Ρ |
1.82x | 14 contexts | Π°Π΄ΡΠ³Ρ, Π°Π΄ΡΠ³ΡΠΌ, ΠΈΠ°Π΄ΡΠ³Ρ |
ΡΡ
ΡΡ |
1.56x | 21 contexts | Π±ΡΡ ΡΡ, ΡΡΡΡ ΡΡ, ΡΠ½ΡΡ ΡΡ |
ΡΡΡ
Ρ |
1.49x | 24 contexts | ΡΡΡ ΡΡ, ΠΏΡΡΡ ΡΡ, ΡΡΡ ΡΡΠΌ |
ΠΏΡΡΡ |
1.57x | 19 contexts | ΡΡΠΏΡΡΡ, ΡΡΠΏΡΡΡ, ΡΡΠΏΡΡΡ |
ΡΠ³ΡΠΎ |
1.56x | 19 contexts | ΡΡΠ³ΡΠΎ, ΠΌΡΠ³ΡΠΎ, ΠΏΡΡΠ³ΡΠΎ |
Π³ΡΡΡ
|
1.65x | 14 contexts | Π±Π°Π³ΡΡΡ , Ρ ΡΡΠ³ΡΡΡ , Π΅ΠΆΠ°Π³ΡΡΡ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΊΡ |
-Ρ |
96 words | ΠΊΡΡΠ»ΡΠΌΡΠΌΠΊΣΡ, ΠΊΡΠ°Π»ΡΠΌΡ |
-ΠΊΡ |
-Ρ |
64 words | ΠΊΡΠΎΡ, ΠΊΡΡΠ°Π΄ΠΆΡΡ ΡΡ |
-ΠΊΡ |
-ΠΌ |
56 words | ΠΊΡΠ°Π»ΡΠΌ, ΠΊΡΡΠΌΠ±ΡΠ»ΡΠΌ |
-ΠΊΡ |
-ΡΡ |
52 words | ΠΊΡΡΠ°Π΄ΠΆΡΡ ΡΡ, ΠΊΡΡΠ±Π°ΡΡ ΡΡ |
-Π·Ρ |
-Ρ |
42 words | Π·ΡΠ³ΠΎΡΡ ΡΡ, Π·ΡΡ ΡΡΡ ΡΡ |
-Π·Ρ |
-ΠΌ |
41 words | Π·ΡΡ ΡΠ·Π³ΡΡΡΡΡΠ°Π³ΡΡΡ ΡΠΌ, Π·ΡΣΡΠΊΣΡΠ³ΡΡΠΌ |
-ΠΊΡ |
-ΡΠΌ |
36 words | ΠΊΡΠ°Π»ΡΠΌ, ΠΊΡΡΠ°Π΄ΠΆΡΡ ΡΠΌ |
-Π·Ρ |
-ΡΡ |
34 words | Π·ΡΠ³ΠΎΡΡ ΡΡ, Π·ΡΡ ΡΡΡ ΡΡ |
-ΠΊΡ |
-ΡΡ |
34 words | ΠΊΡΡΡ ΡΠΊΣΡΠ³ΡΡΡ, ΠΊΡΡΠ³ΡΡΠ»ΡΡΠ³ΡΠΎΠ½ΡΡ |
-Π·Ρ |
-Ρ |
31 words | Π·Ρ, Π·ΡΡΠΈΠ³ΡΡΡΡΠ³ΡΡ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| ΡΡΠΏΡΡΡΡ ΡΡΡΡ | ΡΡΠΏΡ-ΡΡ-Ρ
ΡΡ-ΡΡ |
7.5 | ΡΡΠΏΡ |
| Π°ΠΌΠ΅ΡΠΈΠΊΡΠΌΡΡ | Π°ΠΌΠ΅ΡΠΈΠΊ-ΡΠΌ-ΡΡ |
6.0 | Π°ΠΌΠ΅ΡΠΈΠΊ |
| ΠΎΠΊΠ΅Π°Π½ΡΠΌΡΡ | ΠΎΠΊΠ΅Π°Π½-ΡΠΌ-ΡΡ |
6.0 | ΠΎΠΊΠ΅Π°Π½ |
| Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡΠΌΡΡ | Π»ΠΈΡΠ΅ΡΠ°ΡΡΡ-ΡΠΌ-ΡΡ |
6.0 | Π»ΠΈΡΠ΅ΡΠ°ΡΡΡ |
| Π±Π·ΡΠ»ΡΡΡΠ³ΡΡΠΌΡΡ | Π±Π·ΡΠ»ΡΡΡΠ³Ρ-ΡΠΌ-ΡΡ |
6.0 | Π±Π·ΡΠ»ΡΡΡΠ³Ρ |
| Π°Π΄ΡΠ³Π°Π±Π·ΡΠΌΡΡ | Π°Π΄ΡΠ³Π°Π±Π·-ΡΠΌ-ΡΡ |
6.0 | Π°Π΄ΡΠ³Π°Π±Π· |
| Ρ ΡΠΏΠ»ΡΡΠΆΡΡΠΌΡΡ | Ρ
ΡΠΏΠ»ΡΡΠΆΡ-ΡΠΌ-ΡΡ |
6.0 | Ρ
ΡΠΏΠ»ΡΡΠΆΡ |
| Π°Π»ΡΠ°Π²ΠΈΡΡΡ | Π°Π»ΡΠ°Π²ΠΈΡ-ΡΡ |
4.5 | Π°Π»ΡΠ°Π²ΠΈΡ |
| ΡΣΡΠΊΣΡΡ ΡΡ | ΡΣΡΠΊΣΡ-Ρ
ΡΡ |
4.5 | ΡΣΡΠΊΣΡ |
| ΠΈΡΡΡΡΡΡ ΡΡ | ΠΈΡΡΡΡΡ-Ρ
ΡΡ |
4.5 | ΠΈΡΡΡΡΡ |
| ΡΣΡΠΏΣΡΡ ΡΡ | ΡΣΡΠΏΣΡ-Ρ
ΡΡ |
4.5 | ΡΣΡΠΏΣΡ |
| ΡΣΡΠ½ΡΠ³ΡΡΠΌ | ΡΣΡΠ½ΡΠ³Ρ-ΡΠΌ |
4.5 | ΡΣΡΠ½ΡΠ³Ρ |
| ΠΊΡΡΠΏΡΡΡΠ»Ρ | ΠΊΡΡ-ΠΏΡΡΡΠ»Ρ |
4.5 | ΠΏΡΡΡΠ»Ρ |
| ΠΏΡΠ±Π»Π°Π³ΡΡΡ | ΠΏΡΠ±Π»Π°Π³Ρ-ΡΡ |
4.5 | ΠΏΡΠ±Π»Π°Π³Ρ |
| ΠΈΡΡΡ ΡΡΡΡΠΌΡΡ | ΠΈΡΡΡ
Ρ-ΡΡ-ΡΠΌ-ΡΡ |
4.5 | ΠΈΡΡΡ
Ρ |
6.6 Linguistic Interpretation
Automated Insight: The language ADY appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 32k BPE | Best compression (4.23x) |
| N-gram | 2-gram | Lowest perplexity (399) |
| Markov | Context-4 | Highest predictability (98.7%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 05:00:02

















