Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/E5_v3_instruct_topic")
# Run inference
sentences = [
'task: sentence similarity | query: tập hợp 500 tờ giấy hay 20 thếp giấy, làm thành đơn vị để tính số lượng giấy',
'in hết hai ram giấy',
'Tổ chức toàn cầu',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.8042, -0.0971],
# [ 0.8042, 1.0000, -0.1152],
# [-0.0971, -0.1152, 1.0000]])
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.162 |
| cosine_accuracy@2 | 0.2119 |
| cosine_accuracy@5 | 0.2903 |
| cosine_accuracy@10 | 0.3639 |
| cosine_accuracy@100 | 0.754 |
| cosine_precision@1 | 0.162 |
| cosine_precision@2 | 0.106 |
| cosine_precision@5 | 0.0581 |
| cosine_precision@10 | 0.0364 |
| cosine_precision@100 | 0.0075 |
| cosine_recall@1 | 0.162 |
| cosine_recall@2 | 0.2119 |
| cosine_recall@5 | 0.2903 |
| cosine_recall@10 | 0.3639 |
| cosine_recall@100 | 0.754 |
| cosine_ndcg@10 | 0.2521 |
| cosine_mrr@1 | 0.162 |
| cosine_mrr@2 | 0.187 |
| cosine_mrr@5 | 0.2079 |
| cosine_mrr@10 | 0.2177 |
| cosine_mrr@100 | 0.2312 |
| cosine_map@100 | 0.2312 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
task: sentence similarity | query: luống |
trồng mấy liếp rau |
task: sentence similarity | query: không còn có quan hệ tình cảm và tình dục, do bất hoà |
vợ chồng sống li thân |
task: sentence similarity | query: đánh bật khỏi một vị trí, một địa vị nào đó để chiếm lấy |
Nhật hất cẳng Pháp ở chiến trường Đông Dương |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
task: sentence similarity | query: dải phù sa ở dọc sông hay cửa sông |
doi cát |
task: classification | query: Theo hãng phân tích JP Morgan, Apple khả năng kỳ vọng Phố Wall quý 2, bất chấp vấn đề chuỗi cung ứng biến động kinh tế vĩ mô. Cụ thể, ghi gửi đầu tư, phân tích Samik Chatterjee JP Morgan hay, "không lo lắng Phố Wall" báo cáo doanh thu Apple – dự kiến công bố 28/7. Mặc rủi ro trung hạn, hy vọng doanh thu doanh iPhone mẽ. iPhone 13 Series "đắt hàng". Nhà phân tích định, chuỗi cung ứng cải thiện yếu kém nhu cầu dự đoán, Apple doanh thu 4 - 8 tỷ USD 3 (tháng 4 – 6). Phố Wall dự kiến, "Nhà Táo" báo cáo doanh thu 82 tỷ USD quý 2, tương đương kỳ vọng 82,1 tỷ USD Chatterjee. Thêm nữa, phân tích hay, phân khúc sản phẩm Mac thể ảnh hưởng cung cấp. Mặt khác, quý nhất, Chatterjee doanh thu dự kiến khiêm tốn. Ông tốc độ trưởng Mac iPad khả năng chi tiêu tiêu xuống. iPhone 11 giá Việt Nam. |
Sức khỏe - Đời sống |
task: classification | query: Khó thống nhất việc hiệp thương giá bán than |
|
Cuộc họp do Bộ Tài chính chủ trì với sự tham gia của Bộ Công nghiệp, Tổng công ty Than Việt Nam (TVN) cuối tuần qua đã đi đến kết luận TVN sẽ tiến hành hiệp thương về giá với các đơn vị tiêu thụ lớn trong vòng 15 ngày tới. |
|
Trong trường hợp hai bên mua bán không hiệp thương được thì cơ quan hữu trách sẽ có những biện pháp giải quyết. Trước đó, các cơ quan hữu trách đã yêu cầu TVN trong thời gian hiệp thương về giá vẫn phải đảm bảo cung cấp đủ than cho các hộ tiêu thụ lớn với mức giá tạm tính theo giá của quý IV năm nay. |
|
Bình luận về việc hiệp thương giá giữa TVN và các hộ tiêu thụ lớn, các chuyên gia cho rằng khó có thể đi đến kết quả thống nhất bởi quyền lợi mỗi bên rất khác nhau. |
Kinh doanh |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4learning_rate: 2e-05warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
|---|---|---|---|---|
| 0.0041 | 100 | 0.8086 | - | - |
| 0.0082 | 200 | 0.634 | - | - |
| 0.0122 | 300 | 0.384 | - | - |
| 0.0163 | 400 | 0.2215 | - | - |
| 0.0204 | 500 | 0.2331 | - | - |
| 0.0245 | 600 | 0.1441 | - | - |
| 0.0286 | 700 | 0.1713 | - | - |
| 0.0327 | 800 | 0.1093 | - | - |
| 0.0367 | 900 | 0.1514 | - | - |
| 0.0408 | 1000 | 0.137 | - | - |
