ADY - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on ADY Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.442x 3.45 0.1638% 134,283
16k 3.798x 3.80 0.1808% 121,676
32k 4.231x πŸ† 4.24 0.2014% 109,215

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Π¨ΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚ β€” Ашэ ΠΏΡΡ‹Ρ…ΡŠΠΎ ΠΈΠ΄ΠΆΠ°Π±Π³ΡŠΡƒ Π½ΡΠΏΠΊΡŠΡ‹ тСс Адыгэ ΠΊΡŠΡƒΠ°Π΄ΠΆ. Ρ€Π°ΠΉΠΎΠ½Ρ‹ΠΌ Ρ…Π°Ρ…ΡŒΡ. Π₯Ρ‹ΠΌ Π·Ρ‹ пэ...

Vocab Tokens Count
8k β–ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚ ▁— β–Π°ΡˆΡ β–ΠΏΡΡ‹Ρ…ΡŠΠΎ β–ΠΈΠ΄ΠΆΠ°Π±Π³ΡŠΡƒ β–Π½ΡΠΏΠΊΡŠΡ‹ ▁тСс ▁адыгэ β–ΠΊΡŠΡƒΠ°Π΄ΠΆ . ... (+7 more) 17
16k β–ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚ ▁— β–Π°ΡˆΡ β–ΠΏΡΡ‹Ρ…ΡŠΠΎ β–ΠΈΠ΄ΠΆΠ°Π±Π³ΡŠΡƒ β–Π½ΡΠΏΠΊΡŠΡ‹ ▁тСс ▁адыгэ β–ΠΊΡŠΡƒΠ°Π΄ΠΆ . ... (+7 more) 17
32k β–ΡˆΡŠΡ…ΡŒΠ°Ρ„ΠΈΡ‚ ▁— β–Π°ΡˆΡ β–ΠΏΡΡ‹Ρ…ΡŠΠΎ β–ΠΈΠ΄ΠΆΠ°Π±Π³ΡŠΡƒ β–Π½ΡΠΏΠΊΡŠΡ‹ ▁тСс ▁адыгэ β–ΠΊΡŠΡƒΠ°Π΄ΠΆ . ... (+7 more) 17

Sample 2: thumb АмСрикэ - Ρ‡Σ€Ρ‹Π½ΡΠ»ΡŠΡΡˆΡ…ΡƒΡ…ΡΡ€ IΡƒΡ‚ зэхэт (ΠšΡŠΡ‹Π±Π»Ρ АмСрикэмрэ, Π˜ΡˆΡŠΡ…ΡŠΡΡ€ΡΠΌΡ€Ρ) Π’Ρ‹Π³ΡŠΡΠΊ...

Vocab Tokens Count
8k ▁thumb ▁амСрикэ ▁- ▁чӏы нэлъэ ΡˆΡ…ΡƒΡ…ΡΡ€ ▁i ΡƒΡ‚ ▁зэхэт ▁( ... (+17 more) 27
16k ▁thumb ▁амСрикэ ▁- β–Ρ‡ΣΡ‹Π½ΡΠ»ΡŠΡΡˆΡ…ΡƒΡ…ΡΡ€ ▁i ΡƒΡ‚ ▁зэхэт ▁( ΠΊΡŠΡ‹Π±Π»Ρ ▁амСрикэмрэ ... (+13 more) 23
32k ▁thumb ▁амСрикэ ▁- β–Ρ‡ΣΡ‹Π½ΡΠ»ΡŠΡΡˆΡ…ΡƒΡ…ΡΡ€ ▁i ΡƒΡ‚ ▁зэхэт ▁( ΠΊΡŠΡ‹Π±Π»Ρ ▁амСрикэмрэ ... (+11 more) 21

Sample 3: thumb ΠœΠ°ΠΌΡƒΠ½Ρ‹Ρ€ мэз ΠΏΡΡΡƒΡˆΡŠΡ…ΡŒΡΡ…ΡΠΌΡ Π° Ρ‰Ρ‹Ρ‰. ΠœΠ°ΠΌΡƒΠ½Ρ…ΡΡ€ Ρ‡Ρ‹Π³ Π΄ΡΠΏΡˆΡΠΈΡΠ½Ρ‹ΠΌ Π»ΡŠΡΡˆΡΡƒ ΠœΠ°ΠΌΡƒΠ½Ρ‹ΠΌ ΠΈ ...

