File size: 22,291 Bytes
11b119e
 
1889706
a252b0c
11b119e
1889706
 
 
 
11b119e
c499701
1889706
a252b0c
11b119e
a252b0c
1889706
c499701
 
 
1889706
c499701
 
 
 
 
 
 
 
 
 
 
a252b0c
11b119e
 
2eac11a
11b119e
1889706
 
 
 
11b119e
 
1889706
11b119e
 
 
1889706
11b119e
 
 
 
 
 
 
c499701
2eac11a
11b119e
 
 
 
 
 
 
c499701
 
 
 
 
1889706
 
 
 
 
 
 
 
 
c499701
 
1889706
c499701
1889706
 
 
c499701
 
1889706
 
45481b3
1889706
11b119e
c499701
11b119e
 
 
 
 
 
 
 
1889706
c499701
 
1889706
c499701
 
 
 
1889706
c499701
 
11b119e
1889706
11b119e
c499701
11b119e
 
c499701
1889706
 
 
c499701
 
1889706
 
c499701
1889706
 
11b119e
1889706
 
4b7cf01
11b119e
 
 
 
 
 
 
 
 
 
 
1889706
 
 
 
 
 
 
 
a252b0c
1889706
 
 
 
 
 
 
 
 
a252b0c
1889706
 
 
 
 
 
 
 
 
 
c499701
 
 
 
 
 
1889706
c499701
 
 
 
1889706
c499701
 
 
 
 
 
1889706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c499701
1889706
 
 
 
c499701
 
 
 
 
 
 
1889706
c499701
1889706
c499701
1889706
c499701
 
1889706
 
c499701
 
 
 
 
 
1889706
 
 
 
c499701
 
 
 
1889706
 
c499701
 
1889706
c499701
1889706
 
c499701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
 
 
 
 
 
c499701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c499701
 
 
 
 
 
 
1889706
c499701
1889706
c499701
1889706
c499701
 
 
 
 
 
 
1889706
 
 
 
c499701
1889706
 
 
c499701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
 
c499701
1889706
c499701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
 
 
 
 
 
 
 
 
 
 
 
 
c499701
 
 
 
 
 
 
 
1889706
 
 
 
 
 
 
 
 
 
c499701
1889706
 
 
 
 
c499701
1889706
 
 
 
c499701
 
 
11b119e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
11b119e
 
1889706
 
 
 
 
 
11b119e
 
1889706
 
 
 
 
 
 
5269c48
1889706
 
5269c48
 
1889706
 
 
 
 
 
 
 
 
 
 
11b119e
 
 
 
 
 
 
 
 
 
 
 
 
 
a252b0c
c499701
11b119e
c499701
11b119e
 
c499701
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import shutil
import subprocess
import time
import traceback
from pathlib import Path
from typing import Tuple

import gradio as gr
import lightning as L
import spaces
import torch
import yaml

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


# Get the PyTorch and CUDA versions
torch_version = torch.__version__.split("+")[0]  # Strips any "+cuXXX" suffix
cuda_version = torch.version.cuda
spconv_version = "-cu121" if cuda_version else "" 

# Format CUDA version to match the URL convention (e.g., "cu118" for CUDA 11.8)
if cuda_version:
    cuda_version = f"cu{cuda_version.replace('.', '')}"
else:
    cuda_version = "cpu"  # Fallback in case CUDA is not available


subprocess.run(f'pip install spconv{spconv_version}', shell=True)
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)


class UniRigDemo:
    """Main class for the UniRig Gradio demo application."""
    
    def __init__(self):
        # Create temp directory in current directory instead of system temp
        base_dir = Path(__file__).parent
        self.temp_dir = base_dir / "tmp"
        self.temp_dir.mkdir(exist_ok=True)
        