| 0.0449 | 1100 | 0.1053 | - | - |
| 0.0490 | 1200 | 0.1869 | - | - |
| 0.0531 | 1300 | 0.1046 | - | - |
| 0.0572 | 1400 | 0.1653 | - | - |
| 0.0612 | 1500 | 0.1365 | - | - |
| 0.0653 | 1600 | 0.176 | - | - |
| 0.0694 | 1700 | 0.1587 | - | - |
| 0.0735 | 1800 | 0.107 | - | - |
| 0.0776 | 1900 | 0.1624 | - | - |
| 0.0817 | 2000 | 0.1153 | - | - |
| 0.0857 | 2100 | 0.0807 | - | - |
| 0.0898 | 2200 | 0.1341 | - | - |
| 0.0939 | 2300 | 0.1293 | - | - |
| 0.0980 | 2400 | 0.1682 | - | - |
| 0.1021 | 2500 | 0.1393 | - | - |
| 0.1061 | 2600 | 0.0938 | - | - |
| 0.1102 | 2700 | 0.0809 | - | - |
| 0.1143 | 2800 | 0.1414 | - | - |
| 0.1184 | 2900 | 0.0914 | - | - |
| 0.1225 | 3000 | 0.1292 | - | - |
| 0.1266 | 3100 | 0.1326 | - | - |
| 0.1306 | 3200 | 0.1346 | - | - |
| 0.1347 | 3300 | 0.1204 | - | - |
| 0.1388 | 3400 | 0.1715 | - | - |
| 0.1429 | 3500 | 0.0749 | - | - |
| 0.1470 | 3600 | 0.1159 | - | - |
| 0.1511 | 3700 | 0.1199 | - | - |
| 0.1551 | 3800 | 0.0963 | - | - |
| 0.1592 | 3900 | 0.0933 | - | - |
| 0.1633 | 4000 | 0.0748 | - | - |
| 0.1674 | 4100 | 0.1901 | - | - |
| 0.1715 | 4200 | 0.1454 | - | - |
| 0.1756 | 4300 | 0.083 | - | - |
| 0.1796 | 4400 | 0.1796 | - | - |
| 0.1837 | 4500 | 0.0992 | - | - |
| 0.1878 | 4600 | 0.1476 | - | - |
| 0.1919 | 4700 | 0.1276 | - | - |
| 0.1960 | 4800 | 0.1516 | - | - |
| 0.2000 | 4900 | 0.1725 | - | - |
| 0.2041 | 5000 | 0.1894 | - | - |
| 0.2082 | 5100 | 0.055 | - | - |
| 0.2123 | 5200 | 0.1373 | - | - |
| 0.2164 | 5300 | 0.0768 | - | - |
| 0.2205 | 5400 | 0.0781 | - | - |
| 0.2245 | 5500 | 0.1315 | - | - |
| 0.2286 | 5600 | 0.1501 | - | - |
| 0.2327 | 5700 | 0.1596 | - | - |
| 0.2368 | 5800 | 0.1418 | - | - |
| 0.2409 | 5900 | 0.2087 | - | - |
| 0.2450 | 6000 | 0.1066 | - | - |
| 0.2490 | 6100 | 0.1905 | - | - |
| 0.2531 | 6200 | 0.1913 | - | - |
| 0.2572 | 6300 | 0.1176 | - | - |
| 0.2613 | 6400 | 0.0991 | - | - |
| 0.2654 | 6500 | 0.0753 | - | - |
| 0.2695 | 6600 | 0.1405 | - | - |
| 0.2735 | 6700 | 0.2123 | - | - |
| 0.2776 | 6800 | 0.1311 | - | - |
| 0.2817 | 6900 | 0.1173 | - | - |
| 0.2858 | 7000 | 0.1801 | - | - |
| 0.2899 | 7100 | 0.2224 | - | - |
| 0.2939 | 7200 | 0.1592 | - | - |
| 0.2980 | 7300 | 0.1467 | - | - |
| 0.3021 | 7400 | 0.1743 | - | - |
| 0.3062 | 7500 | 0.1822 | - | - |
| 0.3103 | 7600 | 0.2163 | - | - |
| 0.3144 | 7700 | 0.242 | - | - |
| 0.3184 | 7800 | 0.1227 | - | - |
| 0.3225 | 7900 | 0.1577 | - | - |
| 0.3266 | 8000 | 0.1528 | - | - |
| 0.3307 | 8100 | 0.1352 | - | - |
| 0.3348 | 8200 | 0.1447 | - | - |
| 0.3389 | 8300 | 0.1673 | - | - |
| 0.3429 | 8400 | 0.13 | - | - |
| 0.3470 | 8500 | 0.137 | - | - |
| 0.3511 | 8600 | 0.2145 | - | - |
| 0.3552 | 8700 | 0.1964 | - | - |
| 0.3593 | 8800 | 0.1278 | - | - |
| 0.3634 | 8900 | 0.1467 | - | - |
| 0.3674 | 9000 | 0.2462 | - | - |
| 0.3715 | 9100 | 0.1452 | - | - |
| 0.3756 | 9200 | 0.1748 | - | - |
| 0.3797 | 9300 | 0.2234 | - | - |
| 0.3838 | 9400 | 0.0991 | - | - |
| 0.3879 | 9500 | 0.091 | - | - |
| 0.3919 | 9600 | 0.067 | - | - |
| 0.3960 | 9700 | 0.2475 | - | - |
| 0.4001 | 9800 | 0.2083 | - | - |
| 0.4042 | 9900 | 0.1617 | - | - |
| 0.4083 | 10000 | 0.2144 | 0.1217 | 0.1954 |
| 0.4123 | 10100 | 0.1944 | - | - |
| 0.4164 | 10200 | 0.2178 | - | - |
| 0.4205 | 10300 | 0.137 | - | - |
| 0.4246 | 10400 | 0.1847 | - | - |
| 0.4287 | 10500 | 0.1123 | - | - |
| 0.4328 | 10600 | 0.1133 | - | - |
| 0.4368 | 10700 | 0.1968 | - | - |
| 0.4409 | 10800 | 0.1281 | - | - |
| 0.4450 | 10900 | 0.118 | - | - |
| 0.4491 | 11000 | 0.1245 | - | - |
| 0.4532 | 11100 | 0.145 | - | - |
| 0.4573 | 11200 | 0.2029 | - | - |
| 0.4613 | 11300 | 0.0952 | - | - |
| 0.4654 | 11400 | 0.0998 | - | - |
| 0.4695 | 11500 | 0.1336 | - | - |
| 0.4736 | 11600 | 0.0828 | - | - |
