Sparse Autoencoder (SAE) Model
This model is a Sparse Autoencoder trained for interpretability analysis of robotics policies using the LeRobot framework.
Model Details
- Architecture: Multi-modal Sparse Autoencoder
- Training Dataset:
[villekuosmanen/drop_footbag_into_dice_tower, villekuosmanen/drop_footbag_into_dice_tower_continuous, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.0.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.1.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.2.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.3.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.4.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.5.0, villekuosmanen/dAgger_drop_footbag_into_dice_tower_1.6.0, villekuosmanen/eval_footbag_11Sep] - Base Policy: LeRobot ACT policy
- Layer Target:
model.encoder.layers.3.norm2 - Tokens: 77
- Token Dimension: 128
- Feature Dimension: 12320
- Expansion Factor: 1.25
Training Configuration
- Learning Rate: 0.0001
- Batch Size: 16
- L1 Penalty: 0.3
- Epochs: 15
- Optimizer: adam
Usage
from physical_ai_interpretability.sae import load_sae_from_hub
# Load model from Hub
model = load_sae_from_hub("villekuosmanen/drop_footbag_into_dice_tower_ood_sae_success")
# Or load using builder
from physical_ai_interpretability.sae import SAEBuilder
builder = SAEBuilder(device='cuda')
model = builder.load_from_hub("villekuosmanen/drop_footbag_into_dice_tower_ood_sae_success")
Out-of-Distribution Detection
This SAE model can be used for OOD detection with LeRobot policies:
from physical_ai_interpretability.ood import OODDetector
# Create OOD detector with Hub-loaded SAE
ood_detector = OODDetector(
policy=your_policy,
sae_hub_repo_id="villekuosmanen/drop_footbag_into_dice_tower_ood_sae_success"
)
# Fit threshold and use for detection
ood_detector.fit_ood_threshold_to_validation_dataset(validation_dataset)
is_ood, error = ood_detector.is_out_of_distribution(observation)
Files
model.safetensors: The trained SAE model weightsconfig.json: Training and model configurationtraining_state.pt: Complete training state (optimizer, scheduler, metrics)ood_params.json: OOD detection parameters (if fitted)
## Framework
This model was trained using the [physical-ai-interpretability](https://github.com/your-repo/physical-ai-interpretability) framework with [LeRobot](https://github.com/huggingface/lerobot).
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support