        # Supported file formats
        self.supported_formats = ['.obj', '.fbx', '.glb']
        
    def validate_input_file(self, file_path: str) -> bool:
        """Validate if the input file format is supported."""
        if not file_path or not Path(file_path).exists():
            return False
        
        file_ext = Path(file_path).suffix.lower()
        return file_ext in self.supported_formats
    
    def generate_skeleton(self, input_file: str, seed: int = 12345) -> Tuple[str, str, str]:
        """
        OPERATION 1: Generate skeleton for the input 3D model using Python
        
        Args:
            input_file: Path to the input 3D model file
            seed: Random seed for reproducible results
            
        Returns:
            Tuple of (status_message, output_file_path, preview_info)
        """
        # Validate input
        if not self.validate_input_file(input_file):
            return "Error: Invalid or unsupported file format. Supported: " + ", ".join(self.supported_formats), "", ""
        
        # Create working directory
        file_stem = Path(input_file).stem
        input_model_dir = self.temp_dir / f"{file_stem}_{seed}"
        input_model_dir.mkdir(exist_ok=True)

        # Copy input file to working directory
        input_file = Path(input_file)
        shutil.copy2(input_file, input_model_dir / input_file.name)
        input_file = input_model_dir / input_file.name
        print(f"New input file path: {input_file}")
        
        # Generate skeleton using Python (replaces bash script)
        output_file = input_model_dir / f"{file_stem}_skeleton.fbx"
        
        self.run_skeleton_inference_python(input_file, output_file, seed)

        if not output_file.exists():
            return "Error: Skeleton file was not generated", "", ""
        
        print(f"Generated skeleton at: {output_file}")
        return str(output_file)

    def merge_results(self, original_file: str, rigged_file: str, output_file) -> str:
        """
        OPERATION 3: Merge the rigged skeleton/skin with the original model using Python functions.
        
        Args:
            original_file: Path to the original 3D model
            rigged_file: Path to the rigged file (skeleton or skin)
            
        Returns:
            Tuple of (status_message, output_file_path, preview_info)
        """
        if not original_file or not Path(original_file).exists():
            return "Error: Original file not provided or doesn't exist", "", ""
        
        if not rigged_file or not Path(rigged_file).exists():
            return "Error: Rigged file not provided or doesn't exist", "", ""
        
        # Create output file
        work_dir = Path(rigged_file).parent
        output_file = work_dir / f"{Path(original_file).stem}_rigged.glb"
        
        # Run merge using Python function
        try:
            self.merge_results_python(rigged_file, original_file, str(output_file))
        except Exception as e:
            error_msg = f"Error: Merge failed: {str(e)}"
            traceback.print_exc()
            return error_msg, "", ""
        
        # Validate that the output file exists and is a file (not a directory)
        output_file_abs = output_file.resolve()
        if not output_file_abs.exists():
            return "Error: Merged file was not generated", "", ""
        
        if not output_file_abs.is_file():
            return f"Error: Output path is not a valid file: {output_file_abs}", "", ""
        
        # Generate preview information
        preview_info = self.generate_model_preview(str(output_file_abs))
        
        return "βœ… Model rigging completed successfully!", str(output_file_abs), preview_info

    @spaces.GPU()
    def complete_pipeline(self, input_file: str, seed: int = 12345) -> Tuple[str, str, str, str, str]:
        """
        Run the complete rigging pipeline: skeleton generation β†’ skinning β†’ merge.
        
        Args:
            input_file: Path to the input 3D model file
            seed: Random seed for reproducible results
            
        Returns:
            Tuple of status messages and file paths for each step
        """
        # Validate input file
        if not self.validate_input_file(input_file):
            raise gr.Error(f"Error: Invalid or unsupported file format. Supported formats: {', '.join(self.supported_formats)}")
        
        # Create working directory
        file_stem = Path(input_file).stem
        input_model_dir = self.temp_dir / f"{file_stem}_{seed}"
        input_model_dir.mkdir(exist_ok=True)

        # Copy input file to working directory
        input_file = Path(input_file)
        shutil.copy2(input_file, input_model_dir / input_file.name)
        input_file = input_model_dir / input_file.name
        print(f"New input file path: {input_file}")
        