| 0.4777 | 11700 | 0.1727 | - | - |
| 0.4818 | 11800 | 0.1549 | - | - |
| 0.4858 | 11900 | 0.1687 | - | - |
| 0.4899 | 12000 | 0.1231 | - | - |
| 0.4940 | 12100 | 0.1485 | - | - |
| 0.4981 | 12200 | 0.1387 | - | - |
| 0.5022 | 12300 | 0.1272 | - | - |
| 0.5062 | 12400 | 0.1073 | - | - |
| 0.5103 | 12500 | 0.1157 | - | - |
| 0.5144 | 12600 | 0.1419 | - | - |
| 0.5185 | 12700 | 0.1449 | - | - |
| 0.5226 | 12800 | 0.1537 | - | - |
| 0.5267 | 12900 | 0.1398 | - | - |
| 0.5307 | 13000 | 0.2289 | - | - |
| 0.5348 | 13100 | 0.1949 | - | - |
| 0.5389 | 13200 | 0.1291 | - | - |
| 0.5430 | 13300 | 0.1461 | - | - |
| 0.5471 | 13400 | 0.1095 | - | - |
| 0.5512 | 13500 | 0.1744 | - | - |
| 0.5552 | 13600 | 0.102 | - | - |
| 0.5593 | 13700 | 0.1321 | - | - |
| 0.5634 | 13800 | 0.216 | - | - |
| 0.5675 | 13900 | 0.16 | - | - |
| 0.5716 | 14000 | 0.1249 | - | - |
| 0.5757 | 14100 | 0.1204 | - | - |
| 0.5797 | 14200 | 0.2567 | - | - |
| 0.5838 | 14300 | 0.1651 | - | - |
| 0.5879 | 14400 | 0.1719 | - | - |
| 0.5920 | 14500 | 0.0986 | - | - |
| 0.5961 | 14600 | 0.1748 | - | - |
| 0.6001 | 14700 | 0.1206 | - | - |
| 0.6042 | 14800 | 0.055 | - | - |
| 0.6083 | 14900 | 0.0976 | - | - |
| 0.6124 | 15000 | 0.1733 | - | - |
| 0.6165 | 15100 | 0.0655 | - | - |
| 0.6206 | 15200 | 0.0831 | - | - |
| 0.6246 | 15300 | 0.1799 | - | - |
| 0.6287 | 15400 | 0.1579 | - | - |
| 0.6328 | 15500 | 0.1342 | - | - |
| 0.6369 | 15600 | 0.1398 | - | - |
| 0.6410 | 15700 | 0.1391 | - | - |
| 0.6451 | 15800 | 0.0943 | - | - |
| 0.6491 | 15900 | 0.1103 | - | - |
| 0.6532 | 16000 | 0.2546 | - | - |
| 0.6573 | 16100 | 0.1479 | - | - |
| 0.6614 | 16200 | 0.2913 | - | - |
| 0.6655 | 16300 | 0.1974 | - | - |
| 0.6696 | 16400 | 0.1827 | - | - |
| 0.6736 | 16500 | 0.167 | - | - |
| 0.6777 | 16600 | 0.1555 | - | - |
| 0.6818 | 16700 | 0.163 | - | - |
| 0.6859 | 16800 | 0.1291 | - | - |
| 0.6900 | 16900 | 0.1903 | - | - |
| 0.6940 | 17000 | 0.163 | - | - |
| 0.6981 | 17100 | 0.15 | - | - |
| 0.7022 | 17200 | 0.1153 | - | - |
| 0.7063 | 17300 | 0.1333 | - | - |
| 0.7104 | 17400 | 0.1228 | - | - |
| 0.7145 | 17500 | 0.1387 | - | - |
| 0.7185 | 17600 | 0.1689 | - | - |
| 0.7226 | 17700 | 0.1073 | - | - |
| 0.7267 | 17800 | 0.1984 | - | - |
| 0.7308 | 17900 | 0.08 | - | - |
| 0.7349 | 18000 | 0.2067 | - | - |
| 0.7390 | 18100 | 0.201 | - | - |
| 0.7430 | 18200 | 0.1861 | - | - |
| 0.7471 | 18300 | 0.1046 | - | - |
| 0.7512 | 18400 | 0.1834 | - | - |
| 0.7553 | 18500 | 0.1149 | - | - |
| 0.7594 | 18600 | 0.1612 | - | - |
| 0.7635 | 18700 | 0.1294 | - | - |
| 0.7675 | 18800 | 0.1522 | - | - |
| 0.7716 | 18900 | 0.1033 | - | - |
| 0.7757 | 19000 | 0.1242 | - | - |
| 0.7798 | 19100 | 0.1068 | - | - |
| 0.7839 | 19200 | 0.1133 | - | - |
| 0.7879 | 19300 | 0.0551 | - | - |
| 0.7920 | 19400 | 0.113 | - | - |
| 0.7961 | 19500 | 0.0966 | - | - |
| 0.8002 | 19600 | 0.1611 | - | - |
| 0.8043 | 19700 | 0.1038 | - | - |
| 0.8084 | 19800 | 0.1313 | - | - |
| 0.8124 | 19900 | 0.0831 | - | - |
| 0.8165 | 20000 | 0.0938 | 0.1143 | 0.1925 |
| 0.8206 | 20100 | 0.0894 | - | - |
| 0.8247 | 20200 | 0.0834 | - | - |
| 0.8288 | 20300 | 0.0886 | - | - |
| 0.8329 | 20400 | 0.0774 | - | - |
| 0.8369 | 20500 | 0.1678 | - | - |
| 0.8410 | 20600 | 0.094 | - | - |
| 0.8451 | 20700 | 0.1003 | - | - |
| 0.8492 | 20800 | 0.1609 | - | - |
| 0.8533 | 20900 | 0.1413 | - | - |
| 0.8574 | 21000 | 0.1334 | - | - |
| 0.8614 | 21100 | 0.0822 | - | - |
| 0.8655 | 21200 | 0.15 | - | - |
| 0.8696 | 21300 | 0.1048 | - | - |
| 0.8737 | 21400 | 0.2185 | - | - |
| 0.8778 | 21500 | 0.1265 | - | - |
| 0.8818 | 21600 | 0.1064 | - | - |
| 0.8859 | 21700 | 0.1448 | - | - |
| 0.8900 | 21800 | 0.1769 | - | - |
| 0.8941 | 21900 | 0.0884 | - | - |
