UniRig / app.py
MohamedRashad's picture
Refactor UI layout in create_app function for improved organization and clarity; update typing hints in Asset class for better type safety.
5269c48
raw
history blame
22.3 kB
import shutil
import subprocess
import time
import traceback
from pathlib import Path
from typing import Tuple
import gradio as gr
import lightning as L
import spaces
import torch
import yaml
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Get the PyTorch and CUDA versions
torch_version = torch.__version__.split("+")[0] # Strips any "+cuXXX" suffix
cuda_version = torch.version.cuda
spconv_version = "-cu121" if cuda_version else ""
# Format CUDA version to match the URL convention (e.g., "cu118" for CUDA 11.8)
if cuda_version:
cuda_version = f"cu{cuda_version.replace('.', '')}"
else:
cuda_version = "cpu" # Fallback in case CUDA is not available
subprocess.run(f'pip install spconv{spconv_version}', shell=True)
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)
class UniRigDemo:
"""Main class for the UniRig Gradio demo application."""
def __init__(self):
# Create temp directory in current directory instead of system temp
base_dir = Path(__file__).parent
self.temp_dir = base_dir / "tmp"
self.temp_dir.mkdir(exist_ok=True)
# Supported file formats
self.supported_formats = ['.obj', '.fbx', '.glb']
def validate_input_file(self, file_path: str) -> bool:
"""Validate if the input file format is supported."""
if not file_path or not Path(file_path).exists():
return False
file_ext = Path(file_path).suffix.lower()
return file_ext in self.supported_formats
def generate_skeleton(self, input_file: str, seed: int = 12345) -> Tuple[str, str, str]:
"""
OPERATION 1: Generate skeleton for the input 3D model using Python
Args:
input_file: Path to the input 3D model file
seed: Random seed for reproducible results
Returns:
Tuple of (status_message, output_file_path, preview_info)
"""
# Validate input
if not self.validate_input_file(input_file):
return "Error: Invalid or unsupported file format. Supported: " + ", ".join(self.supported_formats), "", ""
# Create working directory
file_stem = Path(input_file).stem
input_model_dir = self.temp_dir / f"{file_stem}_{seed}"
input_model_dir.mkdir(exist_ok=True)
# Copy input file to working directory
input_file = Path(input_file)
shutil.copy2(input_file, input_model_dir / input_file.name)
input_file = input_model_dir / input_file.name
print(f"New input file path: {input_file}")
# Generate skeleton using Python (replaces bash script)
output_file = input_model_dir / f"{file_stem}_skeleton.fbx"
self.run_skeleton_inference_python(input_file, output_file, seed)
if not output_file.exists():
return "Error: Skeleton file was not generated", "", ""
print(f"Generated skeleton at: {output_file}")
return str(output_file)
def merge_results(self, original_file: str, rigged_file: str, output_file) -> str:
"""
OPERATION 3: Merge the rigged skeleton/skin with the original model using Python functions.
Args:
original_file: Path to the original 3D model
rigged_file: Path to the rigged file (skeleton or skin)
Returns:
Tuple of (status_message, output_file_path, preview_info)
"""
if not original_file or not Path(original_file).exists():
return "Error: Original file not provided or doesn't exist", "", ""
if not rigged_file or not Path(rigged_file).exists():
return "Error: Rigged file not provided or doesn't exist", "", ""
# Create output file
work_dir = Path(rigged_file).parent
output_file = work_dir / f"{Path(original_file).stem}_rigged.glb"
# Run merge using Python function
try:
self.merge_results_python(rigged_file, original_file, str(output_file))
except Exception as e:
error_msg = f"Error: Merge failed: {str(e)}"
traceback.print_exc()
return error_msg, "", ""
# Validate that the output file exists and is a file (not a directory)
output_file_abs = output_file.resolve()
if not output_file_abs.exists():
return "Error: Merged file was not generated", "", ""
if not output_file_abs.is_file():
return f"Error: Output path is not a valid file: {output_file_abs}", "", ""
# Generate preview information
preview_info = self.generate_model_preview(str(output_file_abs))
return "βœ… Model rigging completed successfully!", str(output_file_abs), preview_info
@spaces.GPU()
def complete_pipeline(self, input_file: str, seed: int = 12345) -> Tuple[str, str, str, str, str]:
"""
Run the complete rigging pipeline: skeleton generation β†’ skinning β†’ merge.