Vocab Tokens Count
8k ▁thumb ▁мамун Ρ‹Ρ€ ▁мэз β–ΠΏΡΡΡƒΡˆΡŠΡ…ΡŒΡΡ…ΡΠΌΡ ▁а ▁щыщ . ▁мамун хэр ... (+22 more) 32
16k ▁thumb ▁мамуныр ▁мэз β–ΠΏΡΡΡƒΡˆΡŠΡ…ΡŒΡΡ…ΡΠΌΡ ▁а ▁щыщ . ▁мамунхэр ▁ч Ρ‹Π³ ... (+14 more) 24
32k ▁thumb ▁мамуныр ▁мэз β–ΠΏΡΡΡƒΡˆΡŠΡ…ΡŒΡΡ…ΡΠΌΡ ▁а ▁щыщ . ▁мамунхэр ▁чыг β–Π΄ΡΠΏΡˆΡΠΈΡΠ½Ρ‹ΠΌ ... (+10 more) 20

Key Findings

  • Best Compression: 32k achieves 4.231x compression
  • Lowest UNK Rate: 8k with 0.1638% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 418 8.71 593 45.3% 100.0%
2-gram Subword 399 πŸ† 8.64 2,072 57.0% 97.4%
3-gram Word 706 9.46 922 33.9% 100.0%
3-gram Subword 2,788 11.44 11,614 24.5% 65.1%
4-gram Word 2,848 11.48 3,264 13.1% 44.3%
4-gram Subword 10,651 13.38 35,316 12.4% 39.6%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 нэбгырэ ΠΌΠ»Π½ 169
2 ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу 104
3 ΠΊΠ°Ρ€Ρ‚Ρ‹ΠΌ тСтэу 100
4 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ 89
5 Π΄Π»ΠΎ ΠΌ 87

3-grams (Word):

Rank N-gram Count
1 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу 76
2 ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 70
3 адыгэ рСспубликэм ΠΈ 48
4 Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ 44
5 ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ 39

4-grams (Word):

Rank N-gram Count
1 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 45
2 Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ 39
3 Суропэм хэт ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 23
4 амСрикэм ΠΈΡ‚ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 19
5 Π°Π·ΠΈΠ΅ΠΌ ΠΈΡ‚ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ 18

2-grams (Subword):

Rank N-gram Count
1 г ъ 9,349
2 ъ э 9,255
3 э _ 8,719
4 ΠΌ _ 7,823
5 э Ρ€ 6,778

3-grams (Subword):

Rank N-gram Count
1 г ъ э 4,967
2 _ к ъ 4,149
3 э м _ 3,582
4 Ρ‹ Π³ ъ 3,357
5 э Ρ€ _ 3,016

4-grams (Subword):

Rank N-gram Count
1 Ρ‹ Π³ ъ э 1,903
2 Ρ… э Ρ€ _ 1,450
3 а г ъ э 1,351
4 Ρ… э ΠΌ _ 1,305
5 _ к ъ э 1,289