| 0.8982 | 22000 | 0.133 | - | - |
| 0.9023 | 22100 | 0.1228 | - | - |
| 0.9063 | 22200 | 0.0732 | - | - |
| 0.9104 | 22300 | 0.154 | - | - |
| 0.9145 | 22400 | 0.1479 | - | - |
| 0.9186 | 22500 | 0.1305 | - | - |
| 0.9227 | 22600 | 0.1797 | - | - |
| 0.9268 | 22700 | 0.1242 | - | - |
| 0.9308 | 22800 | 0.1039 | - | - |
| 0.9349 | 22900 | 0.0928 | - | - |
| 0.9390 | 23000 | 0.127 | - | - |
| 0.9431 | 23100 | 0.1123 | - | - |
| 0.9472 | 23200 | 0.1412 | - | - |
| 0.9513 | 23300 | 0.0831 | - | - |
| 0.9553 | 23400 | 0.113 | - | - |
| 0.9594 | 23500 | 0.0691 | - | - |
| 0.9635 | 23600 | 0.1093 | - | - |
| 0.9676 | 23700 | 0.182 | - | - |
| 0.9717 | 23800 | 0.1324 | - | - |
| 0.9757 | 23900 | 0.0964 | - | - |
| 0.9798 | 24000 | 0.0522 | - | - |
| 0.9839 | 24100 | 0.1533 | - | - |
| 0.9880 | 24200 | 0.1123 | - | - |
| 0.9921 | 24300 | 0.2087 | - | - |
| 0.9962 | 24400 | 0.1461 | - | - |
| 1.0002 | 24500 | 0.1227 | - | - |
| 1.0043 | 24600 | 0.0947 | - | - |
| 1.0084 | 24700 | 0.1119 | - | - |
| 1.0125 | 24800 | 0.161 | - | - |
| 1.0166 | 24900 | 0.1634 | - | - |
| 1.0207 | 25000 | 0.1679 | - | - |
| 1.0247 | 25100 | 0.0946 | - | - |
| 1.0288 | 25200 | 0.1324 | - | - |
| 1.0329 | 25300 | 0.0625 | - | - |
| 1.0370 | 25400 | 0.0604 | - | - |
| 1.0411 | 25500 | 0.0513 | - | - |
| 1.0452 | 25600 | 0.0878 | - | - |
| 1.0492 | 25700 | 0.0453 | - | - |
| 1.0533 | 25800 | 0.1287 | - | - |
| 1.0574 | 25900 | 0.0698 | - | - |
| 1.0615 | 26000 | 0.0465 | - | - |
| 1.0656 | 26100 | 0.0647 | - | - |
| 1.0696 | 26200 | 0.059 | - | - |
| 1.0737 | 26300 | 0.0903 | - | - |
| 1.0778 | 26400 | 0.1236 | - | - |
| 1.0819 | 26500 | 0.1042 | - | - |
| 1.0860 | 26600 | 0.1404 | - | - |
| 1.0901 | 26700 | 0.101 | - | - |
| 1.0941 | 26800 | 0.142 | - | - |
| 1.0982 | 26900 | 0.146 | - | - |
| 1.1023 | 27000 | 0.1452 | - | - |
| 1.1064 | 27100 | 0.0434 | - | - |
| 1.1105 | 27200 | 0.0748 | - | - |
| 1.1146 | 27300 | 0.1617 | - | - |
| 1.1186 | 27400 | 0.0877 | - | - |
| 1.1227 | 27500 | 0.108 | - | - |
| 1.1268 | 27600 | 0.1063 | - | - |
| 1.1309 | 27700 | 0.1022 | - | - |
| 1.1350 | 27800 | 0.0592 | - | - |
| 1.1391 | 27900 | 0.1477 | - | - |
| 1.1431 | 28000 | 0.0677 | - | - |
| 1.1472 | 28100 | 0.0661 | - | - |
| 1.1513 | 28200 | 0.116 | - | - |
| 1.1554 | 28300 | 0.0458 | - | - |
| 1.1595 | 28400 | 0.0689 | - | - |
| 1.1636 | 28500 | 0.1099 | - | - |
| 1.1676 | 28600 | 0.0423 | - | - |
| 1.1717 | 28700 | 0.0807 | - | - |
| 1.1758 | 28800 | 0.0352 | - | - |
| 1.1799 | 28900 | 0.0321 | - | - |
| 1.1840 | 29000 | 0.0796 | - | - |
| 1.1880 | 29100 | 0.0684 | - | - |
| 1.1921 | 29200 | 0.1478 | - | - |
| 1.1962 | 29300 | 0.057 | - | - |
| 1.2003 | 29400 | 0.1524 | - | - |
| 1.2044 | 29500 | 0.0733 | - | - |
| 1.2085 | 29600 | 0.0301 | - | - |
| 1.2125 | 29700 | 0.1199 | - | - |
| 1.2166 | 29800 | 0.0823 | - | - |
| 1.2207 | 29900 | 0.0766 | - | - |
| 1.2248 | 30000 | 0.1003 | 0.1013 | 0.2033 |
| 1.2289 | 30100 | 0.1279 | - | - |
| 1.2330 | 30200 | 0.0519 | - | - |
| 1.2370 | 30300 | 0.1175 | - | - |
| 1.2411 | 30400 | 0.0471 | - | - |
| 1.2452 | 30500 | 0.1043 | - | - |
| 1.2493 | 30600 | 0.0945 | - | - |
| 1.2534 | 30700 | 0.1124 | - | - |
| 1.2575 | 30800 | 0.0261 | - | - |
| 1.2615 | 30900 | 0.0767 | - | - |
| 1.2656 | 31000 | 0.1133 | - | - |
| 1.2697 | 31100 | 0.1257 | - | - |
| 1.2738 | 31200 | 0.1037 | - | - |
| 1.2779 | 31300 | 0.1029 | - | - |
| 1.2819 | 31400 | 0.1238 | - | - |
| 1.2860 | 31500 | 0.1058 | - | - |
| 1.2901 | 31600 | 0.03 | - | - |
| 1.2942 | 31700 | 0.0735 | - | - |
| 1.2983 | 31800 | 0.1059 | - | - |
| 1.3024 | 31900 | 0.0779 | - | - |
| 1.3064 | 32000 | 0.118 | - | - |
| 1.3105 | 32100 | 0.0754 | - | - |
| 1.3146 | 32200 | 0.0904 | - | - |
| 1.3187 | 32300 | 0.0651 | - | - |