Args:
input_file: Path to the input 3D model file
seed: Random seed for reproducible results
Returns:
Tuple of status messages and file paths for each step
"""
# Validate input file
if not self.validate_input_file(input_file):
raise gr.Error(f"Error: Invalid or unsupported file format. Supported formats: {', '.join(self.supported_formats)}")
# Create working directory
file_stem = Path(input_file).stem
input_model_dir = self.temp_dir / f"{file_stem}_{seed}"
input_model_dir.mkdir(exist_ok=True)
# Copy input file to working directory
input_file = Path(input_file)
shutil.copy2(input_file, input_model_dir / input_file.name)
input_file = input_model_dir / input_file.name
print(f"New input file path: {input_file}")
# Step 1: Generate skeleton
output_skeleton_file = input_model_dir / f"{file_stem}_skeleton.fbx"
self.run_skeleton_inference_python(input_file, output_skeleton_file, seed)
# Step 2: Generate skinning
output_skin_file = input_model_dir / f"{file_stem}_skin.fbx"
self.run_skin_inference_python(output_skeleton_file, output_skin_file)
# Step 3: Merge results
final_file = input_model_dir / f"{file_stem}_rigged.glb"
self.merge_results_python(output_skin_file, input_file, final_file)
return str(final_file)
def extract_mesh_python(self, input_file: str, output_dir: str) -> str:
"""
Extract mesh data from 3D model using Python (replaces extract.sh)
Returns path to generated .npz file
"""
# Import required modules
from src.data.extract import get_files, extract_builtin
# Create extraction parameters
files = get_files(
data_name="raw_data.npz",
inputs=str(input_file),
input_dataset_dir=None,
output_dataset_dir=output_dir,
force_override=True,
warning=False,
)
if not files:
raise RuntimeError("No files to extract")
# Run the actual extraction
timestamp = str(int(time.time()))
extract_builtin(
output_folder=output_dir,
target_count=50000,
num_runs=1,
id=0,
time=timestamp,
files=files,
)
# Return the directory path where raw_data.npz was created
# The dataset expects to find raw_data.npz in this directory
expected_npz_dir = files[0][1] # This is the output directory
expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
if not expected_npz_file.exists():
raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
return expected_npz_dir # Return the directory containing raw_data.npz
def run_skeleton_inference_python(self, input_file: str, output_file: str, seed: int = 12345) -> str:
"""
Run skeleton inference using Python (replaces skeleton part of generate_skeleton.sh)
Returns path to skeleton FBX file
"""
from box import Box
from src.data.datapath import Datapath
from src.data.dataset import DatasetConfig, UniRigDatasetModule
from src.data.transform import TransformConfig
from src.inference.download import download
from src.model.parse import get_model
from src.system.parse import get_system, get_writer
from src.tokenizer.parse import get_tokenizer
from src.tokenizer.spec import TokenizerConfig
# Set random seed
L.seed_everything(seed, workers=True)
# Load task configuration
task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
if not Path(task_config_path).exists():
raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
# Load the task configuration
with open(task_config_path, 'r') as f:
task = Box(yaml.safe_load(f))
# Create temporary npz directory
npz_dir = Path(output_file).parent / "npz"
npz_dir.mkdir(exist_ok=True)
# Extract mesh data
npz_data_dir = self.extract_mesh_python(input_file, npz_dir)
# Setup datapath with the directory containing raw_data.npz
datapath = Datapath(files=[npz_data_dir], cls=None)
# Load configurations
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
transform_config = Box(yaml.safe_load(open("configs/transform/inference_ar_transform.yaml", 'r')))
# Get tokenizer
tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open("configs/tokenizer/tokenizer_parts_articulationxl_256.yaml", 'r'))))
tokenizer = get_tokenizer(config=tokenizer_config)
# Get model
model_config = Box(yaml.safe_load(open("configs/model/unirig_ar_350m_1024_81920_float32.yaml", 'r')))
model = get_model(tokenizer=tokenizer, **model_config)
# Setup datasets and transforms
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