Key Findings

  • Best Perplexity: 2-gram (subword) with 399
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~40% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.4365 1.353 2.10 22,306 56.3%
1 Subword 1.4909 2.811 10.56 410 0.0%
2 Word 0.0764 1.054 1.12 46,305 92.4%
2 Subword 1.1481 2.216 5.61 4,325 0.0%
3 Word 0.0240 1.017 1.03 51,243 97.6%
3 Subword 0.7541 1.687 2.97 24,260 24.6%
4 Word 0.0128 πŸ† 1.009 1.02 52,387 98.7%
4 Subword 0.4304 1.348 1.86 72,077 57.0%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. ΠΈ 13 мэ ащыщэу адыгэр ΡΡ‹Π΄ΠΈΠ³ΡŠΠΎΠΊΡ–ΠΈ адыгэ ΠΊΡŠΡƒΠ°ΠΆ ипшъэ ΠΈΡ‚Ρ…ΡŒΠ°ΠΏΣΡ ΠΈΠ±Π»ΡΠ³ΡŠΠΎΠΆΡŠΡ…ΡΠΌ Π°Ρ„ΡΠ³ΡŠΡΡ…ΡŒΡ‹Π³ΡŠΡ мифхэр ΠΊΡŠΡ‹Π·ΡΡ€Π°...
  2. адыгэ Ρ…ΡŒΠ°Ρ‚Ρ‹ΠΊΡŠΡƒΠ°ΠΉ ΡƒΠ½Π°Π³ΡŠΠΎΡ…ΡΡ€ Ρ‚Ρ‹Ρ€ΠΊΡƒΠ΅ΠΌ ΠΈ ΠΏΠ»Π°ΠΊΠ°Ρ‚ Π½Ρ‹Π±ΡΡ€Ρ‹Π½Ρ…ΡŒΡΠ±Π»Ρ адыгэбзэ Тэбзэ къабзэ СТь Π½Ρ‹ΠΏΡ‹ΠΌ Π·Ρ‹Π·ΠΈΡƒΡˆΡŠΠΎΠΌΠ±...
  3. ΠΌ Π°Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ ΡˆΠ°Π²ΠΊΠ°Ρ‚ мирзияСв ΠΊΡŠΡΡ€Π°Π» Π»ΣΡ‹ΡˆΡŠΡ…ΡŒΡΡ€ кӏокӏо ΠΊΡŠΡ‹Π·Π±ΡΡ‡ ΠΊΠ°Π²ΠΊΠ°Π· Π·Π°ΠΎΠΌ ыпэкӏэ Ρ‰Ρ‹ΣΠ°Π³ΡŠΡΡ…ΡΠΌΡ€Ρ якъ...

Context Size 2:

  1. нэбгырэ ΠΌΠ»Π½ 10 фэдиз Ρ‚Π΅ΡˆΣΠ°Π³ΡŠΡΡƒ Π°Π½Π°Ρ‚ΠΎΠ»ΠΈΠ΅ΠΌ ахэр Π°Π³ΡŠΡΠΊΠΎΡ‰Ρ‹Π³ΡŠΡΡ… Ρ‚Ρ…Ρ‹Π³ΡŠΡ Π·ΡΡ„ΡΡˆΡŠΡ…ΡŒΠ°Ρ„Ρ…ΡΠΌ ΠΌΡΡ…ΡŒΠ°Π½ΡΡƒ каноничност...
  2. ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу я 84 хэгэгум 93 030 ΠΊΠΌ я 26 испаныбзэр Π°Ρ‰ нэмыкӏэу рСгионыбзэхэр иӏэх Π΄Π»ΠΎ ΠΌ
  3. ΠΊΠ°Ρ€Ρ‚Ρ‹ΠΌ тСтэу Π±Ρ€Π°Π·ΠΈΠ»ΠΈΠ΅ ΠΊΡŠΡ‹Π±Π»Ρ амСрикэм Ρ‹Π³Ρƒ ΠΈΡ‚ Π³Π΅Ρ€ΠΌΠ°Π½ΠΈΠ΅Ρ€ аустриСр словакиСр Ρ€ΡƒΠΌΠ°Π½ΠΈΠ΅Ρ€ украинэр сСрбиСр ...

Context Size 3:

  1. ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 2 149 690 ΠΊΠΌ Π°Ρ€Π°ΠΏΡ‹Π±Π· сауд Π°Ρ€Π°Π±ΠΈΠ΅Ρ€ Π°Ρ€Π°ΠΏ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΠΎΠΌΡ ащыщмэ Π°Π½Π°Ρ…ΡŒ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ Π°Ρ‰Ρ‹...
  2. ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 140 800 ΠΊΠΌ Π½Π΅ΠΏΠ°Π»ΠΈ Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ хассанал Π±ΠΎΠ»ΠΊΠΈΠ°Ρ… Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ Π°Π·ΠΈΠ΅ΠΌ ΠΈ Π³ΡŠΡƒΠ½Ρ...
  3. адыгэ рСспубликэм ΠΈ ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΠΎ ΠΏΡ€Π΅ΠΌΠΈΠ΅ ΠΈΠ»Π°ΡƒΡ€Π΅Π°Ρ‚ дунэС адыгэ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠ΅ΠΌ ΠΈΠ°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊ ΠΊΡŠΠ°Π»ΡΡƒ ΡˆΡŠΠ°Ρ‡Ρ посСлкэу...

Context Size 4:

  1. ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 9 596 960 ΠΊΠΌ китаибзэр Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ эмомали Ρ€Π°Ρ…ΠΌΠΎΠ½ ΠΊΡŠΡΡ€Π°Π» Ρ‚Ρ…ΡŒΡΠΌΠ°Ρ‚ΡΡ€ ΠΊ...
  2. Π΄Π»ΠΎ ΠΌ Ρ…Π°Ρ…ΡŒΡ Ρ…ΡΠ³ΡŠΡΠ³Ρƒ Π΄ΠΆΠΎΠΊΠΎ Π²ΠΈΠ΄ΠΎΠ΄ΠΎ гуадзэр ΡŽΡΡƒΡ„ ΠΊΠ°Π»Π»Π° Π³Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ ΠΎΠΊΠ΅Π°Π½ ΡˆΡŠΡΡ„Ρ‹ΠΌΡ‹ΠΌΡ€Ρ ΠΈΠ½Π΄ окСанымрэ Π°Π·Ρ„Π°Π³Ρƒ ...
  3. Суропэм хэт ΠΊΡŠΡΡ€Π°Π»Ρ‹Π³ΡŠΡƒ къэлэ ΠΏΠ°Ρ€ΠΈΠΆ нэбгырэ ΠΌΠ»Π½ 66 ΠΌ ΠΊΡŠΠ΅Ρ…ΡŠΡƒ щэпсэу хэгэгум 9 984 670 ΠΊΠΌ я 2 англыбзэ

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _Ρ„ΠΈΠΌ_Ρ…ΡŠΡΡ€ΠΈΠΊΡŠΠΎΠ»Π°ΠΌ
  2. эм_ΠΈΠ»ΡŠΡƒ_-ΠΌ_Π±ΡΡ…ΡŒ_
  3. Ρ‹ΡˆΡŠΡΠΏΡΡ‹ΠΌ_ΠΈΠ»Π½ΠΈΠ½Π΅_

Context Size 2:

  1. гъэгъэ_асэу_Ι‘Κ²adΙ™
  2. ΡŠΡΡ…ΡŒΡΡƒΡ…ΡΠΌ_Π΅ΠΏΡ…ΡŠΡƒΡ…ΡŒ
  3. э_Ρ…ΡΠ³ΡŒΡΠΌΡ€Ρ_щыпӏэ-

Context Size 3:

  1. гъэ_уахэмрэ,_ΠΊΡŠΡ‹ΡƒΠΈ
  2. _къалэбилэТъ_Π·ΡΠΏΡ…ΡŠ
  3. эм_Ρ‹Π³ΡƒΠ³ΡŠΡΠΊΠΎΠ½_ΠΊΡŠΠ°ΡƒΠΊ

Context Size 4:

  1. Ρ‹Π³ΡŠΡΡƒΡ†ΠΎΡ…ΡΡ€_чэзыу-чэ
  2. хэр_Π½ΡΡ…ΡŠΠΈΠ½_динхэр_Π·
  3. Π°Π³ΡŠΡΡ€_гъэп,_Π°Π½Π³Π»Ρ‹Π±Π·

