RexReranker
Collection
6 items
•
Updated
This model was exported from checkpoint: rexbert-reranker-base/checkpoint-92220
import torch
from transformers import AutoTokenizer
from train_modernbert_reranker import ModernBERTReranker
# Load model and tokenizer
model_path = "rexreranker-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = ModernBERTReranker.from_pretrained(model_path)
model.eval()
# Example inference
query = "wireless bluetooth headphones"
document = "Title: Sony WH-1000XM5\nDescription: Premium wireless headphones with noise cancellation"
inputs = tokenizer(query, document, return_tensors="pt", truncation=True, max_length=2048)
with torch.no_grad():
outputs = model(**inputs)
score = outputs.logits.squeeze().item()
print(f"Relevance score: {score:.4f}")
The model expects query-document pairs formatted as:
Query: <query text>
[SEP]
Title: <title>
Description: <description>
This model was trained on the Amazebay reranker dataset with: