SentenceTransformer based on intfloat/multilingual-e5-large-instruct

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-large-instruct
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/E5_v3_instruct_topic")
# Run inference
sentences = [
    'task: sentence similarity | query: tập hợp 500 tờ giấy hay 20 thếp giấy, làm thành đơn vị để tính số lượng giấy',
    'in hết hai ram giấy',
    'Tổ chức toàn cầu',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.8042, -0.0971],
#         [ 0.8042,  1.0000, -0.1152],
#         [-0.0971, -0.1152,  1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.162
cosine_accuracy@2 0.2119
cosine_accuracy@5 0.2903
cosine_accuracy@10 0.3639
cosine_accuracy@100 0.754
cosine_precision@1 0.162
cosine_precision@2 0.106
cosine_precision@5 0.0581
cosine_precision@10 0.0364
cosine_precision@100 0.0075
cosine_recall@1 0.162
cosine_recall@2 0.2119
cosine_recall@5 0.2903
cosine_recall@10 0.3639
cosine_recall@100 0.754
cosine_ndcg@10 0.2521
cosine_mrr@1 0.162
cosine_mrr@2 0.187
cosine_mrr@5 0.2079
cosine_mrr@10 0.2177
cosine_mrr@100 0.2312
cosine_map@100 0.2312

Training Details

Training Dataset

Unnamed Dataset

  • Size: 97,975 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 14 tokens
    • mean: 134.34 tokens
    • max: 290 tokens
    • min: 3 tokens
    • mean: 8.03 tokens
    • max: 41 tokens
  • Samples:
    anchor positive
    task: sentence similarity | query: luống trồng mấy liếp rau
    task: sentence similarity | query: không còn có quan hệ tình cảm và tình dục, do bất hoà vợ chồng sống li thân
    task: sentence similarity | query: đánh bật khỏi một vị trí, một địa vị nào đó để chiếm lấy Nhật hất cẳng Pháp ở chiến trường Đông Dương
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 10,887 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 13 tokens
    • mean: 126.94 tokens
    • max: 281 tokens
    • min: 3 tokens
    • mean: 7.72 tokens
    • max: 35 tokens
  • Samples:
    anchor positive
    task: sentence similarity | query: dải phù sa ở dọc sông hay cửa sông doi cát
    task: classification | query: Theo hãng phân tích JP Morgan, Apple khả năng kỳ vọng Phố Wall quý 2, bất chấp vấn đề chuỗi cung ứng biến động kinh tế vĩ mô. Cụ thể, ghi gửi đầu tư, phân tích Samik Chatterjee JP Morgan hay, "không lo lắng Phố Wall" báo cáo doanh thu Apple – dự kiến công bố 28/7. Mặc rủi ro trung hạn, hy vọng doanh thu doanh iPhone mẽ. iPhone 13 Series "đắt hàng". Nhà phân tích định, chuỗi cung ứng cải thiện yếu kém nhu cầu dự đoán, Apple doanh thu 4 - 8 tỷ USD 3 (tháng 4 – 6). Phố Wall dự kiến, "Nhà Táo" báo cáo doanh thu 82 tỷ USD quý 2, tương đương kỳ vọng 82,1 tỷ USD Chatterjee. Thêm nữa, phân tích hay, phân khúc sản phẩm Mac thể ảnh hưởng cung cấp. Mặt khác, quý nhất, Chatterjee doanh thu dự kiến khiêm tốn. Ông tốc độ trưởng Mac iPad khả năng chi tiêu tiêu xuống. iPhone 11 giá Việt Nam. Sức khỏe - Đời sống
    task: classification | query: Khó thống nhất việc hiệp thương giá bán than

    Cuộc họp do Bộ Tài chính chủ trì với sự tham gia của Bộ Công nghiệp, Tổng công ty Than Việt Nam (TVN) cuối tuần qua đã đi đến kết luận TVN sẽ tiến hành hiệp thương về giá với các đơn vị tiêu thụ lớn trong vòng 15 ngày tới.

    Trong trường hợp hai bên mua bán không hiệp thương được thì cơ quan hữu trách sẽ có những biện pháp giải quyết. Trước đó, các cơ quan hữu trách đã yêu cầu TVN trong thời gian hiệp thương về giá vẫn phải đảm bảo cung cấp đủ than cho các hộ tiêu thụ lớn với mức giá tạm tính theo giá của quý IV năm nay.