| 1.3228 | 32400 | 0.0969 | - | - |
| 1.3269 | 32500 | 0.096 | - | - |
| 1.3309 | 32600 | 0.1205 | - | - |
| 1.3350 | 32700 | 0.1657 | - | - |
| 1.3391 | 32800 | 0.0552 | - | - |
| 1.3432 | 32900 | 0.0654 | - | - |
| 1.3473 | 33000 | 0.0764 | - | - |
| 1.3514 | 33100 | 0.0764 | - | - |
| 1.3554 | 33200 | 0.0803 | - | - |
| 1.3595 | 33300 | 0.0563 | - | - |
| 1.3636 | 33400 | 0.0579 | - | - |
| 1.3677 | 33500 | 0.0959 | - | - |
| 1.3718 | 33600 | 0.1009 | - | - |
| 1.3758 | 33700 | 0.0732 | - | - |
| 1.3799 | 33800 | 0.0368 | - | - |
| 1.3840 | 33900 | 0.0936 | - | - |
| 1.3881 | 34000 | 0.0998 | - | - |
| 1.3922 | 34100 | 0.0523 | - | - |
| 1.3963 | 34200 | 0.109 | - | - |
| 1.4003 | 34300 | 0.0958 | - | - |
| 1.4044 | 34400 | 0.112 | - | - |
| 1.4085 | 34500 | 0.0849 | - | - |
| 1.4126 | 34600 | 0.0582 | - | - |
| 1.4167 | 34700 | 0.1075 | - | - |
| 1.4208 | 34800 | 0.1039 | - | - |
| 1.4248 | 34900 | 0.0935 | - | - |
| 1.4289 | 35000 | 0.0717 | - | - |
| 1.4330 | 35100 | 0.0539 | - | - |
| 1.4371 | 35200 | 0.1003 | - | - |
| 1.4412 | 35300 | 0.0525 | - | - |
| 1.4453 | 35400 | 0.0764 | - | - |
| 1.4493 | 35500 | 0.1041 | - | - |
| 1.4534 | 35600 | 0.0788 | - | - |
| 1.4575 | 35700 | 0.0266 | - | - |
| 1.4616 | 35800 | 0.069 | - | - |
| 1.4657 | 35900 | 0.0454 | - | - |
| 1.4697 | 36000 | 0.1107 | - | - |
| 1.4738 | 36100 | 0.0629 | - | - |
| 1.4779 | 36200 | 0.0971 | - | - |
| 1.4820 | 36300 | 0.1667 | - | - |
| 1.4861 | 36400 | 0.1184 | - | - |
| 1.4902 | 36500 | 0.0755 | - | - |
| 1.4942 | 36600 | 0.0911 | - | - |
| 1.4983 | 36700 | 0.0576 | - | - |
| 1.5024 | 36800 | 0.051 | - | - |
| 1.5065 | 36900 | 0.1865 | - | - |
| 1.5106 | 37000 | 0.0528 | - | - |
| 1.5147 | 37100 | 0.0703 | - | - |
| 1.5187 | 37200 | 0.0438 | - | - |
| 1.5228 | 37300 | 0.1311 | - | - |
| 1.5269 | 37400 | 0.0603 | - | - |
| 1.5310 | 37500 | 0.0748 | - | - |
| 1.5351 | 37600 | 0.0573 | - | - |
| 1.5392 | 37700 | 0.1453 | - | - |
| 1.5432 | 37800 | 0.0877 | - | - |
| 1.5473 | 37900 | 0.0878 | - | - |
| 1.5514 | 38000 | 0.0782 | - | - |
| 1.5555 | 38100 | 0.1503 | - | - |
| 1.5596 | 38200 | 0.0745 | - | - |
| 1.5636 | 38300 | 0.0651 | - | - |
| 1.5677 | 38400 | 0.0509 | - | - |
| 1.5718 | 38500 | 0.0694 | - | - |
| 1.5759 | 38600 | 0.0458 | - | - |
| 1.5800 | 38700 | 0.0701 | - | - |
| 1.5841 | 38800 | 0.0629 | - | - |
| 1.5881 | 38900 | 0.0733 | - | - |
| 1.5922 | 39000 | 0.3135 | - | - |
| 1.5963 | 39100 | 0.7966 | - | - |
| 1.6004 | 39200 | 0.0332 | - | - |
| 1.6045 | 39300 | 0.0804 | - | - |
| 1.6086 | 39400 | 0.0909 | - | - |
| 1.6126 | 39500 | 0.0691 | - | - |
| 1.6167 | 39600 | 0.0931 | - | - |
| 1.6208 | 39700 | 0.1133 | - | - |
| 1.6249 | 39800 | 0.088 | - | - |
| 1.6290 | 39900 | 0.1219 | - | - |
| 1.6331 | 40000 | 0.0602 | 0.0841 | 0.2187 |
| 1.6371 | 40100 | 0.0958 | - | - |
| 1.6412 | 40200 | 0.0781 | - | - |
| 1.6453 | 40300 | 0.1139 | - | - |
| 1.6494 | 40400 | 0.0751 | - | - |
| 1.6535 | 40500 | 0.0513 | - | - |
| 1.6575 | 40600 | 0.1193 | - | - |
| 1.6616 | 40700 | 0.0958 | - | - |
| 1.6657 | 40800 | 0.0691 | - | - |
| 1.6698 | 40900 | 0.0876 | - | - |
| 1.6739 | 41000 | 0.0605 | - | - |
| 1.6780 | 41100 | 0.0825 | - | - |
| 1.6820 | 41200 | 0.0785 | - | - |
| 1.6861 | 41300 | 0.0639 | - | - |
| 1.6902 | 41400 | 0.0437 | - | - |
| 1.6943 | 41500 | 0.072 | - | - |
| 1.6984 | 41600 | 0.0425 | - | - |
| 1.7025 | 41700 | 0.1002 | - | - |
| 1.7065 | 41800 | 0.134 | - | - |
| 1.7106 | 41900 | 0.107 | - | - |
| 1.7147 | 42000 | 0.1095 | - | - |
| 1.7188 | 42100 | 0.0805 | - | - |
| 1.7229 | 42200 | 0.0618 | - | - |
| 1.7270 | 42300 | 0.1396 | - | - |
| 1.7310 | 42400 | 0.0938 | - | - |
| 1.7351 | 42500 | 0.0678 | - | - |
| 1.7392 | 42600 | 0.0515 | - | - |
| 1.7433 | 42700 | 0.0379 | - | - |
| 1.7474 | 42800 | 0.0637 | - | - |
| 1.7514 | 42900 | 0.0535 | - | - |
| 1.7555 | 43000 | 0.0744 | - | - |
| 1.7596 | 43100 | 0.1076 | - | - |
| 1.7637 | 43200 | 0.0774 | - | - |
| 1.7678 | 43300 | 0.0664 | - | - |
| 1.7719 | 43400 | 0.0286 | - | - |
| 1.7759 | 43500 | 0.1307 | - | - |
| 1.7800 | 43600 | 0.0498 | - | - |
| 1.7841 | 43700 | 0.1007 | - | - |
| 1.7882 | 43800 | 0.0849 | - | - |
| 1.7923 | 43900 | 0.1118 | - | - |
| 1.7964 | 44000 | 0.0524 | - | - |
| 1.8004 | 44100 | 0.0892 | - | - |
| 1.8045 | 44200 | 0.0425 | - | - |
| 1.8086 | 44300 | 0.0873 | - | - |
| 1.8127 | 44400 | 0.0677 | - | - |
| 1.8168 | 44500 | 0.0688 | - | - |
| 1.8209 | 44600 | 0.0494 | - | - |
| 1.8249 | 44700 | 0.0937 | - | - |
| 1.8290 | 44800 | 0.0443 | - | - |
| 1.8331 | 44900 | 0.0577 | - | - |
| 1.8372 | 45000 | 0.1029 | - | - |
| 1.8413 | 45100 | 0.0586 | - | - |
| 1.8453 | 45200 | 0.0704 | - | - |
| 1.8494 | 45300 | 0.103 | - | - |
| 1.8535 | 45400 | 0.0485 | - | - |
| 1.8576 | 45500 | 0.0869 | - | - |
| 1.8617 | 45600 | 0.1174 | - | - |
| 1.8658 | 45700 | 0.0326 | - | - |
| 1.8698 | 45800 | 0.0862 | - | - |
| 1.8739 | 45900 | 0.062 | - | - |
| 1.8780 | 46000 | 0.0503 | - | - |
| 1.8821 | 46100 | 0.0645 | - | - |
| 1.8862 | 46200 | 0.0633 | - | - |
| 1.8903 | 46300 | 0.077 | - | - |
| 1.8943 | 46400 | 0.065 | - | - |
| 1.8984 | 46500 | 0.0633 | - | - |
| 1.9025 | 46600 | 0.0575 | - | - |
| 1.9066 | 46700 | 0.0744 | - | - |
| 1.9107 | 46800 | 0.0685 | - | - |
| 1.9148 | 46900 | 0.1058 | - | - |
| 1.9188 | 47000 | 0.0542 | - | - |
| 1.9229 | 47100 | 0.0842 | - | - |
| 1.9270 | 47200 | 0.0719 | - | - |
| 1.9311 | 47300 | 0.0563 | - | - |
| 1.9352 | 47400 | 0.0755 | - | - |
| 1.9393 | 47500 | 0.0571 | - | - |
| 1.9433 | 47600 | 0.0985 | - | - |
| 1.9474 | 47700 | 0.0566 | - | - |
| 1.9515 | 47800 | 0.0428 | - | - |
| 1.9556 | 47900 | 0.0422 | - | - |
| 1.9597 | 48000 | 0.0774 | - | - |
| 1.9637 | 48100 | 0.0489 | - | - |
| 1.9678 | 48200 | 0.0591 | - | - |
| 1.9719 | 48300 | 0.0218 | - | - |
| 1.9760 | 48400 | 0.0584 | - | - |
| 1.9801 | 48500 | 0.0273 | - | - |
| 1.9842 | 48600 | 0.0539 | - | - |
| 1.9882 | 48700 | 0.1092 | - | - |
| 1.9923 | 48800 | 0.0737 | - | - |
| 1.9964 | 48900 | 0.0788 | - | - |
| 2.0005 | 49000 | 0.0654 | - | - |
| 2.0046 | 49100 | 0.0528 | - | - |
| 2.0087 | 49200 | 0.0735 | - | - |
| 2.0127 | 49300 | 0.0535 | - | - |
| 2.0168 | 49400 | 0.0327 | - | - |
| 2.0209 | 49500 | 0.0597 | - | - |
| 2.0250 | 49600 | 0.0357 | - | - |
| 2.0291 | 49700 | 0.0417 | - | - |
| 2.0332 | 49800 | 0.0243 | - | - |
| 2.0372 | 49900 | 0.0774 | - | - |
| 2.0413 | 50000 | 0.0651 | 0.0693 | 0.2269 |
| 2.0454 | 50100 | 0.0481 | - | - |
| 2.0495 | 50200 | 0.0658 | - | - |
| 2.0536 | 50300 | 0.0822 | - | - |
| 2.0576 | 50400 | 0.0606 | - | - |
| 2.0617 | 50500 | 0.0542 | - | - |
| 2.0658 | 50600 | 0.0261 | - | - |
| 2.0699 | 50700 | 0.0994 | - | - |
| 2.0740 | 50800 | 0.0617 | - | - |
| 2.0781 | 50900 | 0.0466 | - | - |
| 2.0821 | 51000 | 0.075 | - | - |
| 2.0862 | 51100 | 0.0655 | - | - |
| 2.0903 | 51200 | 0.0544 | - | - |
| 2.0944 | 51300 | 0.025 | - | - |
| 2.0985 | 51400 | 0.0426 | - | - |
| 2.1026 | 51500 | 0.0448 | - | - |
| 2.1066 | 51600 | 0.0395 | - | - |
| 2.1107 | 51700 | 0.0689 | - | - |
| 2.1148 | 51800 | 0.0556 | - | - |
| 2.1189 | 51900 | 0.0461 | - | - |
| 2.1230 | 52000 | 0.0701 | - | - |
| 2.1271 | 52100 | 0.0583 | - | - |
| 2.1311 | 52200 | 0.0416 | - | - |
| 2.1352 | 52300 | 0.0276 | - | - |
| 2.1393 | 52400 | 0.0216 | - | - |
| 2.1434 | 52500 | 0.0316 | - | - |
| 2.1475 | 52600 | 0.0523 | - | - |
| 2.1515 | 52700 | 0.0728 | - | - |
| 2.1556 | 52800 | 0.0262 | - | - |
| 2.1597 | 52900 | 0.0272 | - | - |