Key Findings

  • Best Predictability: Context-4 (word) with 98.7% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (72,077 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 7,032
Total Tokens 44,503
Mean Frequency 6.33
Median Frequency 3
Frequency Std Dev 22.13

Most Common Words

Rank Word Frequency
1 ΠΈ 1,013
2 адыгэ 666
3 ΠΌ 489
4 ΠΈΠ»ΡŠΡΡΡ‹ΠΌ 398
5 Π°Ρ‰ 391
6 я 309
7 Π°Ρ€Ρ‹ 271
8 нэбгырэ 247
9 Π° 243
10 ыкӏи 211

Least Common Words (from vocabulary)

Rank Word Frequency
1 рсфср 2
2 сСрийнэ 2
3 Π½Ρ‹Π±ΠΆΡŒΡ‹ΠΊΣΡΡ…ΡΡ€ΠΈ 2
4 Π·ΡΡ€Π°Ρ‚Π΅Π±ΡΠ½Π°Π³ΡŠΡΡ€ 2
5 хираганэ 2
6 катаканэ 2
7 сСрбыбзэм 2
8 ΠΊΡŠΡ‹Π·Π΄ΠΈΠΊΣΡ‹Π³ΡŠΡΡ€ 2
9 тыванбзэ 2
10 ΠΊΡŠΡ‹Π·Ρ‹Π» 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.7821
RΒ² (Goodness of Fit) 0.977951
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 29.3%
Top 1,000 60.6%
Top 5,000 90.9%
Top 10,000 0.0%

Key Findings

  • Zipf Compliance: RΒ²=0.9780 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 29.3% of corpus
  • Long Tail: -2,968 words needed for remaining 100.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Note: Multilingual alignment visualization not available for this language.

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.4730 πŸ† 0.4239 N/A N/A
mono_64d 64 0.2201 0.4040 N/A N/A
mono_128d 128 0.0372 0.3952 N/A N/A

Key Findings

  • Best Isotropy: mono_32d with 0.4730 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.4077. Lower values indicate better semantic separation.
  • Alignment Quality: No aligned models evaluated in this run.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

⚠️ Warning: This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 0.000 Low morphological productivity ⚠️ Likely unreliable
Idiomaticity Gap -1.000 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-къ ΠΊΡŠΡ‹Ρ‰Ρ‹Ρ…ΡŠΡƒ, ΠΊΡŠΡƒΠ°Π΄ΠΆΡΡ…ΡΡƒ, ΠΊΡŠΡΠ±Π°Ρ€Ρ‹ΠΌ
-зэ зэман, Π·ΡΠ΄Π°ΡˆΡ‚ΡΠ³ΡŠΡ, зэпэух
-ΠΊΡŠΡ‹ ΠΊΡŠΡ‹Ρ‰Ρ‹Ρ…ΡŠΡƒ, ΠΊΡŠΡ‹Ρ‰Ρ‹Ρ„ΡΡ„Π΅Π΄ΡΡ‰Ρ‚Ρ…ΡΡƒ, ΠΊΡŠΡ‹Π·Ρ‹Ρ…ΡΠΊΣΡ‹Π³ΡŠΡΡ€

Productive Suffixes

Suffix Examples
-э ΡΡ‚Ρ…ΡŒΡ, урысыбзэ, чылэ
-ΠΌ Ρ‚Π°ΠΊΡŠΡ‹Ρ€Ρ‹ΠΌ, ΡˆΠ°ΠΏΡ…ΡŠΡΡ…ΡΠΌ, ΠΊΡŠΡΠ±Π°Ρ€Ρ‹ΠΌ
-Ρ€ Π»Π°Ρ‚Π²ΠΈΠ΅Ρ€, ΡΡ‹Ρ…ΡŒΠ°Ρ‚Ρ‹Ρ€, министр
-эр курдхэр, Ρ‰Ρ‹Π³ΡŠΡ‹Π½Ρ…ΡΡ€, ΠΌΡΡ…ΡŠΠΎΡˆΡ…ΡΡ€
-эм ΡˆΠ°ΠΏΡ…ΡŠΡΡ…ΡΠΌ, япэм, урымыбзэм
-эу алфавитэу, ΠΈΠ»ΡŠΡ…ΡΡƒ, ΠΈΠ³ΡŠΡΠΊΣΠΎΡ‚Ρ‹Π³ΡŠΡΡƒ
-хэр курдхэр, Ρ‰Ρ‹Π³ΡŠΡ‹Π½Ρ…ΡΡ€, ΠΌΡΡ…ΡŠΠΎΡˆΡ…ΡΡ€
-рэ ΠΊΡŠΠ°Π³ΡŠΡΠ»ΡŠΠ°Π³ΡŠΡƒΡΡ€Ρ, зыгорэ, цӏэмрэ