    Bình luận về việc hiệp thương giá giữa TVN và các hộ tiêu thụ lớn, các chuyên gia cho rằng khó có thể đi đến kết quả thống nhất bởi quyền lợi mỗi bên rất khác nhau.
    Kinh doanh
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss cosine_ndcg@10
0.0041 100 0.8086 - -
0.0082 200 0.634 - -
0.0122 300 0.384 - -
0.0163 400 0.2215 - -
0.0204 500 0.2331 - -
0.0245 600 0.1441 - -
0.0286 700 0.1713 - -
0.0327 800 0.1093 - -
0.0367 900 0.1514 - -
0.0408 1000 0.137 - -
0.0449 1100 0.1053 - -
0.0490 1200 0.1869 - -
0.0531 1300 0.1046 - -
0.0572 1400 0.1653 - -
0.0612 1500 0.1365 - -
0.0653 1600 0.176 - -
0.0694 1700 0.1587 - -
0.0735 1800 0.107 - -
0.0776 1900 0.1624 - -
0.0817 2000 0.1153 - -
0.0857 2100 0.0807 - -
0.0898 2200 0.1341 - -
0.0939 2300 0.1293 - -
0.0980 2400 0.1682 - -
0.1021 2500 0.1393 - -
0.1061 2600 0.0938 - -
0.1102 2700 0.0809 - -
0.1143 2800 0.1414 - -
0.1184 2900 0.0914 - -
0.1225 3000 0.1292 - -
0.1266 3100 0.1326 - -
0.1306 3200 0.1346 - -
0.1347 3300 0.1204 - -
0.1388 3400 0.1715 - -
0.1429 3500 0.0749 - -
0.1470 3600 0.1159 - -
0.1511 3700 0.1199 - -
0.1551 3800 0.0963 - -
0.1592 3900 0.0933 - -
0.1633 4000 0.0748 - -
0.1674 4100 0.1901 - -
0.1715 4200 0.1454 - -
0.1756 4300 0.083 - -
0.1796 4400 0.1796 - -
0.1837 4500 0.0992 - -
0.1878 4600 0.1476 - -
0.1919 4700 0.1276 - -
0.1960 4800 0.1516 - -
0.2000 4900 0.1725 - -
0.2041 5000 0.1894 - -
0.2082 5100 0.055 - -
0.2123 5200 0.1373 - -
0.2164 5300 0.0768 - -
0.2205 5400 0.0781 - -
0.2245 5500 0.1315 - -
0.2286 5600 0.1501 - -
0.2327 5700 0.1596 - -
0.2368 5800 0.1418 - -
0.2409 5900 0.2087 - -
0.2450 6000 0.1066 - -
0.2490 6100 0.1905 - -
0.2531 6200 0.1913 - -
0.2572 6300 0.1176 - -
0.2613 6400 0.0991 - -
0.2654 6500 0.0753 - -
0.2695 6600 0.1405 - -
0.2735 6700 0.2123 - -
0.2776 6800 0.1311 - -
0.2817 6900 0.1173 - -
0.2858 7000 0.1801 - -
0.2899 7100 0.2224 - -
0.2939 7200 0.1592 - -
0.2980 7300 0.1467 - -
0.3021 7400 0.1743 - -
0.3062 7500 0.1822 - -
0.3103 7600 0.2163 - -
0.3144 7700 0.242 - -
0.3184 7800 0.1227 - -
0.3225 7900 0.1577 - -
0.3266 8000 0.1528 - -
0.3307 8100 0.1352 - -
0.3348 8200 0.1447 - -
0.3389 8300 0.1673 - -
0.3429 8400 0.13 - -
0.3470 8500 0.137 - -
0.3511 8600 0.2145 - -
0.3552 8700 0.1964 - -
0.3593 8800 0.1278 - -
0.3634 8900 0.1467 - -
0.3674 9000 0.2462 - -
0.3715 9100 0.1452 - -
0.3756 9200 0.1748 - -
0.3797 9300 0.2234 - -
0.3838 9400 0.0991 - -
0.3879 9500 0.091 - -
0.3919 9600 0.067 - -
0.3960 9700 0.2475 - -
0.4001 9800 0.2083 - -
0.4042 9900 0.1617 - -
0.4083 10000 0.2144 0.1217 0.1954
0.4123 10100 0.1944 - -
0.4164 10200 0.2178 - -
0.4205 10300 0.137 - -
0.4246 10400 0.1847 - -
0.4287 10500 0.1123 - -
0.4328 10600 0.1133 - -
0.4368 10700 0.1968 - -
0.4409 10800 0.1281 - -
0.4450 10900 0.118 - -
0.4491 11000 0.1245 - -
0.4532 11100 0.145 - -
0.4573 11200 0.2029 - -
0.4613 11300 0.0952 - -
0.4654 11400 0.0998 - -
0.4695 11500 0.1336 - -
0.4736 11600 0.0828 - -
0.4777 11700 0.1727 - -
0.4818 11800 0.1549 - -
0.4858 11900 0.1687 - -
0.4899 12000 0.1231 - -
0.4940 12100 0.1485 - -
0.4981 12200 0.1387 - -
0.5022 12300 0.1272 - -
0.5062 12400 0.1073 - -
0.5103 12500 0.1157 - -
0.5144 12600 0.1419 - -
0.5185 12700 0.1449 - -
0.5226 12800 0.1537 - -
0.5267 12900 0.1398 - -
0.5307 13000 0.2289 - -
0.5348 13100 0.1949 - -
0.5389 13200 0.1291 - -
0.5430 13300 0.1461 - -
0.5471 13400 0.1095 - -
0.5512 13500 0.1744 - -
0.5552 13600 0.102 - -
0.5593 13700 0.1321 - -
0.5634 13800 0.216 - -
0.5675 13900 0.16 - -
0.5716 14000 0.1249 - -
0.5757 14100 0.1204 - -
0.5797 14200 0.2567 - -
0.5838 14300 0.1651 - -
0.5879 14400 0.1719 - -
0.5920 14500 0.0986 - -
0.5961 14600 0.1748 - -
0.6001 14700 0.1206 - -
0.6042 14800 0.055 - -
0.6083 14900 0.0976 - -
0.6124 15000 0.1733 - -
0.6165 15100 0.0655 - -
0.6206 15200 0.0831 - -
0.6246 15300 0.1799 - -
0.6287 15400 0.1579 - -
0.6328 15500 0.1342 - -
0.6369 15600 0.1398 - -
0.6410 15700 0.1391 - -
0.6451 15800 0.0943 - -
0.6491 15900 0.1103 - -
0.6532 16000 0.2546 - -
0.6573 16100 0.1479 - -
0.6614 16200 0.2913 - -
0.6655 16300 0.1974 - -
0.6696 16400 0.1827 - -
0.6736 16500 0.167 - -
0.6777 16600 0.1555 - -
0.6818 16700 0.163 - -
0.6859 16800 0.1291 - -
0.6900 16900 0.1903 - -
0.6940 17000 0.163 - -
0.6981 17100 0.15 - -
0.7022 17200 0.1153 - -
0.7063 17300 0.1333 - -
0.7104 17400 0.1228 - -
0.7145 17500 0.1387 - -
0.7185 17600 0.1689 - -
0.7226 17700 0.1073 - -
0.7267 17800 0.1984 - -
0.7308 17900 0.08 - -
0.7349 18000 0.2067 - -
0.7390 18100 0.201 - -
0.7430 18200 0.1861 - -
0.7471 18300 0.1046 - -
0.7512 18400 0.1834 - -
0.7553 18500 0.1149 - -
0.7594 18600 0.1612 - -
0.7635 18700 0.1294 - -
0.7675 18800 0.1522 - -
0.7716 18900 0.1033 - -
0.7757 19000 0.1242 - -
0.7798 19100 0.1068 - -
0.7839 19200 0.1133 - -
0.7879 19300 0.0551 - -
0.7920 19400 0.113 - -
0.7961 19500 0.0966 - -
0.8002 19600 0.1611 - -
0.8043 19700 0.1038 - -
0.8084 19800 0.1313 - -
0.8124 19900 0.0831 - -
0.8165 20000 0.0938 0.1143 0.1925
0.8206 20100 0.0894 - -
0.8247 20200 0.0834 - -
0.8288 20300 0.0886 - -
0.8329 20400 0.0774 - -
0.8369 20500 0.1678 - -
0.8410 20600 0.094 - -
0.8451 20700 0.1003 - -
0.8492 20800 0.1609 - -
0.8533 20900 0.1413 - -
0.8574 21000 0.1334 - -
0.8614 21100 0.0822 - -
0.8655 21200 0.15 - -
0.8696 21300 0.1048 - -
0.8737 21400 0.2185 - -
0.8778 21500 0.1265 - -
0.8818 21600 0.1064 - -
0.8859 21700 0.1448 - -
0.8900 21800 0.1769 - -
0.8941 21900 0.0884 - -
0.8982 22000 0.133 - -
0.9023 22100 0.1228 - -
0.9063 22200 0.0732 - -
0.9104 22300 0.154 - -
0.9145 22400 0.1479 - -
0.9186 22500 0.1305 - -
0.9227 22600 0.1797 - -
0.9268 22700 0.1242 - -
0.9308 22800 0.1039 - -
0.9349 22900 0.0928 - -
0.9390 23000 0.127 - -
0.9431 23100 0.1123 - -
0.9472 23200 0.1412 - -
0.9513 23300 0.0831 - -
0.9553 23400 0.113 - -
0.9594 23500 0.0691 - -
0.9635 23600 0.1093 - -
0.9676 23700 0.182 - -
0.9717 23800 0.1324 - -
0.9757 23900 0.0964 - -
0.9798 24000 0.0522 - -
0.9839 24100 0.1533 - -
0.9880 24200 0.1123 - -
0.9921 24300 0.2087 - -
0.9962 24400 0.1461 - -
1.0002 24500 0.1227 - -
1.0043 24600 0.0947 - -
1.0084 24700 0.1119 - -
1.0125 24800 0.161 - -
1.0166 24900 0.1634 - -
1.0207 25000 0.1679 - -
1.0247 25100 0.0946 - -
1.0288 25200 0.1324 - -
1.0329 25300 0.0625 - -
1.0370 25400 0.0604 - -
1.0411 25500 0.0513 - -
1.0452 25600 0.0878 - -
1.0492 25700 0.0453 - -
1.0533 25800 0.1287 - -
1.0574 25900 0.0698 - -
1.0615 26000 0.0465 - -
1.0656 26100 0.0647 - -
1.0696 26200 0.059 - -
1.0737 26300 0.0903 - -
1.0778 26400 0.1236 - -
1.0819 26500 0.1042 - -
1.0860 26600 0.1404 - -
1.0901 26700 0.101 - -
1.0941 26800 0.142 - -
1.0982 26900 0.146 - -
1.1023 27000 0.1452 - -
1.1064 27100 0.0434 - -
1.1105 27200 0.0748 - -
1.1146 27300 0.1617 - -
1.1186 27400 0.0877 - -
1.1227 27500 0.108 - -
1.1268 27600 0.1063 - -
1.1309 27700 0.1022 - -
1.1350 27800 0.0592 - -
1.1391 27900 0.1477 - -
1.1431 28000 0.0677 - -
1.1472 28100 0.0661 - -
1.1513 28200 0.116 - -
1.1554 28300 0.0458 - -
1.1595 28400 0.0689 - -
1.1636 28500 0.1099 - -
1.1676 28600 0.0423 - -
1.1717 28700 0.0807 - -
1.1758 28800 0.0352 - -
1.1799 28900 0.0321 - -
1.1840 29000 0.0796 - -
1.1880 29100 0.0684 - -
1.1921 29200 0.1478 - -
1.1962 29300 0.057 - -
1.2003 29400 0.1524 - -
1.2044 29500 0.0733 - -
1.2085 29600 0.0301 - -
1.2125 29700 0.1199 - -
1.2166 29800 0.0823 - -
1.2207 29900 0.0766 - -
1.2248 30000 0.1003 0.1013 0.2033
1.2289 30100 0.1279 - -
1.2330 30200 0.0519 - -
1.2370 30300 0.1175 - -
1.2411 30400 0.0471 - -
1.2452 30500 0.1043 - -
1.2493 30600 0.0945 - -
1.2534 30700 0.1124 - -
1.2575 30800 0.0261 - -
1.2615 30900 0.0767 - -
1.2656 31000 0.1133 - -
1.2697 31100 0.1257 - -
1.2738 31200 0.1037 - -
1.2779 31300 0.1029 - -
1.2819 31400 0.1238 - -
1.2860 31500 0.1058 - -
1.2901 31600 0.03 - -
1.2942 31700 0.0735 - -
1.2983 31800 0.1059 - -
1.3024 31900 0.0779 - -
1.3064 32000 0.118 - -
1.3105 32100 0.0754 - -
1.3146 32200 0.0904 - -
1.3187 32300 0.0651 - -
1.3228 32400 0.0969 - -
1.3269 32500 0.096 - -
1.3309 32600 0.1205 - -
1.3350 32700 0.1657 - -
1.3391 32800 0.0552 - -
1.3432 32900 0.0654 - -
1.3473 33000 0.0764 - -
1.3514 33100 0.0764 - -
1.3554 33200 0.0803 - -
1.3595 33300 0.0563 - -
1.3636 33400 0.0579 - -
1.3677 33500 0.0959 - -
1.3718 33600 0.1009 - -
1.3758 33700 0.0732 - -
1.3799 33800 0.0368 - -
1.3840 33900 0.0936 - -
1.3881 34000 0.0998 - -
1.3922 34100 0.0523 - -
1.3963 34200 0.109 - -
1.4003 34300 0.0958 - -
1.4044 34400 0.112 - -
1.4085 34500 0.0849 - -
1.4126 34600 0.0582 - -
1.4167 34700 0.1075 - -
1.4208 34800 0.1039 - -
1.4248 34900 0.0935 - -
1.4289 35000 0.0717 - -
1.4330 35100 0.0539 - -
1.4371 35200 0.1003 - -
1.4412 35300 0.0525 - -
1.4453 35400 0.0764 - -
1.4493 35500 0.1041 - -
1.4534 35600 0.0788 - -
1.4575 35700 0.0266 - -
1.4616 35800 0.069 - -
1.4657 35900 0.0454 - -
1.4697 36000 0.1107 - -
1.4738 36100 0.0629 - -
1.4779 36200 0.0971 - -
1.4820 36300 0.1667 - -
1.4861 36400 0.1184 - -
1.4902 36500 0.0755 - -
1.4942 36600 0.0911 - -
1.4983 36700 0.0576 - -
1.5024 36800 0.051 - -
1.5065 36900 0.1865 - -
1.5106 37000 0.0528 - -
1.5147 37100 0.0703 - -
1.5187 37200 0.0438 - -
1.5228 37300 0.1311 - -
1.5269 37400 0.0603 - -
1.5310 37500 0.0748 - -
1.5351 37600 0.0573 - -
1.5392 37700 0.1453 - -
1.5432 37800 0.0877 - -
1.5473 37900 0.0878 - -
1.5514 38000 0.0782 - -
1.5555 38100 0.1503 - -
1.5596 38200 0.0745 - -
1.5636 38300 0.0651 - -
1.5677 38400 0.0509 - -
1.5718 38500 0.0694 - -
1.5759 38600 0.0458 - -
1.5800 38700 0.0701 - -
1.5841 38800 0.0629 - -
1.5881 38900 0.0733 - -
1.5922 39000 0.3135 - -
1.5963 39100 0.7966 - -
1.6004 39200 0.0332 - -
1.6045 39300 0.0804 - -
1.6086 39400 0.0909 - -
1.6126 39500 0.0691 - -
1.6167 39600 0.0931 - -
1.6208 39700 0.1133 - -
1.6249 39800 0.088 - -
1.6290 39900 0.1219 - -
1.6331 40000 0.0602 0.0841 0.2187
1.6371 40100 0.0958 - -
1.6412 40200 0.0781 - -
1.6453 40300 0.1139 - -
1.6494 40400 0.0751 - -
1.6535 40500 0.0513 - -
1.6575 40600 0.1193 - -
1.6616 40700 0.0958 - -
1.6657 40800 0.0691 - -
1.6698 40900 0.0876 - -
1.6739 41000 0.0605 - -
1.6780 41100 0.0825 - -
1.6820 41200 0.0785 - -
1.6861 41300 0.0639 - -
1.6902 41400 0.0437 - -
1.6943 41500 0.072 - -
1.6984 41600 0.0425 - -
1.7025 41700 0.1002 - -
1.7065 41800 0.134 - -
1.7106 41900 0.107 - -
1.7147 42000 0.1095 - -
1.7188 42100 0.0805 - -
1.7229 42200 0.0618 - -
1.7270 42300 0.1396 - -