        # Step 1: Generate skeleton        
        output_skeleton_file = input_model_dir / f"{file_stem}_skeleton.fbx"
        self.run_skeleton_inference_python(input_file, output_skeleton_file, seed)        

        # Step 2: Generate skinning
        output_skin_file = input_model_dir / f"{file_stem}_skin.fbx"
        self.run_skin_inference_python(output_skeleton_file, output_skin_file)
        
        # Step 3: Merge results
        final_file = input_model_dir / f"{file_stem}_rigged.glb"
        self.merge_results_python(output_skin_file, input_file, final_file)

        return str(final_file)
        
    def extract_mesh_python(self, input_file: str, output_dir: str) -> str:
        """
        Extract mesh data from 3D model using Python (replaces extract.sh)
        Returns path to generated .npz file
        """
        # Import required modules
        from src.data.extract import get_files, extract_builtin
        
        # Create extraction parameters
        files = get_files(
            data_name="raw_data.npz",
            inputs=str(input_file),
            input_dataset_dir=None,
            output_dataset_dir=output_dir,
            force_override=True,
            warning=False,
        )
        
        if not files:
            raise RuntimeError("No files to extract")
        
        # Run the actual extraction
        timestamp = str(int(time.time()))
        extract_builtin(
            output_folder=output_dir,
            target_count=50000,
            num_runs=1,
            id=0,
            time=timestamp,
            files=files,
        )
        
        # Return the directory path where raw_data.npz was created
        # The dataset expects to find raw_data.npz in this directory
        expected_npz_dir = files[0][1]  # This is the output directory
        expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
        
        if not expected_npz_file.exists():
            raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
        
        return expected_npz_dir  # Return the directory containing raw_data.npz
    
    def run_skeleton_inference_python(self, input_file: str, output_file: str, seed: int = 12345) -> str:
        """
        Run skeleton inference using Python (replaces skeleton part of generate_skeleton.sh)
        Returns path to skeleton FBX file
        """
        from box import Box

        from src.data.datapath import Datapath
        from src.data.dataset import DatasetConfig, UniRigDatasetModule
        from src.data.transform import TransformConfig
        from src.inference.download import download
        from src.model.parse import get_model
        from src.system.parse import get_system, get_writer
        from src.tokenizer.parse import get_tokenizer
        from src.tokenizer.spec import TokenizerConfig
        
        # Set random seed
        L.seed_everything(seed, workers=True)
        
        # Load task configuration
        task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
        if not Path(task_config_path).exists():
            raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
        
        # Load the task configuration
        with open(task_config_path, 'r') as f:
            task = Box(yaml.safe_load(f))
        
        # Create temporary npz directory
        npz_dir = Path(output_file).parent / "npz"
        npz_dir.mkdir(exist_ok=True)
        
        # Extract mesh data
        npz_data_dir = self.extract_mesh_python(input_file, npz_dir)
        
        # Setup datapath with the directory containing raw_data.npz
        datapath = Datapath(files=[npz_data_dir], cls=None)
        
        # Load configurations
        data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
        transform_config = Box(yaml.safe_load(open("configs/transform/inference_ar_transform.yaml", 'r')))
        
        # Get tokenizer
        tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open("configs/tokenizer/tokenizer_parts_articulationxl_256.yaml", 'r'))))
        tokenizer = get_tokenizer(config=tokenizer_config)
        
        # Get model
        model_config = Box(yaml.safe_load(open("configs/model/unirig_ar_350m_1024_81920_float32.yaml", 'r')))
        model = get_model(tokenizer=tokenizer, **model_config)
        
        # Setup datasets and transforms
        predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
        predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
        
        # Create data module
        data = UniRigDatasetModule(
            process_fn=model._process_fn,
            predict_dataset_config=predict_dataset_config,
            predict_transform_config=predict_transform_config,
            tokenizer_config=tokenizer_config,
            debug=False,
            data_name="raw_data.npz",
            datapath=datapath,
            cls=None,
        )
        
