Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import librosa
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import sounddevice as sd
|
| 6 |
+
import wave
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Constants
|
| 10 |
+
window_length = 0.02 # 20ms window length
|
| 11 |
+
hop_length = 0.0025 # 2.5ms hop length
|
| 12 |
+
sample_rate = 22050 # Standard audio sample rate
|
| 13 |
+
n_mels = 128 # Number of mel filter banks
|
| 14 |
+
threshold_zcr = 0.1 # Adjust this threshold to detect breath based on ZCR
|
| 15 |
+
threshold_rmse = 0.1 # Adjust this threshold to detect breath based on RMSE
|
| 16 |
+
max_len = 500 # Fix length for feature extraction
|
| 17 |
+
|
| 18 |
+
# Load TFLite model
|
| 19 |
+
interpreter = tf.lite.Interpreter(model_path="model_breath_logspec_mfcc_cnn.tflite")
|
| 20 |
+
interpreter.allocate_tensors()
|
| 21 |
+
|
| 22 |
+
# Get input and output details
|
| 23 |
+
input_details = interpreter.get_input_details()
|
| 24 |
+
output_details = interpreter.get_output_details()
|
| 25 |
+
|
| 26 |
+
# Function to extract breath features
|
| 27 |
+
def extract_breath_features(y, sr):
|
| 28 |
+
frame_length = int(window_length * sr)
|
| 29 |
+
hop_length_samples = int(hop_length * sr)
|
| 30 |
+
|
| 31 |
+
zcr = librosa.feature.zero_crossing_rate(y=y, frame_length=frame_length, hop_length=hop_length_samples)
|
| 32 |
+
rmse = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length_samples)
|
| 33 |
+
|
| 34 |
+
zcr = zcr.T.flatten()
|
| 35 |
+
rmse = rmse.T.flatten()
|
| 36 |
+
|
| 37 |
+
breaths = (zcr > threshold_zcr) & (rmse > threshold_rmse)
|
| 38 |
+
breath_feature = np.where(breaths, 1, 0)
|
| 39 |
+
|
| 40 |
+
return breath_feature
|
| 41 |
+
|
| 42 |
+
# Feature extraction
|
| 43 |
+
def extract_features(file_path):
|
| 44 |
+
try:
|
| 45 |
+
y, sr = librosa.load(file_path, sr=None)
|
| 46 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 47 |
+
logspec = librosa.amplitude_to_db(librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels))
|
| 48 |
+
breath_feature = extract_breath_features(y, sr)
|
| 49 |
+
|
| 50 |
+
# Fix lengths
|
| 51 |
+
mfcc = librosa.util.fix_length(mfcc, size=max_len, axis=1)
|
| 52 |
+
logspec = librosa.util.fix_length(logspec, size=max_len, axis=1)
|
| 53 |
+
breath_feature = librosa.util.fix_length(breath_feature, size=max_len)
|
| 54 |
+
|
| 55 |
+
return np.vstack((mfcc, logspec, breath_feature))
|
| 56 |
+
except Exception as e:
|
| 57 |
+
st.error(f"Error processing audio: {e}")
|
| 58 |
+
return None
|
| 59 |
+
|
| 60 |
+
# Prepare input for model
|
| 61 |
+
def prepare_single_data(features):
|
| 62 |
+
features = librosa.util.fix_length(features, size=max_len, axis=1)
|
| 63 |
+
features = features[np.newaxis, ..., np.newaxis] # Add batch and channel dimensions
|
| 64 |
+
return features.astype(np.float32) # Convert to FLOAT32
|
| 65 |
+
|
| 66 |
+
# Predict audio class
|
| 67 |
+
def predict_audio(file_path):
|
| 68 |
+
features = extract_features(file_path)
|
| 69 |
+
if features is not None:
|
| 70 |
+
prepared_features = prepare_single_data(features)
|
| 71 |
+
interpreter.set_tensor(input_details[0]['index'], prepared_features)
|
| 72 |
+
interpreter.invoke()
|
| 73 |
+
prediction = interpreter.get_tensor(output_details[0]['index'])
|
| 74 |
+
predicted_class = np.argmax(prediction, axis=1)
|
| 75 |
+
predicted_prob = prediction[0]
|
| 76 |
+
return predicted_class[0], predicted_prob
|
| 77 |
+
return None, None
|
| 78 |
+
|
| 79 |
+
# Record audio function
|
| 80 |
+
def record_audio(duration=5, samplerate=22050):
|
| 81 |
+
st.info(f"🎤 Recording for {duration} seconds...")
|
| 82 |
+
audio_data = sd.rec(int(duration * samplerate), samplerate=samplerate, channels=1, dtype=np.int16)
|
| 83 |
+
sd.wait()
|
| 84 |
+
st.success("✅ Recording Complete!")
|
| 85 |
+
return audio_data, samplerate
|
| 86 |
+
|
| 87 |
+
# Save recorded audio as .wav
|
| 88 |
+
def save_wav(file_path, audio_data, samplerate):
|
| 89 |
+
with wave.open(file_path, 'wb') as wf:
|
| 90 |
+
wf.setnchannels(1)
|
| 91 |
+
wf.setsampwidth(2)
|
| 92 |
+
wf.setframerate(samplerate)
|
| 93 |
+
wf.writeframes(audio_data.tobytes())
|
| 94 |
+
|
| 95 |
+
# Streamlit UI
|
| 96 |
+
st.title('🎙️ Audio Deepfake Detection')
|
| 97 |
+
st.write('Upload or record an audio file to classify it as real or fake.')
|
| 98 |
+
|
| 99 |
+
# File uploader
|
| 100 |
+
uploaded_file = st.file_uploader('📂 Upload an audio file', type=['wav', 'mp3'])
|
| 101 |
+
recorded_file_path = "recorded_audio.wav"
|
| 102 |
+
|
| 103 |
+
# Record audio button
|
| 104 |
+
if st.button("🎤 Record Live Audio"):
|
| 105 |
+
duration = st.slider("⏳ Set Duration (seconds)", 1, 10, 5)
|
| 106 |
+
audio_data, samplerate = record_audio(duration)
|
| 107 |
+
save_wav(recorded_file_path, audio_data, samplerate)
|
| 108 |
+
st.audio(recorded_file_path, format="audio/wav")
|
| 109 |
+
|
| 110 |
+
# Process uploaded or recorded audio
|
| 111 |
+
if uploaded_file is not None:
|
| 112 |
+
with open("uploaded_audio.wav", 'wb') as f:
|
| 113 |
+
f.write(uploaded_file.getbuffer())
|
| 114 |
+
file_path = "uploaded_audio.wav"
|
| 115 |
+
st.audio(file_path, format="audio/wav")
|
| 116 |
+
elif os.path.exists(recorded_file_path):
|
| 117 |
+
file_path = recorded_file_path
|
| 118 |
+
else:
|
| 119 |
+
file_path = None
|
| 120 |
+
|
| 121 |
+
# Run prediction
|
| 122 |
+
if file_path:
|
| 123 |
+
prediction, probability = predict_audio(file_path)
|
| 124 |
+
if prediction is not None:
|
| 125 |
+
st.write(f'**Predicted Class:** {prediction}')
|
| 126 |
+
st.write(f'**Probability of being Real:** {probability[0]*100:.2f}%')
|
| 127 |
+
st.write(f'**Probability of being Fake:** {probability[1]*100:.2f}%')
|
| 128 |
+
else:
|
| 129 |
+
st.error("❌ Failed to process the audio file.")
|