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Ρ‚Ρ‹Π³ΡŠ 1.78x 28 contexts Ρ‚Ρ‹Π³ΡŠΡ, ΠΈΡ‚Ρ‹Π³ΡŠ, Ρ‚Ρ‹Π³ΡŠΡƒ
ъагъ 2.15x 14 contexts ΠΏΡ‡ΡŠΠ°Π³ΡŠ, лъагъо, ΠΏΡ‡ΡŠΠ°Π³ΡŠΡ
агъэ 1.54x 41 contexts Ρ‚Ρ…Π°Π³ΡŠΡ, благъэ, ΠΏΡ‡Π°Π³ΡŠΡ
эпкъ 1.74x 25 contexts нэпкъ, Ρ‚Ρ…ΡΠΏΠΊΡŠ, лъэпкъ
ΠΊΡŠΡƒΠ° 2.16x 10 contexts ΠΊΡŠΡƒΠ°Π΅, ΠΊΡŠΡƒΠ°ΠΆΡ, ΠΊΡŠΡƒΠ°Π΄ΠΆ
ΡŠΡ…ΡŒΡ 1.78x 16 contexts ΡˆΡŠΡ…ΡŒΡ, ΠΏΡˆΡŠΡ…ΡŒΡ, ΡˆΡŠΡ…ΡŒΡΠΌ
дыгэ 1.82x 14 contexts адыгэ, адыгэм, иадыгэ
эхэр 1.56x 21 contexts бэхэр, усэхэр, ынэхэр
ΡˆΡŠΡ…ΡŒ 1.49x 24 contexts ΡˆΡŠΡ…ΡŒΡ, ΠΏΡˆΡŠΡ…ΡŒΡ, ΡˆΡŠΡ…ΡŒΡΠΌ
псэу 1.57x 19 contexts щыпсэу, щэпсэу, сыпсэу
Ρ‹Π³ΡŠΠΎ 1.56x 19 contexts Ρ†Ρ‹Π³ΡŠΠΎ, ΠΌΡ‹Π³ΡŠΠΎ, ΠΏΡ‰Ρ‹Π³ΡŠΠΎ
Π³ΡŠΡΡ… 1.65x 14 contexts Π±Π°Π³ΡŠΡΡ…, Ρ…ΡŠΡƒΠ³ΡŠΡΡ…, Π΅ΠΆΠ°Π³ΡŠΡΡ…

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-къ -э 96 words ΠΊΡŠΡΠ»ΡΠΌΡ‹ΠΌΠΊΣΡ, къалэмэ
-къ -Ρ€ 64 words ΠΊΡŠΠΎΡ€, ΠΊΡŠΡƒΠ°Π΄ΠΆΡΡ…ΡΡ€
-къ -ΠΌ 56 words къалэм, ΠΊΡŠΡƒΠΌΠ±Ρ‹Π»Ρ‹ΠΌ
-къ -эр 52 words ΠΊΡŠΡƒΠ°Π΄ΠΆΡΡ…ΡΡ€, ΠΊΡŠΡΠ±Π°Ρ€Ρ…ΡΡ€
-зэ -Ρ€ 42 words зэготхэр, зэхэтхэр
-зэ -ΠΌ 41 words Π·ΡΡ…ΡΠ·Π³ΡŠΡΡƒΡ†ΡƒΠ°Π³ΡŠΡΡ…ΡΠΌ, Π·ΡΣΡƒΠΊΣΡΠ³ΡŠΡƒΠΌ
-къ -эм 36 words къалэм, ΠΊΡŠΡƒΠ°Π΄ΠΆΡΡ…ΡΠΌ
-зэ -эр 34 words зэготхэр, зэхэтхэр
-къ -эу 34 words ΠΊΡŠΡ‹Ρ…ΡΠΊΣΡ‹Π³ΡŠΡΡƒ, ΠΊΡŠΡΠ³ΡŠΡΠ»ΡŠΡΠ³ΡŠΠΎΠ½ΡΡƒ
-зэ -э 31 words зэ, Π·ΡΡ€ΠΈΠ³ΡŠΡΡ„ΡΠ³ΡŠΡ

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
щыпсэухэрэр щыпс-эу-хэр-эр 7.5 щыпс
амСрикэмрэ Π°ΠΌΠ΅Ρ€ΠΈΠΊ-эм-рэ 6.0 Π°ΠΌΠ΅Ρ€ΠΈΠΊ
окСанымрэ ΠΎΠΊΠ΅Π°Π½-Ρ‹ΠΌ-рэ 6.0 ΠΎΠΊΠ΅Π°Π½
литСратурэмрэ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€-эм-рэ 6.0 Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€
Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠΡΠΌΡ€Ρ Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠ-эм-рэ 6.0 Π±Π·Ρ‹Π»ΡŠΡ„Ρ‹Π³ΡŠ
адыгабзэмрэ Π°Π΄Ρ‹Π³Π°Π±Π·-эм-рэ 6.0 Π°Π΄Ρ‹Π³Π°Π±Π·
Ρ…Ρ‹ΠΏΠ»ΡŠΡ‹ΠΆΡŒΡ‹ΠΌΡ€Ρ Ρ…Ρ‹ΠΏΠ»ΡŠΡ‹ΠΆΡŒ-Ρ‹ΠΌ-рэ 6.0 Ρ…Ρ‹ΠΏΠ»ΡŠΡ‹ΠΆΡŒ
алфавитэу Π°Π»Ρ„Π°Π²ΠΈΡ‚-эу 4.5 Π°Π»Ρ„Π°Π²ΠΈΡ‚
цӏыкӏухэр цӏыкӏу-хэр 4.5 цӏыкӏу
исурэтхэр исурэт-хэр 4.5 исурэт
ΡˆΣΡ‹ΠΏΣΡΡ…ΡΡ€ ΡˆΣΡ‹ΠΏΣΡ-хэр 4.5 ΡˆΣΡ‹ΠΏΣΡ
ΡˆΣΡΠ½Ρ‹Π³ΡŠΡΠΌ ΡˆΣΡΠ½Ρ‹Π³ΡŠ-эм 4.5 ΡˆΣΡΠ½Ρ‹Π³ΡŠ
ΠΊΡŠΡ‹ΠΏΡ‹Ρ‰Ρ‹Π»ΡŠ ΠΊΡŠΡ‹-ΠΏΡ‹Ρ‰Ρ‹Π»ΡŠ 4.5 ΠΏΡ‹Ρ‰Ρ‹Π»ΡŠ
ΠΏΡΠ±Π»Π°Π³ΡŠΡΡƒ пэблагъ-эу 4.5 пэблагъ
ΠΈΡˆΡŠΡ…ΡŠΡΡ€ΡΠΌΡ€Ρ ΠΈΡˆΡŠΡ…ΡŠ-эр-эм-рэ 4.5 ΠΈΡˆΡŠΡ…ΡŠ

6.6 Linguistic Interpretation

Automated Insight: The language ADY appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 32k BPE Best compression (4.23x)
N-gram 2-gram Lowest perplexity (399)
Markov Context-4 Highest predictability (98.7%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 05:00:02

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/ady