        # Setup callbacks and writer
        callbacks = []
        writer_config = task.writer.copy()
        writer_config['npz_dir'] = str(npz_dir)
        writer_config['output_dir'] = str(Path(output_file).parent)
        writer_config['output_name'] = Path(output_file).name
        writer_config['user_mode'] = False  # Set to False to enable NPZ export
        print(f"Writer config: {writer_config}")
        # But we want the FBX to go to our specified location when in user mode for FBX
        callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
        
        # Get system
        system_config = Box(yaml.safe_load(open("configs/system/ar_inference_articulationxl.yaml", 'r')))
        system = get_system(**system_config, model=model, steps_per_epoch=1)
        
        # Setup trainer
        trainer_config = task.trainer
        resume_from_checkpoint = download(task.resume_from_checkpoint)
        
        trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
        
        # Run prediction
        trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
        
        # The actual output file will be in a subdirectory named after the input file
        # Look for the generated skeleton.fbx file
        input_name_stem = Path(input_file).stem
        actual_output_dir = Path(output_file).parent / input_name_stem
        actual_output_file = actual_output_dir / "skeleton.fbx"
        
        if not actual_output_file.exists():
            # Try alternative locations - look for any skeleton.fbx file in the output directory
            alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
            if alt_files:
                actual_output_file = alt_files[0]
                print(f"Found skeleton at alternative location: {actual_output_file}")
            else:
                # List all files for debugging
                all_files = list(Path(output_file).parent.rglob("*"))
                print(f"Available files: {[str(f) for f in all_files]}")
                raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
        
        # Copy to the expected output location
        if actual_output_file != Path(output_file):
            shutil.copy2(actual_output_file, output_file)
            print(f"Copied skeleton from {actual_output_file} to {output_file}")
        
        print(f"Generated skeleton at: {output_file}")
        return str(output_file)
    
    def run_skin_inference_python(self, skeleton_file: str, output_file: str) -> str:
        """
        Run skin inference using Python (replaces skin part of generate_skin.sh)
        Returns path to skin FBX file
        """
        from box import Box

        from src.data.datapath import Datapath
        from src.data.dataset import DatasetConfig, UniRigDatasetModule
        from src.data.transform import TransformConfig
        from src.inference.download import download
        from src.model.parse import get_model
        from src.system.parse import get_system, get_writer
        
        # Load task configuration
        task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
        with open(task_config_path, 'r') as f:
            task = Box(yaml.safe_load(f))
                
        # Look for files matching predict_skeleton.npz pattern recursively
        skeleton_work_dir = Path(skeleton_file).parent
        all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
        
        # Setup datapath - need to pass the directory containing the NPZ file
        skeleton_npz_dir = all_npz_files[0].parent
        datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
        
        # Load configurations
        data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
        transform_config = Box(yaml.safe_load(open("configs/transform/inference_skin_transform.yaml", 'r')))
        
        # Get model
        model_config = Box(yaml.safe_load(open("configs/model/unirig_skin.yaml", 'r')))
        model = get_model(tokenizer=None, **model_config)
        
        # Setup datasets and transforms
        predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
        predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
        
        # Create data module
        data = UniRigDatasetModule(
            process_fn=model._process_fn,
            predict_dataset_config=predict_dataset_config,
            predict_transform_config=predict_transform_config,
            tokenizer_config=None,
            debug=False,
            data_name="predict_skeleton.npz",
            datapath=datapath,
            cls=None,
        )
        
        # Setup callbacks and writer
        callbacks = []
        writer_config = task.writer.copy()
        writer_config['npz_dir'] = str(skeleton_npz_dir)
        writer_config['output_name'] = str(output_file)
        writer_config['user_mode'] = True
        writer_config['export_fbx'] = True  # Enable FBX export
        callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
        
        # Get system
        system_config = Box(yaml.safe_load(open("configs/system/skin.yaml", 'r')))
        system = get_system(**system_config, model=model, steps_per_epoch=1)
        