| 2.1638 | 53000 | 0.0092 | - | - |
| 2.1679 | 53100 | 0.04 | - | - |
| 2.1720 | 53200 | 0.0636 | - | - |
| 2.1760 | 53300 | 0.1029 | - | - |
| 2.1801 | 53400 | 0.0581 | - | - |
| 2.1842 | 53500 | 0.0899 | - | - |
| 2.1883 | 53600 | 0.0579 | - | - |
| 2.1924 | 53700 | 0.0356 | - | - |
| 2.1965 | 53800 | 0.0294 | - | - |
| 2.2005 | 53900 | 0.0479 | - | - |
| 2.2046 | 54000 | 0.0549 | - | - |
| 2.2087 | 54100 | 0.0505 | - | - |
| 2.2128 | 54200 | 0.044 | - | - |
| 2.2169 | 54300 | 0.034 | - | - |
| 2.2210 | 54400 | 0.0858 | - | - |
| 2.2250 | 54500 | 0.0266 | - | - |
| 2.2291 | 54600 | 0.0744 | - | - |
| 2.2332 | 54700 | 0.0552 | - | - |
| 2.2373 | 54800 | 0.0351 | - | - |
| 2.2414 | 54900 | 0.0357 | - | - |
| 2.2454 | 55000 | 0.036 | - | - |
| 2.2495 | 55100 | 0.036 | - | - |
| 2.2536 | 55200 | 0.0444 | - | - |
| 2.2577 | 55300 | 0.0339 | - | - |
| 2.2618 | 55400 | 0.0557 | - | - |
| 2.2659 | 55500 | 0.0575 | - | - |
| 2.2699 | 55600 | 0.0783 | - | - |
| 2.2740 | 55700 | 0.1049 | - | - |
| 2.2781 | 55800 | 0.0583 | - | - |
| 2.2822 | 55900 | 0.0394 | - | - |
| 2.2863 | 56000 | 0.0542 | - | - |
| 2.2904 | 56100 | 0.0194 | - | - |
| 2.2944 | 56200 | 0.093 | - | - |
| 2.2985 | 56300 | 0.0522 | - | - |
| 2.3026 | 56400 | 0.0737 | - | - |
| 2.3067 | 56500 | 0.0594 | - | - |
| 2.3108 | 56600 | 0.0766 | - | - |
| 2.3149 | 56700 | 0.0847 | - | - |
| 2.3189 | 56800 | 0.0766 | - | - |
| 2.3230 | 56900 | 0.0813 | - | - |
| 2.3271 | 57000 | 0.0527 | - | - |
| 2.3312 | 57100 | 0.0565 | - | - |
| 2.3353 | 57200 | 0.0371 | - | - |
| 2.3393 | 57300 | 0.0311 | - | - |
| 2.3434 | 57400 | 0.0319 | - | - |
| 2.3475 | 57500 | 0.0847 | - | - |
| 2.3516 | 57600 | 0.0587 | - | - |
| 2.3557 | 57700 | 0.0111 | - | - |
| 2.3598 | 57800 | 0.0204 | - | - |
| 2.3638 | 57900 | 0.0388 | - | - |
| 2.3679 | 58000 | 0.0566 | - | - |
| 2.3720 | 58100 | 0.055 | - | - |
| 2.3761 | 58200 | 0.0254 | - | - |
| 2.3802 | 58300 | 0.0195 | - | - |
| 2.3843 | 58400 | 0.0489 | - | - |
| 2.3883 | 58500 | 0.0668 | - | - |
| 2.3924 | 58600 | 0.0672 | - | - |
| 2.3965 | 58700 | 0.0632 | - | - |
| 2.4006 | 58800 | 0.0664 | - | - |
| 2.4047 | 58900 | 0.0278 | - | - |
| 2.4088 | 59000 | 0.0429 | - | - |
| 2.4128 | 59100 | 0.0297 | - | - |
| 2.4169 | 59200 | 0.0285 | - | - |
| 2.4210 | 59300 | 0.0384 | - | - |
| 2.4251 | 59400 | 0.0343 | - | - |
| 2.4292 | 59500 | 0.0362 | - | - |
| 2.4332 | 59600 | 0.0263 | - | - |
| 2.4373 | 59700 | 0.035 | - | - |
| 2.4414 | 59800 | 0.0405 | - | - |
| 2.4455 | 59900 | 0.0342 | - | - |
| 2.4496 | 60000 | 0.0357 | 0.0604 | 0.2430 |
| 2.4537 | 60100 | 0.0431 | - | - |
| 2.4577 | 60200 | 0.02 | - | - |
| 2.4618 | 60300 | 0.0791 | - | - |
| 2.4659 | 60400 | 0.0285 | - | - |
| 2.4700 | 60500 | 0.055 | - | - |
| 2.4741 | 60600 | 0.0699 | - | - |
| 2.4782 | 60700 | 0.0357 | - | - |
| 2.4822 | 60800 | 0.0413 | - | - |
| 2.4863 | 60900 | 0.0772 | - | - |
| 2.4904 | 61000 | 0.0516 | - | - |
| 2.4945 | 61100 | 0.0735 | - | - |
| 2.4986 | 61200 | 0.062 | - | - |
| 2.5027 | 61300 | 0.0387 | - | - |
| 2.5067 | 61400 | 0.054 | - | - |
| 2.5108 | 61500 | 0.0713 | - | - |
| 2.5149 | 61600 | 0.0476 | - | - |
| 2.5190 | 61700 | 0.0232 | - | - |
| 2.5231 | 61800 | 0.0357 | - | - |
| 2.5271 | 61900 | 0.0145 | - | - |
| 2.5312 | 62000 | 0.0249 | - | - |
| 2.5353 | 62100 | 0.0805 | - | - |
| 2.5394 | 62200 | 0.0265 | - | - |
| 2.5435 | 62300 | 0.0338 | - | - |
| 2.5476 | 62400 | 0.0645 | - | - |
| 2.5516 | 62500 | 0.0528 | - | - |
| 2.5557 | 62600 | 0.0812 | - | - |
| 2.5598 | 62700 | 0.0631 | - | - |
| 2.5639 | 62800 | 0.0179 | - | - |
| 2.5680 | 62900 | 0.0594 | - | - |
| 2.5721 | 63000 | 0.0603 | - | - |
| 2.5761 | 63100 | 0.0387 | - | - |
| 2.5802 | 63200 | 0.0476 | - | - |