# Create data module
data = UniRigDatasetModule(
process_fn=model._process_fn,
predict_dataset_config=predict_dataset_config,
predict_transform_config=predict_transform_config,
tokenizer_config=tokenizer_config,
debug=False,
data_name="raw_data.npz",
datapath=datapath,
cls=None,
)
# Setup callbacks and writer
callbacks = []
writer_config = task.writer.copy()
writer_config['npz_dir'] = str(npz_dir)
writer_config['output_dir'] = str(Path(output_file).parent)
writer_config['output_name'] = Path(output_file).name
writer_config['user_mode'] = False # Set to False to enable NPZ export
print(f"Writer config: {writer_config}")
# But we want the FBX to go to our specified location when in user mode for FBX
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
# Get system
system_config = Box(yaml.safe_load(open("configs/system/ar_inference_articulationxl.yaml", 'r')))
system = get_system(**system_config, model=model, steps_per_epoch=1)
# Setup trainer
trainer_config = task.trainer
resume_from_checkpoint = download(task.resume_from_checkpoint)
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
# Run prediction
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
# The actual output file will be in a subdirectory named after the input file
# Look for the generated skeleton.fbx file
input_name_stem = Path(input_file).stem
actual_output_dir = Path(output_file).parent / input_name_stem
actual_output_file = actual_output_dir / "skeleton.fbx"
if not actual_output_file.exists():
# Try alternative locations - look for any skeleton.fbx file in the output directory
alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
if alt_files:
actual_output_file = alt_files[0]
print(f"Found skeleton at alternative location: {actual_output_file}")
else:
# List all files for debugging
all_files = list(Path(output_file).parent.rglob("*"))
print(f"Available files: {[str(f) for f in all_files]}")
raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
# Copy to the expected output location
if actual_output_file != Path(output_file):
shutil.copy2(actual_output_file, output_file)
print(f"Copied skeleton from {actual_output_file} to {output_file}")
print(f"Generated skeleton at: {output_file}")
return str(output_file)
def run_skin_inference_python(self, skeleton_file: str, output_file: str) -> str:
"""
Run skin inference using Python (replaces skin part of generate_skin.sh)
Returns path to skin FBX file
"""
from box import Box
from src.data.datapath import Datapath
from src.data.dataset import DatasetConfig, UniRigDatasetModule
from src.data.transform import TransformConfig
from src.inference.download import download
from src.model.parse import get_model
from src.system.parse import get_system, get_writer
# Load task configuration
task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
with open(task_config_path, 'r') as f:
task = Box(yaml.safe_load(f))
# Look for files matching predict_skeleton.npz pattern recursively
skeleton_work_dir = Path(skeleton_file).parent
all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
# Setup datapath - need to pass the directory containing the NPZ file
skeleton_npz_dir = all_npz_files[0].parent
datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
# Load configurations
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
transform_config = Box(yaml.safe_load(open("configs/transform/inference_skin_transform.yaml", 'r')))
# Get model
model_config = Box(yaml.safe_load(open("configs/model/unirig_skin.yaml", 'r')))
model = get_model(tokenizer=None, **model_config)
# Setup datasets and transforms
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
# Create data module
data = UniRigDatasetModule(
process_fn=model._process_fn,
predict_dataset_config=predict_dataset_config,
predict_transform_config=predict_transform_config,
tokenizer_config=None,
debug=False,
data_name="predict_skeleton.npz",
datapath=datapath,
cls=None,
)
# Setup callbacks and writer
callbacks = []
writer_config = task.writer.copy()
writer_config['npz_dir'] = str(skeleton_npz_dir)
writer_config['output_name'] = str(output_file)
writer_config['user_mode'] = True