1.7310 42400 0.0938 - -
1.7351 42500 0.0678 - -
1.7392 42600 0.0515 - -
1.7433 42700 0.0379 - -
1.7474 42800 0.0637 - -
1.7514 42900 0.0535 - -
1.7555 43000 0.0744 - -
1.7596 43100 0.1076 - -
1.7637 43200 0.0774 - -
1.7678 43300 0.0664 - -
1.7719 43400 0.0286 - -
1.7759 43500 0.1307 - -
1.7800 43600 0.0498 - -
1.7841 43700 0.1007 - -
1.7882 43800 0.0849 - -
1.7923 43900 0.1118 - -
1.7964 44000 0.0524 - -
1.8004 44100 0.0892 - -
1.8045 44200 0.0425 - -
1.8086 44300 0.0873 - -
1.8127 44400 0.0677 - -
1.8168 44500 0.0688 - -
1.8209 44600 0.0494 - -
1.8249 44700 0.0937 - -
1.8290 44800 0.0443 - -
1.8331 44900 0.0577 - -
1.8372 45000 0.1029 - -
1.8413 45100 0.0586 - -
1.8453 45200 0.0704 - -
1.8494 45300 0.103 - -
1.8535 45400 0.0485 - -
1.8576 45500 0.0869 - -
1.8617 45600 0.1174 - -
1.8658 45700 0.0326 - -
1.8698 45800 0.0862 - -
1.8739 45900 0.062 - -
1.8780 46000 0.0503 - -
1.8821 46100 0.0645 - -
1.8862 46200 0.0633 - -
1.8903 46300 0.077 - -
1.8943 46400 0.065 - -
1.8984 46500 0.0633 - -
1.9025 46600 0.0575 - -
1.9066 46700 0.0744 - -
1.9107 46800 0.0685 - -
1.9148 46900 0.1058 - -
1.9188 47000 0.0542 - -
1.9229 47100 0.0842 - -
1.9270 47200 0.0719 - -
1.9311 47300 0.0563 - -
1.9352 47400 0.0755 - -
1.9393 47500 0.0571 - -
1.9433 47600 0.0985 - -
1.9474 47700 0.0566 - -
1.9515 47800 0.0428 - -
1.9556 47900 0.0422 - -
1.9597 48000 0.0774 - -
1.9637 48100 0.0489 - -
1.9678 48200 0.0591 - -
1.9719 48300 0.0218 - -
1.9760 48400 0.0584 - -
1.9801 48500 0.0273 - -
1.9842 48600 0.0539 - -
1.9882 48700 0.1092 - -
1.9923 48800 0.0737 - -
1.9964 48900 0.0788 - -
2.0005 49000 0.0654 - -
2.0046 49100 0.0528 - -
2.0087 49200 0.0735 - -
2.0127 49300 0.0535 - -
2.0168 49400 0.0327 - -
2.0209 49500 0.0597 - -
2.0250 49600 0.0357 - -
2.0291 49700 0.0417 - -
2.0332 49800 0.0243 - -
2.0372 49900 0.0774 - -
2.0413 50000 0.0651 0.0693 0.2269
2.0454 50100 0.0481 - -
2.0495 50200 0.0658 - -
2.0536 50300 0.0822 - -
2.0576 50400 0.0606 - -
2.0617 50500 0.0542 - -
2.0658 50600 0.0261 - -
2.0699 50700 0.0994 - -
2.0740 50800 0.0617 - -
2.0781 50900 0.0466 - -
2.0821 51000 0.075 - -
2.0862 51100 0.0655 - -
2.0903 51200 0.0544 - -
2.0944 51300 0.025 - -
2.0985 51400 0.0426 - -
2.1026 51500 0.0448 - -
2.1066 51600 0.0395 - -
2.1107 51700 0.0689 - -
2.1148 51800 0.0556 - -
2.1189 51900 0.0461 - -
2.1230 52000 0.0701 - -
2.1271 52100 0.0583 - -
2.1311 52200 0.0416 - -
2.1352 52300 0.0276 - -
2.1393 52400 0.0216 - -
2.1434 52500 0.0316 - -
2.1475 52600 0.0523 - -
2.1515 52700 0.0728 - -
2.1556 52800 0.0262 - -
2.1597 52900 0.0272 - -
2.1638 53000 0.0092 - -
2.1679 53100 0.04 - -
2.1720 53200 0.0636 - -
2.1760 53300 0.1029 - -
2.1801 53400 0.0581 - -
2.1842 53500 0.0899 - -
2.1883 53600 0.0579 - -
2.1924 53700 0.0356 - -
2.1965 53800 0.0294 - -
2.2005 53900 0.0479 - -
2.2046 54000 0.0549 - -
2.2087 54100 0.0505 - -
2.2128 54200 0.044 - -
2.2169 54300 0.034 - -
2.2210 54400 0.0858 - -
2.2250 54500 0.0266 - -
2.2291 54600 0.0744 - -
2.2332 54700 0.0552 - -
2.2373 54800 0.0351 - -
2.2414 54900 0.0357 - -
2.2454 55000 0.036 - -
2.2495 55100 0.036 - -
2.2536 55200 0.0444 - -
2.2577 55300 0.0339 - -
2.2618 55400 0.0557 - -
2.2659 55500 0.0575 - -
2.2699 55600 0.0783 - -
2.2740 55700 0.1049 - -
2.2781 55800 0.0583 - -
2.2822 55900 0.0394 - -
2.2863 56000 0.0542 - -
2.2904 56100 0.0194 - -
2.2944 56200 0.093 - -
2.2985 56300 0.0522 - -
2.3026 56400 0.0737 - -
2.3067 56500 0.0594 - -
2.3108 56600 0.0766 - -
2.3149 56700 0.0847 - -
2.3189 56800 0.0766 - -
2.3230 56900 0.0813 - -
2.3271 57000 0.0527 - -
2.3312 57100 0.0565 - -
2.3353 57200 0.0371 - -
2.3393 57300 0.0311 - -
2.3434 57400 0.0319 - -
2.3475 57500 0.0847 - -
2.3516 57600 0.0587 - -
2.3557 57700 0.0111 - -
2.3598 57800 0.0204 - -
2.3638 57900 0.0388 - -
2.3679 58000 0.0566 - -
2.3720 58100 0.055 - -
2.3761 58200 0.0254 - -
2.3802 58300 0.0195 - -
2.3843 58400 0.0489 - -
2.3883 58500 0.0668 - -
2.3924 58600 0.0672 - -
2.3965 58700 0.0632 - -
2.4006 58800 0.0664 - -
2.4047 58900 0.0278 - -
2.4088 59000 0.0429 - -
2.4128 59100 0.0297 - -
2.4169 59200 0.0285 - -
2.4210 59300 0.0384 - -
2.4251 59400 0.0343 - -
2.4292 59500 0.0362 - -
2.4332 59600 0.0263 - -
2.4373 59700 0.035 - -
2.4414 59800 0.0405 - -
2.4455 59900 0.0342 - -
2.4496 60000 0.0357 0.0604 0.2430
2.4537 60100 0.0431 - -
2.4577 60200 0.02 - -
2.4618 60300 0.0791 - -
2.4659 60400 0.0285 - -
2.4700 60500 0.055 - -
2.4741 60600 0.0699 - -
2.4782 60700 0.0357 - -
2.4822 60800 0.0413 - -
2.4863 60900 0.0772 - -
2.4904 61000 0.0516 - -
2.4945 61100 0.0735 - -
2.4986 61200 0.062 - -
2.5027 61300 0.0387 - -
2.5067 61400 0.054 - -
2.5108 61500 0.0713 - -
2.5149 61600 0.0476 - -
2.5190 61700 0.0232 - -
2.5231 61800 0.0357 - -
2.5271 61900 0.0145 - -
2.5312 62000 0.0249 - -
2.5353 62100 0.0805 - -
2.5394 62200 0.0265 - -
2.5435 62300 0.0338 - -
2.5476 62400 0.0645 - -
2.5516 62500 0.0528 - -
2.5557 62600 0.0812 - -
2.5598 62700 0.0631 - -
2.5639 62800 0.0179 - -
2.5680 62900 0.0594 - -
2.5721 63000 0.0603 - -
2.5761 63100 0.0387 - -
2.5802 63200 0.0476 - -
2.5843 63300 0.0507 - -
2.5884 63400 0.1135 - -
2.5925 63500 0.0276 - -
2.5966 63600 0.0509 - -
2.6006 63700 0.0112 - -
2.6047 63800 0.0288 - -
