metadata
library_name: transformers
tags: []
Hymba2-2.7B-Instruct
Hymba2 is a new hybrid SLM model family that outperforms Qwen models in accuracy (math, coding, and commonsense), batch-size-1 latency, and throughput. More details are in our NeurIPS 2025 paper.
Docker path: /lustre/fsw/portfolios/nvr/users/yongganf/docker/megatron_py25_fla.sqsh on ORD/NRT or /lustre/fsw/nvr_lpr_llm/yongganf/docker/megatron_py25_fla.sqsh on EOS.
Chat with Hymba2-2.7B-Instruct
We wrap the model into CUDA Graph for fast generation:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo_name = "nvidia/Hymba2-2.7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
model = model.cuda().to(torch.bfloat16)
max_new_tokens = 256
print('Initializing generation state...')
generation_state = model.init_cuda_graph_generation(
max_new_tokens=max_new_tokens,
batch_size=1,
device='cuda',
)
while True:
prompt = input("User:")
if prompt.lower() == "exit":
break
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
print(f"Generating with CUDA graph acceleration...")
outputs = model.generate_with_cuda_graph(
input_ids=inputs["input_ids"],
generation_state=generation_state,
max_new_tokens=max_new_tokens,
temperature=0,
top_k=50,
eos_token_id=tokenizer.eos_token_id,
profiling=False,
)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(f"Response: {response}")