| 2.5843 | 63300 | 0.0507 | - | - |
| 2.5884 | 63400 | 0.1135 | - | - |
| 2.5925 | 63500 | 0.0276 | - | - |
| 2.5966 | 63600 | 0.0509 | - | - |
| 2.6006 | 63700 | 0.0112 | - | - |
| 2.6047 | 63800 | 0.0288 | - | - |
| 2.6088 | 63900 | 0.036 | - | - |
| 2.6129 | 64000 | 0.0188 | - | - |
| 2.6170 | 64100 | 0.0489 | - | - |
| 2.6211 | 64200 | 0.0361 | - | - |
| 2.6251 | 64300 | 0.0592 | - | - |
| 2.6292 | 64400 | 0.0238 | - | - |
| 2.6333 | 64500 | 0.0167 | - | - |
| 2.6374 | 64600 | 0.0304 | - | - |
| 2.6415 | 64700 | 0.0458 | - | - |
| 2.6455 | 64800 | 0.0211 | - | - |
| 2.6496 | 64900 | 0.0522 | - | - |
| 2.6537 | 65000 | 0.0431 | - | - |
| 2.6578 | 65100 | 0.0343 | - | - |
| 2.6619 | 65200 | 0.052 | - | - |
| 2.6660 | 65300 | 0.043 | - | - |
| 2.6700 | 65400 | 0.0885 | - | - |
| 2.6741 | 65500 | 0.0242 | - | - |
| 2.6782 | 65600 | 0.0277 | - | - |
| 2.6823 | 65700 | 0.0439 | - | - |
| 2.6864 | 65800 | 0.0562 | - | - |
| 2.6905 | 65900 | 0.0411 | - | - |
| 2.6945 | 66000 | 0.0337 | - | - |
| 2.6986 | 66100 | 0.0146 | - | - |
| 2.7027 | 66200 | 0.0536 | - | - |
| 2.7068 | 66300 | 0.0626 | - | - |
| 2.7109 | 66400 | 0.0395 | - | - |
| 2.7150 | 66500 | 0.0454 | - | - |
| 2.7190 | 66600 | 0.0242 | - | - |
| 2.7231 | 66700 | 0.0165 | - | - |
| 2.7272 | 66800 | 0.0266 | - | - |
| 2.7313 | 66900 | 0.0492 | - | - |
| 2.7354 | 67000 | 0.0321 | - | - |
| 2.7394 | 67100 | 0.0661 | - | - |
| 2.7435 | 67200 | 0.0819 | - | - |
| 2.7476 | 67300 | 0.021 | - | - |
| 2.7517 | 67400 | 0.0299 | - | - |
| 2.7558 | 67500 | 0.0737 | - | - |
| 2.7599 | 67600 | 0.0577 | - | - |
| 2.7639 | 67700 | 0.0338 | - | - |
| 2.7680 | 67800 | 0.0726 | - | - |
| 2.7721 | 67900 | 0.0271 | - | - |
| 2.7762 | 68000 | 0.0328 | - | - |
| 2.7803 | 68100 | 0.023 | - | - |
| 2.7844 | 68200 | 0.0422 | - | - |
| 2.7884 | 68300 | 0.0552 | - | - |
| 2.7925 | 68400 | 0.0378 | - | - |
| 2.7966 | 68500 | 0.0128 | - | - |
| 2.8007 | 68600 | 0.0417 | - | - |
| 2.8048 | 68700 | 0.0572 | - | - |
| 2.8089 | 68800 | 0.0261 | - | - |
| 2.8129 | 68900 | 0.0379 | - | - |
| 2.8170 | 69000 | 0.034 | - | - |
| 2.8211 | 69100 | 0.037 | - | - |
| 2.8252 | 69200 | 0.0173 | - | - |
| 2.8293 | 69300 | 0.022 | - | - |
| 2.8333 | 69400 | 0.0151 | - | - |
| 2.8374 | 69500 | 0.0375 | - | - |
| 2.8415 | 69600 | 0.0468 | - | - |
| 2.8456 | 69700 | 0.0422 | - | - |
| 2.8497 | 69800 | 0.048 | - | - |
| 2.8538 | 69900 | 0.0262 | - | - |
| 2.8578 | 70000 | 0.0482 | 0.0576 | 0.2521 |
| 2.8619 | 70100 | 0.0344 | - | - |
| 2.8660 | 70200 | 0.0172 | - | - |
| 2.8701 | 70300 | 0.041 | - | - |
| 2.8742 | 70400 | 0.037 | - | - |
| 2.8783 | 70500 | 0.0088 | - | - |
| 2.8823 | 70600 | 0.0034 | - | - |
| 2.8864 | 70700 | 0.0193 | - | - |
| 2.8905 | 70800 | 0.0377 | - | - |
| 2.8946 | 70900 | 0.0553 | - | - |
| 2.8987 | 71000 | 0.0167 | - | - |
| 2.9028 | 71100 | 0.0481 | - | - |
| 2.9068 | 71200 | 0.0643 | - | - |
| 2.9109 | 71300 | 0.0222 | - | - |
| 2.9150 | 71400 | 0.0259 | - | - |
| 2.9191 | 71500 | 0.0784 | - | - |
| 2.9232 | 71600 | 0.0412 | - | - |
| 2.9272 | 71700 | 0.0568 | - | - |
| 2.9313 | 71800 | 0.0689 | - | - |
| 2.9354 | 71900 | 0.046 | - | - |
| 2.9395 | 72000 | 0.044 | - | - |
| 2.9436 | 72100 | 0.0324 | - | - |
| 2.9477 | 72200 | 0.0354 | - | - |
| 2.9517 | 72300 | 0.0486 | - | - |
| 2.9558 | 72400 | 0.0173 | - | - |
| 2.9599 | 72500 | 0.0844 | - | - |
| 2.9640 | 72600 | 0.0332 | - | - |
| 2.9681 | 72700 | 0.0723 | - | - |
| 2.9722 | 72800 | 0.0589 | - | - |
| 2.9762 | 72900 | 0.0413 | - | - |
| 2.9803 | 73000 | 0.0194 | - | - |
| 2.9844 | 73100 | 0.0432 | - | - |
| 2.9885 | 73200 | 0.0119 | - | - |
| 2.9926 | 73300 | 0.0161 | - | - |
| 2.9967 | 73400 | 0.0317 | - | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}