2.6088 63900 0.036 - -
2.6129 64000 0.0188 - -
2.6170 64100 0.0489 - -
2.6211 64200 0.0361 - -
2.6251 64300 0.0592 - -
2.6292 64400 0.0238 - -
2.6333 64500 0.0167 - -
2.6374 64600 0.0304 - -
2.6415 64700 0.0458 - -
2.6455 64800 0.0211 - -
2.6496 64900 0.0522 - -
2.6537 65000 0.0431 - -
2.6578 65100 0.0343 - -
2.6619 65200 0.052 - -
2.6660 65300 0.043 - -
2.6700 65400 0.0885 - -
2.6741 65500 0.0242 - -
2.6782 65600 0.0277 - -
2.6823 65700 0.0439 - -
2.6864 65800 0.0562 - -
2.6905 65900 0.0411 - -
2.6945 66000 0.0337 - -
2.6986 66100 0.0146 - -
2.7027 66200 0.0536 - -
2.7068 66300 0.0626 - -
2.7109 66400 0.0395 - -
2.7150 66500 0.0454 - -
2.7190 66600 0.0242 - -
2.7231 66700 0.0165 - -
2.7272 66800 0.0266 - -
2.7313 66900 0.0492 - -
2.7354 67000 0.0321 - -
2.7394 67100 0.0661 - -
2.7435 67200 0.0819 - -
2.7476 67300 0.021 - -
2.7517 67400 0.0299 - -
2.7558 67500 0.0737 - -
2.7599 67600 0.0577 - -
2.7639 67700 0.0338 - -
2.7680 67800 0.0726 - -
2.7721 67900 0.0271 - -
2.7762 68000 0.0328 - -
2.7803 68100 0.023 - -
2.7844 68200 0.0422 - -
2.7884 68300 0.0552 - -
2.7925 68400 0.0378 - -
2.7966 68500 0.0128 - -
2.8007 68600 0.0417 - -
2.8048 68700 0.0572 - -
2.8089 68800 0.0261 - -
2.8129 68900 0.0379 - -
2.8170 69000 0.034 - -
2.8211 69100 0.037 - -
2.8252 69200 0.0173 - -
2.8293 69300 0.022 - -
2.8333 69400 0.0151 - -
2.8374 69500 0.0375 - -
2.8415 69600 0.0468 - -
2.8456 69700 0.0422 - -
2.8497 69800 0.048 - -
2.8538 69900 0.0262 - -
2.8578 70000 0.0482 0.0576 0.2521
2.8619 70100 0.0344 - -
2.8660 70200 0.0172 - -
2.8701 70300 0.041 - -
2.8742 70400 0.037 - -
2.8783 70500 0.0088 - -
2.8823 70600 0.0034 - -
2.8864 70700 0.0193 - -
2.8905 70800 0.0377 - -
2.8946 70900 0.0553 - -
2.8987 71000 0.0167 - -
2.9028 71100 0.0481 - -
2.9068 71200 0.0643 - -
2.9109 71300 0.0222 - -
2.9150 71400 0.0259 - -
2.9191 71500 0.0784 - -
2.9232 71600 0.0412 - -
2.9272 71700 0.0568 - -
2.9313 71800 0.0689 - -
2.9354 71900 0.046 - -
2.9395 72000 0.044 - -
2.9436 72100 0.0324 - -
2.9477 72200 0.0354 - -
2.9517 72300 0.0486 - -
2.9558 72400 0.0173 - -
2.9599 72500 0.0844 - -
2.9640 72600 0.0332 - -
2.9681 72700 0.0723 - -
2.9722 72800 0.0589 - -
2.9762 72900 0.0413 - -
2.9803 73000 0.0194 - -
2.9844 73100 0.0432 - -
2.9885 73200 0.0119 - -
2.9926 73300 0.0161 - -
2.9967 73400 0.0317 - -

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.2
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for meandyou200175/E5_v3_instruct_topic

Finetuned
(161)
this model
Finetunes
4 models

Papers for meandyou200175/E5_v3_instruct_topic

Evaluation results