        # Setup trainer
        trainer_config = task.trainer
        resume_from_checkpoint = download(task.resume_from_checkpoint)
        
        trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
        
        # Run prediction
        trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
        
        # The skin FBX file should be generated with the specified output name
        # Since user_mode is True and export_fbx is True, it should create the file directly
        if not Path(output_file).exists():
            # Look for generated skin FBX files in the output directory
            skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
            if skin_files:
                actual_output_file = skin_files[0]
                # Copy/move to the expected location
                shutil.copy2(actual_output_file, output_file)
            else:
                raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
        
        return str(output_file)
    
    def merge_results_python(self, source_file: str, target_file: str, output_file: str) -> str:
        """
        Merge results using Python (replaces merge.sh)
        Returns path to merged file
        """
        from src.inference.merge import transfer
        
        # Validate input paths
        if not Path(source_file).exists():
            raise ValueError(f"Source file does not exist: {source_file}")
        if not Path(target_file).exists():
            raise ValueError(f"Target file does not exist: {target_file}")
        
        # Ensure output directory exists
        output_path = Path(output_file)
        output_path.parent.mkdir(parents=True, exist_ok=True)
        
        # Use the transfer function directly
        transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
        
        # Validate that the output file was created and is a valid file
        if not output_path.exists():
            raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
        
        if not output_path.is_file():
            raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
        
        return str(output_path.resolve())


def create_app():
    """Create and configure the Gradio interface."""
    
    demo_instance = UniRigDemo()
    
    with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
        
        # Header
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>🎯 UniRig: Automated 3D Model Rigging</h1>
            <p style="font-size: 1.1em; color: #6b7280;">
                Leverage deep learning to automatically generate skeletons and skinning weights for your 3D models
            </p>
        </div>
        """)
        
        # Information Section
        gr.HTML("""
        <h3>πŸ“š About UniRig</h3>
        <p>UniRig is a state-of-the-art framework that automates the complex process of 3D model rigging:</p>
        <ul>
            <li><strong>Skeleton Generation:</strong> AI predicts optimal bone structures</li>
            <li><strong>Skinning Weights:</strong> Automatic vertex-to-bone weight assignment</li>
            <li><strong>Universal Support:</strong> Works with humans, animals, and objects</li>
        </ul>
        <p><strong>Supported formats:</strong> .obj, .fbx, .glb</p>
        """)
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_3d_model = gr.File(
                    label="Upload 3D Model",
                    file_types=[".obj", ".fbx", ".glb"],
                    type="filepath",
                )
                
                with gr.Row(equal_height=True):
                    seed = gr.Number(
                        value=12345,
                        label="Random Seed (for reproducible results)",
                        scale=4,
                    )
                    random_btn = gr.Button("πŸ”„ Random Seed", variant="secondary", scale=1)
                
                pipeline_btn = gr.Button("🎯 Start Complete Pipeline", variant="primary", size="lg")
            
            with gr.Column(scale=1):
                pipeline_skeleton_out = gr.File(label="Final Rigged Model")
        
        random_btn.click(
            fn=lambda: int(torch.randint(0, 100000, (1,)).item()),
            outputs=seed
        )
        
        pipeline_btn.click(
            fn=demo_instance.complete_pipeline,
            inputs=[input_3d_model, seed],
            outputs=[pipeline_skeleton_out]
        )
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 2em; padding: 1em; border-radius: 8px;">
            <p style="color: #6b7280;">
                πŸ”¬ <strong>UniRig</strong> - Research by Tsinghua University & Tripo<br>
                πŸ“„ <a href="https://arxiv.org/abs/2504.12451" target="_blank">Paper</a> | 
                🏠 <a href="https://zjp-shadow.github.io/works/UniRig/" target="_blank">Project Page</a> | 
                πŸ€— <a href="https://huggingface.co/VAST-AI/UniRig" target="_blank">Models</a>
            </p>
        </div>
        """)
    
    return interface

if __name__ == "__main__":
    # Create and launch the interface
    app = create_app()
    
    # Launch configuration
    app.queue().launch()