Audio Classification
English
Audio
Classification
deepfakeaudio / app.py
joka13's picture
Update app.py
55cf66a verified
import numpy as np
import librosa
import tensorflow as tf
import streamlit as st
import sounddevice as sd
import wave
import os
# Constants
window_length = 0.02 # 20ms window length
hop_length = 0.0025 # 2.5ms hop length
sample_rate = 22050 # Standard audio sample rate
n_mels = 128 # Number of mel filter banks
threshold_zcr = 0.1 # Adjust this threshold to detect breath based on ZCR
threshold_rmse = 0.1 # Adjust this threshold to detect breath based on RMSE
max_len = 500 # Fix length for feature extraction
# Load TFLite model
interpreter = tf.lite.Interpreter(model_path="model_breath_logspec_mfcc_cnn.tflite")
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Function to extract breath features
def extract_breath_features(y, sr):
frame_length = int(window_length * sr)
hop_length_samples = int(hop_length * sr)
zcr = librosa.feature.zero_crossing_rate(y=y, frame_length=frame_length, hop_length=hop_length_samples)
rmse = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length_samples)
zcr = zcr.T.flatten()
rmse = rmse.T.flatten()
breaths = (zcr > threshold_zcr) & (rmse > threshold_rmse)
breath_feature = np.where(breaths, 1, 0)
return breath_feature
# Feature extraction
def extract_features(file_path):
try:
y, sr = librosa.load(file_path, sr=None)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
logspec = librosa.amplitude_to_db(librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels))
breath_feature = extract_breath_features(y, sr)
# Fix lengths
mfcc = librosa.util.fix_length(mfcc, size=max_len, axis=1)
logspec = librosa.util.fix_length(logspec, size=max_len, axis=1)
breath_feature = librosa.util.fix_length(breath_feature, size=max_len)
return np.vstack((mfcc, logspec, breath_feature))
except Exception as e:
st.error(f"Error processing audio: {e}")
return None
# Prepare input for model
def prepare_single_data(features):
features = librosa.util.fix_length(features, size=max_len, axis=1)
features = features[np.newaxis, ..., np.newaxis] # Add batch and channel dimensions
return features.astype(np.float32) # Convert to FLOAT32
# Predict audio class
def predict_audio(file_path):
features = extract_features(file_path)
if features is not None:
prepared_features = prepare_single_data(features)
interpreter.set_tensor(input_details[0]['index'], prepared_features)
interpreter.invoke()
prediction = interpreter.get_tensor(output_details[0]['index'])
predicted_class = np.argmax(prediction, axis=1)
predicted_prob = prediction[0]
return predicted_class[0], predicted_prob
return None, None
# Record audio function
def record_audio(duration=5, samplerate=22050):
st.info(f"🎤 Recording for {duration} seconds...")
audio_data = sd.rec(int(duration * samplerate), samplerate=samplerate, channels=1, dtype=np.int16)
sd.wait()
st.success("✅ Recording Complete!")
return audio_data, samplerate
# Save recorded audio as .wav
def save_wav(file_path, audio_data, samplerate):
with wave.open(file_path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(samplerate)
wf.writeframes(audio_data.tobytes())
# Streamlit UI
st.title('🎙️ Audio Deepfake Detection')
st.write('Upload or record an audio file to classify it as real or fake.')
# File uploader
uploaded_file = st.file_uploader('📂 Upload an audio file', type=['wav', 'mp3'])
recorded_file_path = "recorded_audio.wav"
# Record audio button
if st.button("🎤 Record Live Audio"):
duration = st.slider("⏳ Set Duration (seconds)", 1, 10, 5)
audio_data, samplerate = record_audio(duration)
save_wav(recorded_file_path, audio_data, samplerate)
st.audio(recorded_file_path, format="audio/wav")
# Process uploaded or recorded audio
if uploaded_file is not None:
with open("uploaded_audio.wav", 'wb') as f:
f.write(uploaded_file.getbuffer())
file_path = "uploaded_audio.wav"
st.audio(file_path, format="audio/wav")
elif os.path.exists(recorded_file_path):
file_path = recorded_file_path
else:
file_path = None
# Run prediction
if file_path:
prediction, probability = predict_audio(file_path)
if prediction is not None:
st.write(f'**Predicted Class:** {prediction}')
st.write(f'**Probability of being Real:** {probability[0]*100:.2f}%')
st.write(f'**Probability of being Fake:** {probability[1]*100:.2f}%')
else:
st.error("❌ Failed to process the audio file.")