writer_config['export_fbx'] = True # Enable FBX export
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
# Get system
system_config = Box(yaml.safe_load(open("configs/system/skin.yaml", 'r')))
system = get_system(**system_config, model=model, steps_per_epoch=1)
# Setup trainer
trainer_config = task.trainer
resume_from_checkpoint = download(task.resume_from_checkpoint)
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
# Run prediction
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
# The skin FBX file should be generated with the specified output name
# Since user_mode is True and export_fbx is True, it should create the file directly
if not Path(output_file).exists():
# Look for generated skin FBX files in the output directory
skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
if skin_files:
actual_output_file = skin_files[0]
# Copy/move to the expected location
shutil.copy2(actual_output_file, output_file)
else:
raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
return str(output_file)
def merge_results_python(self, source_file: str, target_file: str, output_file: str) -> str:
"""
Merge results using Python (replaces merge.sh)
Returns path to merged file
"""
from src.inference.merge import transfer
# Validate input paths
if not Path(source_file).exists():
raise ValueError(f"Source file does not exist: {source_file}")
if not Path(target_file).exists():
raise ValueError(f"Target file does not exist: {target_file}")
# Ensure output directory exists
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Use the transfer function directly
transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
# Validate that the output file was created and is a valid file
if not output_path.exists():
raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
if not output_path.is_file():
raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
return str(output_path.resolve())
def create_app():
"""Create and configure the Gradio interface."""
demo_instance = UniRigDemo()
with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
# Header
gr.HTML("""
<div class="title" style="text-align: center">
<h1>🎯 UniRig: Automated 3D Model Rigging</h1>
<p style="font-size: 1.1em; color: #6b7280;">
Leverage deep learning to automatically generate skeletons and skinning weights for your 3D models
</p>
</div>
""")
# Information Section
gr.HTML("""
<h3>πŸ“š About UniRig</h3>
<p>UniRig is a state-of-the-art framework that automates the complex process of 3D model rigging:</p>
<ul>
<li><strong>Skeleton Generation:</strong> AI predicts optimal bone structures</li>
<li><strong>Skinning Weights:</strong> Automatic vertex-to-bone weight assignment</li>
<li><strong>Universal Support:</strong> Works with humans, animals, and objects</li>
</ul>
<p><strong>Supported formats:</strong> .obj, .fbx, .glb</p>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_3d_model = gr.File(
label="Upload 3D Model",
file_types=[".obj", ".fbx", ".glb"],
type="filepath",
)
with gr.Row(equal_height=True):
seed = gr.Number(
value=12345,
label="Random Seed (for reproducible results)",
scale=4,
)
random_btn = gr.Button("πŸ”„ Random Seed", variant="secondary", scale=1)
pipeline_btn = gr.Button("🎯 Start Complete Pipeline", variant="primary", size="lg")
with gr.Column(scale=1):
pipeline_skeleton_out = gr.File(label="Final Rigged Model")
random_btn.click(
fn=lambda: int(torch.randint(0, 100000, (1,)).item()),
outputs=seed
)
pipeline_btn.click(
fn=demo_instance.complete_pipeline,
inputs=[input_3d_model, seed],
outputs=[pipeline_skeleton_out]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2em; padding: 1em; border-radius: 8px;">
<p style="color: #6b7280;">
πŸ”¬ <strong>UniRig</strong> - Research by Tsinghua University & Tripo<br>
πŸ“„ <a href="https://arxiv.org/abs/2504.12451" target="_blank">Paper</a> |
🏠 <a href="https://zjp-shadow.github.io/works/UniRig/" target="_blank">Project Page</a> |
πŸ€— <a href="https://huggingface.co/VAST-AI/UniRig" target="_blank">Models</a>
</p>
</div>
""")
return interface
if __name__ == "__main__":
# Create and launch the interface
app = create_app()
# Launch configuration
app.queue().launch()